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ABSTRACT

Adversarial training has become the most popular and effective strategy to im-
prove Deep Neural Network (DNN) robustness against adversarial noises. Many
adversarial training methods have been proposed in the past few years. However,
most adversarial training methods are highly susceptible to hyperparameters, es-
pecially the training noise upper bound. Tuning these parameters is expensive for
large datasets and difficult for people not in the adversarial robustness research
domain, which prevents adversarial training techniques from being used in many
application fields. This paper introduces a new adversarial training method with
a gradual expansion mechanism to generate adversarial training samples, and it is
parameter-free for the user. By gradually expanding the exploration range with
self-adaptive and gradient-aware step size, adversarial training samples can be
placed into the optimal locations in the input data space. Unlike other defense
methods that usually need to fine-tune hyperparameters (e.g., training noise up-
per bound) by grid-search, our method has no hyperparameters for the user. We
name our method Self-adaptive Margin Defense (SMD). We evaluate SMD on
three publicly available datasets (CIFAR10, SVHN, and Fashion-MNIST) under
the most popular adversarial attacks, AutoAttack and PGD. The results show that:
(1) compared with all other competing defense methods, SMD has the best over-
all performance in robust accuracy on noisy data; (2) the accuracy degradation of
SMD on clean data is minor among all competing defense methods.

1 INTRODUCTION AND MOTIVATION

Deep neural networks (DNNs) have become the first choice for automated image analysis due to their
superior performance. However, recent studies have shown that DNNs are vulnerable to adversar-
ial noises, which were first discovered by (Szegedy et al., 2014) and then explained by (Goodfellow
et al., 2015). To improve the adversarial robustness of a DNN model, adversarial training is the most
popular strategy. By generating adversarial training samples to train the model, adversarial training
can improve the adversarial robustness of the DNN model. The vanilla adversarial training (Madry
et al., 2018; Kurakin et al., 2018) is to generate adversarial training samples with a fixed and unified
adversarial noise upper bound. Many advanced adversarial training methods have been proposed.
For instance, TRADES (Zhang et al., 2019) and MART (Wang et al., 2019b) use loss regulariza-
tion terms to make a trade-off between adversarial robustness and standard accuracy. DAT (Wang
et al., 2019a) uses converge quality as a criterion to adjust adversarial training perturbations. ATES
(Sitawarin et al., 2020) and CAT (Cai et al., 2018) apply curriculum strategy for adversarial train-
ing. The misclassification-aware strategy is used in several methods including IAAT (Balaji et al.,
2019), FAT(Zhang et al., 2020a), Customized ATCheng et al. (2020) and MMADing et al. (2019a),
which adjusts the noise upper bound in the training process. GAIRAT (Zhang et al., 2020b) adds
sample-wise weights to the loss for robust training, based on a sample’s weakness under an adversar-
ial attack. However, most adversarial training methods are highly susceptible to hyperparameters,
among which, the training noise upper bound is the most frequently used. Usually, a very large
training noise upper bound leads to a very large accuracy degradation on clean data, while a very
small one may not be enough to improve adversarial robustness. Tuning these hyperparameters is
expensive for large datasets and difficult for people not in the adversarial robustness research do-
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main, which prevents adversarial training techniques from being adopted in application fields, e.g.,
medical image analysis which often handles large 3D images.

We present a new adversarial training method in this paper, and our contributions are as follows.

(I) We propose a gradual expansion mechanism to generate adversarial samples for training, and
show that this mechanism can lead to an optimal state under certain condition.

(II) Based on the gradual expansion mechanism, we design and develop Self-adaptive Margin De-
fense (SMD). This new adversarial training method is parameter-free for the user, by gradually
expanding the exploration range with self-adaptive and gradient-aware step sizes. Adversarial train-
ing samples can be pushed to the optimal locations in the input data space. SMD has the following
advantages. (1) Unlike other defense methods that usually need to fine-tune hyperparameters (e.g.,
the training noise upper bound), our method has no hyperparameters for the user; (2) Compared with
the other competing defense methods, SMD has the best overall performance in robust accuracy on
noisy data; (3) The accuracy degradation of SMD on clean data is minor among all the defense
methods evaluated in this paper.

2 RELATED WORK

2.1 TERMINOLOGY

For simplicity, we use “noise level” to refer to the upper bound ϵ of the adversarial noise for training
or testing. “clean accuracy” denotes a model’s accuracy on clean data. “noisy accuracy” denotes
a model’s accuracy on noisy/adversarial data, which measures the model’s adversarial robustness
and is called robust accuracy in some literature. A sample’s “margin” denotes the distance between
the sample and the decision boundary in the input data space. A “clean sample” denotes a sample
without adversarial noise. A “noisy sample” denotes a noisy/adversarial sample. A “clean model”
denotes a naturally trained model, without using any adversarial training.

2.2 ADVERSARIAL SAMPLE GENERATION
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Figure 1: (a) Create an adversarial sample x̃ by PGD (Eq. (2)): a solid blue arrow shows one PGD
iteration to update x̃; a dashed blue arrow shows that when x̃ moves out of the ϵ-ball, it will be
projected back onto the ϵ-ball; the solid red arrow denotes the generated adversarial noise from the
final iteration. (b): Adding adversarial noise to a sample/data point x is to push it towards a direction
in the input space. Once the data point crosses the decision boundary, the prediction from a DNN
model is changed. The closer x is to a decision boundary, the more likely it is pushed across the
decision boundary. (c) Given a training set (X,Y ), where X denotes the set of samples and Y

denotes the set of true labels, ideally, adversarial training samples X̃ should be placed closer to the
true/optimal decision boundary (Fig. 1 (b)). By training the model with both (X,Y ) and (X̃, Y ), the
model decision boundary is pushed away from X , and therefore adversarial robustness is improved.
(d) However, the distribution of training samples is not always as ideal as that in (c). The margin of
each training sample is different. A uniform and fixed adversarial training perturbation can lead to
adversarial training samples across the true decision boundary. A model trained on these adversarial
samples will have low clean accuracy. (e) The optimal adversarial training samples X̃ should be just
about to go across the decision boundary. Training with too small noise ||X̃ −X||p is not effective
enough. Training with too large noise ||X̃ −X||p leads to large accuracy degradation.
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Without loss of generality, we use the most widely studied untargeted adversarial noise as an exam-
ple. Let (x, y) be a pair of a sample x and its true label y. The objective function of generating an
adversarial sample is:

max
x̃∈{x′| ∥x−x′∥p≤ϵ}

Loss(f(x̃), y) (1)

where Loss(.) is the loss function, x̃ is the adversarial sample to be generated, f(.) is a DNN model,
ϵ is noise level and ∥.∥p is Lp vector norm.

Given a clean sample (x, y), there are many ways to solve Eq. (1) to obtain an adversarial sample
x̃. One popular method is called Projected Gradient Descent (PGD) (Madry et al., 2018; Kurakin
et al., 2018), which leverages an iterative way to approximate the optimal x̃:

x(k) ← Πϵ(α · h(
∂

∂x(k−1)L(f(x
(k−1)), y)) + x(k−1)) (2)

where h(.) is the normalization function, α is the step size, x(k) is the adversarial sample at the
iteration k, and Πϵ(.) is a projection operation to ensure the generated perturbation to be within an
ϵ-ball, i.e., ∥x(k)−x∥p ≤ ϵ. After K iterations (called K-PGD), we obtain the generated adversarial
sample x̃=x(K). This process is intuitively shown in Fig. 1 (a).

2.3 ADVERSARIAL TRAINING (AT)

The objective function of the vanilla Adversarial Training (AT) (Madry et al., 2018; Kurakin et al.,
2018) is:

minθ Loss(fθ(x̃), y) (3)

where fθ(.) is a DNN model with the parameter θ. The objective function is under the constraint:

x̃ = argmaxx̃∈{x′| ∥x−x′∥p≤ϵtrain} Loss(fθ(x̃), y) (4)

The AT uses noisy sample {x̃, y} to train the DNN model fθ. In this way, the DNN model gains
robustness against adversarial noise. For AT, adversarial training samples are generated by using the
PGD method (Eq. (2)) with a fixed noise level ϵtrain for every {x, y}. The fixed and uniform noise
level ϵtrain is the weak point of AT, which will be discussed in the next section.

2.4 WHAT IS THE OPTIMAL LOCATION OF AN ADVERSARIAL SAMPLE FOR TRAINING?

From Fig. 1 (b) (e), the optimal location of an adversarial training sample x̃ should be very close to
the decision boundary (Fig. 1 (e)). And the optimal noise level ϵtrain should be the distance between
x̃ and the x. This distance is similar to the “margin” in Support Vector Machine (SVM) (Cortes &
Vapnik, 1995). So, we will call this optimal noise level “margin” in this paper. The real margin
should be the shortest distance between x and the corresponding decision boundary d. This means
for a true optimal x̃ that is about to cross the decision boundary, and x̃− x ⊥ d holds. However, for
DNN models, such a true optimal x̃ can hardly be located precisely in the input space. The estimated
margin may be much larger than the real margin. This is an inevitable overestimation problem, and
it exists in all adversarial training methods, such as MMA (Ding et al., 2019a) (see Fig. 3).

2.5 MMA AND FAT

We have already assumed that the optimal location of the adversarial sample for training is very
close to the decision boundary, and the margin should be the optimal noise level for training. How
to estimate the margin for each sample? From the margin perspective described in Section 2.4, we
can explain two well-known methods: FAT (Zhang et al., 2020a) and MMA (Ding et al., 2019a).
FAT uses PGD with an early-stop strategy to generate adversarial samples for training. From the
margin perspective, the adversarial sample generated by FAT (when τ = 0) is x̃1 in Fig. 1 (a). The
problem is the estimated margins from FAT are smaller than the real margins, and this is why FAT
always has high clean accuracy but low noisy accuracy (Section 5). MMA uses PGD with a large
noise level ϵtrain to locate x̃ and x̃1 in Fig. 1 (a), and do exploration between these two points to
approximate the real margin. Because of this large noise level for exploration, MMA is very likely
to overestimate the sample margins (see Fig. 3).
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3 METHOD

3.1 THE GRADUAL EXPANSION MECHANISM AND THE OPTIMAL STATE
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Figure 2: The gradual expansion mechanism (GEM) illustration: in the training process of SMD,
the sample-wise noise levels E(x) expand gradually, until the optimal state is reached (Section 3.1).

Motivated by 2.2, 2.3, 2.4, and 2.5, instead of using a fixed large noise level ϵtrain to generate
adversarial samples, gradually expanding the noise level for an individual sample is a better strategy
(see Fig. 2). We call this Gradual Expansion Mechanism (GEM). GEM not only can largely avoid
the margin overestimation problem (Section 2.5) but also has one important property: with GEM,
an optimal state in the input data space can be reached, which means that the noise level ϵtrain no
longer needs to be tuned manually. Under the optimal state, the overall loss is minimized and the
adversarial training samples are placed near the decision boundaries.

Theorem 3.1 If the spatial distributions of the generated adversarial samples for different classes
are the same, an optimal state (Fig. 2) in the input data space exists.

Without loss of generality, we assume there are three classes and three decision boundaries between
classes (Fig. 2 (b)). The softmax output of the neural network model f(.) has three components: p1,
p2 and p3 corresponding to the three classes. If a data point x̃ is about to cross the decision boundary
Bij between class-i (ci) and class-j (cj) (i.e., x̃ is on the class-y side of the decision boundary), then
pi(x̃) = pj(x̃). The mathematical expectation of the cross-entropy loss of the generated adversarial
training samples (i.e., when x̃ is correctly classified) is:

E = Ex̃∈c1 (−log (p1 (x̃))) + Ex̃∈c2 (−log (p2 (x̃))) + Ex̃∈c3 (−log (p3 (x̃))) (5)

The GEM pushes the generated adversarial training samples towards/onto the decision boundaries.
Then, the adversarial samples x̃ ∈ ci are split into two parts: those pushed to Bij and denoted by
x̃ ∈ ci, Bij , and those pushed to Bik and denoted by x̃ ∈ ci, Bik. So, we can get:

Ex̃∈c1
(−log (p1 (x̃))) = Ex̃∈c1,B12

(−log (p1 (x̃))) + Ex̃∈c1,B13
(−log (p1 (x̃))) (6)

Ex̃∈c2
(−log (p2 (x̃))) = Ex̃∈c2,B12

(−log (p2 (x̃))) + Ex̃∈c2,B23
(−log (p2 (x̃))) (7)

Ex̃∈c3
(−log (p3 (x̃))) = Ex̃∈c3,B13

(−log (p3 (x̃))) + Ex̃∈c3,B23
(−log (p3 (x̃))) (8)

If the generated adversarial training samples (random variables) x̃ ∈ ci and x̃ ∈ cj have the same
spatial distribution on the decision boundary Bij between the two classes, then:

Ex̃∈ci,Bij
(−log(pi(x̃))) + Ex̃∈cj,Bij

(−log(pj(x̃))) = Ex̃∈ Bij
(−log (pi (x̃))− log (pj (x̃)))

= Ex̃∈ Bij
(−log (pi (x̃) pj (x̃)))

≥ Ex̃∈ Bij
(−log(

pi (x̃) + pj (x̃)

2
)
2
)

(9)

Therefore, E reaches the minimum when pi (x̃) = pj (x̃), namely, when x̃ is about to cross the
decision boundary.

In the above analysis, the loss on clean training samples is ignored because, in experiments, we find
out that the loss on clean training samples converges much faster than the loss on noisy samples.

We have shown that an optimal state can be achieved when the generated adversarial training sam-
ples have the same spatial distribution on the (final) decision boundary. Here, we outline what will
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happen if the initial spatial distributions of the generated adversarial training samples in different
classes are not the same on the current decision boundary. We note that our SMD method will
actively generate and push the adversarial training samples towards (“close to” due to numerical
precision) the current decision boundary of the neural network model. Model training is a dynamic
process to adjust the decision boundary of the model. Let’s focus on the following two terms.

Fi ≜ Ex̃∈ ci,Bij
= −

∫
qi(x̃)log(pi(x̃))dx̃ (10)

Fj ≜ Ex̃∈ cj,Bij
= −

∫
qj(x̃)log(pj(x̃))dx̃ (11)

where qi(x) and qj(x) are the distributions (i.e., densities) of the adversarial/noisy training samples
on the current decision boundary between the two classes, and qi(x) and qj(x) may not be equal to
each other. In fact, Fi and Fj can be interpreted as two forces that try to expand the margins of the
samples in the two classes against each other. By dividing the decision boundary into small regions
(i.e., linear segments), the two integrals can be evaluated in the individual regions. In a region,
if qi(x̃) > qj(x̃) (i.e., more noisy samples are generated in class-i) then the current state is not
optimal: after training the model using the noisy samples, most of the noisy samples in class-i will
be correctly classified and most of the noisy samples in class-j will be incorrectly-classified (this
is a simple result of classification with imbalanced data in the region), which means the decision
boundary will shift towards the samples in class-j, and therefore the margins of the corresponding
samples in class-i will expand and the margins of the corresponding samples in class-j will shrink.
Thus, the decision boundary may shift locally towards the samples in one of the classes. Obviously,
the decision boundary will stop shifting when the local densities of noisy samples in different classes
are the same along the decision boundary, i.e., qi(x̃) becomes equal to qj(x̃), which means an
optimal state is reached. We defer a math-rigor analysis of this dynamic process to our future work.

The above analysis implies that GEM finally pushes the noisy samples close to the decision bound-
aries, which means that the noise level ϵtrain for generating adversarial training samples no longer
needs to be tuned manually.

3.2 SELF-ADAPTIVE MARGIN DEFENSE (SMD)

In this section, we provide the details of SMD, which is parameter-free for the user.

3.2.1 SELF-ADAPTIVE STEP SIZE FOR MARGIN EXPANSION

In SMD, the training noise level (i.e., sample-wise margin), E(x), is individualized for each sample.
During training, the training noise level for a sample will gradually expand, and this poses a chal-
lenge to the optimizer: it needs to catch up with a loss function that will change its value due to the
update of the adversarial samples for training. While pushing an adversarial training sample x̃ away
from the clean sample x during training, the terrain of the loss function may vary rapidly. When x̃ is
on flat terrain, it may take a few iterations for the optimizer to adjust the model parameters. When x̃
is on steep terrain, the optimizer needs much more iterations to adjust the model parameters. If the
optimizer uses the same number of iterations, then the step size for margin expansion must not be a
constant and should be adjusted adaptively according to each adversarial sample and the terrain.

Initial step size: Let x be a sample in the input data space. Then the initial step size ∆ϵ is:
∆ϵ = ceil((h(x)/N)/h(x/255)) · h(x/255) (12)

where h(.) is the vector Lp-norm function, ceil(.) gives the smallest nearest integer no smaller than
the input, and N is the number of training epochs. The idea is that in the training process with the
step size ∆ϵ, most of the input space should be covered. For example, when L-inf norm is used,
the number of epochs is 150, and the pixel value ranges from 0 to 1, then h(x) = 1, and ∆ϵ =
ceil((1/150)/(1/255))× (1/255) = 2/255.

To handle the problem of tracking a moving target/loss by the optimizer, we use two types of infor-
mation to adjust the step size: the noise level and the gradient.

Step size adjusted by using the noise level: The expansion step size ∆ϵ should be decayed such
that a smaller step should be used for a larger sample margin. E(x) is the current training noise level
for a clean sample x. Then the decay rate corresponding to the clean sample x is:

γ1(x) = ρ
floor(E(x)/h(x/255)) (13)
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The larger E(x) is, the smaller γ1(x) is. ρ is derived from a coarse estimation of the margin
expansion process (see Appendix D).

Step size adjusted by using the gradient information: We also let the step size ∆ϵ adjustment
be gradient-aware. Let x̃ be the generated adversarial sample from the clean sample x, f(.) be the
model, y be the ground truth, and Loss(.) be the loss function for generating adversarial samples.
Then the gradient-aware decay rate for the clean sample x is:

γ2(x) = 1/(1 + h(abs(
∂Loss(f(x̃), y)

∂x̃
))) (14)

where abs(.) gives absolute value. The idea is shown in Fig. 4. γ2(x) ranges from 0 to 1: when the
gradient at x̃ is 0, γ2(x) is 1, which means no decay; when the gradient at x̃ is∞, γ2(x) is 0.
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Figure 3: Left: SMD’s estimation of margin
is closer to the real margin (the green line);
Right: Without the gradual expansion mech-
anism (e.g., MMA), PGD can be used to esti-
mate the margin directly, which can be much
larger than the real margin.

Figure 4: x̃1 is an adversarial sample in the current
iteration. After one step ∆ϵ expansion, x̃1 will
be “pushed” to x̃2. If the gradient at x̃1 is large
(right), the loss is significantly changed, which
will create a heavier load for the optimizer to ad-
just model parameters to fit the new data. In this
case, the step size ∆ϵ should be reduced to let the
optimizer/model keep up with the loss change.

3.2.2 ALGORITHM

One epoch of the SMD training process is shown in Algorithm 1 (Python-like pseudo-code), which
includes two sub-processes: (1) Compute the loss and update the DNN model (Line 2 to 10); (2)
Update the sample-wise margin estimation (Line 11 to 12). Algorithm 2 generates the noisy samples
for training. Line 3 to 7 explore and record the indexes of noisy samples that cross the decision
boundaries. Line 8 to 15 tries to approximate the margins closer to the decision boundary with a
binary search (Unlike FAT which just uses X̃1 in Fig. 1 (a) as the noisy training samples). Note:
Xout are guaranteed to be close to but not to cross the decision boundary. More detailed explanation
is in Appendix A.

Algorithm 1 SMD Training in One Epoch

Input: the training set S; the DNN model f(.); g(.) is the function that transforms the output of f(.) to a predicted class label, e.g.,
argmax; Loss is the loss function for training the model f ; E is the array of the estimated sample margins: E(i) is the margin of the
sample indexed by the unique ID i, every E(i) is initialized to be ∆ε.
Parameters: ∆ε is the expansion step size given by Eq. (12) and adjusted by Eq. (13) and Eq. (14)
Output: Updated model f after this training epoch
Process:

1: for each batch of training samples (X , Y ) with ID Ids in S do
2: Run the model f on clean samples: Z ← f(X)
3: L0 ← Loss(Z, Y )
4: Flag1← [g(Z) == Y ] Flag1 records the indexes of correctly classified clean samples
5: Generate noisy samples using the Algorithm 2: X̃, F lag2← EPGD(X[Flag1], Y [Flag1], E[Flag1], f, Loss)

6: Use X̃ , f(.), E and Y to compute γ1 and γ2 (Eq. (13) and Eq. (14))
7: Run the model f on noisy samples: Z̃ ← f(X̃)

8: L1 ← Loss(Z̃, Y [Flag1])
9: L← (L0 + L1)/2
10: Back-propagate from L and update the model f(.)
11: E[Flag1 & Flag2]← E[Flag1 & Flag2] + ∆ε · (γ1 · γ2)[Flag1 & Flag2]

12: E[∼ Flag1 or ∼ Flag2]← ||X[∼ Flag1 or ∼ Flag2]− X̃[∼ Flag2]||p
13: end for

Note: This algorithm is implemented in mini-batches. ||.||p denotes vector Lp norm. ∼ is “not in”.
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Algorithm 2 (Exploration-PGD): generate noisy samples

Input: training sample batch (X , Y ); the estimated margins E , currently; the DNN model f(.); g(.) is the function that transforms the
output of f(.) to a predicted class label, e.g., argmax; the Loss function L(.).
Parameters: maximum PGD iteration number K ← 20 ; PGD step size α← (4× ε)/K for each ε in E
Output: the generated noisy sample batch X̃ , the Flag2 that records the indexes of correctly classified noisy/adversarial samples;
Function EPGD(X , Y , E , f , L(.)):

1: Xout ← X , Counter ← [0, ..., 0] (length is the batch size)
2: while K > 0 do
3: X̃ ← ΠE(α · h(∇XL(f(X), Y )) + X)

4: X ← X̃
5: Counter[g(f(X)) ̸= Y ]← 1
6: K ← K − 1
7: end while
8: N ← 10
9: X̃ ← (X̃ + Xout)/2
10: while N > 0 do
11: Ỹ = f(X̃)

12: Xout[Ỹ == Y ]← X̃[Ỹ == Y ]

13: X̃ ← (X̃ + Xout)/2
14: N ← N − 1
15: end while
16: Flag2 = (Counter == 0)
17: return Xout, Flag2

Note: This algorithm is implemented in mini-batches. h(.) is the normalization function. ||.||p denotes vector Lp norm. N is always set to
10, which is constant. So, this binary search will not enlarge the time complexity of the whole algorithm. ΠE(.) is explaned in Eq.(2).

3.3 COMPARING WITH RELATED WORK

TRADES (Zhang et al., 2019) optimizes a loss with a KL divergence-based regularization term to
consider both adversarial robustness and clean accuracy. MART (Wang et al., 2019b) uses a similar
KL divergence-based regularization term for robustness training. DAT (Wang et al., 2019a) applies
convergence quality as the criterion for generating noisy training samples. CAT (Cai et al., 2018)
uses adversarial training perturbations of different strengths for every training sample. GAIRAT
(Zhang et al., 2020b) applies sample-wise weights in the loss, but the weights cannot prevent ad-
versarial training samples from crossing the decision boundary. So, GAIRAT is very likely to use
too-large noise levels for training, and as shown in the experiments (Section 5), GAIRAT’s clean
accuracy is always lower than SMD’s. Obviously, SMD is different from these methods. The FAT
method (Zhang et al., 2020a) applies early-stop PGD to generate adversarial training samples with a
parameter τ . When τ = 0, the generated adversarial training sample is x̃1 in Fig. 1, which leads to
lower noisy accuracy (Section 2.5); when τ > 0, the generated noisy training samples will go across
the decision boundary, which may hurt the model’s clean accuracy and therefore is against the idea
of SMD. The IAAT method (Balaji et al., 2019) uses a sample-wise noise level to train a model, but
the sample-wise noise level is based on heuristics, which may not be optimal; and it uses fixed step
size and ϵtrain. The MMA method (Ding et al., 2019a) is based on sample-wise margins estimated
by PGD (Madry et al., 2018) with a large noise level, which leads to the margin overestimation
problem (mentioned in 2.5). Also, as illustrated in Fig. 3, a fixed noise level may lead to margin
overestimation for one more reason. With the GEM, the sample margins estimated from SMD can
be much closer to the real margin, as illustrated in Fig. 3. So, SMD is different from MMA. In
addition, the most significant difference is that SMD is parameter-free for the user.

4 EXPERIMENT CONFIGURATION

Experiment settings of SVHN and Fashion-MNIST evaluation and more details of the CIFAR10
evaluation are shown in Appendix B. Additional Supportive Results for GEM are in Appendix C

CIFAR10 (Krizhevsky et al., 2009) is used for this evaluation. We train WideResNet-28-4 described
in (Zagoruyko & Komodakis, 2016) for this experiment. The data preprocessing is the same as that
in (Ding et al., 2019a).

For our SMD: SMD has no hyperparameters to tune. For TRADES (Zhang et al., 2019): we use
the official code from (Zhang et al., 2019), and the settings are strictly in accordance with (Zhang
et al., 2019), except that β and ϵtrain are varied in the experiment. For MMA (Ding et al., 2019a):
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we use the trained MMA models provided officially by (Ding et al., 2019a), and these three models
have different ϵtrain: 12/255, 20/255, and 32/255. For FAT (Zhang et al., 2020a): we use the
official code and all settings are the same as those in (Zhang et al., 2020a), except for three different
ϵtrain: 4/255, 8/255 (endorsed in (Zhang et al., 2020a)) and 12/255. For GAIRAT(Zhang et al.,
2020b): we use the official code, and the settings are the same as those in (Zhang et al., 2020b),
except for three different ϵtrain: 4/255, 8/255 (endorsed in (Zhang et al., 2020b)) and 12/255. For
AT(Madry et al., 2018): three noise levels are used: 4/255, 8/255 (endorsed in (Madry et al., 2018))
and 12/255; the max number of PGD-iterations for training is 20 (endorsed in (Madry et al., 2018),
another weaker endorsed choice is 7), and the other settings are the same as those in (Madry et al.,
2018).

Settings for attacks: AutoAttack (AA) (Croce & Hein, 2020) is the most reliable attack method
currently, because: (1) AA is parameter-free; (2) AA consists of four attacks: AutoPGD (a white-box
untargeted attack, stronger than PGD), APGD-t (a white-box targeted attack), FAB-t (a white-box
targeted attack), and Square (a black-box attack), which means AA can provide a more sufficient
evaluation of the robustness than an individual adversarial attack. We consider the AA result as
the major evaluation in this paper. All the results of AA are the average value from three runs
with different random seeds. Code is from (Croce & Hein, 2020). In addition, we provide two
more attacks for evaluation: PGD with Cross-entropy (CE) and CW loss(Carlini & Wagner,
2017) (CE-CW-PGD) (this is named as “only white-box attack” in (Ding et al., 2019a)) runs for
100 iterations, the results are from 10 runs: half with CE-PGD and half with CW-PGD; PGD with
Cross-entropy loss (CE-PGD) runs for 100 iterations, and the results are the average value from
five runs with different random seeds. Code is from (Ding et al., 2019b). Results of CE-PGD and
CE-CW-PGD show that these two attacks are insufficient, compared with AA, and thus give a wrong
impression of robustness, supported by (Croce & Hein, 2020).

5 RESULTS AND DISCUSSION

Table 1: Results of CIFAR10 Evaluation: (1) N. L. denotes “Noise Level” for adversarial attacks
(2/255, 4/255, and 8/255 are the most popular evaluation noise levels measured by L-inf norm).
(2) Method with “*” denotes the settings (ϵtrain or β value) endorsed in the corresponding pa-
per. (3) “STD” denotes the clean model; “ATϵtrain” denotes adversarial training (Madry et al.,
2018) with noise level ϵtrain; “FATϵtrain” denotes FAT (Zhang et al., 2020a) with noise level
ϵtrain;“GAIϵtrain” denotes GAIRAT (Zhang et al., 2020b) with noise level ϵtrain; “TR-bβ-ϵtrain
denotes TRADES(Zhang et al., 2019) with trade-off factor β and noise level ϵtrain; “MMAϵtrain”
denotes MMA (Ding et al., 2019a) with noise level ϵtrain (4) Noise level is measured by L-inf norm.
(5) The largest value in each column is bolded.

(a) CE-PGD

N. L. 0 2/255 4/255 8/255 Avg.

STD 94.92 0 0 0 23.73

AT4 88.97 78.52 64.78 34.83 66.78
AT8* 85.31 77.47 67.78 47.52 69.52
AT12 77.83 72.19 65.92 51.39 66.83

FAT4 90.44 79.00 62.66 30.92 65.75
FAT8* 88.15 79.11 66.83 40.37 68.61
FAT16 86.89 77.31 65.44 40.15 67.45

GAI4 88.2 79.24 66.13 36.39 67.49
GAI8* 80.96 75.04 67.93 49.83 68.44
GAI16 77.96 72.77 66.17 50.50 66.85

TR-b1-8* 87.42 79.09 69.65 44.91 70.27
TR-b6-8* 84.28 76.07 69.54 51.51 70.35
TR-b6-16 73.22 68.19 62.56 51.13 63.78
TR-b6-24 72.23 66.93 61.40 49.57 62.53

MMA12* 88.59 79.43 68.18 44.31 70.12
MMA20* 86.56 77.36 67.32 49.95 70.30
MMA32* 84.36 74.42 65.63 51.21 68.90

SMD 87.98 79.07 68.05 46.36 70.37

(b) CE-CW-PGD

N. L. 0 2/255 4/255 8/255 Avg.

STD 94.92 0 0 0 23.73

AT4 88.97 78.31 64.66 34.48 66.61
AT8* 85.31 76.77 66.70 46.48 68.81
AT12 77.83 71.11 63.76 48.21 65.23

FAT4 90.44 78.93 62.61 30.48 65.62
FAT8* 88.15 78.42 65.97 39.67 68.05
FAT16 86.89 76.73 64.80 39.70 67.03

GAI4 88.20 75.73 58.52 27.76 62.55
GAI8* 80.96 68.58 54.20 27.94 57.92
GAI16 77.96 65.75 52.33 28.95 56.25

TR-b1-8* 87.42 79.55 68.72 43.46 69.79
TR-b6-8* 84.28 75.91 69.43 51.04 70.17
TR-b6-16 73.22 66.87 59.85 46.65 61.65
TR-b6-24 72.23 65.67 58.91 45.20 60.50

MMA12* 88.59 79.39 67.99 43.62 69.90
MMA20* 86.56 77.28 67.07 48.47 69.85
MMA32* 84.36 74.43 65.25 50.20 68.56

SMD 87.98 78.95 68.02 45.93 70.22

(c) AutoAttack

N. L. 0 2/255 4/255 8/255 Avg.

STD 94.92 0 0 0 23.73

AT4 88.97 78.26 64.48 33.43 66.29
AT8* 85.31 76.62 66.34 43.42 67.92
AT12 77.83 51.39 63.33 46.98 59.88

FAT4 90.44 78.91 62.28 28.36 65.00
FAT8* 88.15 78.33 65.63 38.11 67.55
FAT16 86.89 76.59 64.53 38.50 66.63

GAI4 88.20 75.52 57.81 25.46 61.75
GAI8* 80.96 68.36 53.40 25.97 57.17
GAI16 77.96 65.53 51.48 27.26 55.56

TR-b1-8* 87.42 79.52 68.45 43.23 69.66
TR-b6-8* 84.28 75.85 67.60 47.25 68.75
TR-b6-16 73.22 66.77 59.66 45.92 61.39
TR-b6-24 72.23 65.63 58.60 44.41 60.22

MMA12* 88.59 79.30 67.47 41.13 69.12
MMA20* 86.56 77.14 65.70 42.58 67.99
MMA32* 84.36 74.12 63.38 41.49 65.84

SMD 87.98 78.90 67.87 44.35 69.78

5.1 AUTOATTACK V.S. CE-PGD AND CE-CW-PGD

Among the three attacks on CIFAR10 in Table 1a, 1b and 1c, CE-PGD and CE-CW-PGD are in-
sufficient and thus give a wrong impression of robustness(Croce & Hein, 2020). AutoAttack is the
strongest and considered the major evaluation in this paper.
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Table 2: Results of SVHN and Fashion-MNIST Evaluation:

(a) AutoAttack on SVHN

N. L. 0 2/255 4/255 8/255 Avg.

STD 92.57 35.95 8.16 0.12 34.20

AT8* 88.77 80.01 71.60 45.31 71.42
AT4 91.44 80.95 66.28 33.41 68.02

FAT8* 91.26 80.88 67.88 39.92 69.99
FAT4 91.86 80.01 63.77 31.92 66.89

GAI8* 81.28 67.17 51.63 26.03 56.53
GAI4 89.31 76.37 59.60 28.18 63.37

TR-b6-8* 86.21 80.20 70.28 49.57 71.57
TR-b6-4 91.63 80.51 70.59 43.29 71.51

MMA12* 90.55 81.28 67.77 39.96 69.89
MMA20* 89.99 80.64 67.84 42.30 70.19

SMD 90.10 80.23 69.15 47.54 71.76

(b) AutoAttack on Fashion-MNIST

N. L. 0 2/255 4/255 8/255 Avg.

STD 92.04 78.47 60.58 29.71 65.20

AT8* 91.76 89.01 85.73 77.69 86.05
AT4 91.79 89.01 85.72 77.63 86.03

FAT8* 91.63 88.56 84.95 75.83 85.24
FAT4 91.82 87.73 82.56 68.61 82.68

GAI8* 90.68 88.01 84.44 75.27 84.60
GAI4 91.57 87.66 83.13 71.32 83.42

TR-b6-8* 90.45 89.13 87.35 83.51 87.61
TR-b6-4 91.79 88.93 85.26 76.42 85.60

MMA12* 91.77 88.93 85.79 78.08 86.14
MMA20* 90.74 88.83 86.61 81.07 86.81

SMD 90.86 89.14 87.30 83.38 87.67

(1) For GAI8 and GAI16, the differences between the CE-PGD result and the CE-CW-PGD result
(at noise level 8/255) are more than 20% (much larger than other methods). This suggests the
GAIRAT-trained models are particularly robust to CE-PGD attack but are very vulnerable to CW
attack. Such a significant difference (> 2%) between CE-PGD and CE-CW-PGD also occurs in
GAI4 (9%), AT12 (3%), TR-b6-16 (5%), and TR-b6-24 (5%).

(2) For MMA20 and MMA32, the differences between the CE-CW-PGD result and the AutoAttack
result (at noise level 8/255) are significant (9% for MMA32 and 6% for MMA20, much larger than
other methods). This suggests the MMA-trained models are very vulnerable to AutoAttack. Such a
significant difference (>2%) between CE-CW-PGD and AutoAttack also occurs in AT8 (3%), FAT4
(2.2%), GAI4 (2.3%), TR-b6-8 (4%), and MMA12 (2.5%).

(3) AutoAttack consists of one white-box untargeted attack, two white-box targeted attacks, and one
black-box attack. The major differences between the CE-CW-PGD result and the AutoAttack result
are caused by these two white-box targeted attacks (8% for MMA32). This suggests that a method
robust to white-box untargeted attacks cannot guarantee to be robust to white-box targeted attacks.

5.2 PERFORMANCE

(1) SMD has the best overall performance for all evaluations in Table 1a, 1b, 1c, 2a and 2b. Other
methods’ performances are sensitive to hyperparameters (e.g., ϵtrain) on these datasets: when ϵtrain
is large, clean accuracy degradation is large; when ϵtrain is small, noisy accuracy is low.

(2) For strong AutoAttack in Table 1c, 2a and 2b: The clean accuracy of SMD is lower than those
of FAT4, FAT8, AT4, GAI4, TR-b6-4 and MMA12, all of which have much lower noisy accuracy
at 8/255 than SMD. The noisy accuracy of SMD at 8/255 is lower than those of AT12, TR-b6-16,
and TR-b6-8, which have large clean accuracy degradation (> 10% in CIFAR10 and TR-b6-8 has
the largest accuracy degradation on SVHN and Fashion-MNIST). SMD seldom has the best result
in one single column, but always has the best overall performance. It is the feature of SMD to keep
a balance between robustness and accuracy, not to mention it is parameter-free for the user.

6 CONCLUSION

In this paper, based on the Gradual Expansion Mechanism and the theory of the optimal state, we de-
signed a new adversarial training method, SMD, parameter-free for the user. Most defense methods
need to fine-tune ϵtrain, but SMD does not have such a problem, which is good for advocating ad-
versarial robustness techniques to application domains. Experiments show SMD outperforms other
competing methods on three public datasets. We hope our work may pave the way for developing
robust applications, e.g., in the medical field which usually has large datasets and therefore prefers
parameter-free methods.
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A ALGORITHMS DETAILED EXPLANATIONS

Algorithm 3 SMD Training in One Epoch

Input: the training set S; the DNN model f(.); g(.) is the function that transforms the output of f(.) to a predicted class label, e.g.,
argmax; Loss is the loss function for training the model f ; E is the array of the estimated sample margins: E(i) is the margin of the
sample indexed by the unique ID i, every E(i) is initialized to be ∆ε.
Parameters: ∆ε is the expansion step size given by Eq. (12) and adjusted by Eq. (13) and Eq. (14)
Output: Updated model f after this training epoch
Process:

1: for each batch of training samples (X , Y ) with ID Ids in S do
2: Run the model f on clean sample: Z ← f(X)
3: L0 ← Loss(Z, Y )
4: Flag1← [g(Z) = Y ] Flag1 records those indexes of correctly classified cleans samples
5: Generate a noisy samples using the Algorithm 2: X̃, F lag2← EPGD(X[Flag1], Y [Flag1], E[Flag1], f, Loss)

6: Use X̃ , f(.), E and Y to compute γ1 and γ2 (Eq. (13) and Eq. (14))
7: Run the model f on noisy sample: Z̃ ← f(X̃)

8: L1 ← Loss(Z̃, Y [Flag1])
9: L← (L0 + L1)/2
10: Back-propagate from L and update the model f(.)
11: E[Flag1 & Flag2]← E[Flag1 & Flag2] + ∆ε · (γ1 · γ2)[Flag1 & Flag2]

12: E[∼ Flag1 or ∼ Flag2]← ||X[∼ Flag1 or ∼ Flag2]− X̃[∼ Flag2]||p
13: end for

Note: This algorithm is implemented in mini-batches. ||.||p denotes vector Lp norm. ∼ is “not”.

Algorithm 4 (Exploration-PGD): generate noisy samples

Input: training sample batch (X , Y ); the estimated margins E , currently; the DNN model f(.); g(.) is the function that transforms the
output of f(.) to a predicted class label, e.g., argmax; the Loss function L(.).
Parameters: maximum PGD iteration number K ← 20 ; PGD step size α← (4× ε)/K.
Output: the generated noisy sample batch X̃ , the Flag2 which records those indexes of correctly classified noisy/adversarial samples;
Function EPGD(X , Y , E , f , L(.)):

1: Xout ← X , Counter ← [0, ..., 0] (length is the batch size)
2: while K > 0 do
3: X̃ ← ΠE(α · h(∇XL(f(X), Y )) + X)

4: X ← X̃
5: Counter[g(f(X)) ̸= Y ]← 1
6: K ← K − 1
7: end while
8: N ← 10
9: X̃ ← (X̃ + Xout)/2
10: while N > 0 do
11: Ỹ = f(X̃)

12: Xout[Ỹ = Y ]← X̃[Ỹ = Y ]

13: X̃ ← (X̃ + Xout)/2
14: N ← N − 1
15: end while
16: return Xout, Flag2 = [Counter == 0]

Note: This algorithm is implemented in mini-batches. h(.) is the normalization function. ||.||p denotes vector Lp norm. N is always set to
10, which is constant. So, this binary search will not enlarge the time complexity of the whole algorithm. ΠE(.) ensures that
||X̃ −X||p ≤ ε.

For the convenience of readers, we copy Algorithm 1 and Algorithm 2 here.

A detailed description of Algorithm 1: X is a clean training sample batch with true label batch Y ,
and Ids are the unique IDs for the samples (Line 1). After the clean samples are processed by the
DNN model f(.), the loss L0 on the clean samples is obtained (Line 2-3). The indexes of these
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correctly classified samples in the batch X are “recorded” by the binary array Flag1 (Line 4). For
those correctly classified samples, Algorithm 2 will be used to generate adversarial/noisy samples X̃
(Line 5). γ1 and γ2 can be computed via Eq. (13) and Eq. (14). After the model processes the noisy
samples, the loss L1 on the noisy samples (Line 7-8) is obtained. Then, the model f(.) is updated by
backpropagation from the combined loss (Line 10). If both the clean samples and the corresponding
noisy samples are correctly classified, which means the samples’ margins are not large enough to
reach the decision boundary, the margins E [Flag1 & Flag2] for these training samples will be
expanded (Line 11). Otherwise, the samples’ margins E [∼ Flag1 OR ∼ Flag2] are too large, and
the adversarial training noises with these magnitudes have already pushed X̃ across the decision
boundary, and therefore, E [∼ Flag1 OR ∼ Flag2] should be refined to smaller margins (Line 12).

A detailed description of Algorithm 2 (EPGD): In each iteration (Line 2), X is modified to get X̃
(Line 3-4, see Eq. (3)). The indexes of those samples misclassified by the current model f(.) are
“record” by the array Counter (Line 5). So, a binary search is applied to find the new x̃ in Fig.
5 (Line 4), which is just about to cross the decision boundary (Line 5). Then the algorithm runs
to the next iteration (Line 6). Line 8-15 explain the binary search. Xout stores the noisy samples
that are closer to the decision boundary but have not crossed it. This binary search runs for fixed 10
iterations, which is to refine margin estimation by the resolution of 210 = 1024.

B EXPERIMENT SETTINGS

B.1 BASIC CONFIGURATIONS

Pytorch1.9.0 (Paszke et al., 2017) is used for model implementation and evaluation. Nvidia V100
GPUs are used for model training and testing. L-inf norm are the most widely used measure for
adversarial noise. In this paper, all of the adversarial training perturbations and adversarial noises
are measured in the L-inf norm. For all experiments, three popular noise levels 2/255, 4/255, and
8/255 are used.

To describe the DNNs, we use “COV (a, b, c, d, e)” to represent a convolution layer with “a” input
channels, “b” output channels, kernel size of “c”, stride of “d” and padding of “e”; “Linear (f,
g)” to denote a linear layer with input size of “f” and output size of “g”; “IN” to denote instance
normalization; “LN” to denote layer normalization, and “LR” to denote leaky ReLU.

B.2 SETTINGS FOR CIFAR 10 EVALUATION

In this experiment, we use CIFAR 10 dataset (Krizhevsky et al., 2009) to evaluate our method.
CIFAR 10 contains 60000 32×32×3 colorful images. It has 10 classes. There are 6000 images
per class with 5000 training (including 500 for validating) and 1000 testing images per class. We
apply all the methods to WideResNet-28-4 (WRN-28-4) that is used in the MMA paper (Ding et al.,
2019a).

For SMD training: We trained the SMD for 150 epochs. The optimizer is stochastic gradient
descent (SGD) with settings the same as those in the MMA paper (Ding et al., 2019a).

B.3 SETTINGS FOR SVHN EVALUATION

Only AutoAttack is used.

The SVHN dataset (Netzer et al., 2011) contains 32 × 32 × 3 color images of 0 ∼ 9 digits, 73257
images for training (including 7326 images for validating) and 26032 images for testing.

The network structure is COV(3, 32, 3, 1, 1)-LR-COV(32, 32, 3, 2, 1)-IN-LR-COV(32, 64, 3, 1,
1)-IN-LR-Conv2d(64, 64, 3, 2, 1)-IN-LR-COV(64, 128, 3, 1, 1)-IN-LR-Conv2d(128, 128, 3, 2,
1)-IN-LR-COV(128, 256, 4, 1, 0)-Flatten-LN-LR-Linear(256, 10).

Settings for SMD training: All settings are exactly the same as those for CIFAR10. Settings for
other methods: All settings are exactly the same as those for CIFAR10.
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B.4 SETTINGS FOR FASHION-MNIST EVALUATION

Only AutoAttack is used.

The fashion-MNIST dataset (Han et al., 2017) contains 28×28 grayscale images in 10 classes (shirts,
shoes, etc.). 54000 samples for training, 500 for validation and 10000 for testing.

The network structure is COV(1, 64, 5, 2, 2)-LR-COV(64, 128, 5, 2, 2)-IN-LR-COV (128, 256, 5,
2, 2)-IN-LR-COV (256, 512, 4, 1, 0)-Flatten-LN-LR-Linear(512, 10).

For SMD training: All settings are exactly the same as those for CIFAR10. For other methods:
All settings are exactly the same as those for CIFAR10.

C ADDITIONAL SUPPORTIVE RESULTS FOR GEM

C.1 MARGIN OVERESTIMATION IN MMA

Figure 5: MMA uses the PGD with a large noise level to estimate sample-wise margins. Here, we
use the PGD to estimate sample margins of a clean model (WRN-28-4) trained for 199 epochs on
CIFAR10. The x-axis is the length of the margins. The y-axis is the number of samples. The left
plot shows estimated margins from the PGD with the noise level of 16/255. The right plot shows
estimated margins from the PGD with the noise level of 8/255. Estimated margins using the noise
level of 16/255 are much larger than those using the noise level of 8/255. Thus, MMA’s estimation
of margins is very sensitive to the noise level used in the PGD.

C.2 MARGIN DISTRIBUTIONS OF ADVERSARIALLY-TRAINED MODELS

Fig. 6 shows the distribution of the estimated margins from our SMD method. Fig. 7 shows
the distribution of the estimated margins from the MMA method. The distributions are from the
CIFAR10 dataset. The x-axis is the length of the margins. The y-axis is the number of samples.

(1) Fig. 6 shows a Gaussian-like distribution, which supports the existence of the optimal state led
by the Gradual Expansion Mechanism.

(2) Fig. 7 shows the significant margin overestimation problem of the MMA method, which has
been analyzed in Section 2.5 and 3.3. The estimated margins follow a long-tail distribution, and
roughly half of the SMD estimated margins Fig. 7 are larger than 8/255 (0.031), which means about
half of the samples should be resistant to adversarial noise lower than 8/255, which is following the
experimental evaluation result. But for MMA, most of the estimated margins are larger than 8/255
(0.031), which is in conflict with the results (see Table 1c).

C.3 TRAINING PROCESS

Fig. 8 shows the trend of SMD model clean accuracy and noisy accuracy in the training process:
Clean accuracy and noisy accuracy at noise levels 4/255 and 8/255 keep increasing and reach a stable
state after 120 epochs. No obvious robust overfitting exists (Rice et al., 2020)(Yu et al., 2022). This
also supports the existence of the optimal state led by the Gradual Expansion Mechanism.
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Figure 6: Estimated margin distribution of
the SMD-trained model

Figure 7: Estimated margin distribution of
the MMA-trained model

Figure 8: Trend of SMD-trained model in the training process

D THE VALUE OF ρ

Let Ē be a rough estimation of the mean margin, and Emax be the maximum possible noise level (set
to be 128/255, half of the max pixel value). After a number of margin expansion steps, we have the
rough estimation:

Emax = ∆ϵ + ρĒ∆ϵ + (ρĒ)
2
∆ϵ + (ρĒ)

3
∆ϵ + ... ≈ ∆ϵ

1− ρĒ
(15)

ρĒ = 1− ∆ϵ

Emax

=⇒ log(ρ) = (1/Ē)log(1− ∆ϵ

Emax
)

=⇒ ρ = e(1/Ē)log(1−
∆ϵ

Emax
)

(16)

assume Ē =
1

2
Emax =⇒ ρ ≈ 0.9 (17)

if Ē <
1

2
Emax, then ρ < 0.9 (18)

Thus, we obtain a rough upper bound of ρ, and we use this value (0.9) in this paper.
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