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ABSTRACT

We introduce a resource-efficient neural network architecture with zero diver-
gence by design, adapted for high-dimensional problems. Our method is directly
applicable to image denoising, for which divergence-free estimators are particu-
larly well-suited for self-supervised learning, in accordance with Stein’s unbiased
risk estimation theory. Comparisons of our parameterization on popular denois-
ing datasets demonstrate that it retains sufficient expressivity to remain competi-
tive with other divergence-based approaches, while outperforming its counterparts
when the noise level is known.

1 INTRODUCTION

The divergence is a scalar quantity that measures the rate at which a vector field “flows out” of an
infinitesimal region of space. Formally, for a weakly differentiable function f : Rn → Rn, the
divergence at point y ∈ Rn is defined as the trace of the Jacobian matrix Jf (y):

div f(y) ≜ tr(Jf (y)) =

n∑
i=1

∂fi
∂yi

(y) . (1)

In the special case where the divergence is zero everywhere, the vector field is said to be divergence-
free or solenoidal, indicating an incompressible flow. One of the most famous example is without
doubt the magnetic field, which, according to Maxwell’s equations, has zero divergence (Maxwell,
1873). Learning divergence-free vector fields is of particular interest at the interface of physics and
machine learning (Richter-Powell et al., 2022; Raissi et al., 2017a), as such fields naturally emerge
in systems governed by fundamental conservation laws. Parameterizations for learning often exploit
the fact that, in R3, the curl of any vector field is divergence-free (Morita, 2001), or, more generally,
draw on its multidimensional extension via differential forms (Cartan, 1899; Richter-Powell et al.,
2022). As long as the target functions remain low-dimensional, training can be performed efficiently
with the help of an automatic differentiation engine (Paszke et al., 2019) that powers the computation
of partial derivatives. However, scaling challenges arise quickly as the dimensionality increases
(Richter-Powell et al., 2022).

In this paper, we establish a representer theorem for divergence-free vector fields, based on struc-
tured combinations of conservative fields. Building on this result, and incorporating sparsity con-
straints, we show how this representation can inform neural network parameterizations that remain
resource-efficient, thereby ensuring computational tractability in high dimension. With applica-
tion to image denoising, for which divergence-free estimators are particularly well-suited for self-
supervised learning, in accordance with Stein’s unbiased risk estimation theory Stein (1981), we
propose a methodology to construct low-overhead network architectures that have zero divergence
by design and which are adapted to image processing tasks. We demonstrate their competitiveness
in comparison to other divergence-based approaches (Batson & Royer, 2019; Tachella et al., 2025a;
Soltanayev & Chun, 2018) for the removal of Gaussian noise without clean data.

In summary, the contributions of our work are as follows:

1. The establishment of a representer theorem for divergence-free fields, on which we build
to construct neural network architectures that have zero divergence by design.
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2. A theoretical framework for analyzing self-supervised image denoising methods grounded
in the principle of constant divergence.

3. The demonstration of the competitiveness of our approach in comparison with other
divergence-based approaches, particularly when the noise level is known.

2 RELATED WORK

Divergence-free networks are particularly studied within physics-informed machine learning and
related scientific modeling tasks, which integrate physical laws into the training of neural networks
to solve partial differential equations. Notably, enforcing incompressibility constraints is often im-
portant—especially in fluid dynamics, where velocity fields are required to be divergence-free.

A common approach employs soft constraints by adding penalty terms to the loss function that
encourage the predicted fields to be divergence-free (Raissi et al., 2017b; Mao et al., 2020; Jin
et al., 2021). Although such penalty-based methods are straightforward to implement, they do not
guarantee strict satisfaction of the incompressibility condition, and residual divergence can remain
in some cases, particularly for complex or high-dimensional problems.

To overcome these limitations, recent works have explored hard constraints that enforce divergence-
free properties by construction through network architecture or parameterization. For example, in
Raissi et al. (2017a), a stream function formulation is used in 2D to represent the velocity field as
derivatives of a scalar network output, which is analytically divergence-free. Extending this idea to
the multidimensional case, Richter-Powell et al. (2022) designed networks that directly encode con-
servation laws—including divergence-free constraints—thereby allowing modeling of flow fields
and advected quantities without explicit divergence penalties. Nonetheless, scaling these models
proves challenging due to their heavy reliance on automatic differentiation. For example, the vector-
field parameterization proposed by Richter-Powell et al. (2022) requires computing a Jacobian ma-
trix, which becomes intractable as the dimension grows.

3 DIVERGENCE-BASED APPROACHES FOR SELF-SUPERVISED DENOISING

We focus on denoising problems under the assumption of additive white Gaussian noise (AWGN):

y = x+ σϵ , (2)

where y ∈ Rn is the noisy observation, x ∈ Rn is the underlying noise-free signal, ϵ ∼ N (0, In)
models the random nature of noise and σ > 0 is the noise level. Provided that a sufficiently large
dataset composed of pairs consisting of a clean signal and its noisy counterpart (x,y) ∈ X × Y is
available, problem (2) is traditionally tackled in a supervised manner by solving:

argmin
f

Ex,y∥f(y)− x∥22 , (3)

that is, by finding the minimum mean square error (MMSE) estimator, which we denote fMMSE.
Interestingly, fMMSE has a closed-form expression which is given by Tweedie’s formula (Efron,
2011) which reads fMMSE(y) = y+σ2∇ log py(y) . In this latter expression, the optimal estimator
fMMSE depends solely on the score of the distribution of the noisy data ∇ log py(y). Accordingly,
this formulation indicates that Gaussian denoising may be effectively addressed even in the absence
of ground-truth data x for training.

Among all the methods proposed in the literature for tackling self-supervised denoising, divergence-
based approaches hold a prominent place. They are all grounded in Stein’s Unbiased Risk Estimator
(SURE) theory (Stein, 1981) which establishes a remarkable identity involving the divergence oper-
ator:

Ex,y∥f(y)− x∥22 = Ey

[
−nσ2 + ∥f(y)− y∥22 + 2σ2 div f(y)

]
, (4)

provided that f belongs to L1, the space of weakly differentiable functions, and under the assump-
tion that Ey|x|fi(y)| is bounded. This result is particularly powerful, as it reveals that the mean
square error can be reformulated to depend solely on noisy observations, as long as the divergence
can be computed. Consequently, equation (4) can, in effect, be interpreted as a self-supervised loss
for Gaussian denoising. Many traditional image denoisers—whose divergence admits a closed-form
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expression—are in fact rooted in this identity (Blu & Luisier, 2007; Van De Ville & Kocher, 2009;
Wang & Morel, 2013), even if this connection is not made explicit in some cases (Dabov et al., 2007;
Lebrun et al., 2013), as shown by Herbreteau & Kervrann (2025). However, when the estimator f
is considerably more complex, such as a deep neural network, its divergence is generally intractable
to compute. In what follows, we describe two distinct approaches proposed in the literature to use
(4) anyway as a self-supervised loss for training networks, propose a third way and then study their
shared properties.

Remark In addition to the divergence-based approaches studied in this paper, we also mention,
for completeness, the approaches that directly utilize the score function ∇ log py(y) in Tweedie’s
formula, as proposed in Kim & Ye (2021); Xie et al. (2023), all of which depend on the estimation
technique introduced by Lim et al. (2020). Moreover, Noise2Noise-like (Lehtinen et al., 2018) data
augmentation techniques were also proposed (Pang et al., 2021; Huang et al., 2021; Wang et al.,
2022; Mansour & Heckel, 2023) as an alternative to SURE.

3.1 BLIND-SPOT ESTIMATORS

A radical way to bypass the computation of the divergence is to impose that each component function
fi does not depend on yi. Under this constraint, f becomes trivially divergence-free by construction
since ∀y ∈ Rn, ∂fi∂yi

(y) = 0. This idea dates back to Efron (2004) and lies at the core of the
Noise2Self approach (Batson & Royer, 2019) and its variants (Krull et al., 2019; Laine et al., 2019),
in which a so-called “blind-spot” network architecture is employed. From a broader perspective,
this constraint can be generalized by restricting f to the space

ScBS = {f ∈ L1(Rn,Rn) : ∀y ∈ Rn,
∂fi
∂yi

(y) = c} , (5)

where c ∈ R is an arbitrary constant, fixed in advance.

An important byproduct of this approach is that the divergence term in (4) becomes constant and thus
irrelevant to the optimization objective, regardless of the noise level σ. Consequently, in addition
to not requiring clean targets x, blind-spot estimators also dispense with prior knowledge of the
noise level σ, thereby avoiding the need for its ad hoc estimation (Chen et al., 2015; Pyatykh et al.,
2013; Foi et al., 2008). Finally, the blind-spot approach simply amounts to minimizing the data
consistency term:

arg min
f∈Sc

BS

Ey∥f(y)− y∥22 . (6)

In the case c = 0, the solution of (6) is given by fBS
i (y) = E{yi|y−i} = E{xi|y−i}, where y−i

refers to the vector obtained by excluding the ith entry.

The strength of blind-spot approaches lies actually in their versatility: they can handle a wide range
of noise types, specifically those that are zero-mean and spatially independent, of which (2) is a
prime example, without precisely knowing the noise distribution. However, this flexibility comes at
a significant performance cost. A blind-spot architecture is indeed inherently less expressive than
a classic one, especially since yi is usually highly informative about xi, and tends to introduce
checkerboard artifacts (Höck et al., 2022).

3.2 MONTE CARLO APPROXIMATION METHODS

Alongside the blind-spot approach, an alternative method involves employing a Monte Carlo ap-
proximation of the divergence, grounded in the following result (Ramani et al., 2008):

div f(y) = lim
τ→0

Eh∼N (0,I)

[
h⊤ f(y + τh)− f(y)

τ

]
, (7)

provided that f admits a well-defined second-order Taylor expansion (if not, this is still valid in the
weak sense provided that f is tempered, which is the case for networks with piecewise differentiable
activation functions as shown by Soltanayev & Chun (2018)). In practice, a single realization h from
the standard normal distribution N (0, I) is used for approximating the divergence and τ is chosen

3
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as a small constant. In total, only two evaluations of the function f are necessary to estimate its
divergence with this method.

In a deep learning setting, Soltanayev & Chun (2018); Chen et al. (2022) leveraged this Monte Carlo
approximation in combination to the SURE loss (4) to train neural networks on datasets composed
only of noisy observations y, leading to the MC-SURE approach. While they achieved performance
close to that of the MMSE estimator, a slight gap remains, partly due to approximation errors in the
divergence term.

UNSURE To overcome the limitation of requiring knowledge of the noise level σ, Tachella et al.
(2025a) proposed a softened version of the constraint (5), imposing only that the estimator has zero
expected divergence, that is, Ey div f(y) = 0. This relaxation has the advantage to produce the
same simplification effect on the optimization objective (4) as with blind-spot estimators, while
allowing more expressivity. Extending it to the constant case, this alternative constraint forces f to
belong to the space

ScCED = {f ∈ L1(Rn,Rn) : Ey div f(y) = nc} . (8)

Note that we do have ScBS ⊂ ScCED. Similarly to blind-spot approaches, training consists in solving:

arg min
f∈Sc

CED

Ey∥f(y)− y∥22 , (9)

for which a closed-form solution was established in the case c = 0, namely fCED(y) = y +
η̂∇ log py(y), with η̂ = (Ey

1
n∥∇ log py(y)∥22)−1. An important difference with the blind-spot

approach lies in how the optimization is carried out in practice. Indeed, unlike blind-spot ap-
proaches—where the constraint is enforced directly through the design of f—the UNSURE ap-
proach seeks a saddle point of the Lagrangian by formulating the problem as a min–max optimiza-
tion which is solved by alternating gradient-descent-ascent (Arrow et al., 1958; Platt & Barr, 1987).
However, such an optimization method comes with several caveats. First, constraint satisfaction is
not guaranteed in practice; only the penalty term associated with violations is minimized. Second,
the outcome is highly sensitive to the choice of learning-rate pair for gradient-descent-ascent, which
controls the trade-off between the objective and the constraint, and an inappropriate choice can lead
to instabilities or oscillatory dynamics during training (Platt & Barr, 1987; Gallego-Posada et al.,
2022). Finally, in this setting, the divergence term is estimated via a Monte Carlo approximation
based on (7) using a limited number of samples, which can further degrade the accuracy of the
optimization.

3.3 PROPOSED ALTERNATIVE: DIVERGENCE-CONSTANT ESTIMATORS

In this work, we propose to study the set of weakly differentiable vector fields on Rn with constant
(normalized) divergence c ∈ R, denoted by

ScDC = {f ∈ L1(Rn,Rn) : ∀y ∈ Rn,div f(y) = nc} , (10)

de facto introducing an intermediate constraint set lying between the strict blind-spot constraint set
and the much looser expected divergence constraint one: ScBS ⊂ ScDC ⊂ ScCED. We emphasize that
all inclusions are strict, with in particular the possibility for f ∈ S0

DC to have each of its component
function fi to depend on yi, which is excluded for a function in S0

BS (see Appendix C). We postpone
the description of the way we construct in practice such divergence-constant estimators to the next
section. Let us simply note that, similar to existing alternatives, divergence-constant mappings are
of particular interest in self-supervised denoising in view of (4) since training consists in solving:

arg min
f∈Sc

DC

Ey∥f(y)− y∥22 . (11)

3.4 PROPERTIES SHARED BY ALL CONSTRAINT SETS

For conciseness, Sc denotes one of the following sets: ScBS,ScCED or ScDC. This paragraph should
be read by selecting one of these three sets consistently, without mixing them. As a preliminarily
observation, we notice that the constraint set Sc admits an affine space structure, based at c id, where
id refers to the identity map on Rn. This statement is formalized in the following lemma (all the
proofs of this paper are given in Appendix B).

4
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Lemma 1. S0 is a linear space and Sc is an affine space with Sc = c id+S0.

A direct consequence (see Proposition 1) is that the optimal denoiser within each class can be written
as an affine combination of the identity function and the minimizer in S0 of the data consistency
term. Thus, it is sufficient to restrict the search to estimators in S0, since any optimal denoiser in Sc
can be recovered straightforwardly from an optimal denoiser in S0.

Proposition 1. In the AWGN setting (see (2)),

argmin
f∈Sc

Ex,y∥f(y)− x∥22 = c id+(1− c) argmin
f∈S0

Ey∥f(y)− y∥22 .

An immediate question that arises at this point is: How to choose the constant c to achieve the best
denoising? Proposition 2 provides a theoretical characterization of the optimal constant c∗, provided
that the noise level σ is known.

Proposition 2 (Optimal constant). In the AWGN setting (see (2)),

c∗ = argmin
c∈R

min
f∈Sc

Ex,y∥f(y)− x∥22 = 1− nσ2

minf∈S0 Ey∥f(y)− y∥22
∈ [0, 1] .

Interestingly, the optimal constant c∗ lies in [0, 1]. As a consequence, the affine combination in Prop.
1 is in fact a convex combination in the optimal case. Naturally, c∗ depends on the knowledge of
the noise level σ, which may be unknown in some settings. This explains why the arbitrary choice
c = 0 is made in practice (Batson & Royer, 2019; Tachella et al., 2025a).

4 DESIGN OF DIVERGENCE-FREE NEURAL NETWORKS

We now present our proposed methodology for constructing divergence-free network architectures.

4.1 REPRESENTING DIVERGENCE-FREE VECTOR FIELDS

Lemma 2 offers a straightforward method for generating divergence-free vector fields and highlights
the key role played by skew-symmetric matrices in ensuring zero divergence.

Lemma 2 (A simple divergence-free vector field). Let ψ : Rn → R be a smooth scalar field and let
A ∈ Rn×n be a skew-symmetric matrix, i.e. A⊤ = −A. The vector field A∇ψ is divergence-free.

Nevertheless, this construction does not capture all divergence-free vector fields, expect for the case
n ≤ 2. In fact, fully representing such fields typically requires combining multiple expressions of
this form, as formalized in the following representer theorem.

Theorem 1 (A universal approximation of divergence-free fields). Let f : Rn → Rn be a smooth
divergence-free vector field and let {A1, . . . ,AK} ∈ Rn×n be a basis of the space of real skew-
symmetric n × n matrices. There exist smooth scalar fields ψ1, . . . , ψK : Rn → R such that the
vector field f̃ : Rn → Rn defined as

f̃ =

K∑
k=1

Ak∇ψk

is divergence-free and can approximate f “arbitrarily well”.

The proof is an extension of the work of Richter-Powell et al. (2022) (for which the reader is referred
to for more details on the precise meaning of “arbitrarily well”) and builds on the classical Hodge
decomposition theorem (Morita, 2001; Berger, 2003). Note that the space of real skew-symmetric
n× n matrices is of dimension K =

(
n
2

)
, hence the number of scalar fields required to approximate

a divergence-free field scales quadratically with the dimension n.

5
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Application for n = 3 Consider the following basis of real skew-symmetric 3× 3 matrices:

A1 =

(
0 0 0
0 0 1
0 −1 0

)
,A2 =

(
0 0 −1
0 0 0
1 0 0

)
and A3 =

(
0 1 0
−1 0 0
0 0 0

)
,

and let f be a smooth divergence-free vector field. According to Theorem 1, there exist ψ1, ψ2, ψ3 :
R3 → R, such that

f̃ =

3∑
k=1

Ak∇ψk =


∂ψ3

∂y2
− ∂ψ2

∂y3
∂ψ1

∂y3
− ∂ψ3

∂y1
∂ψ2

∂y1
− ∂ψ1

∂y2


is diververgence-free and can approximate f “arbitrarily well”. In other words, there exists a vector
field ψ = (ψ1, ψ2, ψ3) such that its curl approximates f “arbitrarily well”. This is a well-known
result in the literature (Morita, 2001).

4.2 PROPOSED ARCHITECTURE

Our goal is to construct a parameterized function f , under the form of a neural network, that is
divergence-free by design and whose architecture is tailored for image processing tasks, in particular
denoising. To this end, we build on the representer Theorem 1, which suggests defining f as a struc-
tured combination of conservative fields ∇ψk. However, as previously noted, the number of terms
in this representation, namely K in Theorem 1, is on the order of n2, which becomes prohibitive as
soon as we work with images. This scalability issue was previously highlighted by Richter-Powell
et al. (2022). To keep computations tractable, we propose to constraint f to be represented using
a sparse combination of conservative fields, which we assume retains sufficient representational fi-
delity. This deliberate simplification ultimately consists in substituting K with K ′ ≪ K (typically
K ′ = 8). More precisely, we build f under the form

f =

K′∑
k=1

Ak∇ψk , (12)

where ψ1, . . . , ψK′ : Rn → R are parameterized via a single shared neural network and
{A1, . . . ,AK′} ∈ Rn×n are (sparse) skew-symmetric matrices, also parameterized. We now detail
the construction of both types of parameterization.

Design of the skew-symmetric matrices For the sake of computational efficiency, the skew-
symmetric matrices Ak in (12) are chosen to be sparse matrices with shared parameters as follows:

Ak = P⊤
k

Θ−Θ⊤

2
Pk , (13)

where Θ is a shared parameterized repeated-block diagonal matrix and where each Pk ∈ Rn×n is
a different and fixed permutation matrix (typically a rotation or shift matrix). Note that the matrices
Ak are guaranteed to be skew-symmetric by design thanks to the following equality of sets, valid
for any permutation matrix Pk: {A ∈ Rn×n : A⊤ = −A} = {P⊤

k
A−A⊤

2 Pk : A ∈ Rn×n} .

Design of the scalar fields The idea of designing neural networks to represent exact conservative
fields, i.e. of the form ∇ψ, has already been explored in works targeting energy based models or
plug-and-play methods (Salimans & Ho, 2021; Hurault et al., 2022a). They all point out the critical
choice of the architecture for the scalar potential function ψ in order to achieve good performance in
practice. In particular, as experimentally observed, modeling ψ as a standard feedforward network,
such as the ones used for classification, severely degrades performance. Instead, it is recommended
to incorporate an architecture tailored to the target application directly into the design of ψ. This is
why, we propose to consider parameterized scalar fields of the form

ψθ,Bk
: y ∈ Rn 7→ 1

2

(
∥Bky∥22 − ∥Bky −Dθ(y)∥22

)
, (14)

where Bk ∈ Rn×n and Dθ : Rn → Rn is a neural network specific to image processing, typically
a U-Net (Ronneberger et al., 2015). Please note that the neural network parameters θ are shared for

6
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all scalar fields. The specific form of the scalar fields in (14) is strongly inspired by Hurault et al.
(2022a), with the addition of the Bk matrices introduced in our formulation. It is justified by the
fact that

∇ψθ,Bk
(y) = B⊤

k Dθ(y) + JDθ
(y)⊤(Bky −Dθ(y)) , (15)

for which the first term is known to be effective for learning denoising functions. Note that the
inclusion of the matrix Bk in (14) has the effect of introducing the term B⊤

k Dθ(y) instead of
Dθ(y), with the hope that this (transposed) matrix could counterbalance the potentially negative
effect of multiplication by a skew-symmetric matrix Ak afterwards. In practice, expression (15)
is computed by differentiating (14) with respect to the input y using an automatic differentiation
engine (Paszke et al., 2019), which avoids computing the full Jacobian.

Finally, the matrices Bk in (14) are parameterized analogously to (13) via a shared repeated-block
diagonal matrix Θ′ ∈ Rn×n, in accordance with

Bk = P⊤
k Θ′Pk . (16)

Please note that the fixed permutation matrices Pk are the same as in (13). Ultimately, the learnable
parameters for the proposed parametrization of (12) are {θ,Θ,Θ′} and their number is only slightly
greater than that of Dθ since Θ and Θ′ are sparse, which supports the practicality of our proposed
parameterization.

5 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our proposed methodology to construct divergence-free net-
works, termed DivFree, in the case of self-supervised image denoising under the assumption of
Gaussian noise and compare its competitiveness with related state-of-the-art divergence-based ap-
proaches, namely MC-SURE (Soltanayev & Chun, 2018), Noise2Self (Batson & Royer, 2019) and
UNSURE (Tachella et al., 2025a). We trained all models ourselves, with a separate model for each
noise level σ. For divergence-free estimators, either everywhere or in expectation, we also eval-
uated the performance of their divergence-constant counterparts, marked with symbol †, based on
Propositions 1 and 2. Performance of DivFree and other methods are assessed in terms of PSNR
values.

5.1 IMPLEMENTATION DETAILS

Common backbone architecture For a fair comparison, we adopt a variant of the DRUNet archi-
tecture (Zhang et al., 2022) as the shared backbone across all approaches. In the original formulation,
each scale is composed of four residual blocks of the form “3× 3 conv → ReLU → 3× 3 conv”. To
reduce computational cost, we limit this to two residual blocks per scale. Moreover, as in Hurault
et al. (2022b), we replace ReLU by Softplus activations with sharpness parameter β = 100, which
acts as a smooth surrogate for ReLU, easing training for convervative field networks (Hurault et al.,
2022a). Note that only “blind” models were considered in this work, so the noise level map was
removed from the original architecture.

Datasets All models were trained using the same large-scale dataset proposed in Zhang et al.
(2022), which contains a total of 8,694 images. This includes 400 images from the Berkeley Seg-
mentation Dataset (BSD400) (Martin et al., 2001), 4,744 images from the Waterloo Exploration
Database (Ma et al., 2017), 900 images from DIV2K (Agustsson & Timofte, 2017), and 2,750 im-
ages from Flickr2K (Lim et al., 2017). The training set is augmented through random horizontal and
vertical flips as well as random rotations of 90◦. For validation, we use the BSD32 dataset (Martin
et al., 2001), consisting of 32 images, to monitor training progress and select the best-performing
model. Finally, the evaluation is carried out on two test sets, Set12 and BSD68 (Martin et al., 2001),
which are completely separate from both the training and validation data.

Training details All models are trained for 600,000 iterations, where each training iteration in-
volves a gradient-based pass on a batch of patches of size 128×128 that are randomly cropped from
training images (except for DivFree where patches are taken of size 64 × 64 in order to accelerate
training). We use a batch size of 16 and employ the Adam optimizer (Kingma & Ba, 2015) with
an initial learning rate of 10−4 as in Zhang et al. (2022), which is halved every 150,000 iterations.

7
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Table 1: The PSNR (dB) results of deep learning-based methods applied to popular grayscale
datasets corrupted by synthetic white Gaussian noise with σ = 15, 25 and 50. Best in each cat-
egory is in bold.

Dataset Set12 BSD68

Noise level σ 15 / 25 / 50 15 / 25 / 50

supervised DRUNet light 33.24 / 30.92 / 27.84 31.91 / 29.46 / 26.55

self-supervised
known σ

MC-SURE 32.13 / 29.97 / 27.27 31.20 / 28.86 / 26.22
Noise2Self† 32.07 / 30.05 / 27.25 30.80 / 28.66 / 26.09
UNSURE† 31.80 / 29.49 / 27.14 30.58 / 28.39 / 26.01

DivFree† (ours) 32.46 / 30.28 / 27.27 31.20 / 28.91 / 26.13

self-supervised
unknown σ

Noise2Self 31.15 / 29.55 / 27.02 29.29 / 27.83 / 25.73
UNSURE 31.88 / 29.84 / 27.15 30.90 / 28.72 / 26.08

DivFree (ours) 31.65 / 29.81 / 27.05 29.87 / 28.14 / 25.78

Approaches that rely on a Monte Carlo approximation (7) of the divergence involve an additional
hyperparameter τ . In our experiments, we adopted the default choice τ = 10−2, which is recom-
mended for vectors with entries in [0, 1] (Tachella et al., 2025b). For the UNSURE loss (Tachella
et al., 2025a), we followed the default settings of the DeepInverse library (Tachella et al., 2025b); in
particular, the momentum parameter for the gradient ascent on the noise level was fixed at 0.9.

Implementation choices for DivFree Our proposed parameterization (12) of divergence-free es-
timators requires several additional hyperparameters that must be specified, including the number
of terms K ′ in the sum, the size κ× κ of the blocks in the two repeated-block diagonal matrices Θ
and Θ′, and the selection of the permutation matrices Pk. First of all, in order to drastically reduce
the computational burden, we set K ′ = 8. The block size κ is chosen as 16, resulting in a total
of 512 additional learnable parameters, which is negligible compared to the 17,007,744 parameters
of the network backbone. Finally, the first four permutation matrices Pk were selected to perform
circular horizontal shifts of the input image by 0 to 3 pixels, while the remaining four are obtained
by composing these shifts with a 90◦ rotation.

Our implementation is written in Python using the PyTorch framework (Paszke et al., 2019) and with
additional support from the DeepInverse library (Tachella et al., 2025b). Training was conducted on
a Tesla V100 GPU.

5.2 RESULTS FOR SELF-SUPERVISED IMAGE DENOISING

Table 1 reports a quantitative comparison of state-of-the-art divergence-based methods for im-
age denoising trained without ground truth data. The results are organized into two categories:
methods that require the noise level σ during training, such as MC-SURE (Soltanayev & Chun,
2018), and those that are agnostic to it, including DivFree. Importantly, Propositions 1 and 2
show that the latter category can be converted into noise-level–aware denoisers without additional
training. Specifically, for a divergence-free estimator f , either everywhere or in expectation, the
quantity minf∈S0 Ey∥f(y) − y∥22 in Proposition 2 can be approximated using a single realization
∥f(y)− y∥22, where y denotes the noisy input image (averaging this term over more image realiza-
tions did not lead to further improvements).

As expected, UNSURE (Tachella et al., 2025a) achieves the best performance when the noise level
σ is unknown, followed by DivFree and then Noise2Self (Batson & Royer, 2019). This ordering is
consistent with the fact that S0

BS ⊂ S0
DC ⊂ S0

CED: the fewer constraints imposed on the search space
of the estimator, the more expressive it becomes. The situation changes, however, when the noise
level σ is assumed known. While DivFree and Noise2Self naturally benefit from this additional
information—showing PSNR gains in line with theoretical expectations (see Subsection 3.4)—UN-
SURE exhibits degraded performance. We attribute this counterintuitive outcome to the fact that,
unlike DivFree or Noise2Self where zero divergence everywhere is enforced by design, UNSURE
does not strictly enforce it to be exactly zero in expectation. Instead, this property is only encour-
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PSNR: 20.17 dBPSNR: 20.17 dB PSNR: 30.72 dBPSNR: 30.72 dB PSNR: 29.12 dBPSNR: 29.12 dB PSNR: 29.74 dBPSNR: 29.74 dB PSNR: 29.78 dBPSNR: 29.78 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)
PSNR: ∞ dBPSNR: ∞ dB PSNR: 29.77 dBPSNR: 29.77 dB PSNR: 29.63 dBPSNR: 29.63 dB PSNR: 29.30 dBPSNR: 29.30 dB PSNR: 30.22 dBPSNR: 30.22 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

Figure 1: Image denoising results for σ = 25 on Monarch image (Set12). Best viewed by zooming.

aged through the loss function. This distinction between hard and soft constraints appears to play a
decisive role in our setting.

Another noteworthy observation concerns the poor performance of MC-SURE. In principle, accord-
ing to (4), a denoiser trained with the SURE loss should achieve performance comparable to its
supervised counterpart. The observed underperformance can largely be attributed to stability issues
during training. As illustrated in Figure 3 in Appendix, the training curves of MC-SURE and UN-
SURE exhibit pronounced fluctuations, in contrast to the much smoother trajectories of the other
methods, including ours. This instability arises from the Monte Carlo approximations (7) employed
to estimate the divergence during training. Because these estimates are obtained via random sam-
pling, their variance propagates into the optimization, leading to noisy gradient updates. As a result,
the PSNR values on the validation set oscillate significantly instead of following a stable, monotonic
improvement, ultimately preventing the models from reaching their full potential.

Finally, our proposed method emerges as the most effective divergence-based approach for Gaussian
noise removal when the noise level σ is known, outperforming MC-SURE in the majority of cases.
This advantage is further corroborated by the qualitative results in Figure 1, with additional examples
provided in the Appendix.

6 CONCLUSION

We presented an original approach for constraining neural networks to be divergence-free by de-
sign. Our proposed parameterization is grounded in a representer theorem for divergence-free vec-
tor fields, which characterizes them as structured combinations of conservative fields. Leverag-
ing this theoretical foundation and incorporating sparsity constraints, we derived parameterizations
for neural networks that are both resource-efficient and scalable to high-dimensional settings. The
practical relevance of our approach is illustrated in the context of self-supervised image denoising,
where we demonstrated that that these models achieve competitive performance compared to exist-
ing divergence-based methods, especially when the noise level is known. Beyond denoising, our
results suggest that our divergence-free parameterization may hold promise for a wider range of
high-dimensional learning tasks, in particular in physics-informed machine learning, opening new
avenues for future research.
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A LIMITATIONS

We would like to mention that the proposed parameterization for enforcing zero divergence en-
tails higher computational cost during both training and inference compared to its supervised and
divergence-based self-supervised counterparts (Tachella et al., 2025a; Soltanayev & Chun, 2018;
Batson & Royer, 2019). In particular, our method requires one feedforward pass through the back-
bone network along with K ′ gradient computations at inference (K ′ = 8 in our implementation).
Since each backpropagation has a cost comparable to a forward pass (Hurault et al., 2022a), the
overall inference cost amounts to roughly K ′ + 1 times that of a single feedforward evaluation,
which may limit its applicability in time-sensitive settings. Moreover, due to scalability constraints,
we deliberately restricted the number of terms in the sum from Theorem 1. While this sparsity
constraint may not fully capture the underlying optimal solution, we demonstrated that it still yields
strong performance in image denoising. Finally, our application in image denoising targets only
additive white Gaussian noise, and its effectiveness under alternative noise models remains unex-
plored. Extending our parameterization to handle other types of noise, such as Poisson–Gaussian
corruption, presents a promising direction for future research.

B PROOFS

Proof of Lemma 1. S0 is a linear space due to the linearity of the partial derivative operator and the
linearity of expectation. Let f ∈ c idn+S0. For all y ∈ Rn, ∂[c idn]i

∂yi
(y) = c and so div(c idn)(y) =

nc. Therefore, f ∈ Sc. Reciprocally, let f ∈ Sc. Then, f = c idn+(f − c idn) ∈ c idn+S0 by
linearity of the partial derivative operator and the linearity of expectation.

Proof of Proposition 1. According to (4) (Stein, 1981),

Ex,y∥f(y)− x∥22 = Ey

[
−nσ2 + ∥f(y)− y∥22 + 2σ2 div(f)(y)

]
.

Hence,

argmin
f∈Sc

Ex,y∥f(y)− x∥22 = argmin
f∈Sc

Ey

[
−nσ2 + ∥f(y)− y∥22 + 2σ2nc

]
= argmin

f∈Sc

Ey∥f(y)− y∥22 .

According to Lemma 1, Sc = c id+S0. In particular, if c ̸= 1, Sc = c id+(1− c)S0 and we have

argmin
f∈Sc

Ey∥f(y)− y∥22 = argmin
f∈c id+(1−c)S0

Ey∥f(y)− y∥22

= c id+(1− c) argmin
f∈S0

Ey∥c id(y) + (1− c)f(y)− y∥22

= c id+(1− c) argmin
f∈S0

(1− c)2Ey∥f(y)− y∥22

= c id+(1− c) argmin
f∈S0

Ey∥f(y)− y∥22 .

For c = 1, we have also trivially

argmin
f∈Sc

Ey∥f(y)− y∥22 = id = c id+(1− c) argmin
f∈S0

Ey∥f(y)− y∥22 .

Proof of Proposition 2. According to (4) (Stein, 1981),

Ex,y∥f(y)− x∥22 = Ey

[
−nσ2 + ∥f(y)− y∥22 + 2σ2 div(f)(y)

]
.

Hence,
min
f∈Sc

Ex,y∥f(y)− x∥22 = −nσ2 + 2σ2nc+ min
f∈Sc

Ey∥f(y)− y∥22

According to Lemma 1, Sc = c id+S0. In particular, if c ̸= 1, Sc = c id+(1− c)S0 and we have
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min
f∈Sc

Ey∥f(y)− y∥22 = min
f∈c id+(1−c)S0

Ey∥f(y)− y∥22

= min
f∈S0

Ey∥cy + (1− c)f(y)− y∥22

= (1− c)2 min
f∈S0

Ey∥f(y)− y∥22 .

For c = 1, by considering the identity function id ∈ S1, we also have

min
f∈Sc

Ey∥f(y)− y∥22 = 0 = (1− c)2 min
f∈S0

Ey∥f(y)− y∥22 .

Finally, for all c ∈ R,

min
f∈Sc

Ex,y∥f(y)− x∥22 = −nσ2 + 2σ2nc+ (1− c)2 min
f∈S0

Ey∥f(y)− y∥22 ,

As a consequence,

argmin
c∈R

min
f∈Sc

Ex,y∥f(y)− x∥22 = 1− nσ2

minf∈S0 Ey∥f(y)− y∥22
.

But this latter quantity lies in [0, 1] since, in particular for c = 0,

min
f∈S0

Ey∥f(y)− y∥22 = nσ2 + min
f∈S0

Ex,y∥f(y)− x∥22 > 0 .

and so,
nσ2

minf∈S0 Ey∥f(y)− y∥22
=

nσ2

nσ2 +minf∈S0 Ex,y∥f(y)− x∥22
∈ [0, 1] .

Proof of Lemma 2. Let f : x 7→ A∇ψ(x). We want to compute div f(x) = tr(∇f(x)) for all
x ∈ Rn. We have f = φ2 ◦ φ1, with for all x ∈ Rn,

φ1(x) = ∇ψ(x) ∇φ1(x) = Hψ(x)
φ2(x) = Ax ∇φ2(x) = A⊤

where Hψ(x) denotes the Hessian matrix of ψ evaluated at x. According to the chain rule (Bert-
sekas, 1995),

∇f(x) = ∇φ1(x)∇φ2(φ1(x)) = Hψ(x)A
⊤ ,

hence div f(x) = tr(Hψ(x)A
⊤) = − tr(AHψ(x)) = 0. Indeed, the trace of the product of a

skew-symmetric and a symmetric matrix is zero:

tr(AB) = tr((AB)⊤) = tr(B⊤A⊤) = − tr(BA) = − tr(AB).

where B ∈ Rn×n denotes a symmetric matrix.

Proof of Theorem 1. First of all, from Lemma 2, we have that each Ak∇ψk is divergence-free.
Since the set of divergence-free functions is a linear space from Lemma 1, f̃ =

∑K
k=1 Ak∇ψk is

divergence-free.

Moreover, we know from Richter-Powell et al. (2022) that there exists F : Rn → Rn×n a skew-
symmetric matrix field1 such that the function f̃ : Rn → Rn defined component-wise as

∀i ∈ {1, . . . n}, f̃i =

n∑
j=1

∂Fi,j
∂xj

1i.e. a map F : Rn → Rn×n such that ∀x ∈ Rn, F (x)⊤ = −F (x).
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can approximate f “arbitrarily well”. By denoting E(i,j) the standard basis matrix of Rn×n, having
a 1 in the (i, j)-th entry and zeros elsewhere, we can rewrite it as

f̃ =
∑
i,j

E(i,j)∇Fi,j =
∑
i<j

E(i,j)∇Fi,j +
∑
j<i

E(i,j)∇Fi,j +
∑
i

E(i,i)∇Fi,i

=
∑
i<j

E(i,j)∇Fi,j +
∑
i<j

Ej,i∇Fj,i

=
∑
i<j

(E(i,j) −E(j,i))∇Fi,j

=
∑
i<j

(E(i,j) −E(i,j)⊤)∇Fi,j

=

K∑
k=1

(Eφ(k) −Eφ(k)⊤)∇Fφ(k)

=

K∑
k=1

Bk∇Fφ(k) ,

whereφ is a bijection from {1, . . . ,
(
n
2

)
} to {(i, j) ∈ {1, . . . , n}2|i < j} and Bk ≜ Eφ(k)−Eφ(k)⊤.

We can notice that (B1, . . . ,BK) ∈ Rn×n is nothing else than the canonical basis of the space of
real skew-symmetric n× n matrices. Therefore, ∀1 ≤ k ≤ K, ∃λ(k)1 , . . . , λ

(k)
K ,

Bk =

K∑
i=1

λ
(k)
i Ai .

Hence,

f̃ =

K∑
k=1

(
K∑
i=1

λ
(k)
i Ai

)
∇Fφ(k) =

K∑
i=1

Ai

(
K∑
k=1

λ
(k)
i ∇Fφ(k)

)
=

K∑
i=1

Ai∇

(
K∑
k=1

λ
(k)
i Fφ(k)

)
,

We conclude by setting ψi =
∑K
k=1 λ

(k)
i Fφ(k).

C DIVERGENCE-FREE VS. BLIND-SPOT

Divergence-free estimators provide greater expressiveness than their blind-spot counterparts (Bat-
son & Royer, 2019), as they are not restricted by architectural masking strategies. Blind-spot net-
works, by construction, enforce their receptive field to exclude the center pixel yi when estimating
xi, since the component function fi cannot depend on yi by definition. In contrast, divergence-
free networks can exploit the full image context without masking, including the central pixel yi,
which is typically highly informative about xi. This difference in expressiveness is illustrated in
the toy image-denoising example of Figure 2, where Noise2Self removes all isolated white data
points, whereas a divergence-free estimator can preserve them more accurately, leading to improved
denoising performance.
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Ground truth Noisy (σ = 15) Noise2Self DivFree (ours)

Figure 2: Divergence-free estimators are more expressive than their blind-spot counterparts.

Figure 3: Stability issues during training for Monte Carlo approximations methods (σ = 25).

PSNR: 24.61 dBPSNR: 24.61 dB PSNR: 32.33 dBPSNR: 32.33 dB PSNR: 30.31 dBPSNR: 30.31 dB PSNR: 31.66 dBPSNR: 31.66 dB PSNR: 30.88 dBPSNR: 30.88 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 31.88 dBPSNR: 31.88 dB PSNR: 31.34 dBPSNR: 31.34 dB PSNR: 31.33 dBPSNR: 31.33 dB PSNR: 31.77 dBPSNR: 31.77 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

PSNR: 24.61 dBPSNR: 24.61 dB PSNR: 33.28 dBPSNR: 33.28 dB PSNR: 30.85 dBPSNR: 30.85 dB PSNR: 32.00 dBPSNR: 32.00 dB PSNR: 31.73 dBPSNR: 31.73 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 32.07 dBPSNR: 32.07 dB PSNR: 31.77 dBPSNR: 31.77 dB PSNR: 31.61 dBPSNR: 31.61 dB PSNR: 32.45 dBPSNR: 32.45 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

Figure 4: Image denoising results for σ = 15. Best viewed by zooming.
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PSNR: 20.17 dBPSNR: 20.17 dB PSNR: 31.44 dBPSNR: 31.44 dB PSNR: 30.69 dBPSNR: 30.69 dB PSNR: 30.88 dBPSNR: 30.88 dB PSNR: 30.75 dBPSNR: 30.75 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 30.94 dBPSNR: 30.94 dB PSNR: 31.06 dBPSNR: 31.06 dB PSNR: 30.74 dBPSNR: 30.74 dB PSNR: 31.11 dBPSNR: 31.11 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

PSNR: 20.17 dBPSNR: 20.17 dB PSNR: 30.31 dBPSNR: 30.31 dB PSNR: 29.41 dBPSNR: 29.41 dB PSNR: 29.80 dBPSNR: 29.80 dB PSNR: 29.39 dBPSNR: 29.39 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 29.79 dBPSNR: 29.79 dB PSNR: 29.90 dBPSNR: 29.90 dB PSNR: 29.45 dBPSNR: 29.45 dB PSNR: 29.87 dBPSNR: 29.87 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

Figure 5: Image denoising results for σ = 25. Best viewed by zooming.
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Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 26.60 dBPSNR: 26.60 dB PSNR: 26.35 dBPSNR: 26.35 dB PSNR: 26.51 dBPSNR: 26.51 dB PSNR: 26.42 dBPSNR: 26.42 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

PSNR: 14.15 dBPSNR: 14.15 dB PSNR: 26.28 dBPSNR: 26.28 dB PSNR: 25.20 dBPSNR: 25.20 dB PSNR: 25.54 dBPSNR: 25.54 dB PSNR: 25.27 dBPSNR: 25.27 dB

Noisy Supervised Noise2Self UNSURE DivFree (ours)

PSNR: ∞ dBPSNR: ∞ dB PSNR: 25.59 dBPSNR: 25.59 dB PSNR: 25.53 dBPSNR: 25.53 dB PSNR: 25.58 dBPSNR: 25.58 dB PSNR: 25.59 dBPSNR: 25.59 dB

Ground truth MC-SURE Noise2Self† UNSURE† DivFree† (ours)

Figure 6: Image denoising results for σ = 50. Best viewed by zooming.
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