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Abstract
Meta-learning can successfully acquire useful
inductive biases from data, especially when a
large number of meta-tasks are available. Yet,
its generalization properties to unseen tasks are
poorly understood. Particularly if the number of
meta-tasks is small, this raises concerns about
overfitting. We provide a theoretical analysis
using the PAC-Bayesian framework and derive
novel generalization bounds for meta-learning
with unbounded loss functions and Bayesian base
learners. Using these bounds, we develop a
class of PAC-optimal meta-learning algorithms
with performance guarantees and a principled
meta-regularization. When instantiating our PAC-
optimal hyper-posterior (PACOH) with Gaussian
processes as base learners, the resulting approach
consistently outperforms several popular meta-
learning methods, both in terms of predictive ac-
curacy and the quality of its uncertainty estimates.

1. Introduction
Meta-learning aims to extract prior knowledge from data, ac-
celerating the learning process in light of new learning tasks
(Schmidhuber, 1987; Thrun and Pratt, 1998). Most exist-
ing meta-learning approaches focus on situations where the
number of tasks is large (e.g. Finn et al., 2017; Garnelo et al.,
2018). In many practical settings, however, the number of
tasks available for meta-training is rather small. In those
settings, there is a risk of overfitting to the meta-training
tasks (meta-overfitting, c.f., Qin et al., 2018), thus impairing
the performance on yet unseen target tasks. Hence, a key
question is how to regularize the meta-learner in order to
ensure that it generalizes to unseen tasks.

Especially when dealing with small amounts of data, rea-
soning about the uncertainty of a prediction model is crucial
(Gal, 2016; Rothfuss et al., 2019a). In this setting, Bayesian
methods are a popular choice. Moreover, they lend them-
selves easily to the meta-learning setting, since they offer
a principled way to include prior knowledge into the learner
(McNeish, 2016). However, the associated uncertainty es-
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timates are often not well-calibrated due to model misspec-
ification and poorly chosen priors (Kuleshov et al., 2018).

The PAC-Bayesian framework provides a rigorous way to
reason about the generalization performance of learners
(McAllester, 1999). However, initial PAC-Bayesian analy-
ses of meta-learners (Pentina and Lampert, 2014; Amit and
Meir, 2018) only consider bounded loss functions which
makes them hardly applicable to regression or probabilistic
inference. Moreover, they pose a nested optimization
problem, which is computationally much more expensive
than standard meta-learning approaches. To overcome
these issues, we derive the first PAC-Bayesian bound
for meta-learners with unbounded loss functions, which
also does not rely on nested optimization. For Bayesian
learners, we further tighten our PAC-Bayesian bounds,
relating them directly to the marginal log-likelihood
of the Bayesian model. This allows us to derive the
PAC-optimal hyper-posterior (PACOH), which promises
strong performance guarantees and a principled meta-level
regularization. Most importantly, it can be approximated
using standard variational methods (Blei et al., 2016),
giving rise to an entire range of meta-learning algorithms.

We instantiate our framework with Gaussian processes
(GPs) as base learners and empirically evaluate the resulting
approach across several synthetic and real-world regression
environments. We show that the meta-level regularization
imposed by PACOH effectively prevents meta-overfitting.
This allows us to obtain substantial improvements over
standard GPs, even when only five tasks are available for
meta-training. In our empirical study, PACOH consistently
outperforms several popular meta-learning approaches,
yielding more accurate predictions as well as improved
uncertainty estimates. Overall, PACOH not only provides
optimal PAC-guarantees, but also constitutes an easily
applicable meta-learning framework with strong empirical
performance. Especially in settings where data is scarce
and good uncertainty estimates are crucial, PACOH offers
a promising alternative to hand-designed priors.

In summary, our main contributions are the following:

• We present the first PAC-Bayesian generalization
bound for meta-learning with unbounded loss, which
does not rely on nested optimization.
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• For Bayesian learners, we provide a tighter meta-
learning bound, which relates to the model’s marginal
log-likelihood.

• Based on this bound, we derive a PAC-optimal hyper-
posterior (PACOH) which can be tractably approxi-
mated with standard variational techniques.

• We provide strong empirical evidence that our pro-
posed meta-learning method outperforms popular meta-
learning approaches on a range of environments.

2. Related work
Meta-learning. One category of meta-learners directly
attempts to learn the “learning program" as a recurrent
model (Hochreiter et al., 2001; Andrychowicz et al., 2016;
Santoro et al., 2016; Chen et al., 2017). Another popular
approach is to meta-learn the initialization of a neural
network such that it can be adapted to new tasks in a
few gradient-steps (Finn et al., 2017; Nichol et al., 2018;
Rothfuss et al., 2019b) or to amortize the inference of a
stochastic process (Garnelo et al., 2018). Although they
are able to learn complex inference patterns, these methods
rely on a setting where meta-tasks are abundant and do not
provide any performance guarantees. The associated risk of
meta-overfitting has previously been noted (Qin et al., 2018;
Fortuin and Rätsch, 2019), but still lacks a rigorous formal
analysis under realistic assumptions (e.g., with unbounded
loss functions). We provide this principled treatment by
studying the generalization properties of these algorithms
within the PAC-Bayesian framework.

PAC-Bayesian theory. Previous work presents general-
ization bounds for randomized predictors under various
assumptions (McAllester, 1999; Catoni, 2007; Alquier et al.,
2016). Such generalization guarantees have been extended
to meta-learning (Pentina and Lampert, 2014; Amit and
Meir, 2018), but only for bounded loss functions. Moreover,
these meta-generalization bounds are hard to minimize as
they leave both the hyper-posterior and posterior unspecified,
which leads to nested optimization problems. In contrast,
our bounds also hold for unbounded losses and give rise to
a tractable meta-learning objective. In our derivations, we
build on connections between PAC-Bayesian and classical
Bayesian inference, as described by Germain et al. (2016).

Hierarchical Bayes and Hyper-parameter Learning.
Our meta-learning setup, based on Baxter (2000), shares
many aspects with hierarchical modeling and hyper-
parameter learning (MacKay, 1991). However, work in this
area either focuses on learning priors for a single task (Ong
et al., 2005; Wilson et al., 2016; Reeb et al., 2018), makes
stronger assumptions on how tasks are statistically related
(Yu et al., 2005; Bonilla et al., 2008), or lacks guarantees
(e.g., Grant et al., 2018; Yoon et al., 2018).

3. Background: PAC-Bayesian Framework
3.1. Preliminaries and notation
A learning task is characterized by an unknown data dis-
tribution D, defined over a domain Z , from which we are
given a set of m observations S = {zi}mi=1, zi ∼ D. By
S ∼ Dm we denote the i.i.d. sampling of m data points.

In supervised learning, we are typically concerned with pairs
zi = (xi, yi), where xi ∈ X are observed input features
and yi ∈ Y are target labels. Given a sample S, our goal is
to find a hypothesis h ∈ H, typically a function h : X → Y
in some hypothesis spaceH, that enables us to make predic-
tions on unseen input features x∗ ∼ Dx. The quality of the
predictions are measured by a loss function l : H×Z → R.
Accordingly, we want to minimize the expected error under
the data distribution, that is, L(h,D) = Ez∗∼D l(h, z∗).
Since D is unknown, we typically use the empirical error
L̂(h, S) = 1

m

∑m
i=1 l(h, zi) instead.

In the PAC-Bayesian framework, we are concerned with
randomized predictors, formally defined as probability mea-
sures on the hypothesis spaceH. This allows us to reason
about the predictor’s (epistemic) uncertainty, resulting from
the fact that only a finite number of data points are available
for training. We consider two such probability measures,
the prior P ∈M(H) and the posterior Q ∈M(H). Here,
M(H) denotes the set of probability measures over the set
H. Note that in Bayesian inference, the prior and posterior
are assumed to be tightly connected through Bayes’ theo-
rem. In contrast, the PAC-Bayesian framework makes fewer
assumptions and only requires the prior to be independent
of the observed data, while the posterior may depend on it.
For a detailed treatment of the PAC-Bayesian methodology,
we refer to Guedj (2019). In the following, we overload the
notation by also denoting the respective probability densities
asQ and P . Moreover, we assume that the Kullback-Leibler
(KL) divergenceDKL (Q‖P ) exists. Based on the error def-
initions above, we can define the so-called Gibbs error for a
randomized predictor Q as L(Q,D) = Eh∼Q L(h,D) and
its empirical counterpart as L̂(Q,S) = Eh∼Q L̂(h, S).

3.2. PAC-Bayesian bounds
In practice, the generalization error L(Q,D) is unknown.
Thus, one typically resorts to empirical risk minimization
(ERM), that is, optimizing L̂(Q,S) as a proxy for the true
objective. However, this may result in overfitting and poor
generalization performance. Naturally, the question arises
whether we can bound the unknown generalization error
based on its empirical estimate. The PAC-Bayesian frame-
work provides such a guarantee with high probability:
Theorem 1. (Alquier et al., 2016) Given a data distribution
D, a hypothesis spaceH, a loss function l : H×Z → R, a
prior distribution P ∈M(F), a confidence level δ ∈ (0, 1],
and β > 0, with probability at least 1 − δ over samples
S ∼ Dm, we have for all Q ∈M(H):
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ŷk
<latexit sha1_base64="vce++Hk9Rmuq+HjAwXfMtjQBAfE="></latexit>

x⇤
k

<latexit sha1_base64="EY5X55MHj+HDXHRXkeZ3aNmmaMM="></latexit>

h
<latexit sha1_base64="RFUpTDLWeEeCizO9lNa3D53q/a4=">AAAFp3icjZRLb9NAEMenAUMJj7Zw5BIRIYFUothJH8eKZw8gWkTSSKVCtrNxrPgl2yktUT4BV/hwfBcO/Ge8VGmK09haz+zs7G8ea9tJAj/Lm83fK5UbN41bt1fvVO/eu/9gbX3jYTeLx6mrOm4cxGnPsTMV+JHq5H4eqF6SKjt0AnXkjF7x+tGpSjM/jj7n54k6CW0v8ge+a+cwHQ6/rtebjaZctauKqZU66esg3qjs0xfqU0wujSkkRRHl0AOyKcN9TCY1KYHthCawpdB8WVc0pSr2juGl4GHDOsLTw+xYWyPMmZnJbhdRAowUO2v0FOOtEB14c1QFPYP8g/FdbF5phImQOcNzSEeIBfMDVnIawue6vaH2nC69k+vKaUC7Uo+PDBOxcKXuBec1VlLYRrJSozfi6YHhyPwUPYggO8iA+/yPUJOa+5C2SCWUSBNt8FJI7j/nU16dA34s0TlituCcJnim0BNUzad6Jr7X9Y17FGpqBPs33bVY8g3hF4jk/k4xez8zW0Q/u/SGFJ7chYH0T82scgQfu4aI/AI1BiAqifWJ3tFL0Uzaxr1JFt7fQlq0o7Muo/blfRyVMlugbmIwk+Uu5GLibJ6e9IdPdD7THZCKDFvCbWG+bKZl1C2d67bk2sa9fKZM7M/xrAviFliFbC2d5f+JfCJcd3E+Rc1V/MPM+T/WVaVrNcxWwzps1/fa+m+2So/pCT2Tfu7RPh3gC3MR9wf9pF/Gc+Oj0TV6hWtlRe95RJcuw/4Ldd8Qog==</latexit>

S⇤
<latexit sha1_base64="F0htXLtDjhuAAO1RDdhj8IPXAfI="></latexit>

D
<latexit sha1_base64="DLsDpLQo2cPUDCQ1OgvqmzMNJac="></latexit>

k = 1, . . . , m⇤
<latexit sha1_base64="ZkPtQP1Ab9ue5cyu8Lv65SN1qeU="></latexit>

l = 1, . . . , m̃
<latexit sha1_base64="OxG7gX4xGsXcs9jmMUoaIEZPO3s="></latexit>

z̃l
<latexit sha1_base64="wsDRgP2sdOza37NZO5mTAX/uqIc="></latexit> S̃

<latexit sha1_base64="pg7YEdyBpUoRaNMIRlnOROA0g7c="></latexit>

meta-training target training target testing

Figure 1: Overview of the described meta-learning framework with environment T , meta-task distributions Di, target task
distribution D, hyper-prior P , hyper-posterior Q, target prior P , target posterior Q, data sets S, and data points z = (x, y).

L(Q,D) ≤ L̂(Q,S)+
1

β

[
DKL(Q||P ) + ln

1

δ
+ Ψ(β,m)

]
(1)

where

Ψ(β,m) = lnEh∼PES∈Dm exp
[
β
(
L(h,D)− L̂(h, S)

)]
Note that the prior distribution P must be independent of the
data S. Since Ψ(β,m) contains L(h,D) which is unknown
in practice, Theorem 1 cannot be directly applied. However,
if we make additional assumptions about the loss function
l, we can bound Ψ(β,m) and thereby obtain useful PAC-
Bayesian bounds. In the following, we briefly discuss three
such assumptions and the resulting bounds. For detailed
explanations and derivations we refer to Appendix A.1.

Bounded loss function. When l : H × Z → [a, b] is
bounded, we can use Hoeffding’s lemma to obtain

Ψ(β,m) ≤ β2(b− a)2

8m
. (2)

Sub-gamma loss. A loss function l is considered sub-
gamma with variance factor s2 and scale parameter c, under
a prior π and data distribution D, if it can be described by a
sub-gamma random variable V := L(h,D)− l(h, z). That
is, its moment generating function is upper bounded by that
of a Gamma distribution Γ(s, c). For details see Boucheron
et al. (2013) and Germain et al. (2016). We can use the
sub-gamma assumption to bound Ψ(β,m) as follows

Ψ(β,m) ≤ β2s2

2m(1− cβ
m )

. (3)

Sub-gaussian loss. A sub-gaussian loss with variance s2

can be considered the limit case c→ 0+ of the sub-gamma
assumption. In this case, we obtain Ψ(β,m) ≤ β2s2

2m .

3.3. Connections between the PAC-Bayesian
framework and Bayesian Inference

Typically, we are interested in a posterior distribution Q that
promises us the lowest generalization error. In this sense,
it seems natural to use the Q ∈ M(H) that minimizes the
bound in (1). The following lemma gives us the closed form
solution to such a minimization problem overM(H).

Lemma 1. (Catoni, 2007) Let H be a set, g : H → R a
(loss) function andQ ∈M(H) and P ∈M(H) probability
densities overH. Then for any β > 0 and h ∈ H,

Q∗(h) :=
P (h)e−βg(h)

Z
=

P (h)e−βg(h)

Eh∼P
[
e−βg(h)

] (4)

is the minimizing probability density of

arg min
Q∈M(H)

βEh∼Q [g(h)] +DKL(Q||P ) . (5)

The respective minimizing distribution is known as optimal
Gibbs posterior Q∗ (Catoni, 2007; Lever et al., 2013). As a
direct consequence of Lemma 1, for fixed P, S,m, δ, and
β = m we can write the minimizer of (1) as

Q∗(h) = arg min
Q

mL̂(Q,S) +DKL(Q||P ) (6)

=
1

Z(S, P )
P (h)e−mL̂(h,S) (7)

where Z(S, P ) is a normalization constant. In a proba-
bilistic setting, we would define the loss function l(·) as
the negative log-likelihood of the data, that is, l(h, zi) :=
− log p(zi|h). Thus, the optimal Gibbs posterior coincides
with the Bayesian posterior

Q∗(h;P, S) =
P (h) p(S |h)

Z(S, P )
(8)

where Z(S, P ) =
∫
H P (h)

∏m
j=1 p(zj |h) dh is called the

marginal likelihood of the sample S.

4. PAC-Bayesian bounds for Meta-Learning
We now present our main theoretical contributions. An
overview of our proposed framework is depicted in Figure 1.

4.1. Meta-Learning
In the standard supervised learning setup (see Section 3),
we assumed that the learner has prior knowledge in the
form of a prior distribution P . When the learner faces a
new task, it uses the evidence, observed in the form of a
dataset S, to update the prior into a posterior distribution
Q. We formalize such a base learner Q(S, P ) as a mapping
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Q : Zm×M(H)→M(H) that takes in a dataset and prior
and outputs a posterior. Note that the number of samples m
may vary between datasets.

While the prior P is arbitrary but fixed with respect to S,
it can have a major impact on the posterior chosen by the
learning procedure Q(S, P ) and the KL-divergence in the
PAC-Bayesian bound in (1). Thus, the question arises how
to properly choose P . Importantly, for the PAC-Bayes
bounds to hold, the choice of P cannot be based on our
data set S. However, we may consult data with similar
properties to improve our choice of P . This is the central
idea of meta-learning (Vilalta and Drissi, 2002), which
aims to learn inductive bias (e.g., in form of a prior) based
on a set of statistically related tasks. In the remainder of this
section, we follow the setup of Baxter (2000) and Pentina
and Lampert (2014).

So far, we have only considered a single learning task with
distribution D. To extend this to the meta-learning setting,
we consider different tasks τi = (Di,mi). All tasks share
the same data domain Z , hypothesis spaceH and loss func-
tion l : H × Z → R, but differ in their data distributions
Di and the number of samples mi drawn from it. The meta-
learner observes n training sets S1, ..., Sn corresponding to
n different tasks. Each dataset Si ∼ Dmii is assumed to be
sampled i.i.d. from its respective task distribution Di. We
further assume that each task τi ∼ T is drawn i.i.d. from an
environment T , which is a probability distribution over data
distributions and sample sizes. The goal is to extract knowl-
edge from the observed tasks which can then be used as
prior knowledge for learning on new (yet unobserved) target
tasks τ ∼ T (Amit and Meir, 2018). The prior knowledge is
represented as a prior distribution P ∈M(H) over learning
hypotheses h which the base learner Q(S, P ) utilizes for
inference on new tasks.

A meta-learner acquires such a prior distribution P in a data-
driven way. In order to be able to extend the PAC-Bayesian
analysis to the meta-learning setting, we again consider the
notion of probability distributions on function spaces. The
object of interest, which has previously been h ∈ H, is now
the prior distribution P ∈M(H).

In the meta-learning PAC-Bayes framework, the meta-
learner presumes a hyper-prior P ∈M(M(H)), that is, a
distribution over priors P . Observing data sets S1, ..., Sn
from multiple tasks, the meta-learner then updates the hyper-
prior to a hyper-posteriorQ. The performance of this hyper-
posterior is measured as the expected Gibbs error when
sampling priors P from Q and applying the base learner,
the so-called transfer-error:

L(Q, T ) := EP∼Q
[
E(D,m)∼T [ES∼Dm [L(Q(S, P ),D)]]

]
While L(Q, T ) is unknown in practice, we can estimate it

using the empirical multi-task error

L̂(Q, S1, ..., Sn) := EP∼Q

[
1

n

n∑
i=1

L̂ (Q(Si, P ), Si)

]
.

4.2. PAC-Bayesian Meta-Learning bounds
In the following, we contribute a novel bound on the transfer-
error of a meta-learner. The proofs and derivations can be
found in Appendix A.3.

Theorem 2. Let Q : Zm ×M(H) → M(H) be a base
learner, P ∈M(M(H)) some fixed hyper-prior and m̃ =(

1
n

∑n
i=1

1
mi

)−1

the harmonic mean of dataset sizes. For

any confidence level δ ∈ (0, 1] the inequality

L(Q, T ) ≤ L̂(Q, S1, ..., Sn) +

(
1

n
+

1

m̃

)
DKL(Q||P)

+
1

n

n∑
i=1

1

mi
EP∼Q [DKL(Q(Si, P )||P )]

+ C(δ, n, m̃)

(9)

holds uniformly over all hyper-posteriors Q ∈M(M(H))
with probability 1− δ.

If the loss function is bounded, that is l : H × Z → [a, b],
the above inequality holds for

C(δ, n, m̃) =
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

(b− a)2

4
. (10)

If the loss function is sub-gamma with variance factor s2

and scale parameter c, under the two-level prior (P, P ) and
the data distribution (T ,D), the inequality holds for

C(δ, n, m̃) =
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

s2

1− c . (11)

Proof. See Appendix A.3.

The theorem uniformly bounds the true transfer error
L(Q, T ) by the empirical multi-task error L̂(Q, S1, ..., Sn)
plus several tractable complexity terms. Similar to the meta-
learning PAC-Bayes bounds of Amit and Meir (2018), our
proof consists of two main steps. Firstly, we bound the
base learner’s expected generalization error for each task
when given a prior P ∼ Q and mi data samples (i.e., the
error caused by observing only a finite number of samples).
Secondly, we bound the transfer-error on the meta-learning
which is due to the fact that the meta-learning only receives
finitely many tasks τi from the task-environment T . Finally,
we employ a union bound argument to obtain the result
stated in Theorem 2.

While previous PAC-Bayesian bounds for meta-learning
(Pentina and Lampert, 2014; Amit and Meir, 2018) assume
bounded loss functions, Theorem 2 also provides guarantees
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for unbounded loss functions. This makes it particularly
relevant for regression tasks where unbounded loss func-
tions such as the negative log-likelihood or MSE are often
used. The results for unbounded losses require regularity
conditions in the form of the sub-gamma assumption, which
ensures that the distribution of losses is not heavy-tailed.
For instance in a Bayesian linear regression setup, Germain
et al. (2016) show that the negative log-likelihood loss is
indeed sub-gamma.

Note that, in case of a sub-gamma loss, the bound always
maintains a gap s2

1−c between empirical multi-task and
transfer error which does not decay to zero as n,m→∞.
While asymptotically consistent bounds (e.g., Pentina
and Lampert (2014)) are theoretically more appealing,
in practice they were shown to provide good guarantees
only for large samples sizes. In particular, sub-gamma
PAC-Bayesian bounds have been shown to be much tighter
in simple regression scenarios with limited data (m . 104)
(Germain et al., 2016). The tradeoff between computational
tractability and asymptotic consistency for this particular
bound is further discussed in Appendix A.5.

The scale and variance parameters in (11) can be understood
as implicit measures of task-environment complexity. If
the tasks τ ∼ T are very similar and simple, a relatively
small c and s2 will suffice to bound the moment generating
function of the empirical multi-task error distribution while
dissimilar and harder tasks would require s2

1−c to be large.
Note that in order to compute the exact value of the bound,
c and s2 would have to be estimated for every environment,
which is challenging for complex environments (Germain
et al., 2016). However, the bound can be efficiently min-
imized for meta-learning purposes without knowledge of
these constants. We thus leave the problem of estimating
them for future work.

While Theorem 2 holds for any base learner Q(S, P ), in
practice, we would preferably want to use the learner that
gives us optimal performance guarantees. As discussed in
Section 3.3, the Gibbs posterior not only minimizes PAC-
Bayesian error bounds, but also constitutes a generalization
of the Bayesian posterior. Under the assumption that we use
the Gibbs posterior as base learner, the bound in (9) can be
re-stated in terms of the partition function Z(Si, P ):

Corollary 1. When choosing the Gibbs posterior
Q∗(Si, P ) := P (h) exp(−miL̂(Si, h))/Z(Si, P ) as a
base learner, under the same assumptions as in Theorem 2,
with probability 1− δ it holds that

L(Q, T ) ≤ − 1

n

n∑
i=1

1

mi
EP∼Q [lnZ(Si, P )]

+

(
1

n
+

1

m̃

)
DKL(Q||P) + C(δ, n, m̃) .

(12)

Proof. See Appendix A.4.

Since this bound assumes a PAC-optimal base learner,
it is tighter than the bound in (9), which holds for any
(potentially sub-optimal) Q ∈ M(H). If we choose
the negative log-likelihood as the loss function, then
lnZ(Si, P ) coincides with the marginal log-likelihood,
which is tractable for many popular learning models, such
as GPs. Accordingly, the bound in (12) consists of the
expected marginal log-likelihood under the hyper-posterior
Q as well as the KL-divergence term which serves as a
regularization on the meta-level. As the number of training
tasks n grows, the relative weighting of the KL term in
(12) shrinks. This is consistent with the general notion that
regularization should be strong if only little data is available
and vanish asymptotically as n,m→∞.

Theorem 2 and previous meta-level PAC-Bayes bounds
(Pentina and Lampert, 2014; Amit and Meir, 2018) explic-
itly depend on the task specific posteriors Qi = Q(Si, P ).
However, determining the Qi can itself be a non-trivial
optimization problem. Thus, employing such bounds
as a meta-learning objective typically results in nested
optimization problems (see Amit and Meir, 2018). In
contrast, the bound in (12) no longer depends onQi, making
it much easier to optimize as a meta-learning objective.

5. Meta-Learning the Hyper-Posterior
5.1. Optimizing the PAC-Bayes bound
In our PAC-Bayesian framework, the meta-learner is given
a hyper-prior and data from several tasks, based on which it
chooses a hyper-posterior Q(P ). So far, we have not made
any assumptions on how such a hyper-posterior is chosen.
Building on the generalization bounds stated in the previous
section, we now discuss how a meta-learner should selectQ.

Intuitively, we want a meta-learner that minimizes the
transfer-error. Since we cannot directly compute the transfer-
error, we may resort to minimizing its upper-bound in (12)
with respect to Q. In general, this is a hard problem since it
would require a minimization overM(M(H)), the space of
all probability measures over priors. However, by invoking
Lemma 1 on a monotone transformation of the PAC-Bayes
bound in (12), we are able to derive the minimizing distribu-
tion Q∗ in closed form.

Proposition 1. (PAC-Optimal Hyper-Posterior) Given a
hyper-prior P ∈ M(M(H)) and datasets S1, ..., Sn, the
hyper-posterior Q ∈ M(M(H)) that optimizes the PAC-
Bayesian meta-learning bound in (12) is given by

Q∗(P ) =
P(P ) exp

(
m̃

m̃+n

∑n
i=1

1
mi

lnZ(Si, P )
)

Z II(S1, ..., Sn,P)
(13)

wherein the partition function Z II(S1, ..., Sn,P) is defined

as Z II = EP∼P
[
exp

(
m̃

m̃+n

∑n
i=1

1
mi

lnZ(Si, P )
)]
.

Proof. See Appendix A.6.
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This gives us a tractable expression for the PAC-optimal
hyper-posterior (PACOH) Q∗(P ) up to the (level-II)
partition function Z II, which is constant with respect to
P . We refer to Q∗ as PAC-optimal, since it provides the
best possible meta-generalization guarantees among all
meta-learners in the sense of Theorem 2.

5.2. Approximating the PAC-Optimal Hyper-Posterior
If the (level-I) log-partition function lnZ(Si, P ) is tractable
(e.g., in case of Bayesian linear regression or Gaussian
process base learners), we can compute the PACOH Q∗ up
to the normalization constant Z II. Such a setup lends itself
to classical approximate inference methods (Andrieu et al.,
2003; Blei et al., 2016; Liu and Wang, 2016). Thus, Propo-
sition 1 yields an entire class of possible meta-learning
methods. We now briefly discuss several tractable approx-
imations of Q∗ which we evaluate empirically in Section 6.

Maximum A Posteriori (MAP). This is the simplest and
most crude method, which approximates Q∗(P ) by a Dirac
measure δP (P ∗) on the prior P ∗ that maximizes Q∗:

P ∗ = arg max
P∈M(H)

Q∗(P ) (14)

Variational Inference (VI). In case of VI (Blei et al.,
2016), we restrict the space of considered hyper-posteriors
to a variational family F ⊂ M(M(H)) and aim to find
the posterior in F that minimizes the KL-divergence to Q∗,
that is,

Q̃ = arg min
Q∈F

DKL(Q||Q∗) . (15)

It can be shown that the minimizing distribution Q̃ in (15) is
the same as the minimizer of the bound in (12) under the con-
straint Q ∈ F (see Appendix A.7 for proof). Consequently,
we can directly use (12) as an optimization objective.

Stein Variational Gradient Descent (SVGD). SVGD
(Liu and Wang, 2016) approximates Q∗ as a set of par-
ticles Q̂ = {P1, ..., PK}. Initially, particles Pk ∼ P (which
in our case are priors) are sampled randomly. Then, the
method iteratively transports the set of particles to match
Q∗, by applying a form of functional gradient descent that
minimizes DKL(Q̂|Q∗) in the reproducing kernel Hilbert
space induced by a kernel function k(·, ·). In each iteration,
the particles are updated by Pk ← Pk + ηtφ

∗(Pk) with

φ∗(P ) =
1

K

K∑
l=1

[k(Pl, P )∇Pl lnQ∗(Pl) +∇Plk(Pl, P )]

where ηt is a (potentially time-dependent) step size.

6. Empirical Study: PAC-Bayesian Meta-
Learning of Gaussian Process Priors

In this section, we instantiate PACOH, our generic
PAC-Bayesian meta-learning framework from Section 5,
with a specific learning model, namely Gaussian processes

(GPs). For a review of GP regression, see Appendix B and
Rasmussen and Williams (2006). In particular, we meta-
learn the GP prior GP(mθ(x), kθ(x, x

′)), i.e. the mean
and kernel function, parametrized by neural networks. For
details, we refer to Appendix C. We empirically evaluate the
proposed meta-learning techniques on multiple simulated
and real-world regression environments. In particular, we
provide quantitative and qualitative evidence that overfitting
to meta-tasks (meta-overfitting) is a problem that can be
alleviated using PACOH, and that our method improves
upon previous approaches in terms of predictive accuracy
and uncertainty calibration. An implementation of PACOH
for GPs is publicly available as open source code.1

6.1. Meta-Learning environments
In our experiments, we consider two synthetic and three
real-world meta-learning environments for regression. Sim-
ilar to Harrison et al. (2018) and Fortuin and Rätsch (2019)
we use sinusoid functions that differ in their amplitude,
phase-shift, slope and intercept. As a second synthetic envi-
ronment, we employ the density of 2-dimensional mixtures
of Cauchy distributions plus random functions sampled
from a GP-prior with squared exponential (SE) kernel.

As real-world environments, we use datasets correspond-
ing to different calibration sessions of the Swiss Free Elec-
tron Laser (SwissFEL) (Milne et al., 2017; Kirschner et al.,
2019b) as well as data from the PhysioNet 2012 challenge,
which consists of time series of electronic health measure-
ments from intensive care patients (Silva et al., 2012). In
case of PhysioNet, each task corresponds to one patient and
the target is to predict a patient’s health trajectory based on
a few measurements, in particular the Glasgow Coma Scale
(GCS) and the hematocrit value (HCT).

Since our work focuses on meta-learning with limited data,
we restrict the number of tasks and samples drawn from
the different environments. Note that in case of PhysioNet,
the number of measurements available for training differs
across patients. Further details on the environments can be
found in Appendix D.1.

6.2. PACOH combats meta-overfitting
The majority of previous work on meta-learning (e.g., Finn
et al., 2017; Garnelo et al., 2018) assumes that tasks τ ∼ T
are of large or infinite supply during meta-training. As a
result, when presented with only a limited number of tasks,
most existing meta-learning algorithms suffer from severe
overfitting on the meta-training tasks, which adversely im-
pacts their performance on unseen tasks from the same
environment (Qin et al., 2018). In contrast to the majority of
literature on meta-learning, our proposed class of algorithms
based on PACOH offers a principled treatment of overfit-
ting. Particularly, the KL-divergence DKL(Q||P) between

1Link to the code repository will be included upon acceptance
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Figure 2: Test RMSE measured on the meta-training tasks and the meta-testing tasks as a function of the number of
meta-training tasks for PACOH (ours) and MLL. The performance gap between the meta-train and meta-test tasks clearly
demonstrates overfitting in the MLL method, while PACOH performs consistently better and does not overfit.

Sinusoid Cauchy SwissFEL Physionet-GCS Physionet-HCT
GP 1.260± 0.000 0.287± 0.000 0.811± 0.000 1.902± 0.000 2.904± 0.000

PACOH-MAP (ours) 0.301± 0.012 0.221± 0.003 0.447± 0.039 1.452± 0.014 2.332± 0.010

PACOH-VI (ours) 0.276± 0.005 0.226± 0.004 0.382± 0.022 1.638± 0.015 2.391± 0.018

PACOH-SVGD (ours) 0.271± 0.001 0.205± 0.003 0.350± 0.008 1.457± 0.019 2.351± 0.022

MLAP (Amit and Meir, 2018) 0.421± 0.012 0.231± 0.616 0.454± 0.007 1.893± 0.023 2.813± 0.232

MLL (Fortuin and Rätsch, 2019) 0.443± 0.034 0.399± 0.009 1.175± 0.167 1.491± 0.025 2.536± 0.039

NP (Garnelo et al., 2018) 0.466± 0.010 0.222± 0.002 0.556± 0.055 1.846± 0.028 2.697± 0.074

MAML (Finn et al., 2017) 0.426± 0.029 0.295± 0.014 0.958± 0.090 1.833± 0.132 2.556± 0.029

Table 1: Comparison of different meta-learning methods and a standard GP as baseline. Across 5 meta-learning environments,
we report test RMSE and its standard deviation. Our proposed method achieves the best performance across all tasks.

hyper-prior and hyper-posterior acts as a regularizer.

To demonstrate the issue of meta-overfitting and the
importance of meta-level regularization, we compared the
performance of our proposed regularization (PACOH-MAP)
to meta-learning based on the marginal log-likelihood
(MLL) (Fortuin and Rätsch, 2019), which uses an identical
GP model without regularization. Figure 2 shows that the
MLL method performs significantly better on the meta-train
tasks than on the meta-test tasks in both of our synthetic
environments. Our method, in contrast, does not exhibit this
discrepancy and performs better than MLL on both kinds
of tasks. As expected, this effect is particularly pronounced
when the number of meta-training tasks is small (i.e.,
less than 100). Similar results for other meta-learning
methods as well as observations regarding the influence
of the regularization strength can be found in the appendix
(Sec. D.4). This demonstrates the issue of meta-overfitting,
underpins the importance of meta-level regularization, and
shows that our proposed framework can be an effective
measure to alleviate this problem.

6.3. PACOH improves the predictive performance
We now assess the empirical performance of our proposed
PAC-Bayesian algorithms and compare them against
popular meta-learning methods across five regression
environments.

As described in Section 5, we evaluate three approximations

of the PACOH Q∗, namely the MAP estimate (PACOH-
MAP), VI within the family of fully-factorized Gaussians
(PACOH-VI), and SVGD with 10 particles (PACOH-SVGD).
We compare our methods against a standard GP with SE
kernel (no meta-learning), a GP with neural-network-based
mean and kernel function, meta-learned by maximizing the
marginal log-likelihood (MLL) (Fortuin and Rätsch, 2019),
a neural process (NP) (Garnelo et al., 2018), model-agnostic
meta-learning (MAML) (Finn et al., 2017), and the PAC-
bound by Amit and Meir (2018) which requires nested opti-
mization (MLAP).

Table 1 reports the results of our study in terms of the
root mean squared error (RMSE) on unseen test tasks. In
addition, Table S2 in Appendix D.4 shows respective test
log-likelihoods. In the majority of environments, all our
proposed methods outperform the other meta-learning
approaches. Notably, the SVGD approximation consistently
performs best on all tasks. This provides further evidence
that the introduced meta-learning framework is not only
sound, but also yields a class of algorithms that work well
in practice. Especially when only few training tasks are
available (e.g., in case of the SwissFEL), the performance
difference to previous meta-learning methods like NPs and
MAML is substantial. As already observed in the meta-
overfitting experiments, the performance gap between our
method and the baselines decreases with an increasing num-
ber of meta-training tasks (see also Fig. S5 in the appendix).
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Sinusoid Cauchy SwissFEL Physionet-GCS Physionet-HCT
GP 0.171± 0.000 0.099± 0.000 0.136± 0.000 0.339± 0.000 0.377± 0.000

PACOH-MAP (ours) 0.141± 0.007 0.066± 0.001 0.053± 0.005 0.296± 0.002 0.324± 0.001

PACOH-VI (ours) 0.118± 0.003 0.067± 0.002 0.051± 0.017 0.301± 0.001 0.329± 0.003

PACOH-SVGD (ours) 0.115± 0.001 0.065± 0.001 0.042± 0.005 0.297± 0.002 0.325± 0.003

MLAP (Amit and Meir, 2018) 0.118± 0.004 0.084± 0.006 0.067± 0.007 0.300± 0.001 0.349± 0.005

MLL (Fortuin and Rätsch, 2019) 0.232± 0.009 0.264± 0.001 0.259± 0.007 0.298± 0.003 0.342± 0.004

NP (Garnelo et al., 2018) 0.134± 0.012 0.078± 0.004 0.252± 0.031 0.347± 0.007 0.370± 0.006

MAML (Finn et al., 2017) N/A N/A N/A N/A N/A

Table 2: Quality of uncertainty estimates induced by different meta-learners. Across 5 meta-learning environments, we
report the calibration error and its standard deviation. PACOH consistently yields the best uncertainty calibration.

Note that the MLL method is similar to PACOH-MAP,
except that it does not incorporate a hyper-prior as meta-
level regularization. The fact that PACOH-MAP improves
upon MLL in all environments indicates that MLL suffers
from meta-overfitting and demonstrates that incorporating a
hyper-prior, as suggested by the PAC-Bayesian theory, con-
stitutes an effective way of regularization. This is consistent
with our findings in Section 6.2.

6.4. PACOH improves the uncertainty estimates
Reasoning about the predictive uncertainty of models is cru-
cial in many machine learning applications (Chaloner and
Verdinelli, 1995; Shahriari et al., 2016). While Bayesian
methods (such as GPs) provide a general framework for
quantifying uncertainty, the associated uncertainty estimates
are often not well-calibrated due to model misspecification
and poorly chosen priors (Kuleshov et al., 2018). We
hypothesize that by acquiring the prior in a principled
data-driven manner (e.g., with PACOH), we can improve
the quality of the predictors’ uncertainty estimates, that is,
their calibration.

Calibration refers to the consistency between the distribu-
tional forecasts and the distribution of the actual observa-
tions (Gneiting et al., 2007). For example in regression,
calibration means that data points yj should fall into the
90% confidence interval of our predictor approximately
90% of the time (Kuleshov et al., 2018). The calibration er-
ror measures the discrepancy between predicted confidence
regions and actual frequencies of test data in the respective
areas. We follow the definition of Kuleshov et al. (2018)
but report the square root of the calibration error for ease of
interpretability. For details, we refer to Appendix D.2.1.

Table 2 reports the calibration errors for the different meta-
learning methods and environments. Note that the concept
of calibration is not applicable to MAML since it only
produces point estimates during meta-testing. Compared to
the standard GP with a fixed prior, meta-learning a flexible
GP prior with PACOH improves the calibration significantly.
In contrast, due to its insufficient regularization, MLL
produces over-confident predictions, resulting in substan-

tially higher calibration errors than even the standard GP
baseline. Once more, the SVGD approximation consistently
achieves the best results across all environments. Overall,
this demonstrates that PAC-Bayesian meta-learning can
be a practical alternative to hand-designed priors, yielding
improved predictions as well as better uncertainty estimates.

7. Conclusion
We presented new PAC-Bayesian generalization bounds for
meta-learning, including the first ones for unbounded loss
functions. By utilizing the specific structure of the base
learner, we were able to obtain meta-level generalization
bounds that do not depend on the individual task posteriors
Qi and are tighter than the general bounds. Additionally,
we derived the PAC-optimal hyper-posterior that promises
the best performance guarantees. Overall, our contributions
transform PAC-Bayesian meta-learning from a previously
nested optimization problem (c.f., Amit and Meir (2018))
into standard approximate inference on Q∗. When employ-
ing PACOH on GPs, we achieved strong empirical results.
Particularly in settings where meta-training data is scarce
and good uncertainty estimates are crucial, PACOH offers a
practical alternative to hand-designed priors.
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Appendix

A. Proofs and Derivations
A.1. Bounding Ψ(β, k) in Theorem 1

Below we state a generic version of Theorem 1 that uses notation which will make it easier for us to incorporate its results in
later proofs.

Theorem A1 (Alquier et al. (2016)). Given a data distribution D ∈ M(Z), a hypothesis space F , a loss function
l : F × Z → R, a prior distribution π ∈ M(F), a real number δ ∈ (0, 1], and a real number β > 0, with probability at
least 1− δ over samples S ∼ Dk, we have ∀ρ ∈M(F):

L(ρ,D) ≤ L̂(ρ, S) +
1

β

[
DKL(ρ||π) + ln

1

δ
+ Ψ(β, k)

]
,

where
Ψ(β, k) = lnEh∼πES∈Dk exp

[
β
(
L(h,D)− L̂(h, S)

)]
. (16)

Bounded loss function When the loss function is bounded, that is, l : F × Z → [a, b], we can use Hoeffding’s lemma to
bound Ψ(β, n). In particular, we define the random variable lj = l(h, zj) ∈ [a, b] with expected value E[lj ] = L(h,D) and
write

Ψ(β, k) = lnE exp

β
k

k∑
j=1

(E[lj ]− lj)

 =

k∑
j=1

lnE exp

(
β

k
(E[lj ]− lj)

)

≤
k∑
j=1

lnE exp

(
β2(b− a)2

8k2

)
=
β2(b− a)2

8k
.

(17)

Sub-gamma loss A loss function l is considered sub-gamma with variance factor s2 and scale parameter c, under a prior π
and data distribution D, if it can be described by a sub-gamma random variable V := L(h,D)− l(h, z), that is, its moment
generating function is upper bounded by that of a Gamma distribution Γ(s, c):

lnEh∼πEz∼D
[
eλV

]
≤ λ2s2

2(1− cλ)
∀λ ∈ (0, 1/c) .

For details see Boucheron et al. (2013) and Germain et al. (2016). We can use the sub-gamma assumption to bound Ψ(β, k)
as follows

Ψ(β, k) =
k∑
j=1

lnE exp

(
β

k
lj

)
≤ β2s2

2k(1− cβ
k )

. (18)

Sub-gaussian loss A sub-gaussian loss function with variance s2 can be considered as a limit case of the previously
discussed sub-gamma assumption when c→ 0+. As direct consequence, Ψ(β, n) can be bounded by

Ψ(β, k) ≤ β2s2

2k
. (19)

A.2. Proof of Lemma 1

In this section, we provide a proof for a generic version of Lemma 1 that uses general symbols for the different entities of
interest. This will make it easier to invoke the lemma in later proofs.

Lemma A1. (Catoni, 2007) Let A be a set, g : A→ R a function, and ρ ∈ M(A) and π ∈ M(A) probability densities
over A. Then for any β > 0 and ∀a ∈ A,

ρ∗(a) :=
π(a)e−βg(a)

Z
=

π(a)e−βg(a)

Ea∼π
[
e−βg(a)

] (20)
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is the minimizing probability density

arg min
ρ∈M(A)

βEa∼ρ [g(a)] +DKL(ρ||π) . (21)

For ease of exposition, we only provide a proof for the case when A = {a1, ..., aK} is a finite set. An extension to the
general case is straightforward and can be found in Zhang (2006) and Catoni (2007). When A is countable, we can express
probability densities as categorical distributions, that is, ρ(ak) = ρk and π(ak) = πk ∀k, where

∑K
k=1 ρk =

∑K
k=1 πk = 1,

πk, ρk > 0.

This allows us to write the task of finding ρ∗ as a constrained optimization problem:

arg min
ρ∈[0,1]K

J(ρ) = arg min
ρ∈[0,1]K

K∑
k=1

ρk

(
βg(ak) + ln

ρk
πk

)
s.t.

K∑
k=1

ρk = 1 . (22)

The respective Lagrangian is

L(ρ, λ) =
K∑
k=1

ρk

(
βg(ak) + ln

ρk
πk

)
− λ

(
K∑
k=1

ρk − 1

)
, (23)

with the respective partial derivatives:

∂L
∂ρk

= βg(ak) + ln
ρk
πk

+ 1− λ = 0 k = 1, ...,K (24)

∂L
∂λ

=

K∑
k=1

ρk − 1 = 0 . (25)

From (24) we get that
ρk = πke

λ−βg(ak)−1 , (26)

which we insert in (25) to identify the Lagrange multiplier as

λ = 1− ln

K∑
k=1

πke
−βg(ak) . (27)

Finally, using (27) in (26) we obtain

ρ∗k =
πke
−βg(ak)∑K

k=1 πke
−βg(ak)

, (28)

which concludes the proof. Note that ρ∗k fulfills the constraint ρ ∈ [0, 1]K since πk ≥ 0 and
∑K
k=1 πke

−βg(ak) > πke
−βg(ak).

Hence, the Hessian∇2
ρJ(ρ) = diag(ρ−1

1 , ..., ρ−1
K ) is positive semi-definite ∀ρ ∈ [0,∞)K and ρ∗ is the global minimizer of

J(ρ) within the K-dimensional probability simplex. �

A.3. Proof of Theorem 2

Step 1 (Task specific generalization) First, we bound the generalization error of each of the observed tasks τi = (Di,mi),
when using a learning algorithmQ :M×Zmi →M, which outputs a posterior distributionQ = Q(Si, P ) over hypotheses
θ, given a prior distribution P and a data set Si ∼ Dmii of size mi.

In particular, we use Theorem A1 with the following instantiations. The samples are Zk = Si with k := mi and distribution
D := Di. Further, we define f := (P, h) as a tuple of a prior distribution P and hypothesis h. This can be understood as
a two-level hypothesis, wherein P constitutes a hypothesis of the meta-learning problem and h a hypothesis for solving
the supervised task at hand. In a similar manner, we define two-level priors and posteriors, that is, π = (P, P ) and
ρ = (Q, Q(Si, P )), denoting the distribution of first sampling P from Q and then θ from Q(Si, P ).
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Using the above definitions, the KL-divergence term can be re-written in the following way:

DKL(ρ||π) = Ef∼ρ
[
ln
ρ(h)

π(h)

]
= EP∼Q

[
Eh∼Q(P,Si)

[
ln
Q(P )Q(Si, P )(h)

P(P )P (h)

]]
= EP∼Q

[
ln
Q(P )

P(P )

]
+ EP∼Q

[
Eh∼Q(P,Si)

[
ln
Q(Si, P )(h)

P (h)

]]
= DKL(Q||P) + EP∼Q [DKL(Q(P, Si)||P )] .

Finally, we can bound the task specific generalization error based on Theorem A1 with β := mi, obtaining

L(Q,Di) ≤ EP∼QEh∼Q
[
L̂(h, Si)

]
+

1

mi

(
DKL(Q||P) + EP∼Q [DKL(Q||P )] + ln

1

δi
+ Ψ(mi,mi)

)
, (29)

which holds over all choices of (Q, Q) ∈M(M(H))×M(H) with probability at least 1− δi.

Step 2 (Task environment generalization) In the next step, we bound the generalization on the task-environment level.
Let τi = (Di,mi) ∼ T be tasks drawn i.i.d. from the task-environment distribution T . We set f := P , π := P and ρ := Q
and define the meta-level empirical loss function as l(P, S) = L̂(P,M) = 1

n

∑n
i=1 L(P,Di). Let P denote the hyper-prior

and Q the hyper-posterior. As a result from Theorem A1 with β := n, we obtain

L(Q, T ) ≤ L̂(Q,M) +
1

n

(
DKL(Q||P) + ln

1

δ0
+ Ψ(n, n)

)
(30)

over all Q ∈M(M(H)) with probability at least 1− δ0

Step 3 (Union bound) Finally, we have to combine the results from Step 1 and 2. For that, we bound the probability of
the intersection of the events in (29) and (30) with a union bound argument. In particular, for any δ > 0 we set δi := δ

2n and

δ0 = δ
2 . Further, we define m̃ =

(
1
n

∑n
i=1

1
mi

)−1

as the harmonic mean of the sample sizes mi.

L(Q, T ) ≤ L̂(Q,M) +
1

n

(
DKL(Q||P) + ln

2

δ
+ Ψ(n, n)

)
(31)

≤ 1

n

n∑
i=1

L(Q, τi) +
1

n

(
DKL(Q||P) + ln

2

δ
+ Ψ(n, n)

)
(32)

≤ 1

n

n∑
i=1

L̂(Q, Si) +
1

n

n∑
i=1

1

mi

(
DKL(Q||P) + EP∼Q [DKL(Qi||P )] + ln

2n

δ
+ Ψ(mi,mi)

)
(33)

+
1

n

(
DKL(Q||P) + ln

2

δ
+ Ψ(n, n)

)
(34)

= L̂(Q, S1, ..., Sn) +

(
1

n
+

1

m̃

)
DKL(Q||P) +

1

n

n∑
i=1

1

mi
EP∼Q [DKL(Qi||P )] (35)

+
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

1

n
Ψ(n, n) +

1

n

n∑
i=1

1

mi
Ψ(mi,mi) (36)

= L̂(Q, S1, ..., Sn) +

(
1

n
+

1

m̃

)
DKL(Q||P) +

1

n

n∑
i=1

1

mi
EP∼Q [DKL(Qi||P )] + C(δ, n, m̃) . (37)

In that, we defined C(δ, n, m̃) as

C(δ, n, m̃) :=
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

1

n
Ψ(n, n) +

1

n

n∑
i=1

1

mi
Ψ(mi,mi) . (38)
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Bounded loss function If we assume that the loss function is bounded, that is l : H×Z → [a, b], we can use (2) to bound
C(δ, n, m̃) as follows:

C(δ, n, m̃) ≤ 1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

1

n

n2(b− a)2

8n
+

1

n

n∑
i=1

1

mi

m2
i (b− a)2

8mi
(39)

=
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

(b− a)2

4
. (40)

Sub-gamma loss function If we assume that the loss function is sub-gamma with variance factor s2 and scale parameter
c, under the two-level prior (P, P ) and the data distribution (T ,D), we can use (3) to bound C(δ, n, m̃) as follows:

C(δ, n, m̃) ≤ 1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

1

n

n2s2

2n(1− c) +
1

n

n∑
i=1

1

mi

m2
i s

2

2mi(1− c)
(41)

=
1

m̃
ln

2n

δ
+

1

n
ln

2

δ
+

s2

1− c . (42)

�

A.4. Proof of Corollary 1: PAC-Bayes Meta-Learning Bound with Marginal Likelihood

When we choose the posterior Q as the optimal Gibbs posterior Q∗i := Q∗(Si, P ), it follows that

L̂(Q, S1, ..., Sn) +
1

n

n∑
i=1

1

mi
EP∼Q [DKL(Q∗i ||P )] (43)

=
1

n

n∑
i=1

(
EP∼QEh∼Q∗i

[
L̂(h, Si)

]
+

1

mi
(EP∼Q [DKL(Q∗i ||P )])

)
(44)

=
1

n

n∑
i=1

1

mi

(
EP∼QEh∼Q∗i

[
miL̂(h, Si) + ln

Q∗i (h)

P (h)

])
(45)

=
1

n

n∑
i=1

1

mi

EP∼QEh∼Q∗i

mi∑
j=1

l(h, zi) + ln
P (h)e−

∑mi
j=1 l(h,zi)

P (h)Z(Si, P )

 (46)

=
1

n

n∑
i=1

1

mi
(−EP∼Q [lnZ(Si, P )]) . (47)

This allows us to write the inequality in (9) as

L(Q, T ) ≤ − 1

n

n∑
i=1

1

mi
EP∼Q [lnZ(Si, P )] +

(
1

n
+

1

m̃

)
DKL(Q||P) + C(δ, n, m̃) . (48)

According to Lemma A1, the Gibbs posterior Q∗(Si, P ) is the minimizer of (45), in particular

Q∗(Si, P ) =
P (h)e−miL̂(h,Si)

Z(Si, P )
= arg min
Q∈M(H)

Eh∼Q
[
L̂(h, Si)

]
+

1

mi
DKL(Q||P ) ∀P ∈M(H),∀i = 1, ..., n . (49)

Hence, we can write

L(Q, T ) ≤− 1

n

n∑
i=1

1

mi
EP∼Q [lnZ(Si, P )] +

(
1

n
+

1

m̃

)
DKL(Q||P) + C(δ, n, m̃) (50)

=
1

n

n∑
i=1

EP∼Q
[

min
Q∈M(H)

L̂(Q,Si) +
1

mi
DKL(Q||P )

]
+

(
1

n
+

1

m̃

)
DKL(Q||P) + C(δ, n, m̃) (51)
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≤ 1

n

n∑
i=1

EP∼Q
[
L̂(Q,Si) +

1

mi
DKL(Q||P )

]
+

(
1

n
+

1

m̃

)
DKL(Q||P) + C(δ, n, m̃) (52)

=L̂(Q, S1, ..., Sn) +

(
1

n
+

1

m̃

)
DKL(Q||P) +

1

n

n∑
i=1

1

mi
EP∼Q [DKL(Qi||P )] + C(δ, n, m̃) , (53)

which proves that the bound for Gibbs-optimal base learners in (48) and (12) is tighter than the bound in Theorem 2 which
holds uniformly for all Q ∈M(H). �

A.5. Alternative PAC-Bayesian bounds for meta-learning Choice of β in Theorem 2

In this section, we discuss alternative bounds to Theorem 2 and Corollary 1 that arise due to small modifications of the
proofs. In fact, if we choose β =

√
mi in Step 1 and β =

√
n in Step 2 of the proof, we obtain the following results:

Theorem 3. Let Q : Zm ×M(H) → M(H) be a base learner, P ∈ M(M(H)) some fixed hyper-prior and
√
m̃ :=

1
n

∑n
i=1

1√
mi

. For any confidence level δ ∈ (0, 1] the inequality

L(Q, T ) ≤ L̂(Q, S1, ..., Sn) +

(
1√
n

+
1√
m̃

)
DKL(Q||P)

+
1

n

n∑
i=1

1√
mi

EP∼Q [DKL(Q(Si, P )||P )]

+ C̃(δ,
√
n,
√
m̃)

(54)

holds uniformly over all hyper-posteriors Q ∈M(M(H)) with probability 1− δ.

If the loss function is bounded, that is l : H×Z → [a, b], the above inequality holds for

C̃(δ,
√
n,
√
m̃) =

1√
m̃

ln
2n

δ
+

1√
n

ln
2

δ
+

(
1√
n

+
1√
m̃

)
(b− a)2

2
. (55)

If the loss function is sub-gamma with variance factor s2 and scale parameter c, under the two-level prior (P, P ) and the
data distribution (T ,D), the inequality holds for

C̃(δ,
√
n,
√
m̃) =

1√
m̃

ln
2n

δ
+

1√
n

ln
2

δ
+

s2

2(
√
n− c) +

1

n

n∑
i=1

s2

2(
√
mi − c)

. (56)

Proof. Analogous to the proof in A.3 with β =
√
mi in Step 1 and β =

√
n Step 2.

Corollary 2. When choosing the Gibbs posterior Q∗(Si, P ) := P (h) exp(−√miL̂(Si, h))/Z̃(Si, P ) with Z̃(Si, P ) =∫
H P (h) exp(−√miL̂(Si, h))dh as a base learner, under the same assumptions as in Theorem 3, with probability 1− δ it

holds that

L(Q, T ) ≤ − 1

n

n∑
i=1

1

mi
EP∼Q

[
ln Z̃(Si, P )

]
+

(
1√
n

+
1√
m̃

)
DKL(Q||P) + C(δ, n,

√
m̃) .

(57)

Proof. Analogous to the proof in Appendix A.4.

In contrast to Theorem 2, the constants in C̃(δ,
√
n,
√
m̃) now vanish to 0 as n and mi grow, i.e.

limn,mi→∞ C̃(δ,
√
n,
√
m̃) = 0. However, this desirable property comes with two drawbacks. First, the KL-terms

in (54) vanish more slowly with n and mi than the similar terms in Theorem 2. Second, and more importantly, ln Z̃(Si, P )
in Corollary (2) no longer coincides with the Bayesian marginal log-likelihood when l(h, z) = −p(z|h). In contrast,
lnZ(Si, P ) in Corollary 1 is tractable for various Bayesian base learners such as GPs, thus, playing an instrumental role
towards converting the bounds into scalable algorithms (c.f. Section 5).
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A.6. Proof of Proposition 1: PAC-Optimal Hyper-Posterior

In this section, we derive the hyper-posterior distribution Q∗ ∈ M(M(H)) which, given a hyper-prior P ∈ M(M(H))
and datasets S1, ..., Sn, minimizes the PAC-Bayesian meta-learning bound in (12).

An objective function corresponding to (12) reads as

J(Q) = −EQ
[

m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, P )

]
+DKL(Q||P) . (58)

To obtain J(Q), we omit all additive terms from (12) that do not depend on Q and multiply by the scaling factor m̃n
m̃+n .

Since the described transformations are monotone, the minimizing distribution of J(Q), that is,

Q∗ = arg min
Q∈M(M(H))

J(Q) , (59)

is also the minimizer of (12). More importantly, J(Q) is structurally similar to the generic minimization problem in (21).
Hence, we can invoke Lemma A1 with A =M(H), g(a) = −∑n

i=1
1
mi

lnZ(Si, P ), β = m̃
m̃+n , to show that the optimal

hyper-posterior is

Q∗(P ) =
P(P ) exp

(
m̃

m̃+n

∑n
i=1

1
mi

lnZ(Si, P )
)

Z II(S1, ..., Sn,P)
, (60)

wherein

Z II(S1, ..., Sn,P) = EP∼P

[
exp

(
m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, P )

)]
.

�

Technically, this concludes the proof of Proposition 1. However, we want to remark the following interesting result:

If we choose Q = Q∗, the PAC-Bayes bound in (12) can be expressed in terms of the meta-level partition function Z II, that
is,

L(Q, T ) ≤ −m̃+ n

m̃n
lnZ II(S1, ..., Sn,P) + C(δ, n, m̃) . (61)

We omit a detailed derivation of (61) since it is similar to the one in Appendix A.4.

A.7. Proof of the Equivalence of Variational Inference and Minimization of the PAC-Bayes Meta-Learning Bound

We can write the optimal variational distribution Q̃ with respect to Q∗ as

Q̃ = arg min
Q∈F

DKL(Q||Q∗) (62)

= arg min
Q∈F

EP∼Q [lnQ(P )− lnQ∗(P )] (63)

= arg min
Q∈F

EP∼Q

[
lnQ(P )− lnP(P )−

(
m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, P )

)
+ lnZ II(S1, ..., Sn,P)

]
(64)

= arg min
Q∈F

KL(Q||P)− m̃

m̃+ n

n∑
i=1

1

mi
EP∼Q [lnZ(Si, P )] (65)

= arg min
Q∈F

− 1

n

n∑
i=1

1

mi
EP∼Q [lnZ(Si, P )] +

(
1

n
+

1

m̃

)
DKL(Q||P) . (66)

Here, we multiplied (65) with
(

1
n + 1

m̃

)
to obtain (66). Now it is straightforward to see that (66) is the same as the

meta-learning PAC-Bayes bound in (12) up to the constant C(δ, n, m̃). Hence, we can conclude that variational inference
with respect to Q∗ is equivalent to minimizing (12) over the same variational family F .
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B. Gaussian process regression
In GP regression, each data point corresponds to a feature-target tuple zi,j = (xi,j , yi,j) ∈ Rd × R. For the i-th dataset,
we write Si = (Xi,yi), where Xi = (xi,1, ..., xi,mi)

> and yi = (yi,1, ..., yi,mi)
>. GPs are a Bayesian method in which

the prior Pθ(h) = GP (h|mθ(x), kθ(x, x
′)) is specified by a positive definite kernel kθ : X × X → R and a mean function

mθ : X → R.

The empirical loss under the GP posterior Q∗ coincides with the negative log-likelihood of regression targets yi, that
is, L̂(Q∗, Si) = − 1

mi
ln p(yi|Xi). Under a Gaussian likelihood p(y|h) = N (y;h(x), σ2I), the marginal log-likelihood

lnZ(Si, Pθ) = ln p(yi|Xi, θ) can be computed in closed form as

ln p(y|X, θ) =− 1

2
(y −mX,θ))

>
K̃−1

X,θ (y −mX,θ)

− 1

2
ln |K̃X,θ| −

mi

2
ln 2π ,

(67)

where K̃X,θ = KX,θ + σ2I , with the kernel matrix KX,θ = (kθ(xl, xk))mil,k=1, observation noise variance σ2, and mean
vector mX,θ = (mθ(x1), ...,mθ(xmi))

>.

Previous work on Bayesian model selection in the context of GPs argues that the log-determinant 1
2 ln |K̃X,θ| in the marginal

log-likelihood (67) acts as a complexity penalty (Rasmussen and Ghahramani, 2001; Rasmussen and Williams, 2006).
However, we suspect that this complexity regularization is only effective if the class of considered priors is restrictive, for
instance if we only optimize a small number of parameters such as the length- and output scale of a squared exponential
kernel. If we consider expressive classes of GP priors (e.g., our setup where the mean and kernel function are neural
networks), such a complexity penalty could be insufficient to avoid meta-overfitting. Indeed, this is what we also observe in
our experiments (see Sec. 6).

C. PACOH-based Meta-Learning of GP priors
In this section, we provide further details on the three variants of PACOH, introduced in Section 5 of the paper and employed
in our experiments. Following Section 6, we instantiate our framework with GP base learners.Since we are interested in
meta-learning, we define the mean and kernel function both as parametric functions. Similar to Wilson et al. (2016) and
Fortuin and Rätsch (2019), we instantiate mθ and kθ as neural networks, where the parameter vector θ can be meta-learned.
To ensure the positive-definiteness of the kernel, we use the neural network as feature map Φθ(x) on top of which we apply
a squared exponential (SE) kernel. Accordingly, the parametric kernel reads as kθ(x, x′) = 1

2 exp
(
−||Φθ(x)− Φθ(x

′)||22
)
.

Both mθ(x) and Φθ(x) are fully-connected neural networks with 4 layers with each 32 neurons and tanh non-linearities.
The parameter vector θ represents the weights and biases of both neural networks. As hyper-prior we choose a zero-mean
isotropic Gaussian, that is, P(θ) = N (0, σ2

PI).

C.1. PACOH-MAP

A maximum a-posteriori (MAP) approximation of Q∗ is the simplest way to obtain a practical meta-learning algorithm
from our PAC-Bayesian theory. In particular, it approximates the Q∗(P ) by a Dirac measure δP (P ∗) on the prior P ∗ that
maximizes Q∗:

P ∗ = arg max
P∈M(H)

Q∗(P ) . (68)

We can restate (68) as minimizing the following objective:

JMAP(P ) = − m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, P )− lnP(P ) . (69)

When we use GP base learners, as described above, the meta-learning objective reduces to the GP’s marginal log-likelihood
plus L2-regularization.

JMAP(θ) = − m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, Pθ)−

1

2σ2
P
||θ||22 (70)

To minimize JMAP(θ), we use mini-batch gradient descent. Note that here, mini-batches are created on the meta-level.
That is, we sample mini-batches of four tasks to compute the gradients of JMAP(θ) and use all data-points in the respective
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datasets Si. Since weight-decay is equivalent to the L2-regularization in (70), we use AdamW as optimizer (Loshchilov and
Hutter, 2019) to optimize the first term in (70).

C.2. PACOH-VI

When aiming to approximate Q∗ via variational inference, we consider a family F = {Qγ |γ ∈ Γ} ⊂ M(M(H)) of
parametric distributions with parameter vector γ and try to solve the following minimization problem:

Q̃ = arg min
γ∈Γ

DKL(Qγ ||Q∗) . (71)

In our setup, where Pθ is the GP-prior, this optimization problem can be re-stated as minimizing the negative ELBO:

JVI(γ) = −Eθ∼Qγ

[
m̃

m̃+ n

n∑
i=1

1

mi
lnZ(Si, Pθ) + lnP(θ)− lnQγ(θ)

]
. (72)

In particular, we use fully-factorized Gaussians as the variational family, that is, we meta-learn γ = (µQ, σQ). To estimate
the gradients of JVI(γ) with respect to γ, we employ a pathwise gradient estimator, also known as reparametrization trick.
This means that we sample a set of K prior parameters θk := µQ + σQεk, εk ∼ N (0, I) as well as a mini-batch of H
datasets S1, ..., SH and compute an unbiased gradient estimate of (72) as follows:

∇γJVI(γ) ≈ − 1

K

L∑
k=1

∇µQ,σQ

(
n

H
· m̃

m̃+ n

H∑
h=1

1

mh
lnZ(Sh, Pθk) + lnP(θk)− lnQγ(θk)

)
. (73)

During gradient descent with∇γJVI(γ), we employ the adaptive learning rate method Adam. Due to the double stochasticity
(mini-batches of tasks and mini-batches of θk ∼ Qγ), we found that in practice the gradient estimates of the marginal
log-likelihood term in (73) are very noisy whereas the second and third term (meta-level KL-divergence) are subject to
less variance. As a result, the less noisy gradients of the KL-divergence dominate during gradient-descent, pushing the
VI posterior towards the prior which in turn leads to a higher entropy of Qγ and even noisier gradient estimates for the
marginal log-likelihood term. To counteract this explosion in hyper-posterior entropy, we add a weight 0 < λ < 1 in front
of lnP(θ)− lnQγ(θ) which effectively down-scales the effect of DKL(Qγ ||P) and improves results significantly. Here,
we treat λ as a hyper-parameter.

C.3. PACOH-SVGD

SVGD (Liu and Wang, 2016) approximates Q∗ as a set of particles Q̂ = {P1, ..., PK}. In our described setup, each particle
corresponds to the parameters of the GP prior, that is, Q̂ = {θ1, ..., θK}. Initially, we sample random priors θk ∼ P from
our hyper-posterior. Then, the SVGD iteratively transports the set of particles to matchQ∗, by applying a form of functional
gradient descent that minimizes DKL(Q̂|Q∗) in the reproducing kernel Hilbert space induced by a kernel function k(·, ·).
We choose a squared exponential kernel with length scale (hyper-)parameter `, that is, k(θ, θ′) = exp

(
− ||θ−θ

′||22
2`

)
. In each

iteration, the particles are updated by

θk ← θk + ηtφ
∗(θk) , with φ∗(θ) =

1

K

K∑
l=1

[k(θl, θ)∇θl lnQ∗(θl) +∇θlk(θl, θ)] .

Here, we can again estimate∇θl lnQ∗(θl) with a mini-batch of H datasets S1, ..., SH :

∇θl lnQ∗(θl) =
n

H
· m̃

m̃+ n

H∑
h=1

1

mh
∇θl lnZ(Sh, Pθl) +∇θl lnP(θl) .

Importantly,∇θl lnQ∗(θl) does not depend on Z II which makes SVGD tractable.

C.4. Meta-Testing / Target-Training with PACOH

Meta-learning with PACOH, as described above, gives us an approximation of Q∗. In target-testing (see Figure 1), the
base learner is instantiated with the meta-learned prior Pθ, receives a dataset S̃ = (X̃, ỹ) from an unseen task D ∼ T and
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Sinusoid Cauchy SwissFEL Physionet
n 20 20 5 100
mi 5 20 200 4 - 24

Table S1: Number of tasks n and samples per task mi for the different meta-learning environments.
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Figure S1: Depiction of tasks (i.e., functions) sampled from the Sinusoid and Cauchy task environment, respectively. Note
that the Cauchy task environment is two-dimensional (dim(X ) = 2), while (b) displays a one-dimensional projection.

outputs a posterior Q as product of its inference. In our GP setup, Q is the GP posterior and the predictive distribution
p̂(y∗|x∗, X̃, ỹ, θ) is a Gaussian (for details see Rasmussen and Williams, 2006).

Since the meta-learner outputs a distribution over priors, that is, the hyper-posterior Q, we may obtain different predictions
for different priors Pθ ∼ Q, sampled from the hyper-posterior. To obtain a predictive distribution under our meta-learned
hyper-posterior, we empirically marginalize Q. That is, we draw a set of prior parameters θ1, ..., θK ∼ Q from the
hyper-posterior, compute their respective predictive distributions p̂(y∗|x∗, X̃, ỹ, θk) and form an equally weighted mixture:

p̂(y∗|x∗, X̃, ỹ,Q) = Eθ∼Q
[
p̂(y∗|x∗, X̃, ỹ, θ)

]
≈ 1

K

K∑
k=0

p̂(y∗|x∗, X̃, ỹ, θk) , θk ∼ Q (74)

Since we are concerned with GPs, (74) coincides with a mixture of Gaussians. As one would expect, the mean prediction
under Q (i.e., the expectation of (74)), is the average of the mean predictions corresponding to the sampled prior parameters
θ1, ..., θK . In case of PACOH-VI, we sample K = 100 priors from the variational hyper-posterior Q̃. For PACOH-SVGD,
samples from the hyper-posterior correspond to the K = 10 particles. PACOH-MAP can be viewed as a special case of
SVGD with K = 1, that is, only one particle. Thus, p̂(y∗|x∗, X̃, ỹ,Q) ≈ p̂(y∗|x∗, X̃, ỹ, θMAP ) is a single Gaussian.

D. Experiments
D.1. Meta-Learning Environments

In this section, we provide further details on the meta-learning environments used in Section 6. Information about the
numbers of tasks and samples in the respective environments can be found in Table S1.

D.1.1. SINUSOIDS

Each task of the sinusoid environment corresponds to a parametric function

fa,b,c,β(x) = β ∗ x+ a ∗ sin(1.5 ∗ (x− b)) + c , (75)
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Figure S2: Accelerator of the Swiss Free-Electron Laser (SwissFEL).

which, in essence, consists of an affine as well as a sinusoid function. Tasks differ in the function parameters (a, b, c, β) that
are sampled from the task environment T as follows:

a ∼ U(0.7, 1.3), b ∼ N (0, 0.12), c ∼ N (5.0, 0.12), β ∼ N (0.5, 0.22) . (76)

Figure S1a depicts functions fa,b,c,β with parameters sampled according to (76). To draw training samples from each task,
we draw x uniformly from U(−5, 5) and add Gaussian noise with standard deviation 0.1 to the function values f(x):

x ∼ U(−5, 5) , y ∼ N (fa,b,c,β(x), 0.12) . (77)

D.1.2. CAUCHY

Each task of the Cauchy environment can be interpreted as a two dimensional mixture of Cauchy distributions plus a function
sampled from a Gaussian process prior with zero mean and SE kernel function k(x, x′) = exp

(
||x−x′||22

2l

)
with l = 0.2.

The (unnormalized) mixture of Cauchy densities is defined as:

m(x) =
6

π · (1 + ||x− µ1||22)
+

3

π · (1 + ||x− µ2||22)
, (78)

with µ1 = (−1,−1)> and µ2 = (2, 2)>.

Functions from the task environments are sampled as follows:

f(x) = m(x) + g(x) , g ∼ GP(0, k(x, x′)) . (79)

Figure S1b depicts a one-dimensional projection of functions sampled according to (79). To draw training samples from
each task, we draw x from a truncated normal distribution and add Gaussian noise with standard deviation 0.05 to the
function values f(x):

x := min{max{x̃, 2},−3} , x̃ ∼ N (0, 2.52) , y ∼ N (f(x), 0.052) . (80)

D.1.3. SWISSFEL

Free-electron lasers (FELs) accelerate electrons to very high speed in order to generate shortly pulsed laser beams with
wavelengths in the X-ray spectrum. These X-ray pulses can be used to map nanometer scale structures, thus facilitating
experiments in molecular biology and material science. The accelerator and the electron beam line of a FEL consist of
multiple magnets and other adjustable components, each of which has several parameters that experts adjust to maximize the
pulse energy (Kirschner et al., 2019a). Due do different operational modes, parameter drift, and changing (latent) conditions,
the laser’s pulse energy function, in response to its parameters, changes across time. As a result, optimizing the laser’s
parameters is a recurrent task.
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Overall, our meta-learning environment consists of different parameter optimization runs (i.e., tasks) on the SwissFEL, an
800 meter long laser located in Switzerland (Milne et al., 2017). A picture of the SwissFEL is shown in Figure S2. The
input space, corresponding to the laser’s parameters, has 12 dimensions whereas the regression target is the pulse energy
(1-dimensional). For details on the individual parameters, we refer to Kirschner et al. (2019b). For each run, we have around
2000 data points. Since these data-points are generated with online optimization methods, the data are non-i.i.d. and get
successively less diverse throughout the optimization. As we are concerned with meta-learning with limited data and want
to avoid issues with highly dependent data points, we only take the first 400 data points per run and split them into training
and test subsets of size 200. Overall, we have 9 runs (tasks) available. 5 of those runs are used for meta-training and the
remaining 4 runs are used for meta-testing.

D.1.4. PHYSIONET

The 2012 Physionet competition (Silva et al., 2012) published an open-access data set of patient stays on the intensive care
unit (ICU). Each patient stay consists of a time series over 48 hours, where up to 37 clinical variables are measured. The
original task in the competition was binary classification of patient mortality, but due to the large number of missing values
(around 80 % across all features), the data set is also popular as a test bed for time series prediction methods, especially
using Gaussian processes (Fortuin and Rätsch, 2019; Fortuin et al., 2019).

In this work, we treat each patient as a separate task and the different clinical variables as different environments. We use
the Glasgow coma scale (GCS) and hematocrit value (HCT) as environments for our study, since they are among the most
frequently measured variables in this data set. From the dataset, we remove all patients where less than four measurements
of CGS (and HCT respectively) are available. From the remaining patients we use 100 patients for meta-training and 500
patients each for meta-validation and meta-testing. Here, each patient corresponds to a task. Since the number of available
measurements differs across patients, the number of training points mi ranges between 4 and 24.

D.2. Experimental Methodology

In the following, we describe our experimental methodology and provide details on how the empirical results reported in
Section 6 were generated. Overall, evaluating a meta-learner consists of two phases, meta-training and meta-testing. The
latter can be further sub-divided into target training and target testing. Figure 1 illustrates these different stages for our
PAC-Bayesian meta-learning framework.

Meta-training The meta-learner is provided with a set of datasets S1, ..., S2 and optimizes its respective meta-objective,
for instance in case of PACO-VI, the negative ELBO with respect to Q∗.

Meta-testing This phase aims to evaluate the empirical generalization properties of the meta-learned prior knowledge. In
particular, we evaluate how well the base learner, instatiated with the prior knowledge, performs on multiple unseen tasks
τ = (D,m) ∼ T . For that, two steps are required: In the target-training phase, the base learner is given a training dataset
S̃ ∼ D and performs (normal) inference. Then, in target-testing, we evaluate its predictions on a test dataset S̃∗ ∼ D from
the same task. For PACOH, MLL, GP, and NP, the respective predictor outputs a probability distribution p̂(y∗|x∗, S̃) for
the x∗ in S̃∗. The respective mean prediction corresponds to the expectation of p̂, that is ŷ = Ê(y∗|x∗, S̃). In the case of
MAML, only a mean prediction is available. Based on the mean predictions, we compute the root mean-squared error
(RMSE):

RMSE =

√√√√ 1

|S̃∗|
∑

(x∗,y∗)∈S∗
(y∗ − ŷ)2 . (81)

Similarly, we compute the average log-likelihood:

LL =
1

|S̃∗|
∑

(x∗,y∗)∈S∗
ln p̂(y∗|x∗, S̃) , (82)

and the calibration error (see Appendix D.2.1).

The described meta-training and meta-testing procedure is repeated for five random seeds that influence both the initialization
and gradient-estimates of the concerned algorithms. The averages and standard deviations reported in Figure 2 as well as
Tables 1, 2 and 2 are based on the results obtained for different seeds.
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D.2.1. CALIBRATION ERROR

The concept of calibration applies to probabilistic predictors that, given a new target input xi, produce a probability
distribution p̂(yi|xi) over predicted target values yi. Corresponding to the predictive density, we denote a predictor’s
cumulative density function (CDF) as F̂ (yj |xj) =

∫ yj
−∞ p̂(y|xi)dy. For confidence levels 0 ≤ qh < ... < qH ≤ 1, we can

compute the corresponding empirical frequency

q̂h =
|{yj | F̂ (yj |xj) ≤ qh, j = 1, ...,m}|

m
, (83)

based on dataset S = {(xi, yi)}mi=1 of m samples. If we have calibrated predictions we would expect that q̂h → qh as
m → ∞. Similar to (Kuleshov et al., 2018), we can define the calibration error as a function of residuals q̂h − qh, in
particular,

calib-err =

√√√√ 1

H

H∑
h=1

(q̂h − qh)2 . (84)

In our experiments, we compute (84) with K = 20 equally spaced confidence levels between 0 and 1.

D.3. Hyper-Parameter Selection

For each of the meta-environments and algorithms, we ran a separate hyper-parameter search to select the hyper-parameters.
In particular, we use the hyperopt2 package (Bergstra et al., 2013) which performs Bayesian optimization based on
regression trees. As optimization metric, we employ the average log-likelihood, evaluated on a separate validation set of
tasks.

The scripts for reproducing the hyper-parameter search are included in our code repository3 For the results, reported in the
Tables 1, 2, and S2, we provide the selected hyper-parameters and detailed evaluation results under [Link will be
added upon acceptance]

D.4. Further Experimental Results

Meta-overfitting To further demonstrate the issue of meta-overfitting, we conducted experiments where we varied the
regularization intensity and analyzed its impact on the meta-test performance. In particular, we consider the two synthetic
environments as well as real-world data from the SwissFEL (see Sec. 6.1). We report results for PACOH-MAP with a
zero-mean isotropic Gaussian hyper-prior P(θ) = N (0, σ2

PI). In this case, the regularization imposed by DKL(Q||P)
coincides with weight decay (that is, L2-regularization) on the neural network parameters θ. Its strength, controlled by the
weight-decay multiplier, corresponds to σ2

P (Hanson and Pratt, 1989). We show the optimal regularization parameters for
PACOH-MAP on the different environments in Figure S3. The fact that these optima are non-zero for all environments
provides additional evidence of the effect of meta-overfitting.
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Figure S3: Meta-test RMSE and its standard deviation for PACOH-MAP across different regularization intensities (increasing
from left to right), corresponding to σ2

P . The optimal performance is achieved at a non-zero regularization, suggesting that
the proposed method can effectively combat meta-overfitting. The effect is more pronounced with fewer training tasks.

In order to investigate whether the phenomenon of meta-overfitting, which we have observed consistently for PACOH-MAP
and MLL, is also relevant to other meta-learning methods, we also report the meta-train test error and the meta-test test

2http://hyperopt.github.io/hyperopt/
3[Link will be added upon acceptance]
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error across different numbers of tasks. The results, analogous to Figure 2, are plotted in Figure S4, showing a significant
difference between the meta-train and meta-test error that vanishes as the number of tasks becomes larger. Once more, this
supports our claim that meta-overfitting is a relevant issue and should be addressed in a principled manner.
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Figure S4: Test RMSE measured on the meta-training tasks and the meta-testing tasks as a function of the number of meta-
training tasks for MAML and NPs. The performance gap between the meta-train and meta-test tasks clearly demonstrates
overfitting on the meta-level for both methods.

Benchmark comparison across different numbers of tasks In addition to the performance comparison in Table 1, we
assessed the performance of the different methods on our synthetic environments as a function of the number of meta-training
tasks (Fig. S5). As expected and already seen in the meta-overfitting experiments, the performance gap between the PACOH
methods and the baselines is especially pronounced for a small number of meta-training tasks, when meta-overfitting is a
more severe problem. However, even for larger numbers of tasks, PACOH-MAP and PACOH-SVGD seem to outperform
most baselines. Due to the high computational complexity of MLAP, getting increasingly burdensome as the number of task
grows, we did not include MLAP in this experiment.
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Figure S5: Test RMSE measured on the different environments as a function of the number of meta-training tasks for the
different variants of our method (PACOH) and the baselines. Our method outperforms the baselines consistently. This effect
is especially pronounced when the number of meta-train tasks is small.

Benchmark comparison in terms of the test log-likelihood Complementary to the the tables in Section 6, we report
average test log-likelihoods in Table S2. These results reflect the same findings as discussed in Section 6.

Comparison in computation complexity / runtime We compare the runtime of the three PACOH methods to MLAP
(Amit and Meir, 2018) on the sinusoid environment (n = 20,mi = 5). Figure S6 reports the average runtime per meta-
training iteration and the runtime for meta-test inference. In that, meta-training is performed with full meta-batch size
(H = n = 20) and K = 5 samples SVI samples / SVGD particles. For MLAP we use 1000 gradient steps for meta-testing.
The runtimes where recorded on an Intel Core i7-8550U CPU. Overall, the PACOH methods are 2-5 times faster than MLAP
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Sinusoid Cauchy SwissFEL Physionet-GCS Physionet-HCT
GP −5.011± 0.000 0.180± 0.001 −0.891± 0.009 < −106 −6.054± 0.000

PACOH-MAP (ours) 0.127± 0.439 0.116± 0.010 −0.621± 0.085 −1.740± 0.005 −2.331± 0.001

PACOH-VI (ours) 0.236± 0.028 0.140± 0.023 −0.4460± 0.025 −1.709± 0.003 −2.335± 0.003

PACOH-SVGD (ours) 0.336± 0.022 0.179± 0.009 −0.338± 0.128 −1.711± 0.032 −2.326± 0.002

MLAP −7.364± 0.187 0.133± 0.364 −1.059± 0.471 −2.392± 0.009 −2.590± 0.049

MLL −12.87± 2.420 −144.9± 6.620 −175.8± 66.365 −1.739± 0.007 −2.350± 0.0060

NP −1.108± 0.187 −0.011± 0.028 −8.053± 2.472 −4.235± 0.293 −2.711± 0.050

MAML N/A N/A N/A N/A N/A

Table S2: Benchmark study of different meta-learning methods as well as a standard GP as baseline. Across 5 meta-learning
environments, we report the average test log-likelihood and its standard deviation. Our proposed method achieves the best
performance across tasks.

per meta-training step. Additionally, since MLAP jointly optimizes Q and Q1, ..., Qn in an interdependent manner, we
observe that it needs ca. 2-3 times more iterations to converge than e.g. PACOH-VI. The meta-test inference for PACOH is
ca. 100 - 1000 times faster than for MLAP. This is due to the fact, that PACOH is able to use the closed-form GP solution
of Qi whereas MLAP needs to gradient-descent on the single-task part of the PAC bound in (Amit and Meir, 2018). This
once more stresses the practical relevance of our PAC-Bayesian meta-learning bounds that forego nested optimization, thus,
allowing us to make use of closed for solutions for both the log partition function lnZ and the posteriors Qi.
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Figure S6: The figure despicts a runtime comparison of the three PACOH methods (ours) with MLAP (Amit and Meir,
2018). Reported is the average duration per meta-training gradient step (left) and for the meta-test inference (right) on the
sinusoid environment. The PACOH methods are 2-5 times faster than MLAP per meta-training step and 100-1000 times
faster during meta-test inference.
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