
Neural Photo-Finishing

ETHAN TSENG
∗
and YUXUAN ZHANG, Princeton University, USA

LARS JEBE, XUANER ZHANG, ZHIHAO XIA, and YIFEI FAN, Adobe, USA

FELIX HEIDE
†
, Princeton University, USA

JIAWEN CHEN
†
, Adobe, USA

Raw Input

Exposure Photo-Finished sRGBColor Balance Saturation RGB ToningSlider Settings

Gradient Flow

Raw photo and video
stylization

Blade Runner 2049 (2017)Raw Input Images The Matrix (1999) Meridian (2016)

Fig. 1. We propose Neural Photo-Finishing, an end-to-end differentiable pipeline for rendering sRGB images from raw inputs controlled by meaningful

parameters. We accurately model a commercial raw processing pipeline (Adobe Camera Raw) with a sequence of neural networks, enabling partial derivatives

to be evaluated anywhere in the pipeline with respect to any input or upstream parameter. Unlike previous methods, we supervise our model using intermediary

program tap-outs (top). We demonstrate applications ranging from raw photo and video style transfer (bottom), slider regression for commercial camera ISPs,

improved demosaicking, and adversarial attacks on image classifiers.

∗Part of this work was done during an internship at Adobe.
†Denotes equal contribution between Princeton and Adobe.

Authors’ addresses: Ethan Tseng, eftseng@princeton.edu; Yuxuan Zhang, yz8614@
princeton.edu, Princeton University, USA; Lars Jebe, jebe@adobe.com; Xuaner Zhang,
cecilia77@berkeley.edu; Zhihao Xia, zxia@adobe.com; Yifei Fan, yifan@adobe.com,
Adobe, USA; Felix Heide, fheide@princeton.edu, Princeton University, USA; Jiawen
Chen, jiawen@adobe.com, Adobe, USA.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

Image processing pipelines are ubiquitous andwe rely on them either directly,
by filtering or adjusting an image post-capture, or indirectly, as image signal
processing (ISP) pipelines on broadly deployed camera systems. Used by
artists, photographers, system engineers, and for downstream vision tasks,
traditional image processing pipelines feature complex algorithmic branches
developed over decades. Recently, image-to-image networks have made

on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
0730-0301/2022/12-ART238
https://doi.org/10.1145/3550454.3555526

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555526

238:2 • Tseng et al.

great strides in image processing, style transfer, and semantic understanding.
The differentiable nature of these networks allows them to fit a large corpus
of data; however, they do not allow for intuitive, fine-grained controls that
photographers find in modern photo-finishing tools.

This work closes that gap and presents an approach to making complex
photo-finishing pipelines differentiable, allowing legacy algorithms to be
trained akin to neural networks using first-order optimization methods.
By concatenating tailored network proxy models of individual processing
steps (e.g. white-balance, tone-mapping, color tuning), we can model a
non-differentiable reference image finishing pipeline more faithfully than
existing proxy image-to-image network models. We validate the method
for several diverse applications, including photo and video style transfer,
slider regression for commercial camera ISPs, photography-driven neural
demosaicking, and adversarial photo-editing.

CCS Concepts: • Computing methodologies→ Computational photog-
raphy.

Additional Key Words and Phrases: image processing, photo-finishing, raw
processing

ACM Reference Format:
Ethan Tseng, Yuxuan Zhang, Lars Jebe, Xuaner Zhang, Zhihao Xia, Yifei Fan,
Felix Heide, and Jiawen Chen. 2022. Neural Photo-Finishing. ACM Trans.
Graph. 41, 6, Article 238 (December 2022), 15 pages. https://doi.org/10.1145/
3550454.3555526

1 INTRODUCTION

Almost every modern photography workflow relies on dedicated im-
age processing software that converts camera sensor measurements
into finished photos for human viewing. Drawing inspiration from
the traditional process of developing film in a darkroom, today’s
photo-finishing software, such as Adobe Camera Raw [Adobe 2022a],
Adobe Lightroom [Adobe 2022c], Darktable [Darktable 2022], or
PicsArt [PicsArt 2022], allows users to develop their digital raw
photos by manipulating a suite of intuitive sliders, including ex-
posure, saturation, contrast, and tone [Hu et al. 2018]. Millions of
users, from professional creatives to casual photographers, rely on
photo-finishing pipelines for artistic rendering.

The conventional practice in existing photo-finishing workflows
is for the artist to interactively tweak sliders until they are satisfied
with the look. However, this is a time-consuming task to perform
for each individual photo due to the vast search space. Furthermore,
user fatigue can result in inconsistent results across a suite of images
if a consistent look is desired. Although preset “filter” settings and
automatic slider setting tools have been proposed [Hu et al. 2018],
these existing automatic tuning approaches act as “one-size fits all”
functions and cannot be easily adapted in an image-dependent way
to different styles according to the preferences of a professional pho-
tographer. Consequently, users often deviate from automatic slider
settings. Smartphone camera applications such as iPhone’s native
camera, Snapchat, and Instagram all apply preset slider filters in the
sRGB space. However, these functions inherit the same problem in
that they cannot be easily tuned to different photographic styles.
Moreover, the image transformations are not applied to the raw data
which limits their expressiveness. For example, an overexposed sky
in a high dynamic range scene cannot be recovered once clipped by
the finishing pipeline.

Researchers have proposed several automatic photo-finishing
techniques; however, they all have limitations that prevent wide-
spread adoption. Early machine learning approaches to style trans-
fer [Gatys et al. 2016] operate entirely on photo-finished sRGB
space, foregoing raw data entirely. These methods need to halluci-
nate content missing in the sRGB image, such as clipped shadows
and highlights, which limits their editing capabilities. Moreover,
these approaches need to learn an inverse photo-finishing pipeline
to convert sRGB images into synthesized raw data [Afifi and Abuo-
laim 2021]. Recent stylization techniques that rely on generative
adversarial networks [Karras et al. 2019] only allow editing via
modifying a latent code–an unintuitive control that entangles con-
trast, tone, illumination, and color rendering. Latent space editing
is less intuitive to a photographer than sliders which have mean-
ing to artists. For example, it is not obvious how one perturbs a
latent vector to specifically increase saturation. Researchers have
explored using neural networks for individual processing opera-
tions in a camera pipeline. However, existing works focus on a
few select image processing operations that are pertinent to the
application [Gharbi et al. 2016, 2017] or choose to define their own
specialized image renderers [Chen et al. 2018, 2017a]. While success-
ful for a given setting, these works do not offer intuitive user control
over the photo-finishing process through the suite of parameters
found in conventional pipelines. To this end, Hu et al. [2018] propose
a reinforcement learning approach for automatic photo-finishing.
However, it requires that the imaging pipeline be fully differentiable
and is thus limited to a small set of operators. Because of these
limitations, mainstream artists and professionals continue to rely
on traditional photo-finishers.

Another line of research attempts to incorporate differentiability
into existing image processing pipelines. One approach is to extract
approximate gradients through finite differences [Chen et al. 2017b];
however, each gradient query requires multiple evaluations of an ex-
pensive function. The number of function evaluations quickly scales
with the number of parameters, making it computationally impracti-
cal for many tasks. Another research direction aims to model image
signal processors using neural networks [Chen et al. 2018; Mosleh
et al. 2020; Tseng et al. 2019; Yu et al. 2021]; however, these meth-
ods fail for photo-finishing pipelines with rich image processing
operations. For example, Darktable contains 67 image adjustment op-
erations which are divided into five groups called Basic, Tone, Color,
Correction, and Effect. Halide [Li et al. 2018], a domain-specific
language for image processing, provides tools for writing differen-
tiable pipelines. Unfortunately, many complex operators found in
modern photo-finishing pipelines are not differentiable, restricting
automatic optimization methods to slow zeroth-order approaches.
Existing methods that propose to approximate these pipelines with
differentiable proxies [Tseng et al. 2019; Yu et al. 2021], offer also no
alternative. While the use of differentiable proxies itself has been
investigated extensively in the field of neural architecture search,
we show that existing proxy models cannot accurately represent
complex photo finishing pipelines.
In this work we close this gap and introduce a differentiable

photo-finishing pipeline that supports a rich variety of operations,
including tone-mapping, exposure control, and white balance. In
lieu of a single large network that attempts to model photo-finishing

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

https://doi.org/10.1145/3550454.3555526
https://doi.org/10.1145/3550454.3555526

Neural Photo-Finishing • 238:3

end-to-end, we decompose the pipeline and model each stage with
a small set of tailored proxy networks. Each proxy is trained on
intermediates tapped out from the reference pipeline. This allows
us to simultaneously bypass non-differentiable operations while
ensuring high accuracy compared to single-network or neural ar-
chitecture search methods, that fail to learn the complex and large
space of combinatorial operations. We validate the utility of the pro-
posed pipeline with extensive experiments on diverse applications:
flexible automatic raw to sRGB stylization, joint demosaicking and
denoising, and adversarial photo-editing.
We deliver the following contributions:

• We construct a differentiable photo-finishing pipeline accu-
rately modeling a commercial software renderer.

• To our knowledge, our pipeline is the first differentiable photo-
finisher to handle standard raw image metadata, allowing it
to handle images from a variety of real cameras.

• We demonstrate how to build a variety of applications that
incorporate a differentiable photo-finisher as its core.

Scope and Reproducibility. In this work, we present a method for
making complex photo-finishing pipelines differentiable. We focus
on Adobe Camera Raw as it is a broadly used production-quality
pipeline. This comes with the benefit that the proposed models
have the potential to directly be used by a large community of
ACR users. At the same time, as it is a commercial software, source
code is unavailable and we used a developer tool to serialize per-
stage intermediates. To ensure that our method is reproducible by
the community, we will follow standard SIGGRAPH practice for
systems papers and release datasets for intermediates tapped out
from photo-finishing a large raw image collection. We will also
release the source code and trained models for our method so that
the community can reproduce and build upon our results.We further
note that the input-output pairs and models we provide allow others
to directly compare to our method.

2 RELATED WORK

We give an overview of work related to the proposed method below.

Photo-Finishing. Professional creatives digitally “develop” pho-
tographs starting from raw image formats (e.g., Adobe Digital Neg-
ative (DNG) [Adobe 2022b], ProRAW [Apple 2022]) to allow for
maximum flexibility and control over the rendering process. Typ-
ically, users follow heuristic guidelines [Eismann et al. 2018] but
it is difficult for humans to maintain consistency across every im-
age they want to retouch. The MIT-Adobe FiveK dataset [2011],
one of first raw datasets for learning artistic style, was created by
human retouchers and displays such consistency problems. To au-
tomate exposure adjustments, Hu et al. [2018] propose a white-box
photo-finisher based on reinforcement learning. However, their
approach requires explicit gradients which prevents it from be-
ing applied to existing photo-finishers written in traditional frame-
works. Bayesian or zeroth-order search [Bergstra and Bengio 2012;
Bergstra et al. 2013; Nishimura et al. 2018] for photo-finishing param-
eter presets quickly become computationally intractable due to the
high-dimensional search space. Recently, Tseng et al. [2019] approx-
imates black-box image processing pipelines with neural networks

but this approach fails once the ISPs become too complex, which
we demonstrate empirically in this work. Halide [Li et al. 2018]
offers a differentiable programming framework, but many existing
commercial packages are still written in traditional languages and
will require effort comparable to a full port to a deep learning frame-
work. DEXTER [Ahmad et al. 2019] attempts to automatically port
legacy pipelines to Halide; however, it is currently unable to port all
of the core functions necessary for a photo-finishing pipeline. Fur-
thermore, many operators rely on lookup tables and a direct Halide
translation will not result in differentiable code. PyNET [Ignatov
et al. 2020] learns the raw to sRGB mapping for specific smartphone
image signal processors (ISPs) but the learned function cannot be
modified by parametric controls. Our method is the first that accu-
rately models a complex commercial photo-finishing pipeline while
being differentiable with respect to both parameter settings and
input images.

Raw Camera Image Processing. Raw sensor measurements suffer
from many sources of degradation including, but not limited to, lens
aberrations, color filter subsampling, photon shot noise, channel
crosstalk, and read noise. A typical ISP pipeline in a camera aims to
reconstruct a high-quality image from degraded measurements with
a sequence of modules [Karaimer and Brown 2016], each addressing
a specific defect. Cameras that need to produce images in real time
rely on specialized hardware to realize these ISP operations [Hegarty
et al. 2014; ON Semi MT9P001 2017; Ramanath et al. 2005; Shao et al.
2014; Zhang et al. 2011].

Alternative approaches include optimization-basedmethods [Heide
et al. 2014] that operate orders of magnitude slower than real-
time ISPs. Machine learning based methods focus on specific tasks,
such as demosaicking [Gharbi et al. 2016], tone mapping [Gharbi
et al. 2017], low-light imaging [Abdelhamed et al. 2018; Chen et al.
2018; Diamond et al. 2021], high dynamic range (HDR) reconstruc-
tion [Mildenhall et al. 2021; Onzon et al. 2021], and dehazing [Shi
et al. 2021]. In contrast to traditional ISP pipelines, these methods
require high-end GPUs, do not provide intuitive knobs for image
adjustment but, nevertheless, remain attractive in their ability to be
tailored to specific tasks.
To bring data-driven parameter optimization to ISP processing,

recent approaches have explored camera pipeline optimization di-
rectly using conventional ISPs or proxy functions. Existing meth-
ods [Mosleh et al. 2020; Nishimura et al. 2018; Tseng et al. 2019]
either do not provide accurate gradients or they do not provide
interpretable proxy blocks akin to a conventional image processing
pipeline. Recently, Conde et al. [2022] propose a learnable dictionary-
based ISP that is reversible for sRGB-to-raw mapping. While this
pipeline could be used to learn the bidirectional mapping of black-
box ISPs, it does not provide interactive controls to finish a raw
image with interpretable parameters. ReconfigISP [Yu et al. 2021]
utilize neural architecture search to design new ISPs, but with ex-
isting ISP blocks or their differentiable approximations. However,
they do not model complex commercial photo-finishers with fine
controls or integrate with existing raw image metadata. While the
use of differentiable proxies itself has been investigated extensively
in the field of neural architecture search [Wu et al. 2019; Zhou
et al. 2020, 2019], we provide additional experiments to validate

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

238:4 • Tseng et al.

that the specific proxy models and optimization scheme proposed
in our work are responsible for successfully representing complex
photo-finishing pipelines. Specifically, we confirm in this work that
ReconfigISP’s overall pipeline, the proxy used in ReconfigISP with
our method, and a monolithic proxy [Tseng et al. 2019], all fail to
approximate complex photo-finishing pipelines, such as the ones in
Adobe Camera Raw. In this work, we tackle this problem by con-
catenating a sequence of proxy functions, where each is tailored to
a corresponding block in a complex photo-editing pipeline.

Neural Style Transfer. A large body of work explores style transfer
between images. Image Analogies [Hertzmann et al. 2001] and Image
Quilting [Efros and Freeman 2001] are early methods that employ
patch-based texture matching. Video color grading is a related area
for transferring styles to videos [Bonneel et al. 2013; Design 2022;
Du et al. 2021; Hurkman 2010]. Recent methods have leveraged neu-
ral networks to perform artistic style transfer [Dumoulin et al. 2017;
Gatys et al. 2016; Xia et al. 2020; Yoo et al. 2019; Zhu et al. 2017] and
aim to maintain the overall content of an image while incorporating
features from another domain (e.g., applying paintbrush overlays).
Coincidentally, this research direction has introduced new percep-
tual losses [Johnson et al. 2016; Zhang et al. 2018], broadly adopted
to train generative neural networks by penalizing image features at
a higher level than per-pixel differences. Most existing approaches
to style transfer [Abdal et al. 2019] that allow image editing within
a network’s latent space can be both unwieldy and unintuitive to
control. Furthermore, these works often still change image content
when the user only wanted to perform high-level retouching (e.g.,
global contrast, white balance). Afifi et al. [Afifi and Brown 2020a,b;
Afifi et al. 2019] propose several white balance editing techniques
for post-processed images; however, much of the effort is spent
on approximately inverting the camera photo-finishing pipeline.
Similarly, several works [Afifi et al. 2021; Liu et al. 2020] attempt
to recover clipped HDR features by inverting photo-finishing. As a
result, despite the advances in style transfer powered by modern
machine learning, mainstream artists and consumers still rely on
traditional software to finish raw images using their wide range of
intuitive controls.

3 PHOTO-FINISHING AND RAW PROCESSING

In this section we describe a mathematical model for a typical photo-
finishing pipeline such as those underlying Adobe Camera Raw and
Darktable. We then show how to model them with differentiable
proxy functions.

3.1 Photo-Finishing Pipeline Model

A conventional photo-finishing pipeline consists of a series of indi-
vidual processing blocks that are applied sequentially to an input
raw image. We formalize this as

IF = 𝑓pipe (IR, S,M,H) = 𝑓pipe

(
IR,

𝑛⋃
𝑖=1

S𝑖 ,
𝑛⋃
𝑖=1

M𝑖 ,

𝑛⋃
𝑖=1

H𝑖

)
, (1)

where 𝑓pipe maps the raw image IR to the finished image IF in a
color space such as sRGB. The overall pipeline function 𝑓pipe is
parameterized by S𝑖 , which we will refer to as “sliders” in reference
to their role in interactive photo-finishing, camera metadata M𝑖 ,

and cached image statistics H𝑖 . Here, 𝑖 ∈ {1, . . . , 𝑛} indexes one of
the 𝑛 processing blocks in the pipeline. A typical photo-finisher is a
true pipeline; that is, a composition of functions

𝑓pipe (IR, S,M,H) = 𝑓𝑛 (. . . 𝑓1 (IR, S1,M1,H1) , S𝑛,M𝑛,H𝑛) , (2)

where each 𝑓𝑖 represents an individual stage. Each stage maps an
input image with resolution𝑤 × ℎ × 𝑐 to its corresponding output

𝑓𝑖 : R𝑤ℎ𝑐 × Ω𝑖
S × Ω𝑖

M × Ω𝑖
H → R𝑤ℎ𝑐 ,∀𝑖 ∈ {1 . . . 𝑛}, (3)

where 𝑐 is the number of channels, and the space Ω𝑖
S,Ω

𝑖
M,Ω

𝑖
H de-

scribe the slider parameter space, metadata space and image statis-
tics input to stage 𝑖 . Although categorical slider values and binary
switches may exist in general image processing pipelines, our model
relaxes all parameters as well as image statistics to be real-valued.
We allow image metadata to be categorical since computing their
gradients is typically not required.

In this work, wemodel theAdobe Camera Raw (ACR) photo-finishing
pipeline, which follows the mathematical formulation above. We
illustrate this pipeline in Figure 2 and describe its nine steps here.

(1) Exposure: Camera sensors have dynamic sensitivity (ISO) and
optical black levels. The exposure stage first normalizes signal
levels by using the baseline exposure and black level metadata
from Mexp. The slider Sexp = {Exposure} then scales the
image intensity after normalization.

(2) Tone Mapping: This operation compresses a high dynamic
range input to a smaller dynamic range. For performance,
ACR uses cached histogram statistics from H to partition the
input into highlight and shadow regions, which are affected
by the Highlights and Shadows sliders, respectively.

(3) Color Balance: Different camera sensors have different per-
unit frequency responses to the incoming light. Factory cal-
ibration under controlled lighting allows manufacturers to
incorporate metadata Mwb mapping sensor responses to lin-
ear RGB color under known illuminants such as D50 or D65.
The manufacturer’s “As Shot” white balance, together with
user-controlled sliders Swb = {Temperature,Tint}, control
the white point and indirectly the 3×3 color correctionmatrix.

(4) Saturation: This operation controls the overall color satu-
ration of the final image. It is controlled by Ssaturation =

{Saturation}. The operator can be defined in the HSV, HSL,
or YUV color spaces and scales the saturation component of
HSV and HSL or the chroma components of YUV.

(5) Texture: This operation controls the overall sharpness of the
final image. Increasing the Stexture = {Texture} slider corre-
sponds to boosting the local contrast in pixel neighborhoods,
resulting in an unsharp mask effect. Decreasing this slider
corresponds to blurring the image.

(6) Color Tables: ACR lets vendors customize the look of their
images with lookup tables defined in HSV space and stored
in metadata. These tables are not parameterized by any slider
values (SCT = ∅) but are still an essential part of the pipeline.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

Neural Photo-Finishing • 238:5

Color
Conversion

RGB ToningTextureSaturation
Color

Balance
Tone

Mapping
ExposureRaw Input

Te
xt

ur
e

TemperatureHighlights

Sh
ad

ow
s

Ti
nt

Ex
po

su
re

C
on

tr
as

t

Sa
tu

ra
ti

on

Camera Specs Raw Stats

Raw Output

Fig. 2. Intermediary image tap-outs from Adobe Camera Raw (ACR). The ordering of stages is illustrative and does not necessarily reflect the actual pipeline,

which depends on factors such as software version and camera model. ACR is parameterized by semantically meaningful “sliders” that can drastically affect

the final output. Intermediate outputs illustrate that each block performs a complex transformation. Approximating the entire pipeline with a single proxy

supervised only with the final output is challenging due to the combinatorial number of samples required and vanishing gradients. We instead compose a

pipeline of proxy functions tailored for each block, supervising each with intermediary tap-outs.

Raw Input

[Tseng et al. 2019] Adobe Camera Raw

Proposed MethodInsets Insets

Insets Insets

Fig. 3. Existing methods using a single U-Net proxy to approximate the

mapping for an entire pipeline [Tseng et al. 2019] fail to fit to a complex

pipeline such as Adobe Camera Raw (ACR). The proposed method is able

to handle the wide variety of operations in ACR by introducing per-block

proxies that are tailored to areawise or pointwise operations.

(7) RGB Toning: This operation consists of channel-agnostic oper-
ations that affect the overall tone of the RGB channels equally.
It is controlled by Srgb = {Contrast}.

(8) Color Conversion: This final operation converts linear data
into a non-linear color space such as sRGB for display. The
operator �cc typically consists of applying a color correction
matrix and a gamma curve as dictated by standards.

While the specific implementation details of each block are propri-
etary, the Supplementary Document provides examples of tap-outs
from these blocks. Except for how to handle camerametadata (part of
the public DNG specification [Adobe 2022b]), the proposed method

does not require knowledge of how each block is implemented.
It only requires a high level pipeline structure and input/output
observations of each block.

3.2 Proxy Learning for Parameter Optimization

Every operation in the ACR pipeline is a complex function of the
input image and its slider controls. Due to the large slider space
and the pipeline’s sequential topology, small changes early in the
pipeline can lead to dramatic changes in the finished image (see
Figure 2). Consequently, coarse approximation methods can miss
important cases and fail to reproduce the desired behavior. Tseng et
al. [2019] model the pipeline end to end with a learning procedure

W∗ = argmin
W

L
(
� (I�, S), �̃W (I�, S)

)
, (4)

where � is the finishing pipeline and �̃W is a neural network pa-
rameterized by weights W. Assuming the case of a single fixed
camera (constant M), the network �̃W takes as input the raw image
IR and all sliders S to predict the final output. Figure 3 shows an
example where this method fails to produce a modest retouching
by ACR. This is due of two fundamental issues: vanishing samples
and cached image statistics.

Vanishing Samples. Vanishing gradients are a well-known prob-
lem in machine learning that refers to small gradient signal arriving
at early layers of a deep network [He et al. 2016]. We draw attention
to the antipode problem of vanishing samples. Specifically, if one is
to train a network on pairs (IR, IF), slider values need to be drawn
from the whole parameter space S. Not only is this space combi-
natorially large, as image samples propagate through the pipeline,
the range of �� may not cover the domain of ��+1 (often because

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

238:6 • Tseng et al.

values become biased towards darker and less saturated colors).
Methods such as Latin Hypercube Sampling [McKay et al. 1979] can
reduce the sampling requirement but may miss corner cases, which
is unacceptable for our applications.

Cached Image Statistics. Commercial photo-finishers precompute
and cache global statistics such as histograms H on the raw in-
put IR and use it at various stages downstream. Statistics such as
median, quantiles, and saturated pixel count are important for an-
choring operations such as dynamic range compression, exposure
adjustment, and tone curve changes. Conventional convolutional
neural networks (e.g., Pix2Pix [Isola et al. 2016]) cannot learn these
statistics because of their limited receptive field. Sliding window
networks aggregate information only on local patches and thus are
also unable to represent truly global statistics. Some works such
as Onzon et al. [2021] do address this issue by precomputing the
histogram and using it for inference. However, they do not consider
backpropagating through the histogram computation step.

4 DIFFERENTIABLE PHOTO-FINISHING

We tackle the problems of vanishing samples and cached statistics
by decomposing the training of a differentiable architecture into a
sequence of approximators. Each approximator represents a single
pipeline block and is conditioned on input statistics. Specifically, we
propose using proxy functions 𝑓𝑊𝑖

𝑖
parameterized by weights W𝑖

𝑓
𝑊𝑖

𝑖
≈ 𝑓𝑖 ,∀𝑖 ∈ {1 . . . 𝑛}, (5)

and seek weights such that

𝑓𝑛 ◦ · · · ◦ 𝑓2 ◦ 𝑓1 ≈ 𝑓
W𝑛
𝑛 ◦ · · · ◦ 𝑓

W2
2 ◦ 𝑓

W1
1 . (6)

We tailor each proxy function 𝑓𝑖 so that they better approximate the
behavior of each block. Each proxy is trained using intermediate
tap-outs (I𝑖 , I𝑖+1). Mathematically, training is

W∗ =
𝑛⋃
𝑖=1

W∗
𝑖 = argmin

∪𝑛
𝑖=1W𝑖

𝑛∑︁
𝑖=1

L
(
𝑓𝑖 (I𝑖 , S𝑖 ,M𝑖 ,H𝑖), 𝑓W𝑖

𝑖
(I𝑖 , S𝑖 ,M𝑖 ,H𝑖)

)
,

(7)
where L is an image-space loss function. By training per-block in-
stead of end-to-end, we allow our pipeline to cover more cases while
avoiding the need for a combinatorially large number of samples.
As a comparison, the end-to-end training scheme of Tseng et

al. [2019] generates training data by uniform grid sampling 𝑘 val-
ues per slider and produces 𝑂

(
𝑘 |S |

)
samples. By dividing up the

pipeline, we only need to densely sample each block, resulting in
𝑂

(∑𝑛
𝑖=1 𝑘

|S𝑖 |
)
samples where |S𝑖 | is the number of sliders in the

block 𝑖 . Typically |S𝑖 | ≤ 3, so our approach scales as a low-degree
polynomial in the number of blocks. In ACR there are a total of
14 blocks in the Basic Panel, with only a few sliders per block. For
instance, Color Balance has two sliders while Texture only has one.
In our experiments, we only need approximately 10 one-megapixel
raw images per block for a total of 10 × 14 images (compared to an
end-to-end strategy that would require 1014).

4.1 Pipeline Proxy Functions

Next, we describe how we implement each neural proxy and their
corresponding losses. We divide operations into three categories:
neural pointwise, neural areawise, and differentiable programs (see
Figure 4).

Neural Pointwise. Pointwise operators consist of operations that
affect the image at a per-pixel level without consideration of neigh-
boring pixels. Examples include Saturation, Vibrance, and RGB Ton-
ing.Wemodel these operations using amulti-layer perceptron (MLP)
with 3 layers. We choose this architecture since it operates on one
pixel at a time, unlike convolutional neural networks with non-unity
kernel windows. To train these neural operators, we use images that
densely sample the RGB cube 𝑥 ∈ [0, 1]3 and the associated sliders
𝑠 ∈ [0, 1] |S𝑖 | with 100 samples per axis and obtain the corresponding
𝑦 = 𝑓𝑖 (𝑥, 𝑠). Since 𝑓𝑖 is per-pixel, this lets us cover the entire trans-
formation space. We use L1-loss L = L1 for all pointwise operators.
We refer to the Supplementary Document for details.

Neural Areawise. Areawise operators are nonlinear filters that de-
pend on a pixel’s neighbors (in addition to slider values and cached
statistics). Examples include tone mapping and texture. We use a
network architecture that applies a cascade of 3 × 3 convolutional
filters. This allows the network to learn areawise operations such
as smoothing and sharpening in addition to cross-channel modi-
fications such as dynamic range compression. For training these
operators we use a combination of per-pixel L1-Loss and spatial
gradient loss to penalize errors in the way the network affects the
pixel neighborhoods: L = L1 + L∇. We refer to the Supplementary
Document for details.

Differentiable Program Operations. Certain operations are pre-
cisely defined by the DNG specification [Adobe 2022b] or by stan-
dard definitions such as the Planckian locus [Wyszecki and Stiles
1982] and can therefore be explicitly written as a differentiable pro-
gram. Examples include color conversion, which is a 3 × 3 matrix
multiply, and gamma correction, which is a per-pixel power function.
All of the information necessary to make these operations applicable
to different camera types can be found in the DNG metadata, please
refer to the online DNG SDK [Adobe 2022b].

Some stages are conditioned on global image statistics of the raw
input such as histograms, quantiles, or per-channel saturated pixel
counts. For neural proxies, we concatenate these statistics to the
input to each stage along the channel dimension. For differentiable
programs, the statistics parameterize the differentiable function. For
example, a global contrast adjustment curve could be parameterized
by the image mean, such that the contrast adjustment never changes
the pixel values that are equal to the mean. The specific set of
statistics used as input to the proxy depends on the pipeline stage it
is modeling.

4.2 Slider Regression

We validate the accuracy of our proxies through a slider regression
experiment. Consider an image 𝐼target ∈ IF that was rendered with
slider values 𝑆target ∈ S; that is 𝐼target = 𝑓pipe (𝐼 , 𝑆target,M,H).

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

Neural Photo-Finishing • 238:7

Neural AreawiseNeural Pointwise Differentiable Program
Raw Input Finished sRGB Raw Input Finished sRGB Raw Input Finished sRGB

Differentiable
Operation

1 × 1 Conv 3 × 3 Conv

Fig. 4. Architectures for each of the supported operations. Neural pointwise operators are modeled using MLPs since they only need to affect a single pixel.

Neural areawise operators consist of a cascade of 3 × 3 convolutions for modeling areawise operations and channel mixing. Differentiable programs follow the

DNG specification to incorporate metadata and is written in a differentiable manner. Each operator also has a set of sliders and relevant precomputed image

statistics as an implicit input.

Input Raw Camera ISP Output ACR Default OutputACR Output with Regressed SlidersCamera Model

iPhone

Canon EOS Digital Rebel

Google Pixel

Fig. 5. Camera ISP approximation with ACR. We use our differentiable proxy to solve for slider values that makes ACR render images that resemble the output

of black box camera ISPs. ACR’s rendition using regressed slider values (third column) are much closer to the ISP output (second column) than its rendition

under default settings (last column). We acknowledge that both ACR renditions are hazier and not as sharp as the ISP images as we do not implement proxies

for dehazing and sharpening.

We then solve the following optimization problem

𝑆∗ = argmin
𝑆

L (𝐼target, 𝑓pipe (IR, 𝑆,M,H)) , (8)

and verify whether 𝑆∗ matches 𝑆target. This experiment confirms
that the gradient flow through our composite 𝑓pipe is useful and
allows us to deduce the slider settings used to finish a photograph.
See Figure 5 for a few results and the supplement for the full set.
Commercial camera ISPs, including those in smartphones, auto-

matically finish raw sensor captures and each is tuned to have a
distinctive look. These pipelines are typically black boxes with no
user-accessible parameters. Slider regression lets us predict settings
such that a similar look can be reproduced in a photo-finishing
application. In this experiment, we captured synchronized image
pairs (the raw image IR and the corresponding ISP output IISP) using
three cameras: a iPhone 12 Pro Max, a Google Pixel 3 and a Canon

EOS Digital Rebel. Raw images are in the DNG format with proper
metadata. With this data, we solve the same optimization as Eq. (8),
setting 𝐼target = 𝐼ISP to reproduce the manufacturer’s look using
ACR. See Figure 5 for results. Note that the approximation accu-
racy is limited by the span of ACR under the slider settings of the
target output. The Supplementary Document contains additional
examples.

5 IMPLEMENTATION

We implement our neural photo-finishing pipeline entirely in Py-
Torch. We use a dataset of 1000 raw images in the DNG format as
input and uniformly sample 100 points for each slider when gen-
erating the data for each intermediate. For camera metadata, we
extract the relevant information from the input DNG files’ eXtensi-
ble Metadata Platform (XMP) header using the open source DNG

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

238:8 • Tseng et al.

Table 1. Approximation Accuracy. We compare the accuracy of the pro-

posed stage-wise proxy approach against an existing end-to-end single

network method. Our approach adequately models the ACR pipeline across

a range of slider values while the single network method is unable to handle

the complex parameter space with sufficient accuracy.

Approximation Accuracy
PSNR (dB)

Proposed 35.3
Tseng et al. [2019] 16.7

Table 2. Slider Regression. We perform slider regression using first-order

optimization, enabled by our ACR proxy, against zeroth-order methods.

Regression with 𝑓acr achieves high accuracy in a short runtime whereas

BayesOpt [2014] fails to find meaningful sliders even when allowed to run

for 30 minutes. CMAES manages to improve over BayesOpt but still does

not achieve the same regression accuracy as our proposed method.

Loss Regression Accuracy
MSE PSNR (dB)

Proposed regress with 𝑓acr 0.00007 43.4
CMAES [2006] 0.00172 30.9
BayesOpt [2014] 0.01584 19.1

SDK. XMP metadata is machine readable and we normalize values
to a useful numerical range by consulting each tag’s corresponding
documentation in the DNG specification. We drive training data
generation using ACR’s developer tool. It takes as input a DNG, an
XMP file specifying all non-default slider values, an XMP “profile”
that sets the remaining defaults (we use Adobe Color), and a list
of stages to tap out. The tool produces a TIFF for each stage in its
native color space and precision (int16 or float32) and the final 8-
bit sRGB output. Further details can be found in the Supplementary
Document.

6 EVALUATION

Next, we assess the expressiveness and generalizability of our proxy
on two tasks: approximation accuracy–howwell can the proxymodel
the ground truth pipeline, and slider regression–how useful are its
gradients in reverse engineering the sliders values used to produce
a target image.

Approximation Accuracy with Different Proxy Networks. We com-
pare how well our proposed proxy renders unseen image examples
as compared to the work of Tseng et al. [2019]. To this end, we train
both proxy networks on the ACR dataset discussed in Sec. 5. Table 1
shows that our proposed method approximates the ACR pipeline
with a PSNR nearly 20 dB higher than the end-to-end proxy network,
validating its stage-wise architecture. Figure 3 shows qualitative
comparisons which illustrate that a single network is incapable of
accurately reproducing ACR outputs, particularly when it comes to
tint, texture, exposure, and temperature. We evaluate the approxi-
mation performance on a test set of ten 1MP images across three
camera models: Canon EOS Digital Rebel, Canon Powershot S90,
and Phase One P65+.

Slider Regression Comparison Against 0th-order Optimization Meth-
ods. Next, we evaluate the inverse parameter optimization from
Sec. 4.2. Specifically, given a manually photo-finished sRGB target
image, we aim to find the slider values that produced this image
from the raw input by minimizing the loss between proxy-predicted
images and the target. This optimization is done with first-order
stochastic gradient descent using a pretrained differentiable proxy
with fixed weights. We compare this proposed first-order optimiza-
tion against two 0th-order methods: BayesOpt [Martinez-Cantin
2014], a derivative-free method based on Gaussian Processes, and
vanilla CMAES [Hansen 2006], an evolutionary strategy. The results
reported in Table 2 validate that 0th-order optimization approaches
do not offer an alternative to our approach: they are both slow (due
to derivative-free sampling) and unable to find adequate slider val-
ues (see Figure 6). For these experiments we regress the temperature,
tint, contrast, and saturation sliders and we evaluate on a test set of
ten 1MP images across two camera models: Canon EOS Digital Rebel
and Phase One P65+. For experimental and implementation details
and more results, please refer to the Supplementary Document.

6.1 Comparing Against Multi-stage ReconfigISP

We now compare against the recent work of ReconfigISP [Yu et al.
2021]. Although ReconfigISP tackles an orthogonal problem—that
is, designing new ISPs by rearranging blocks through the use of
differentiable proxies, we compare for completeness. Specifically,
instead of fitting ACR by using our proposed proxy architecture, we
use the SRCNN proxy architecture from ReconfigISP. ReconfigISP
proposed to use the SRCNN network as a “one-size-fits-all” archi-
tecture. However, we show that this architecture is unable to fit
the operations of a complex photo finishing pipeline such as ACR,
and consequently performs poorly in the downstream regression
tasks. In Figure 7, we measure its ability to fit individual pipeline
blocks. We observe that the ReconfigISP proxy achieves more than
20 dB lower approximation accuracy, corresponding to more than
two orders of magnitude in mean-squared error. This validates the
proposed catered architecture design, both qualitatively and quanti-
tatively. See the Supplementary Document for additional discussion.

Next, following ReconfigISP, we optimize a chain of SRCNN prox-
ies. We use the proposed optimization method with the same loss
function. In Figure 8, we report the results for the same slider regres-
sion experiments from the previous paragraph with the proposed
method and with ReconfigISP. Again, the low approximation accu-
racy achieved by the ReconfigISP in turn results in poor performance
in downstream tasks. We found that slider regression was not possi-
ble with the SRCNN proxies, which we also document qualitatively
and quantitatively in the Supplementary Document.

These two experiments confirm that ReconfigISP, as either a proxy
in isolation, or as multi-stage method, fails for slider regression on
complex photo-finishing pipelines like the one targeted in this work.

6.2 Slider Regression with Monolithic Proxies

We next compare the slider regression performance when using
a monolithic U-Net [Tseng et al. 2019] or our proposed architecture.
Specifically, we trained networks to fit the ACR pipeline (either
as a single network or stage-by-stage as proposed) and then we

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

Neural Photo-Finishing • 238:9

Target Photo-Finishing
1st order regression

with proposed proxy
0th order regression

with CMAES
0th order regression

with BayesOptCamera Model Optimization Curve

Canon EOS Digital Rebel

Optimization CurveCamera Model

Phase One P65+

Target Photo-Finishing
1st order regression

with proposed proxy
0th order regression

with CMAES
0th order regression

with BayesOpt

Fig. 6. Comparing slider regression against 0th-order methods. Above, we show the regression result when running our proposed first-order regression with

the differentiable proxy chain versus regression with 0th-order methods. The 0th-order methods converge to sub-optimal solutions and are unable to find the

specific settings that would match the finished look. In contrast, our first-order method utilizes gradient information and converges to the correct settings.

This is seen in the plots, which describe the PSNR in the finished image using the best sliders found by each method at each iteration. Note that these slider

settings are plugged into the true ACR renderer for evaluation. See Supplementary Document and Video for additional results.

!"#$%&'()*&%'+","-.%
/!%01'2'345556'!*-&'2'3758

9*&':*&)'1#;1;<%='1#;>?
/@ABC'4DEF'=+8

9*&':*&)'C%.;-G*$HA@ ACIBB
/@ABC'DJE4'=+8

!"#$%&'("&)#"&*+,
-("&)#"&*+,'.'/0112

3*&'4*&5'6#+6+7%8'6#+9:
-;(<='>?@0 8A2

3*&'4*&5'=%B+,C*$D(; (=E<<
-;(<='FG@? 8A2

Fig. 7. Proxy Comparison of Proposed and ReconfigISP [2021] SRCNN

proxy architecture. The “one-size-fits-all” architecture used by ReconfigISP

is unable to accurately model the operations found in complex commercial

pipelines such as ACR. Here, we show that our proposed architectures act

as better proxies for the individual modules.

use the frozen network to perform slider regression using first-
order gradient descent. Examples are shown in Figure 8. Since the
alternative proxy architecture from [Tseng et al. 2019] is unable to
accurately fit ACR, it is consequently ineffective for slider regression.
As shown in the figure, the converged slider values are far away from
the target setting. See the Supplementary Document for additional
quantitative and qualitative results.

7 RAW STYLE TRANSFER

Photo-finishing can be thought of as a special type of style transfer.
When an artist digitally develops a raw image, they adjust slider
values to achieve a desired “look”. For example, one could adjust
the sliders to match the warm tone of Blade Runner 2049 (2017)
or to resemble the green tints of The Matrix (1999). This differs
significantly from “artistic style transfer” across different domains;
e.g., converting photos to resemble Van Gogh paintings [Gatys et al.
2016]. Photo-finishing does not change the content of an image.
Similar to the process of developing film in a darkroom, digital
photo finishing operates on a constrained manifold of renditions.
In this section, we show how to use our proposed neural photo

finisher in an automatic style transfer system. Unlike existing one-
size-fits-all “filters” found in commercial software such as iPhone’s
“Magic Wand”, our system can be adapted to multiple styles. Our
approach is to build a neural network around the photo finisher.
The same architecture can be trained once for each style (Figure 9).
For the network to generalize to any input raw image (but for
a single style), it crucially needs to be conditioned on the input,
and to observe a sufficient number of examples of the target style
during training. Conditioning on the input is straightforward: we
use an encoder network that takes as input the raw image and
produces learned global and local features. These feature maps are
then fed to fully connected layers to predict slider values for the
photo finisher. To further assist the network in determining global
slider adjustments such as global contrast, we augment feature maps

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

238:10 • Tseng et al.

!"#$%&'()*&*+,-.-/)-.$
0!" *#1%#'#%$#%//-*.
2-&)'3#*3*/%1'3#*45

0!" *#1%#'#%$#%//-*.
2-&)'6%7*.8-$9:(;"<%#"'=*1%>

!"#$#%&'(%)*+*,"-%./0/-

0!" *#1%#'#%$#%//-*.
2-&)'<*.*>-&)-7'?+@%&

!"#$%"&'()$*

!"#$%&'(%&!)*+

+"%,$-&./(-(012324/23,
5!" (%)$%&%$,%$442(3
62-/&7%(7(4$)&7%(89

5!" (%)$%&%$,%$442(3
62-/&:$;(3<2,=>.

5!" (%)$%&%$,%$442(3
62-/&#(3(*2-/2;&?0@$-

Fig. 8. Comparing slider regression against existing Monolithic (Tseng et al. [2019] and Multi-stage Proxies (ReconfigISP [2021]). Above, we show the regression

result when running our proposed first-order regression with the differentiable proxy chain versus regression with a monolithic U-Net [Tseng et al. 2019] and

with ReconfigISP [Yu et al. 2021] that employs multi-stage SRCNN proxies. Performing slider regression with these alternative proxy architectures results does

not give a solution close to the true slider settings. This is due to the poor approximation accuracy that is obtained when using these alternatives. In contrast,

our carefully designed architecture allows us to better fit the ACR pipeline and allows us to perform accurate slider regression. Note that all methods use

first-order gradient descent for slider regression.

Fig. 9. We perform photo-finishing style transfer, where we train an encoder

to dynamically predict ACR slider settings conditioned on an input image.

Similar to the “Auto Adjust” or “Magic Wand” feature on many commercial

photo-editing applications, our network predicts sliders based on the input

image content. However, unlike existing “one-size-fits-all” automatic adjust-

ment algorithms, we can cater our network to different styles by training it

on different target style collections. Raw images are scaled for display.

with image statistics in the form of histograms extracted from the
raw input.

Style Loss. To teach the network what a style is, we show the net-
work frames from short film clips, which have been professionally
edited to preserve a consistent look with different content. For any
content/style image pair, we compute their style loss

Lstyle = Lgram + �1Lluma + �2Lchroma

with

Lgram = L(� (IF),� (IS))

Lluma = L
(
�1d (IYF), �1d (IYS)

)

Lchroma = L
(
�2d (IUVF), �2d (IUVS)

)
,

where IF = �acr (IR, � (IR)) is the photo-finished output, � are the
Gram matrices of feature layers of a pre-trained VGG-19 encoder
(we use conv_{1. . . 5}_1 as in Johnson et al. [2016]), �1d and �2d are
one- and two-dimensional soft histograms, applied to the Y and
UV channels respectively, and �1 and �2 are scalar weights (see
Supplementary Document for details). The Gram matrix removes
the locality of VGG features in order to focus on style over content,
while the Y andUVhistogram losses capture the “color palette” of the
target style. Since the entire style transfer network is differentiable,
we can pretrain and fix the photo finisher and backpropagate the
style loss onto only the slider encoder. Note that since style loss is
computed on the finished output, style images IS need not be raw.
We found a simple L2 loss directly on histograms to converge better
than a Wasserstein distance. Figure 10 demonstrates our system
transferring different styles to different content images.

We note that our system is not tied to a specific differentiable end-
point loss.We choose the VGG loss because it is used in style transfer
applications [Johnson et al. 2016], and has been shown through user
studies to be a reasonable measure of human perception [Zhang et al.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

Neural Photo-Finishing • 238:11

Table 3. Finishing-driven Demosaicking and Denoising. Our proposed
pipeline allows backpropagation of gradients through both the photo-

finishing proxy and a joint demosaicking and denoising network onto the

Bayer raw input. Hence, we are able to train the latter using a post-finishing

loss. To evaluate performance, we first demosaic a set of 160 Bayer images

using both the end-to-end learned algorithm 𝑓nn as well as a pretrained base-

line network 𝑓de [Gharbi et al. 2016]. We then finish the demosaicked images

with ACR and compare the results to ground truth. Since ground truth is

computed by finishing a low-noise long exposure image using ACR [Abdel-

hamed et al. 2018], the bottom right entry is infinite.

Short Exposure Long Exposure
PSNR (dB) PSNR (dB)

Learned Demosaic 𝑓nn 27.0 27.2
Default ACR Demosaic 𝑓de 20.0 ∞

2018]. To further reduce subjectivity, our stylization experiments
use distinctly different target styles (e.g., Matrix vs. Blade Runner).

Video Style Transfer. Our approach is also temporally stable and
can be applied to raw video (CinemaDNG and similar standards
are now widespread in film production). Since the network predicts
slider values rather than images, we can efficiently stylize a video
by running inference only on keyframes and interpolating slider
values. We include video results in the Supplementary Material.

Ethical Considerations. This work allows users to determine se-
mantically meaningful sliders that will photo-finish raw videos with
the look of existing films such as The Matrix (1999). Although this
does make it easier for anyone to copy a style and then add addi-
tional changes, we hope that this work will encourage artists to
build upon existing looks while giving proper attribution.

8 LOW PHOTON COUNTS TO SRGB

Most camera sensors are sensitive to a broad range of wavelengths.
To record color, most use a filter array to select wavelength bands,
typically in an RGGB Bayer configuration. The interpolation of
these wavelength-filtered photon counts to obtain multi-channel
raw images is known as demosaicking (see also Sec. 2). Demosaick-
ing is one of the earliest steps in developing a digital photograph and
takes place even before the slider-parameterized photo-finishing
blocks heretofore discussed. It is an ill-posed problem made more
challenging by the presence of imaging noise.
Previously, we showed that we can backpropagate loss function

gradients onto sliders and use those gradients to train a style trans-
fer network. Next, we demonstrate that our neural photo-finisher
also allows backpropagating gradients onto the Bayer input, which
permits training a joint demosaicking and denoising network. Specif-
ically, we aim to train a neural network 𝑓nn that takes as input a
Bayer raw image and, independent of exposure time (and therefore
image noise), outputs a linear RGB image such that after finishing,
the sRGB output resembles the same finishing process applied to a
corresponding long-exposure Bayer image with low noise. Formally,
we aim to balance two objectives. First, when given a long-exposure
Bayer image, reproduce the ACR demosaicker 𝑓de and finishing

pipeline 𝑓pipe:

Llong = L(𝑓pipe (𝑓nn (𝐵long)), 𝑓pipe (𝑓de (𝐵long))) .
Next, when given a corresponding short-exposure Bayer image
𝐵short with reduced signal-to-noise ratio, the network should de-
noise it such that it still produces the same finished result:

Lshort = L(𝑓acr (𝑓nn (𝐵short)), 𝑓acr (𝑓de (𝐵long))) .
We train 𝑓nn on the Smartphone Image Denoising Dataset [Abdel-
hamed et al. 2018], which features such short/long Bayer pairs.

Figure 13 shows qualitative results on two Bayer images. We ob-
serve that 𝑓nn maintains good reconstruction performance on both
noisy and clean inputs. In contrast, the default algorithm 𝑓de leaves
behind noticeable noise in the finished sRGB image. The quantita-
tive results reported in Table 3 validate our network’s improvement
over the conventional pipeline by 7 dB in PSNR for short exposure
inputs.
In this section, we showed that we can construct a high-quality

Bayer to sRGB neural network by adding a demosaicking and denois-
ing module to our photo-finishing proxy. This end-to-end differen-
tiable pipeline allows slider-based photo editing without sacrificing
the well-understood steps of a camera ISP [Chen et al. 2018; Dia-
mond et al. 2021].

9 ADVERSARIAL PHOTO-FINISHING

In this section, we leverage our learned proxy to investigate an ad-
versarial attack that fools classifiers run on images finished by one
photographer but leaves classification performance unchanged for
another photographer. Specifically, let 𝑆1, 𝑆2 denote two sets of slider
settings corresponding to two different photographers. We seek a
small perturbation 𝛿 such that the output 𝑓pipe (IR + 𝛿, 𝑆1,M,H)
is incorrectly classified by a pretrained sRGB classifier 𝐺 , while
𝑓pipe (IR + 𝛿, 𝑆2,M,H) remains correctly classified. In other words,
we investigate if the same raw input is fed to two different photo-
finishers that only differ in their slider settings, can we find an ad-
versarial pattern that targets one but not the other? To test whether
such an “attack” exists, we solve the following optimization problem

𝛿∗ = argmax
𝛿

(LCE (𝐼GT,𝐺 (𝑓pipe (IR + 𝛿, 𝑆1,M,H)))

− LCE (𝐼GT,𝐺 (𝑓pipe (IR + 𝛿, 𝑆2,M,H))))
𝑠 .𝑡 . | |𝛿 | |2 < 𝜖,

(9)

where LCE denotes the cross-entropy loss, 𝐼GT denotes the ground
truth label, and 𝜖 denotes the maximum perturbation allowed. We
set 𝜖 = 0.3 in our experiment. We test our method for different
classifier networks 𝐺 , with ResNet variants [He et al. 2016], In-
ception [Szegedy et al. 2016], and MobileNet [Howard et al. 2017]
as backbones. As the composite pipeline 𝐺 ◦ 𝑓pipe is differentiable,
we solve Eq. (9) using stochastic gradients with the Adam opti-
mizer [Kingma and Ba 2015] (see the Supplementary Document for
details).
We evaluate our attack on the ImageNet dataset [Deng et al.

2009]. As ImageNet lacks raw images, we first pretrain an sRGB
to raw synthesis network on our dataset under the L2 loss, which
we then apply to ImageNet. Next, with the raw and sRGB image
pairs, we evaluate the proposed attack for two manually chosen

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

238:12 • Tseng et al.

Style Image Collection:
Blade Runner 2049 (2017)

The Matrix (1999)
Meridian (2016)

Raw
Input

Photographs

Fig. 10. Raw Style Transfer. Test-time style transfer results on still photographs. The top row shows the raw input images (scaled for display). The other

rows depict various output stylizations. The left column shows a subset of the collection of style images used to train the slider encoder. We train the encoder

separately for each style while our proxy is pretrained and fixed during both training and inference.

Table 4. Adversarial Photo-Finishing.We report the top 1 accuracy on

the ImageNet dataset after the proposed attack on ACR whose output we

pass to classifier𝐺 . Our attack successfully deceives all four classifiers for

the pipeline with slider settings 𝑆1 while leaving predictions for 𝑆2 intact.

Classifier𝐺 ResNet101 ResNet50 InceptionV3 MobileNet
No attack 77.37 76.13 77.29 74.04
𝑆1 Pipeline 0.18 0.03 0.21 0.13
𝑆2 Pipeline 81.34 78.89 80.27 75.28

slider sets (𝑆1 and 𝑆2) and report quantitative results in Table 4. The
proposed attack decreases the classification accuracy of the pipeline
parameterized by 𝑆1 to less than 1%, while leaving the performance
of the pipeline parameterized by 𝑆2 unchanged. This trend is also
confirmed in the qualitative results in Figure 14. The same raw
perturbation 𝛿 is transformed to a much stronger adversarial pattern
for 𝑆1 than for 𝑆2, especially near edges around the object of interest.
This explains how the attack deceives the pipeline with sliders 𝑆1
while preserving the performance for 𝑆2. Note that although our
sRGB to raw synthesis network may not perfectly reproduce the

characteristics of raw images, our findings still hold as the same
synthetic raw image is input to both pipelines 𝑆1 and 𝑆2. We again
refer the reader to the Supplementary Document for additional
details.

10 DISCUSSION AND CONCLUSION

Limitations. A fundamental limitation of our method is that train-
ing separate proxies requires “opening the black box” and access-
ing the inputs and outputs of intermediate stages of the reference
pipeline. Because of this, it may not be possible to apply our method
to closed systems such as hardware ISPs. Furthermore, while our
implementation models a wide variety of operations, it does not
model every component of Adobe Camera Raw. Notably, we do not
yet have proxies for the visually important dehazing and sharpening
steps, nor can we handle geometric operations such as cropping or
lens distortion correction. We hope to implement these as future
work.

Our technique relies on image statistics which are computed from
histograms. Even when using soft histograms, gradient flow through
these image statistics is poor because they are only non-zero at a

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

Neural Photo-Finishing • 238:13
In

pu
t

R
aw

M
er

id
ia

n
(2

01
6)

B
la

de
 R

un
ne

r
20

49
 (2

01
7)

Th
e

M
at

ri
x

(1
99

9)

Fig. 11. Video Style Transfer.We apply the three movie styles from Figure 10 to a few raw videos of our own. Our approach of predicting slider values makes

the style transfer temporally consistent throughout the sequence even when it contains large changes in dynamic range (e.g., from sunlight to shade). See the

Supplementary Material for all video results.

Neural Photo-Finisher

Short Exposure
Finished sRGB

Short Exposure
Raw

Loss
Function

ACR

Fixed Slider Settings

Long Exposure
Raw

Long Exposure
Finished sRGB

DemosaicNet

Fig. 12. End-to-end trained low-light demosaicking and denoising driven by

a photo-finishing loss. We train a joint demosaicking and denoising network

atop our neural photo-finisher. Our combined network outputs denoised

images that resemble those rendered by ACR under normal illumination.

sparse set of bin positions. The popular max-pooling operation used
in machine learning avoids this problem because a small fraction
of pixels still admit gradient flow. But with histograms, the set of
bins with non-zero bins is small regardless of image size. A related
operation that hinders gradient flow are lookup tables (e.g., the Color
Tables ACR stage). These lookup tables can approximate an arbitrary
per-pixel operation and do not necessarily encode a smooth function.
The larger the table, the more prone it is to local minima and saddle
points, leading to less consistent performance for applications like
style transfer and demosaicking. This problem can be somewhat
ameliorated by carefully choosing training hyper-parameters such
as the learning rate. Estimating robust global image statistics and
accurately modeling lookup tables while ensuring gradient flow is
interesting theoretical work we wish to pursue.

Conclusion and Future Work. In this paper, we proposed a fine-
grained differentiable camera renderer. Our pipeline allows for gra-
dient flow from final output sRGB all the way back to raw photon
counts, all parameterized by a comprehensive set of meaningful
sliders. We view our work as a bridge between traditional photo fin-
ishing workflows and machine learning research. Whereas previous
methods circumvented the non-differentiability of image process-
ing pipelines by defining their own differentiable pipelines or via
approximation and inversion, we instead resolve this gap through a
stage-wise approximation that preserves the pipeline’s semantics.
We demonstrate the potential of the our differentiable finishing

pipeline on a variety of applications. From style transfer to low-
light photo-finishing to an adversarial attack, we demonstrate its
immediate impact on a wide gamut of disciplines. We hope that the
release of this renderer will provide a tool for artists, researchers,
and practitioners to connect machine learning with raw images.
While our stage-wise architecture immediately allows for man-

ual rearrangement of the modules to explore different rendering
schemes, investigating automated architecture search for such pipelines
when coupled to downstream imaging or vision modules may prove
as an exciting future direction.

REFERENCES

Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019. Image2StyleGAN: How to Em-
bed Images Into the StyleGAN Latent Space?. In IEEE International Conference on
Computer Vision (ICCV). 4431–4440.

Abdelrahman Abdelhamed, Stephen Lin, and Michael S. Brown. 2018. A High-Quality
Denoising Dataset for Smartphone Cameras. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 1692–1700.

Adobe. 2022a. Adobe Camera Raw. https://www.adobe.com/products/photoshop/
cameraraw.html.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

https://www.adobe.com/products/photoshop/cameraraw.html
https://www.adobe.com/products/photoshop/cameraraw.html

238:14 • Tseng et al.

Long exposure Short exposure Long exposure Short exposure
A
CR

O
ur
s

Fig. 13. Qualitative demosaicking results. We visualize the demosaicking and denoising results from the default ACR demosaicker and our network

on selected Bayer raw pairs from SIDD. Our demosaicking network is capable of reconstructing clean outputs from both noisy (short-exposure) and clean

(long-exposure) Bayer raw inputs.

R
aw

 In
pu

t
Pi

pe
lin

e S
1

Pi
pe

lin
e S

2

Clean Image Perturbation Perturbed Image

Pa
pe

r
To

w
el

Te
n-

G
al

lo
n

H
at

Fig. 14. Adversarial Photo-Finishing. Using the proposed proxy function,

we learn an adversarial raw perturbation𝛿 that map to a stronger adversarial

pattern for pipeline 𝑆1, corresponding to photographs from photographer 1,

than 𝑆2, corresponding to photographs from photographer 2, especially at

object edges.

Adobe. 2022b. Adobe Digital Negative. https://helpx.adobe.com/photoshop/digital-
negative.html.

Adobe. 2022c. Adobe Lightroom. https://adobe.com/products/photoshop-lightroom.
html.

Mahmoud Afifi and Abdullah Abuolaim. 2021. Semi-Supervised Raw-to-Raw Mapping.
British Machine Vision Conference (BMVC) (2021).

Mahmoud Afifi and Michael S. Brown. 2020a. Deep White-Balance Editing. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 1394–1403.

Mahmoud Afifi and Michael S. Brown. 2020b. Interactive White Balancing for Camera-
Rendered Images. In IS&T Color and Imaging Conference (CIC). 136–141.

Mahmoud Afifi, Konstantinos G. Derpanis, Björn Ommer, and Michael S. Brown. 2021.
Learning Multi-Scale Photo Exposure Correction. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 9153–9163.

Mahmoud Afifi, Abhijith Punnappurath, Abdelrahman Abdelhamed, Hakki Can
Karaimer, Abdullah Abuolaim, and Michael S. Brown. 2019. Color Temperature
Tuning: Allowing Accurate Post-Capture White-Balance Editing. In IS&T Color

Imaging Conference (CIC). 1–6.
Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019.

Automatically Translating Image Processing Libraries to Halide. ACM Transactions
on Graphics 38, 6, Article 204 (2019), 13 pages.

Apple. 2022. Apple ProRAW. https://support.apple.com/en-us/HT211965.
James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter opti-

mization. Journal of Machine Learning Research 13, 10 (2012), 281–305.
James Bergstra, Dan Yamins, and David D Cox. 2013. Hyperopt: A Python Library for

Optimizing the Hyperparameters of Machine Learning Algorithms. In Python in
Science Conference. 13–20.

Nicolas Bonneel, Kalyan Sunkavalli, Sylvain Paris, and Hanspeter Pfister. 2013. Example-
Based Video Color Grading. ACM Transactions on Graphics 32, 4, Article 39 (2013),
12 pages.

Vladimir Bychkovsky, Sylvain Paris, Eric Chan, and Frédo Durand. 2011. Learning
Photographic Global Tonal Adjustment with a Database of Input / Output Image
Pairs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 97–104.

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. 2018. Learning to See in the Dark.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3291–3300.

Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. 2017b. ZOO:
Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks
without Training Substitute Models. ACMWorkshop on Artificial Intelligence and
Security, 15–26.

Qifeng Chen, Jia Xu, and Vladlen Koltun. 2017a. Fast Image Processing With Fully-
Convolutional Networks. In IEEE International Conference on Computer Vision (ICCV).
2516–2525.

Marcos V. Conde, Steven McDonagh, Matteo Maggioni, Alevs Leonardis, and Eduardo
Pérez-Pellitero. 2022. Model-Based Image Signal Processors via Learnable Dictio-
naries. In AAAI Conference on Artificial Intelligence (AAAI). 481–489.

Darktable. 2022. Darktable. https://www.darktable.org.
Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A

Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 248–255.

Blackmagic Design. 2022. DaVinci Resolve. blackmagicdesign.com/products/
davinciresolve.

Steven Diamond, Vincent Sitzmann, Frank Julca-Aguilar, Stephen Boyd, Gordon Wet-
zstein, and Felix Heide. 2021. Dirty Pixels: Towards End-to-End Image Processing
and Perception. ACM Transactions on Graphics 40, 3, Article 23 (2021), 15 pages.

Zheng-Jun Du, Kai-Xiang Lei, Kun Xu, Jianchao Tan, and Yotam Gingold. 2021. Video
Recoloring via Spatial-Temporal Geometric Palettes. ACM Transactions on Graphics
40, 4, Article 150 (2021), 16 pages.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. 2017. A Learned Repre-
sentation for Artistic Style. In International Conference on Learning Representations
(ICLR).

Alexei A. Efros and William T. Freeman. 2001. Image Quilting for Texture Synthesis
and Transfer. ACM Transactions on Graphics, 341–346.

Katrin Eismann, Wayne Palmer, and Dennis Dunbar. 2018. Adobe Photoshop Restoration
& Retouching (4th ed.). New Riders.

Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. 2016. Image Style Transfer
Using Convolutional Neural Networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2414–2423.

Michaël Gharbi, Gaurav Chaurasia, Sylvain Paris, and Frédo Durand. 2016. Deep Joint
Demosaicking and Denoising. ACM Transactions on Graphics 35, 6, Article 191

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

https://helpx.adobe.com/photoshop/digital-negative.html
https://helpx.adobe.com/photoshop/digital-negative.html
https://adobe.com/products/photoshop-lightroom.html
https://adobe.com/products/photoshop-lightroom.html
https://support.apple.com/en-us/HT211965
https://www.darktable.org
blackmagicdesign.com/products/davinciresolve
blackmagicdesign.com/products/davinciresolve

Neural Photo-Finishing • 238:15

(2016), 12 pages.
Michaël Gharbi, Jiawen Chen, Jonathan T. Barron, Samuel W Hasinoff, and Frédo

Durand. 2017. Deep Bilateral Learning for Real-Time Image Enhancement. ACM
Transactions on Graphics 36, 4, Article 118 (2017), 12 pages.

Nikolaus Hansen. 2006. The CMA Evolution Strategy: A Comparing Review. Towards
a New Evolutionary Computation (2006), 75–102.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning
for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 770–778.

James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen,
Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. 2014. Darkroom:
Compiling High-level Image Processing Code into Hardware Pipelines. ACM Trans-
actions on Graphics 33, 4, Article 144 (2014), 11 pages.

Felix Heide, Markus Steinberger, Yun-Ta Tsai, Mushfiqur Rouf, Dawid Pająk, Dikpal
Reddy, Orazio Gallo, Jing Liu, Wolfgang Heidrich, Karen Egiazarian, Jan Kautz, and
Kari Pulli. 2014. FlexISP: A Flexible Camera Image Processing Framework. ACM
Transactions on Graphics 33, 6, Article 231 (2014), 13 pages.

Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.
2001. Image Analogies. ACM Transactions on Graphics, 327–340.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. ArXiv:1704.04861
(2017).

Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and Stephen Lin. 2018. Exposure:
A White-Box Photo Post-Processing Framework. ACM Transactions on Graphics 37,
2, Article 26 (2018), 17 pages.

Alexis Van Hurkman. 2010. Color Correction Handbook: Professional Techniques for
Video and Cinema. Peachpit Press.

Andrey Ignatov, Luc Van Gool, and Radu Timofte. 2020. Replacing Mobile Camera
ISP with a Single Deep Learning Model. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops. 2275–2285.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A. Efros. 2016. Image-to-Image
Translation with Conditional Adversarial Networks. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 5967–5976.

Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. In European Conference on Computer Vision
(ECCV). 694–711.

Hakki Can Karaimer andMichael S. Brown. 2016. A Software Platform for Manipulating
the Camera Imaging Pipeline. In European Conference on Computer Vision (ECCV).
429–444.

Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture
for Generative Adversarial Networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 4217–4228.

Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In International Conference on Learning Representations (ICLR).

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018. Differentiable Programming for Image Processing and Deep Learning
in Halide. ACM Transactions on Graphics 37, 4, Article 139 (2018), 13 pages.

Yu-Lun Liu, Wei-Sheng Lai, Yu-Sheng Chen, Yi-Lung Kao, Ming-Hsuan Yang, Yung-Yu
Chuang, and Jia-Bin Huang. 2020. Single-Image HDR Reconstruction by Learning
to Reverse the Camera Pipeline. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 1648–1657.

Ruben Martinez-Cantin. 2014. BayesOpt: A Bayesian Optimization Library for Nonlin-
ear Optimization, Experimental Design and Bandits. Journal of Machine Learning
Research 15, 115 (2014), 3735–3739.

M. D. McKay, R. J. Beckman, and W. J. Conover. 1979. A Comparison of Three Methods
for Selecting Values of Input Variables in the Analysis of Output from a Computer
Code. Technometrics 21, 2 (1979), 239–245.

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla, Pratul P. Srinivasan, and
Jonathan T. Barron. 2021. NeRF in the Dark: High Dynamic Range View Syn-
thesis from Noisy Raw Images. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 16190–16199.

Ali Mosleh, Avinash Sharma, Emmanuel Onzon, Fahim Mannan, Nicolas Robidoux, and
Felix Heide. 2020. Hardware-in-the-loop End-to-end Optimization of Camera Image
Processing Pipelines. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 7526–7535.

Jun Nishimura, Timo Gerasimow, Rao Sushma, Alexsandar Sutic, Chyuan-Tyng Wu,
and Gilad Michael. 2018. Automatic ISP Image Quality Tuning Using Nonlinear
Optimization. In IEEE International Conference on Image Processing (ICIP). 2471–2475.

ON Semi MT9P001. 2017. MT9P001: 1/2.5-Inch 5 Mp CMOS Digital Image Sensor.
https://www.onsemi.com/pdf/datasheet/mt9p001-d.pdf.

Emmanuel Onzon, Fahim Mannan, and Felix Heide. 2021. Neural Auto-Exposure for
High-Dynamic Range Object Detection. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 7706–7716.

PicsArt. 2022. PicsArt. https://picsart.com/.

Rajeev Ramanath, Wesley E. Snyder, Youngjun Yoo, and Mark S. Drew. 2005. Color
Image Processing Pipeline. IEEE Signal Processing Magazine 22, 1 (2005), 34–43.

Ling Shao, Ruomei Yan, Xuelong Li, and Yan Liu. 2014. From Heuristic Optimization to
Dictionary Learning: A Review and Comprehensive Comparison of Image Denoising
Algorithms. IEEE Transactions on Cybernetics 44, 7 (2014), 1001–1013.

Zheng Shi, Ethan Tseng, Mario Bijelic, Werner Ritter, and Felix Heide. 2021. ZeroScatter:
Domain Transfer for Long Distance Imaging and Vision through Scattering Media.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 3475–3485.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
2016. Rethinking the Inception Architecture for Computer Vision. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2818–2826.

Ethan Tseng, Felix Yu, Yuting Yang, Fahim Mannan, Karl St. Arnaud, Derek
Nowrouzezahrai, Jean-François Lalonde, and Felix Heide. 2019. Hyperparame-
ter Optimization in Black-box Image Processing using Differentiable Proxies. ACM
Transactions on Graphics 38, 4, Article 27 (2019), 14 pages.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuan-
dong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. 2019. FBNet: Hardware-
Aware Efficient ConvNet Design via Differentiable Neural Architecture Search. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 10734–10742.

GünterWyszecki andW. S. Stiles. 1982. Color Science: Concepts andMethods, Quantitative
Data and Formulae (2nd ed.). Wiley.

Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, and Jiawen
Chen. 2020. Joint Bilateral Learning for Real-time Universal Photorealistic Style
Transfer. In European Conference on Computer Vision (ECCV). 327–342.

Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu Kang, and Jung-Woo Ha.
2019. Photorealistic Style Transfer via Wavelet Transforms. In IEEE International
Conference on Computer Vision (ICCV). 9035–9044.

Ke Yu, Zexian Li, Yue Peng, Chen Change Loy, and Jinwei Gu. 2021. ReconfigISP:
Reconfigurable Camera Image Processing Pipeline. In IEEE International Conference
on Computer Vision (ICCV). 4248–4257.

Lei Zhang, Xiaolin Wu, Antoni Buades, and Xin Li. 2011. Color Demosaicking by Local
Directional Interpolation and Nonlocal Adaptive Thresholding. Journal of Electronic
Imaging 20, 2 (2011), 023016.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 586–595.

Dongzhan Zhou, Xinchi Zhou, Wenwei Zhang, Chen Change Loy, Shuai Yi, Xuesen
Zhang, and Wanli Ouyang. 2020. EcoNAS: Finding Proxies for Economical Neural
Architecture Search. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 11396–11404.

Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan. 2019. BayesNAS: A Bayesian
Approach for Neural Architecture Search. In International Conference on Machine
Learning (ICML). 7603–7613.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks. In IEEE Interna-
tional Conference on Computer Vision (ICCV). 2242–2251.

ACM Trans. Graph., Vol. 41, No. 6, Article 238. Publication date: December 2022.

https://www.onsemi.com/pdf/datasheet/mt9p001-d.pdf
https://picsart.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Photo-Finishing and RAW Processing
	3.1 Photo-Finishing Pipeline Model

	4 Differentiable Photo-Finishing
	4.1 Pipeline Proxy Functions
	4.2 Slider Regression

	5 Implementation
	6 Evaluation
	6.1 Comparing Against Multi-stage ReconfigISP
	6.2 Slider Regression with Monolithic Proxies

	8 Low Photon Counts To sRGB
	9 Adversarial Photo-Finishing
	10 Discussion and Conclusion

