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ABSTRACT

Despite the remarkable success in Machine Translation (MT), the substantial com-
putation cost of fine-tuning-based solutions constrains the scalability of Large
Language Models (LLMs) and impedes further improvement in this area. To this
end, we propose Self-Trans, a new paradigm in which we use only ubiqutious
monolingual data while acquiring 80.42% performance improvement in MT. Self-
Trans is a reference-free reinforcement learning framework that learns through
self-assessment. It generates its own supervision by evaluating the consistency of
round-trip translations, guided by a carefully architected reward function that bal-
ances semantic adequacy with reconstruction fidelity and prevents reward hack-
ing. Relying solely on low-resource pairs, our method consistently and compre-
hensively outperforms much larger models (70B+). Moreover, the Self-Trans-8B
model achieves comparable results on most mainstream benchmarks against state-
of-the-art baselines. In conclusion, Self-Trans frees itself from the constraints of
parallel data in existing approaches. It offers an efficiently scalable paradigm for
the future development of autonomous machine translation.

1 INTRODUCTION

LLM-based translation systems, such as Tower (Alves et al.) and X-ALMA (Xu et al., b), have
achieved state-of-the-art (SOTA) translation quality. However, this success is largely attributed to
the effectiveness of supervised training on vast, human-curated parallel corpora. This paradigm
is fundamentally constrained by the high cost and scarcity of such data, posing a major barrier to
progress. Distinct from supervised training, the benefits of learning from rewards in reinforcement
learning activate the LLM’s self-reasoning and self-assessment capabilities during inference (Wei
et al., 2022; Feng et al., 2023). Accordingly, models such as OpenAI’s ”o1” (Jaech et al., 2024) and
DeepSeek R1 (Guo et al., 2025) demonstrate significant improvements in tackling complex tasks,
including mathematics, and coding (Song et al., 2025; Xie et al., 2025), by generating and verifying
their own solutions. The intersection of these two cutting-edge presents a compelling opportunity:
could RL unlock a new, self-assessment and self-evolving paradigm for MT that circumvents the
data dependency of traditional methods?

Initial attempts in this direction, however, heavily rely on external supervision. Encouraged by
the remarkable success of reasoning RL, applying it to alleviating the data-hungry limitations of
supervised learning, MT has become a frontier in research. For instance, Wang et al. (2024) in-
jected reasoning procedures into inference, employing a multi-agent mechanism to synthesize long
chain-of-thought (CoT) prompts for literary translation, Feng et al. (2025) exploited implicit pro-
cess reward models for translation enhancement combined with test-time search, and Silver et al.
(2016); Qi et al. (2024); Zhao et al. (2024) applied complex search algorithms like MCTS during
decoding. However, all these attempts involve manually structured CoT data, or require explicit
multi-stage prompting, which is heuristic and fragile in transferability. Moreover, all the above
methods require references as a supervised signal for model training, hindering their broad appli-
cation in low-resource language translation. Therefore, how to alleviate the reliance on tailored
knowledge and parallel corpora curation remains a challenging problem.
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Figure 1: Overall performance of Self-Trans-8B on the WMT EN-ZH benchmark. Our enhanced
8B model (red star) rivals the performance of models 4x-9x larger (e.g., Qwen2.5-72B) and GPT-4o,
while consistently outperforming all competitors within the <10B parameter class.

To bridge this critical gap, we introduce Self-Trans, the first reference-free reinforcement learning
framework for machine translation. Self-Trans drives self-improvement through a closed-loop, self-
evaluation process. Specifically, for any given source sentence, the model first translates it to the
target language and then translates it back to the source. We identify standard translation quality
metrics, such as BLEU and COMET, within the round-trip translation process as inherent reward
signals. Thus, this strategy allows the models to exploit self-reflection and self-supervision capa-
bility, bypassing the need for parallel corpora, external explicit reward models, and human evalua-
tion. Crucially, Self-Trans employs a novel bidirectional training scheme that jointly optimizes both
translation directions (e.g., A to B and B to A) within a single, unified process. This not only max-
imizes data efficiency but also synergistically boosts translation quality in both directions, making
the framework effective and transferable for any language pairs with monolingual text.

Extensive experimental results demonstrate that, without parallel corpora, our Self-Trans facilitates
the base LLM to achieve comparable performance against state-of-the-art baselines. More con-
cretely, on EN-ZH benchmarks, our Self-Trans-8B model performs only slightly below the optimal
supervised models (by an average of 0.07%) while outperforming advanced translation systems,
e.g., on semantic evaluation, it achieves 77.58, superior to the powerful closed-source models like
Gemini-2.5-Pro (77.55). More encouragingly, our 8B model outperforms significantly larger open-
source models such as Qwen2.5-72B-Instruct (76.52), demonstrating the substantial effectiveness of
our method (see Figure 1). It is worth noting that our method also acquires strong performance in the
challenging multilingual and low-resource settings, where Self-Trans boosts the base model’s score
from 32.22 to 58.51, outperforming strong competitors like Gemma2-9B-it (57.75) and even the
LLaMA-3.1-70B-Instruct model. We further conduct an in-depth investigation into our method. The
analysis reveals that these significant improvements stem from the tailored reward function, which
synergizes lexical (BLEU) and semantic (COMET) signals, efficiently mitigates reward hacking,
and facilitates stable convergence during training.

Our contributions can be summarized as follows:

• We propose Self-Trans, to the best of our knowledge, the first reference-free RL framework for
Machine Translation. Through a self-evaluation and self-evolution loop, it eliminates the need for
parallel corpora, external reward models, and human supervision.

• We design a novel bidirectional training framework that jointly optimizes both translation direc-
tions (e.g., A→B and B→A) within a single, unified process. This approach requires only mono-
lingual data, making the framework inherently language-agnostic and particularly applicable to
low-resource scenarios.

• Extensive experiments demonstrate that Self-Trans achieves comparable state-of-the-art perfor-
mance across bilingual, multilingual, and low-resource benchmarks. By enhancing an 8B LLM,
our method significantly outperforms specialized MT models and even much larger general-
purpose LLMs (e.g., 70B+ parameters), validating the efficacy and scalability of our approach.
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Figure 2: An overview of Self-Trans. The actor model participates in both forward and backward
translation. We consider reward signals from quality and anti-cheating, two perspectives, to update
the model via the GRPO algorithm.

2 RELATED WORK

Machine Translation with Large Language Models. State-of-the-art machine translation with
LLMs follows two main paradigms: in-context learning (ICL) and supervised fine-tuning (Anil
et al., 2023; Gao et al., 2024; Li et al., 2024; Xu et al., a). By presenting few-shot demonstrations to
LLMs, ICL circumvents the heavy computational costs of fine-tuning (Zhu et al., 2024), though at
the expense of prompt sensitivity and performance instability (Agrawal et al., 2023). Fine-tuning, in
contrast, improves the MT performance via supervised training on large-scale parallel datasets (Cui
et al., 2025; Costa-Jussà et al., 2022), exemplified by representative models such as Tower and
X-ALMA (Alves et al.; Guo et al., 2024; Xu et al., b). However, the rules of scaling laws con-
strain further performance improvements of fine-tuning. Moreover, both two paradigms exhibit a
significant reliance on large-scale, human-annotated data, which limits scalability, particularly in
low-resource scenarios.

Reasoning and Reinforcement Learning for Machine Translation. To move beyond the limi-
tations of supervised training, researchers have increasingly turned to more adaptive optimization
methods like RL. Early applications of RL in NMT aimed to mitigate the exposure bias rooted in
unreliable inputs by straightforwardly optimizing global metrics like BLEU (Ranzato et al., 2016;
Bengio et al., 2015) or tailored reward functions (Wu et al., 2017). Inspired by the reasoning capabil-
ities of LLMs, this line of work has evolved to incorporate CoT prompting or multi-step inference,
i.e., decompose translation into multiple intermediate steps (Feng et al., 2024; Wang et al., 2024)
for fidelity improvement. However, the performance of all these methods is primarily determined
by the validation of the reasoning process, including manually engineered CoT templates, complex
search algorithms such as MCTS (Zhao et al., 2024), or external evaluators (strong LLMs and human
annotators) (He et al., 2025). Additionally, even the prominent RL-based frameworks such as MT-
R1-Zero (Feng et al., 2025) and DeepTrans (Wang et al., 2025), the quality of reference translations
remains crucial for reward computation.

Self-Rewarding Paradigms in Large Language Models. A burgeoning area of research seeks to
achieve autonomy through self-rewarding mechanisms, i.e., the training signals are self-generated
by models (Chen et al., 2024; Yuan et al., 2024). This paradigm enables iterative self-improvement
through self-judging or self-play, showing promise in instruction following and general reasoning
tasks (Zhang et al., 2025; Zhao et al., 2025; Yang et al.; Geng et al., 2024). In the context of RL, this
allows for end-to-end alignment without human feedback, often by prompting the model to act as its
own reward function (Wu et al., 2024; Yuan et al., 2024). However, this approach entails a critical
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vulnerability: the risk of self-deception. When a model serves as both generator and evaluator, it
tends to exploit and amplify its own biases, favoring outputs that are fluent or stylistically plausible
over those that are semantically accurate. This reward hacking problem is particularly pronounced
in a nuanced task like translation. For example, recent studies attempt to use self-play with semantic
consistency checks for MT. However, these approaches still underperform specialized, supervised
models (Zou et al., 2025), demonstrating a misalignment between the self-supervised objective and
practical translation quality.

3 METHODOLOGY

3.1 SELF-TRANS FRAMEWORK

Self-Trans is a reference-free reinforcement learning framework designed to improve translation
bidirectionally using monolingual corpora. Round-trip consistency is the primary criterion in Self-
Trans, i.e., the semantics between the source language and the round-trip translation (source to target
and back to source) should be consistent. Consequently, by recognizing round-trip consistency as
an intrinsic reward signal, the system can self-evolve and improve within a closed-loop process (see
Figure 2).

Specifically, we collect a batch of source sentences {xi}mi=1 from language Ls. The actor model,
parameterized by a policy πθ, performs two sequential steps:

1. Forward Translation (Ls → Lt). The model generates a candidate ŷi as the target language
Lt translation:

ŷi ∼ πθ(· | xi, prompts→t).

As no reference translation involves, this step necessitates a reference-free evaluation.

2. Backward Translation (Lt → Ls). The process runs in reverse by translating ŷi back into the
source language Ls for x̂i reconstruction:

x̂i ∼ πθ(· | ŷi, promptt→s).

In this step, the original source sentence xi serves as a high-quality, self-reference against which we
can evaluate the reconstruction quality.

Unified Prompting Strategy. To ensure consistency, we employ a unified prompting template for
both translation directions, following (Feng et al., 2025). The model is instructed to place its final
translation within <translate> tags and any intermediate reasoning within <think> tags. The
full prompt details are available in Appendix B.

3.2 REWARD ARCHITECTURE

The success of Self-Trans hinges on a tailored reward function that guides the model towards high-
quality translations while preventing reward hacking. The final reward, Rfinal, is structured hierar-
chically to prioritize valid formatting before assessing translation quality:

Rfinal(x, ŷ, x̂) =

{
1 +Rquality +Ranti-cheating, if format is correct,
−3, otherwise.

A large penalty of −3 is assigned if the output ŷ does not adhere to the required <translate>
tag format. For valid outputs, we evaluate both translation quality and anti-cheating capability, and
additionally incorporate a base reward of +1.

3.2.1 QUALITY REWARD (RQUALITY)

This reward integrates two complementary metrics for a holistic assessment of translation quality,
defined as: Rquality = rfwd + rbwd:

4
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• Forward Semantic Adequacy (rfwd): For the forward pass (x → ŷ), we use
COMETkiwi, a widely used reference-free metric. It evaluates the semantic adequacy of
the translation by comparing the source and the hypothesis straightforwardly, formalized
as rfwd = COMETkiwi(x, ŷ).

• Backward Reconstruction Fidelity (rbwd): For the back-translation (ŷ → x̂), we leverage
the original source x as a reference. We use BLEU to measure the fidelity of the recon-
struction, rbwd = BLEU(x̂, x). A high score signifies that the target translation ŷ preserved
sufficient information to accurately recover the original input.

3.2.2 ANTI-CHEATING REWARD (RANTI-CHEATING)

A vanilla self-supervised reward is fragile and unstable. To ensure robust learning and mitigate
reward hacking, we introduce two penalty terms, Ranti-cheating = rcopy + rmix:

• Source-Copying Penalty (rcopy): A trivial failure mode is for the model to copy the source
(x ≈ ŷ) to maximize the backward BLEU score. We address this by penalizing lexical
overlap in the forward direction: rcopy = −BLEU(x, ŷ).

• Language-Mixture Penalty (rmix): To discourage the generation of linguistically incoher-
ent outputs, we apply a penalty of −0.5 if language mixing is detected in ŷ. This simple
heuristic effectively promotes fluent, monolingual outputs.

3.3 POLICY OPTIMIZATION WITH GRPO

We optimize our translation policy πθ using Group Relative Policy Optimization (GRPO) (Shao
et al., 2024; Guo et al., 2025). For each input, GRPO samples a group of G candidates from the
current policy and computes a normalized advantage Ai for each based on its relative reward within
the group. The policy is then updated by maximizing the standard GRPO objective:

JGRPO(θ) = Ex∼D,{ŷi}G
i=1∼πθold

(·|x)

[
1

G

G∑
i=1

min

(
ρi(θ)Ai, clip(ρi(θ), 1− ε, 1 + ε)Ai

)

− βDKL (πθ(·|x)∥πref(·|x))

]
, (1)

where ρi(θ) is the probability ratio. This objective uses a clipped surrogate function and a KL-
divergence penalty to ensure stable policy updates.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments to evaluate the effectiveness of our Self-Trans across bilin-
gual and multilingual settings. Attribute to the merit of free-parallel-data in our methodology, we,
thereby, select the popular parallel translation benchmarks and remove all target-side references for
traning corpora construction.

• Training Data: For bilingual (EN-ZH) training, we source sentences from WMT 2017-2020
competitions, yielding 6, 565 sentences each for English and Chinese. For multilingual training,
we create a diverse corpus from the FLORES-200 (Costa-Jussà et al., 2022) training set, covering
EN/ZH paired with six other languages (DE, FR, ES, IT, JA, KO). We sample 500 pairs for each of
the 24 translation combinations (e.g., EN→DE, ZH→DE), treating all sentences as monolingual,
resulting in a final 12, 000-sentence corpus.

• Evaluation Data: We evaluate performance on test sets for fair comparison. For EN↔ZH, we
use the official test sets from WMT231 and WMT242. For multilingual tasks, we report results on
the official FLORES-200 test set.

1https://www2.statmt.org/wmt23/translation-task.html
2https://www2.statmt.org/wmt24/translation-task.html
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Table 1: Performance comparison of different models on WMT and FLORES-200 using BLEU
and xCOMET (xCM) metrics, along with the average (Avg.). The best and second-best results are
bolded and underlined, respectively. The ”†” symbol indicates that the model is in thinking mode.

Models

WMT FLORES-200
EN→ZH ZH→EN Avg. EN→XX XX→EN ZH→XX XX→ZH Avg.

BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM

Closed Source
Claude-3.5-Sonnet 38.21 75.54 22.95 87.16 55.97 32.76 92.69 34.48 97.00 21.26 91.19 37.39 84.01 61.35
GPT-4o 41.47 75.62 22.73 87.92 56.94 31.51 92.50 34.20 96.75 20.32 89.81 37.09 83.13 60.66
Gemini-2.5-Pro 32.28 77.55 19.80 85.63 53.81 33.14 95.05 33.14 96.56 22.25 92.21 36.51 87.27 62.02

Open Source
General LLMs
Qwen3-8B 36.56 74.94 22.67 85.98 55.04 25.47 88.98 31.44 94.75 17.23 85.21 32.92 77.19 56.65
Qwen3-8B† 26.97 67.31 16.71 80.11 47.77 22.54 87.67 27.28 91.18 15.20 83.28 33.43 78.31 54.86
Qwen3-14B 38.60 75.75 21.46 87.27 55.77 26.92 91.18 32.38 96.23 18.55 89.15 35.83 85.25 59.44
Qwen3-14B† 35.67 73.73 22.61 85.01 54.26 28.78 91.56 32.13 95.11 18.46 88.43 35.66 82.18 59.04
Qwen3-32B 39.37 75.44 21.52 87.31 55.91 30.53 92.69 34.25 96.50 19.61 89.33 37.11 85.38 60.67
Qwen3-32B† 38.37 74.55 20.20 85.65 54.69 24.61 91.79 30.41 95.00 14.94 88.25 33.04 82.51 57.57
Qwen2.5-32B-Instruct 39.28 75.16 21.19 86.87 55.62 28.04 90.62 32.29 96.26 18.01 87.67 36.01 83.91 59.10
Qwen2.5-72B-Instruct 40.02 76.52 21.88 87.27 56.42 30.48 92.39 34.83 96.78 19.46 89.83 37.56 85.00 60.79
Gemma2-9B-it 37.44 72.45 23.13 86.08 54.77 30.22 91.37 33.20 96.09 12.99 89.08 27.27 81.80 57.75
Gemma2-27B-it 37.86 73.17 22.30 86.74 55.02 31.38 92.36 34.73 96.33 19.63 89.70 30.91 83.70 59.84

MT LLMs
TowerInstruct-7B-v0.2 34.17 71.40 23.35 84.66 53.40 28.53 90.68 35.51 95.69 13.89 76.55 29.70 80.01 56.32
TowerInstruct-13B-v0.1 36.74 73.52 24.80 85.53 55.15 31.71 92.33 36.16 96.08 17.71 88.24 34.07 82.12 59.80
GemmaX2-28-9B-v0.1 38.53 74.59 24.65 85.41 55.80 30.18 92.54 36.02 95.96 18.76 87.76 34.69 83.03 59.87

MT via RL
Qwen3-8B-Base 15.54 48.98 4.90 55.38 31.20 7.96 56.47 15.29 62.78 6.61 54.60 11.49 42.57 32.22
MT-R1-Zero-8B 34.70 79.09 24.79 86.72 56.33 26.69 89.83 34.03 96.13 16.85 86.74 32.60 86.00 58.61
Self-Trans-8B (Ours) 38.00 77.58 23.42 86.16 56.29 28.53 91.36 30.21 95.74 16.64 88.28 32.93 84.42 58.51

Evaluation Metrics. To ensure a comprehensive assessment of translation quality, we adopt a
dual-metric approach that captures both lexical fidelity and semantic adequacy. We report case-
sensitive BLEU scores computed via sacrebleu for standardized, reproducible measurement of
n-gram overlap. To evaluate semantic preservation, we employ xCOMET-XL (Guerreiro et al.,
2024), a state-of-the-art reference-based model that leverages a powerful cross-lingual encoder to
score semantic similarity. This combination provides a holistic view of performance.

Baselines. To comprehensively compare the performance of Self-Trans, we benchmark against
four distinct and challenging categories of models. (1) Closed-Source LLMs: We compare against
leading systems like GPT-4o (Hurst et al., 2024), Claude 3.7 Sonnet (Anthropic, 2024),
and Gemini 2.5 Pro (Comanici et al., 2025). (2) Open-Source General LLMs: We include
powerful, non-specialized models of varying scales, such as the Qwen3 (Yang et al., 2025),
Qwen2.5 (Yang et al., 2024), and Gemma2 (Team et al., 2024) series. (3) Open-Source MT LLMs:
For comprehensive comparison with the supervised paradigm, we include models fine-tuned on par-
allel corpora, featuring the Tower (Alves et al., 2024) and GemmaX2 (Cui et al., 2025) series. (4)
RL-based MT Models: As a methodologically similar approach, we include MT-R1-Zero (Feng
et al., 2025), a SOTA RL framework that, unlike our method, uses reference-based rewards. More
evaluation details can be found in Appendix C.2.

4.2 MAIN RESULTS

Bilingual Performance (EN-ZH). As shown in Table 1, Self-Trans-8B achieves near SOTA per-
formance, fully demonstrating the effectiveness of our self-evolution approach compared to the
canonical large-scale parallel-corpus fine-tuning paradigm. Specifically, our 8B model achieves
an average performance only 0.07 points below MT-R1-Zero-8B. The effectiveness of Self-Trans-
8B is most pronounced in EN to ZH translation. On sementic evaluation, our method surpasses all
baselines except MT-R1-Zero-8B, including Gemini-2.5-Pro, and outperforms much larger LLMs
such as Qwen2.5-72B-Instruct. As for the lexical level (BLEU metric), our model is highly com-
petitive, outmatching specialized MT models like the TowerInstruct series. On ZH to EN transla-
tion, our method outperforms all general-purpose and proprietary baselines on BLEU. In summary,
Self-Trans closes the gap with heavily supervised methods, demonstrating that a reference-free,
self-improving framework can achieve top-tier translation quality.
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Table 2: Performance of different models on low-resource language pairs, measured by BLEU and
xCOMET (xCM) scores, along with the average (Avg.). The best and second-best results are bolded
and underlined, respectively. The ”†” symbol indicates that the model is in thinking mode.
Model DE→IT IT→DE ES→FR FR→ES EN→IS EN→NO Avg.

BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM

Large Size LLMs
Qwen2.5-72B-Instruct 24.66 94.02 22.27 95.60 28.26 93.64 24.77 95.13 8.97 49.05 23.02 88.91 54.02
Qwen2.5-32B-Instruct 22.59 92.49 20.55 94.13 26.05 92.04 23.88 94.78 3.72 37.08 23.13 82.95 51.12
LLaMA-3.1-70B-Instruct 22.63 89.04 18.56 89.00 24.59 88.93 23.35 92.51 1.59 35.67 29.72 92.96 50.71

Same Size LLMs
Qwen3-8B 21.64 89.65 19.40 93.56 24.31 90.50 22.47 93.42 2.09 47.02 10.46 83.52 49.84
Qwen3-8B† 19.68 86.96 15.73 90.26 20.95 86.40 20.83 89.81 5.51 41.59 21.75 82.31 48.48
Gemma2-9B-it 19.55 93.80 19.50 95.31 23.73 93.18 19.50 94.64 0.60 31.31 1.19 67.69 46.67
TowerInstruc-7B-v0.2 22.27 92.58 19.77 93.54 25.33 91.92 22.79 93.79 1.94 35.45 2.03 77.34 48.23

Qwen3-8B-Base 8.96 90.29 5.99 92.43 23.72 89.44 11.29 93.20 0.17 31.93 0.84 62.04 42.52
MT-R1-Zero-8B 22.96 92.99 20.26 94.42 25.79 92.12 23.56 94.39 / / / / /
Self-Trans-8B (Ours) 22.13 92.60 19.06 94.58 25.33 91.92 22.05 94.38 8.14 41.88 26.05 86.16 52.02
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Figure 3: Reward, response length, and evaluation metrics over training.

Multilingual Performance. Self-Trans exhibits consistent efficacy across the more challenging
multilingual landscape, highlighting its scalability and generalization capabilities. Table 1 shows
performance scaling with model size, with Self-Trans-8B achieving top-tier results among models
of comparable size. It surpasses strong generalist models, including Gemma2-9B-it (57.75) and the
specialized TowerInstruct-7B-v0.2 (56.32). The most encouraging aspect of our framework lies in
the dramatic performance boost on the base model: Self-Trans raises the multilingual score from
32.22 to 58.51 (+26.29 points).

4.3 PERFORMANCE ON LOW-RESOURCE LANGUAGE PAIRS

To validate the language agnosticism and scalability of our framework, we performed an evaluation
on a suite of low-resource language pairs: DE↔IT, ES↔FR, EN→IS (Icelandic), and EN→NO
(Norwegian). The latter two are from WMT and lack corresponding parallel corpora. For this chal-
lenging scenario, we include LLaMA-3.1-70B-Instruct, a powerful baseline known for its strong
performance on non-Chinese languages. The results in Table 2 highlight the exceptional perfor-
mance and parameter efficiency of our approach. Remarkably, Self-Trans-8B outperforms the sig-
nificantly larger LLaMA-3.1-70B-Instruct model, trailing only behind Qwen2.5-72B-Instruct.

Specifically, our model continues its dominance within its own size, surpassing general-purpose
models like Gemma2-9B-it and the specialized TowerInstruct-7B-v0.2. While the absolute overall
best performance is still held by massive models such as Qwen2.5-72B-Instruct (54.02), Self-Trans-
8B establishes itself as a compelling exception to the performance scaling law. In fact, it even
exceeds Qwen2.5-72B-Instruct on the BLEU for EN→NO (26.05 vs. 23.02). This performance
highlights the robust generalization capability of our training paradigm, demonstrating its effective-
ness well beyond high-resource, commonly studied language pairs.

5 ANALYSIS AND ABLATION

We further investigate the stability and effectiveness of our training process. As shown in Figure 3,
the strong positive correlation between the internal reward and external validation metrics verifies
that our framework guides the model towards performance gains. We, thereby, conduct an in-depth
analysis of the key mechanisms underlying our method.
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Figure 4: Training on monolingual corpora improves performance in bilingual translation directions,
significantly outperforming MT-R1-Zero, especially on the BLEU metric.

Table 3: Ablation study of our reward design (best result in bolded).

Models
WMT FLORES-200

EN→ZH ZH→EN Avg. EN→XX XX→EN ZH→XX XX→ZH Avg.
BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM BLEU xCM

Qwen3-8B-Base 15.54 48.98 4.90 55.38 31.20 7.96 56.47 15.29 62.78 6.61 54.60 11.49 42.57 32.22
Self-Trans-8B (Ours) 38.00 77.58 23.42 86.16 56.29 28.53 91.36 30.21 95.74 16.64 88.28 32.93 84.42 58.51

Ablation on Quality Reward
- BLEU Reward Only 7.22 36.74 5.86 54.83 26.16 4.25 36.18 7.48 45.79 2.75 35.52 4.29 32.39 21.08
- COMET Reward Only 32.47 79.86 21.45 87.59 55.34 24.97 92.59 30.10 96.20 16.15 89.32 29.59 86.62 58.19

Ablation on Anti-Cheating Reward
- w/o Source-Copying Penalty 37.72 76.78 22.84 85.26 55.65 27.98 91.18 30.12 95.71 15.70 86.91 31.96 82.95 57.81
- w/o Language-Mixture Penalty 35.89 76.45 20.66 83.37 54.09 25.56 87.60 27.25 93.75 14.65 85.33 30.53 81.92 55.82

5.1 IMPLICIT BIDIRECTIONAL IMPROVEMENT FROM UNIDIRECTIONAL TRAINING

A key hypothesis of the Self-Trans framework is that its round-trip mechanism inherently exploits
knowledge from bilingual corpora, even when training on monolingual translation data. To validate
this, we conducted a controlled experiment where we trained the model exclusively on forward-
translation tasks (EN→XX and ZH→XX) and observed its performance on both directions.

Figure 4 presents compelling results that confirm this hypothesis. On average across all four di-
rections, Self-Trans-8B (59.34) surpasses the strong MT-R1-Zero-8B baseline (59.14), showcasing
the effectiveness of the bilingular knowledge. A deeper analysis reveals a significant disparity. For
the forward directions, our model performs competitively but slightly trails the baseline, consistent
with our main findings. However, for the untrained backward directions, Self-Trans demonstrates a
decisive advantage. This is particularly pronounced in the lexical metrics, where BLEU scores for
XX→EN and XX→ZH improve by a substantial +4.10% and +2.81% respectively over the baseline.

This significant improvement is a primary consequence of our framework’s design. The backward
reward signal, rbwd = BLEU(x̂, x), which measures reconstruction fidelity, acts as a powerful,
implicit training signal for the reverse translation. This result confirms that Self-Trans not only
learns the main translation task but also acquires robust, transferable knowledge for the inverse task,
achieving this without ever observing a single reference translation for that direction.

5.2 ABLATION STUDY: DECONSTRUCTING THE REWARD ARCHITECTURE

To validate that each component of our reward function is essential, we conducted a series of ablation
studies. We demonstrate that our final design is a carefully balanced system, where each component
exists to prevent specific failure modes. These findings are detailed in Table 3.

The Peril of a Naive Reward: A Case of Catastrophic Hacking. Our investigation began with
the most fundamental question: can a simple reward function work? We initially tested a minimal
framework using only round-trip BLEU as the reward signal, without any anti-cheating mechanisms.
This configuration led to a catastrophic failure. The model quickly learned to perfectly ”hack” the
reward by performing an identity translation (i.e., copying the source text verbatim) in the forward
pass and repeating it in the backward pass. This trivial strategy yields a maximum BLEU score of 1
but results in a complete failure to translate (see Figure 5 for example). This striking result provides
a crucial insight: in a self-supervised loop, a naive reward is not just suboptimal, it is dangerously
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Source (ZH): 后⾯的处理简直⽆语，基本都是我说⼀步，客服才接着操作⼀下。

The subsequent handling is almost 
laughable, basically they only do 
something after I say each step.
[Reward: 1.64]

The handling afterwards is just mind-
boggling, basically every time I say one 
step, the customer service only proceeds 
with the operation once.
[Reward: 1.66]

The processing that came afterwards was 
really frustrating, basically every time I say 
one step, the customer service only 
proceeds with the operation once.
[Reward: 1.68]

The subsequent processing was just 
frustrating, basically I had to say one step 
at a time, and the customer service would 
only take one step at a time to proceed 
with the operation.
[Reward: 1.69]

Reference (EN): After that, I'm just at a loss for words, in essence, I say do this action, 
and customer service will continue to operate.

后⾯的处理简直⽆语，基本都是
我说⼀步，客服才接着操作⼀下。

The following processing 
simply no word, basic are I 
said step, customer then 
follows operation one.

The follow-up processing was just 
frustrating. Basically, the customer 
service would only take an action 
after I told them what to do next.

The subsequent handling was 
utterly ⽆语, as the 客服
would only proceed with the 
操作 after I said one step.

La siguiente gestión es realmente
frustrante, básicamente es todo lo 
que digo, y el servicio al cliente solo 
sigue operando un paso a la vez.

Step 100 Step 500 Step 1000 Step 1500

BLEU Only (w/o Anti-Cheating) BLEU Reward Only COMET Reward Only w/o Source-Copying Penalty w/o Language-Mixture Penalty

Figure 5: A ZH→EN case study across different steps and components

misleading. This underscores the essential need for robust guardrails, leading us to conduct all
further ablations with the anti-cheating rewards enabled by default.

Balancing Lexical Fidelity and Semantic Adequacy. With the anti-cheating mechanism in place,
we examined how different components of the quality reward affect translation behavior. Using
BLEU as the sole quality reward led the model to adopt a degenerate “word-for-word” transla-
tion strategy. Because such literal translations make the backward reconstruction task easier, they
maximize the BLEU score at the expense of semantic meaning and grammatical fluency. In fact,
performance dropped below that of the base model, confirming that a purely lexical signal is too nar-
row to guide high-quality translation. On the other hand, relying solely on COMET as the quality
reward produced the opposite issue. The model achieved excellent xCOMET scores but suffered a
decline in BLEU. It learned to generate “overly creative” outputs—translations that sounded plausi-
ble and fluent but strayed significantly from the source in terms of lexical content.

These results underscore a fundamental trade-off between lexical fidelity and semantic adequacy.
Therefore, our final design, which sums the BLEU and COMET signals, is not merely an conbination
but a necessary synthesis to balance these competing objectives and foster holistic translation quality.

The Critical Role of Anti-Cheating Mechanisms. Finally, we validated the necessity of the two
anti-cheating components themselves, even with a balanced quality reward. Removing the Source-
Copying Penalty exposed a critical failure mode: source leakage. The model became prone to
copying words or phrases from the source—a form of code-switching that degrades translation qual-
ity. This penalty is therefore crucial for enforcing faithful translation. Removing the Language-
Mixture Penalty revealed a different vulnerability, causing the model to violate instruction fidelity.
For instance, it would occasionally translate into a valid but incorrect target language. This penalty
is thus essential for ensuring the model follows task instructions precisely. Together, these two
mechanisms act as indispensable guardrails, ensuring that the model learns to translate not just well,
but correctly and robustly. Figure 5 provides a compelling case study of this process, qualitatively
illustrating both the model’s iterative improvement and the critical failure modes discussed in our
ablations.

6 CONCLUSION

In this work, we introduced Self-Trans, a novel reference-free reinforcement learning framework
designed to confront the critical dependency on parallel corpora in machine translation. By lever-
aging a self-assessment loop based on round-trip consistency, our method generates its own train-
ing signals purely from monolingual data. Our extensive experiments demonstrate that this self-
assessment paradigm can elevate a base language model to comparable state-of-the-art performance,
enabling our 8B model to outperform significantly larger specialist and generalist models across
bilingual, multilingual, and low-resource settings. Self-Trans represents a significant step towards
autonomous, data-efficient machine translation, paving the way for high-quality MT in scenarios
where parallel data have traditionally been a prohibitive barrier.
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7 ETHICS STATEMENT

Our work aims to advance digital inclusivity by making high-quality translation accessible for low-
resource languages. We acknowledge the risk that our model may inherit and amplify societal
biases from its monolingual training data, and we urge that downstream applications be evaluated
for fairness. In commitment to scientific transparency and reproducibility, we will release our code
and models to facilitate further scrutiny and responsible use.

8 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All resources required to replicate
our findings are detailed throughout the paper and will be made publicly available.

• Code and Models: Our implementation is based on the publicly available OpenRLHF
framework. The base model, Qwen3-8B-Base, is open-source. We will release our
full source code, training scripts, and the final Self-Trans-8B model weights as part of the
supplementary materials and upon publication.

• Methodology: A detailed description of the Self-Trans framework, including the round-
trip mechanism, reward architecture, and anti-cheating components, is provided in Sec-
tion 3. The GRPO optimization algorithm is detailed in Section 3.3.

• Experimental Setup: All details regarding datasets, training procedures, and evaluation
are described in Appendix C.1. This includes specifics on the WMT and FLORES-200
corpora, monolingual data processing, evaluation metrics (sacrebleu for BLEU and
xCOMET-XL), and a comprehensive list of baselines.

• Hyperparameters: Key hyperparameters, such as batch size, sampling temperature, and
optimizer settings, are provided in the ”Implementation Details” paragraph of Section 4.1.

• Prompting: The exact prompting template used for all experiments is provided in Ap-
pendix B.
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A THE USE OF LLMS

In adherence to the policy on LLM usage, we disclose that LLMs were utilized as a general-purpose
writing assistance tool during the preparation of this manuscript. Specifically, we used LLMs for
tasks such as proofreading, improving grammar, and rephrasing sentences to enhance clarity and
readability. The core research ideas, experimental design, analysis, and the primary drafting of the
paper were conducted entirely by the human authors. The LLM’s role was strictly that of an editing
assistant and did not contribute to the scientific ideation or results presented in this work.

B TRANSLATION PROMPTS

The specific translation prompt of different models used in training are depicted in Figure 6, Figure 7,
Figure 8 and Figure 9. Specifically, <think> tags are removed from Qwen3 series because it
conflicts with Qwen3s’ inherent thinking special tokens.

Translation Prompt

A conversation between User and Assistant. The User asks for a translation from
{src lang} to {tgt lang}, and the Assistant solves it. The Assistant first thinks about the
reasoning process in the mind and then provides the user with the final translation. The
reasoning process and final translation are enclosed within <think> </think> and
<translate> </translate> tags, respectively, i.e., <think> reasoning process
here </think><translate> final translation here </translate>.

User: {input}
Assistant:

Figure 6: Translation prompt for data curation. {src lang}: source language; {tgt lang}: target
language; {input}: the source sentence to be tranalated.
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TowerInstruct Prompt

Translate the following text from {src lang name} into {tgt lang name}.
{src lang name}: {user input}
{tgt lang name}:

Figure 7: Translation prompt for TowerInstruct series models. {src lang name}: source language;
{tgt lang name}: target language; {user input}: the source sentence to be tranalated.

GemmaX Prompt

Translate this from {src lang name} to {tgt lang name}:
{src lang name}: {user input}
{tgt lang name}:

Figure 8: Translation prompt for GemmaX model. {src lang name}: source language;
{tgt lang name}: target language; {user input}: the source sentence to be tranalated.

Qwen3 non-thinking Prompt

You are a helpful translation assistant. There is a conversation between User and Assistant.
The user asks for a translation from {src lang name} to {tgt lang name}, and the
Assistant solves it. The Assistant first thinks about the reasoning process in the mind
and then provides the user with the final translation. The final translation is enclosed
within <translate> </translate> tags, i.e., <translate> final translation here
</translate>.

User:{user input}
Assistant:

Figure 9: Translation prompt for Qwen3 series non-thinking models. {src lang name}: source
language; {tgt lang name}: target language; {user input}: the source sentence to be tranalated.

Table 4: Detailed dataset statistics used during training.
EN-ZH ZH-EN EN-DE EN-FR EN-ES EN-IT EN-JA EN-KO

# sentences 6565 6565 500 500 500 500 500 500
from WMT 17-20 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

DE-EN FR-EN ES-EN IT-EN JA-EN KO-EN
# sentences - - 500 500 500 500 500 500
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

ZH-DE ZH-FR ZH-ES ZH-IT ZH-JA ZH-KO
# sentences - - 500 500 500 500 500 500
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

DE-ZH FR-ZH ES-ZH IT-ZH JA-ZH KO-ZH
# sentences - - 500 500 500 500 500 500
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200
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Table 5: Detailed dataset statistics used during evaluation.
EN-ZH ZH-EN EN-DE EN-FR EN-ES EN-IT EN-JA EN-KO

# sentences 997 1976 1012 1012 1012 1012 1012 1012
from WMT 24 WMT 23 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

DE-EN FR-EN ES-EN IT-EN JA-EN KO-EN
# sentences - - 1012 1012 1012 1012 1012 1012
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

ZH-DE ZH-FR ZH-ES ZH-IT ZH-JA ZH-KO
# sentences - - 1012 1012 1012 1012 1012 1012
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

DE-ZH FR-ZH ES-ZH IT-ZH JA-ZH KO-ZH
# sentences - - 1012 1012 1012 1012 1012 1012
from - - Flores-200 Flores-200 Flores-200 Flores-200 Flores-200 Flores-200

C IMPLEMENTATION DETAILS

C.1 TRAINING DETAILS

Our model, which we name Self-Trans-8B, is built upon the OpenRLHF3 framework, with the
Qwen3-8B-Base model serving as its initialization. For all experiments, we use a global batch
size of 128 and generate 8 candidate responses per input for the GRPO algorithm. We use a sam-
pling temperature of 1.0 and a maximum sequence length of 1024. Notably, we set both the KL
divergence and entropy coefficients to 0, granting the model greater freedom to explore the policy
space and discover optimal translation strategies without being constrained. Training was conducted
on 16 NVIDIA H800 GPUs for one epoch, taking approximately 32 hours. We save checkpoints
every 50 steps and report the performance of the single best checkpoint selected based on validation
set performance.

C.2 EVALUATION DETAILS

For evaluation stage, we perform model inference locally using the vLLM4 framework. We con-
figure the sampling hyperparameters with a temperature of 0.2 and a top-p of 0.95. The maximum
generation length is truncated to 2048 tokens for all models, with the exception of Gemini 2.5-Pro,
to accommodate its default thinking process. The prompt used during evaluation remains consistent
with the one used for training, as detailed in Figure 6.

3https://github.com/OpenRLHF/OpenRLHF
4https://github.com/vllm-project/vllm
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Figure 10: Training progression (reference-based XCOMET score) for multilingual Self-Trans-8B
model based on Qwen3-8B across EN-XX, XX-EN, ZH-XX, XX-ZH test sets.
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