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Abstract

Rheumatoid arthritis (RA) is a common autoimmune disease that has been the
focus of research in computer-aided diagnosis (CAD) and disease monitoring. In
clinical settings, conventional radiography (CR) is widely used for the screening
and evaluation of RA due to its low cost and accessibility. The wrist is a critical
region for the diagnosis of RA. However, CAD research in this area remains limited,
primarily due to the challenges in acquiring high-quality instance-level annotations.
(i) The wrist comprises numerous small bones with narrow joint spaces, complex
structures, and frequent overlaps, requiring detailed anatomical knowledge for
accurate annotation. (ii) Disease progression in RA often leads to osteophyte, bone
erosion (BE), and even bony ankylosis, which alter bone morphology and increase
annotation difficulty, necessitating expertise in rheumatology. This work presents a
multi-task dataset for wrist bone in CR, including two tasks: (i) wrist bone instance
segmentation and (ii) Sharp/van der Heijde (SvdH) BE scoring, which is the first
public resource for wrist bone instance segmentation. This dataset comprises 1048
wrist conventional radiographs of 388 patients from six medical centers, with
pixel-level instance segmentation annotations for 618 images and SvdH BE scores
for 800 images. This dataset can potentially support a wide range of research tasks
related to RA, including joint space narrowing (JSN) progression quantification,
BE detection, bone deformity evaluation, and osteophyte detection. It may also be
applied to other wrist-related tasks, such as carpal bone fracture localization. We
hope this dataset will significantly lower the barrier to research on wrist RA and
accelerate progress in CAD research within the RA-related domain.
� Benchmark & Code: github.com/YSongxiao/RAM-W600

Data & Dataset Card: huggingface.co/datasets/TokyoTechMagicYang/RAM-W600

1 Introduction

The wrist is a highly complex joint that facilitates a wide range of motion and bears substantial
mechanical loads during daily activities. Due to its anatomical complexity and functional demands,
the wrist is particularly susceptible to various pathological conditions [17]. Among these, rheumatoid
arthritis (RA) is a common and debilitating autoimmune disease that frequently affects the wrist joint
early in its progression [63]. It is marked by joint swelling and tenderness, which progressively leads
to joint destruction and significant disability. Radiographic analysis plays a pivotal role in the diagno-
sis and management of RA, with joint space narrowing (JSN) progression and bone erosion (BE)
serving as key markers for evaluating and tracking disease progression [2, 56]. However, traditional
radiographic assessment heavily relies on the radiologist’s expertise and subjective interpretation
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Figure 1: Overview of the RAM-W600 dataset, designed for wrist bone segmentation and SvdH BE
scoring tasks. (MC 1 to 5: Metacarpal 1st to 5th; Tz: Trapezoid; Tr: Trapezium; Sca: Scaphoid;
Radius: DistalRadius; Cap: Capitate; Ham: Hamate; Lu: Lunate; Tri: Pisiform & Triquetrum; Ulna:
DistalUlna)

to detect subtle pathological features, which is time-consuming and often associated with limited
accuracy and sensitivity. As a result, the development of computer-aided diagnostic (CAD) systems
has attracted growing interest from both academic and industrial communities [65, 35, 74, 75].

Accurate segmentation of wrist bones is critically important in medical image analysis, as it serves as
a foundational step for numerous downstream tasks essential to the diagnosis and management of RA.
These tasks include, but are not limited to, the evaluation of bone deformities, detection of osteophytes,
and assessment of JSN. For example, in bone deformity analysis, precise segmentation is required to
extract geometric features such as bone angles, alignment, and morphological irregularities across
longitudinal scans [29]. In osteophyte detection, segmented bone contours help identify abnormal
bony outgrowths that are often hard to distinguish in raw radiographs due to anatomical overlap [54].
Similarly, accurate quantification of JSN depends on the precise boundaries between adjacent
bones [32, 53, 76]. Segmentation errors can lead to incorrect inter-bone distance measurements,
which are essential for monitoring disease progression.

However, the annotation process of a large-scale dataset is highly challenging and labor-intensive due
to the anatomical complexity of the wrist and different pathological changes in the wrist bones. As
shown in Fig. 1, (i) Obscured edges due to overlapping structures. The wrist, a structurally complex
joint system, features tightly interlocked carpal bones [5]. This configuration frequently leads to
overlapping phenomena in conventional radiography (CR), which significantly complicates the
identification of each bone’s outer edges. (ii) Morphological alterations resulting from pathological
conditions. Due to the progression of RA and other pathological changes, BE, JSN, and osteophyte
formation can affect certain bones or joints to varying degrees, often leading to substantial alterations
in bone morphology [68, 18, 30]. Moreover, these factors may interact in diverse and combinatorial
ways, further complicating the consistency and accuracy of annotations.

Sharp/van der Heijde (SvdH) BE scoring [71] is a widely recognized task in the automated diagnosis
of RA. Nevertheless, it remains highly challenging due to difficulties in both annotation and model
training. On the annotation side [59, 72], (i) accurate annotation demands specialized rheumatological
expertise, as assessing the severity of BE is inherently complex. (ii) The process is subjective and
prone to substantial inter-observer variability, resulting in inconsistent and uncertain ground truth
labels. This subjectivity and ambiguity undermine the quality of supervision available for model
training. From a training perspective, (i) the task is further complicated by a severe class imbalance,
as cases of high-grade erosion are underrepresented in most clinical datasets. (ii) The pathological
features of BE are often subtle, highly localized, small in scale, and demonstrate minimal variation
across severity levels, thereby posing substantial challenges for automated detection and classification.
Collectively, these factors render SvdH BE scoring a challenging task in developing robust and
generalizable deep learning models for RA assessment.
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Table 1: Comparison between RAM-W600 and the publicly available annotated datasets. Ann/Img:
Annotations per image.

Modality Dataset Year Images
(Ann/Img)

Resolution
(mm/pixel)

Age
(Mean±SD)

Tasks
Purpose

Mask Score

CR
Halabi et al. [24] 2019 14236 (15) - 0.35 ✓ BAA

Sun et al. [66] 2022 674 (31) - - ✓ RA
Ours (RAM-W600) 2025 618 (15) + 800 (6) 0.15∗ 49.86±20.26 ✓ ✓ RA

CT Moore et al. [49] 2007 30 (15) - 26.25±3.33 ✓ -

BAA: Bone Age Assessment; *: Internal cohorts only.

In this paper, we introduce Rheumatoid Arthritis Modeling-Wrist 600 (RAM-W600), a multi-task
dataset for wrist bone in conventional radiography. It comprises 1048 wrist conventional radiographs
of 388 patients from six medical centers. Among them, 618 high-resolution wrist radiographs are
provided with expert-verified instance-level annotations for wrist bone segmentation, along with
4800 SvdH BE scores. This dataset is expected to support a wide range of downstream tasks, such
as anatomical structure localization, erosion progression analysis, and automated disease staging,
thereby contributing to the broader advancement of computer-aided diagnosis in RA. Our primary
contributions are threefold:

• First Multi-Task dataset for RA: RAM-W600 is the first public large-scale dataset dedi-
cated to both segmentation and SvdH BE scoring tasks, providing a valuable benchmark
for developing and validating deep learning algorithms in conventional radiographs. Its
multi-institutional composition ensures diversity in acquisition conditions, enhancing the
generalizability of trained models.

• High-quality annotations: We provide high-quality pixel-level annotations of the wrist
bones, including careful handling of overlapping region boundaries, and SvdH BE score in
the region of interest (ROI).

• Comprehensive benchmarks: We present a benchmark for wrist bone instance segmenta-
tion and SvdH BE scoring, enabling standardized evaluation and comparison of algorithms
for automated RA assessment.

2 Related Works

2.1 Hand Radiographic Datasets

Although hand radiographic data are relatively easy to acquire, the complex anatomical structure of
the hand and the inherent limitations of current imaging techniques present significant challenges
for accurate annotation. As shown in Table 1, these challenges are further intensified in disease-
specific applications, such as the diagnosis and monitoring of RA, where high-quality, expert-
annotated datasets remain scarce. Earlier efforts produced computed tomography (CT) datasets with
segmentation masks [49], but these were limited by small sample sizes. More recently, Halabi et
al. [24] released a large-scale CR dataset annotated with segmentation masks; however, its utility is
confined to pediatric bone age assessment and limited to selected phalangeal regions. In contrast, RA-
specific datasets such as that of Sun et al. [66] provide severity scores but lack pixel-wise annotations,
thereby constraining their applicability to tasks requiring precise image segmentation.

2.2 Wrist Bone Segmentation

Radiological analysis of the wrist bones is central to the study of hand-related disorders. In particular,
image segmentation plays an important role and holds significant value for both clinical practice and
research, as summarized in Table 2. Notable progress has been made in wrist bone segmentation using
various imaging modalities, including CT and magnetic resonance imaging (MRI). Early studies
employed mathematical modeling techniques to achieve relatively mature segmentation outcomes on
CT and MRI scans [4, 20]. With recent advances in deep learning, both 2D and 3D segmentation
of wrist bones in CT and MRI has further matured [80, 69, 57, 62, 58], enabling more specialized
investigations into disease-induced bone pathologies. In contrast, research on wrist bone segmentation
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Table 2: Summary of recent works on wrist segmentation. Ann/Img: Annotations per image.

Modality Works Year Backbone Dataset Images
(Ann/Img)

Age
(Mean±SD)

Objects
Purpose

F C UR

CR

Yang et al. [78] 2021 ResNet Private 720 (2) 36±13 ✓ BMD
Kang et al. [34] 2022 Mask R-CNN Private 702 (10) - ✓ ✓ -
Lee et al. [38] 2023 SAM Private 192 (7) - ✓ ✓ BMD
Du et al. [16] 2024 GRU-Unet [24] & Private 2000 (13) - ✓ ✓ BAA

CT Anas et al. [4] 2016 - [49] & Private 60 (15) - ✓ ✓ ✓ -
Sebro et al. [62] 2022 - Private 196 (17) 64.9±8.7 ✓ ✓ ✓ BMD

4DCT Teule et al. [69] 2024 nnU-Net Private 19 (9) - ✓ ✓ -

MRI

Foster et al. [20] 2018 - Private 160 (8) 47.1±9.25 ✓ OA
Radke et al. [57] 2021 CNN Private 56 (8) 30.7±13.6 ✓ ✓ LWI

Yiu et al. [80] 2024 nnU-Net Private 80 (15) 54±12 ✓ ✓ ✓ RA(BME)
Raith et al. [58] 2025 3D U-Net Private 15 (8) 27.8±3.11 ✓ -

F: Finger Bones; C: Carpal Bones; UR: Radius and Ulna Bones;
BMD: Bone Mineral Density; BAA: Bone Age Assessment;
RA(BME): Rheumatoid Arthritis with Bone Marrow Edema; LWI: Ligamentous Wrist Injuries.

Table 3: Summary of recent works on RA-related scoring. Ann/Img: Annotations per image.

Modality Works Year Backbone Dataset Images
(Ann/Img) Patients Age

(Mean±SD)
Tasks

SvdH BE Others

CR

Hirano et al. [27] 2019 CNN Private 216 (15) 108 64.9±4.87 ✓ SvdH JSN
Ureten et al. [70] 2020 CNN Private 180 (2) 180 - RA & HC

Maziarz et al. [46] 2021 Unet [66] 674 (31) 562 - Damage
Hioki et al. [26] 2021 Yolo V3 Private 50 (4) - - Destruction

Miyama et al. [48] 2022 DNN Private 226 (31) 40 61.5±11.6 ✓ SvdH JSN
Wang et al. [73] 2022 Yolo Private 915 (30) 400 >20 mTSS
Sun et al. [66] 2022 DNN [66] 674 (31) 562 - ✓ SvdH JSN
Bo et al. [6] 2024 ResNet Private 3818 (10) - - ✓ SvdH JSN

Lien et al. [41] 2025 Yolo V7 Private 823 (30) - >20 mTSS

HR-pQCT Folle et al. [19] 2022 GradCAM Private 932 (3) 617 45±15 HC & RA & PsA
MRI Schlereth et al. [61] 2024 CNN Private 211 (66) 112 54.1±12.4 ✓ osteitis & synovitis

mTSS: modified total Sharp Score; PsA: psoriatic arthritis; HC: healthy controls.

from radiographs is still limited. Although several deep learning-based methods have been proposed
[78, 34, 16, 38], few studies focus on complex pathological conditions such as RA. Due Due to the
limitations of CR imaging, its two-dimensional nature causes anatomical overlap, tissue superposition,
and low contrast, which make it difficult to identify bone boundaries and anatomical structures. In
addition, although CR is more accessible and cost-effective than CT or MRI, accurate annotation
is still difficult, especially in cases with active osteoarticular lesions. As a result, there are few
high-quality, publicly available annotated datasets. This lack of data makes it hard to train and
evaluate reliable segmentation models.

Consequently, achieving high-precision wrist bone segmentation in radiographs of patients with
complex pathological conditions remains a critical challenge. Addressing this issue holds substantial
potential for advancing efficient and user-friendly clinical decision support systems.

2.3 Detection and Assessment of BE

The SvdH scoring system has been widely used to evaluate various joint abnormalities in RA. As
summarized in Table 3, an increasing number of automated methods have been developed in recent
years to facilitate RA radiograph scoring. These approaches are typically based on the SvdH system
and aim to assess key indicators such as JSN, BE, and the modified total Sharp score (mTSS). Most
models are trained and validated on private datasets. Earlier studies primarily employed convolutional
neural networks (CNNs) for feature extraction and classification [28, 48, 66, 6]. Recently, object
detection-based models have been introduced [26, 41], enabling the integration of lesion localiza-
tion and scoring within end-to-end pipelines and enhancing both automation and usability. Some
studies have explored RA classification and severity assessment using scoring systems other than
SvdH [70, 46, 26]. Furthermore, research on automated RA assessment has expanded to encompass
various imaging modalities, including MRI [61] and high-resolution peripheral quantitative com-
puted tomography (HR-pQCT) [19], along with the investigation of alternative scoring methods and
evaluation standards, thereby further advancing the field of RA imaging analysis.
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In summary, the wrist joint is one of the most anatomically complex and diagnostically significant
regions in RA radiographs, offering substantial clinical and research value. Notably, the integration
of precise wrist bone segmentation and lesion scoring within a multi-task learning framework has
emerged as a key direction in advancing automated RA analysis. However, publicly available hand
CR datasets remain significantly limited, particularly those focused on the wrist. Most datasets lack
high-precision segmentation masks specifically annotated for the wrist region, and their corresponding
BE scores are often incomplete or missing. This limits their suitability for RA-specific research,
which requires high-quality, multi-dimensional annotated data. Therefore, the development of a wrist-
focused CR dataset with detailed anatomical annotations and validated clinical scores is essential for
the progress of intelligent RA imaging assessment.

3 Overview of Dataset

Ethical Considerations RAM-W600 dataset is in compliance with the guidelines of the Declaration
of Helsinki and obtained approval from the Ethics Committee of Hokkaido University (approval
number: 24-104) and Institute of Science Tokyo (approval number: A24672). All radiographs
included in this dataset were collected with informed consent for research use and public release.

3.1 Image and Annotation

The dataset consisted of 1048 hand posteroanterior projection (PA) radiographs from 207 patients with
RA and 181 patients without RA. The images were obtained from six different institutions: Hokkaido
Medical Center for Rheumatic Diseases (HMCRD) (Sapporo, Japan), Sapporo City General Hospital
(SCGH) (Sapporo, Japan), Hokkaido University (HU) (Sapporo, Japan), Digital Hand Atlas (DHA)
from the University of Southern California (CA, US) [10], Bone Tumor X-ray Radiograh Dataset
(BTXRD) from Monash University (Melbourne, Australia) [79], and FracAtlas (FA) from Islamic
University of Technology (Gazipur, Bangladesh) [1]. Each institution has its own CR systems, and
the dataset is managed using the digital imaging and communications in medicine (DICOM) standard,
with the detailed information of imaging parameters referred to Table 6.

We employed specialized imaging processing methodologies to systematically construct wrist joint
data. Initially, image cropping techniques were applied to focus on the wrist region, effectively
eliminating interference from extraneous anatomical structures. Annotation was performed by a
dedicated team consisting of a radiological technologist and two clinically experienced experts,
including a board-certified radiologist with 25 years of experience and an orthopedic doctor with
5 years of clinical practice. This multidisciplinary expertise ensured that the annotations were
both medically accurate and clinically relevant. For the segmentation task, initial contours were
delineated by the radiological technologist and subsequently verified by the radiologist. For the
classification task, three annotators independently assigned labels, and any discrepancies were
resolved through discussion and consensus. Based on this protocol, the annotation comprised three
principal components:

• Anatomical Structure Annotation: Precise contour delineation was performed for 14 wrist
bones, including the first-fifth metacarpals (MC1-5), trapezium (Tr), trapezoid (Tz), scaphoid
(Sca), lunate (Lu), capitate (Cap), hamate (Ham), pisiform & triquetrum (Tri), distal radius
(Radius), and distal ulna (Ulna). A multi-label annotation strategy was implemented to
independently mark each osseous structure.

• Bone Location Annotation: The SvdH BE scoring system focuses on five key joint regions:
Metacarpal 1st, Trapezoid, Scaphoid, Lunate, Distal Radius, and Distal Ulna. We performed
ROI annotations on these areas.

• SvdH BE Scoring Annotation: BE assessment was conducted using the SvdH scoring
system, specifically targeting five critical articular groups: Metacarpal 1st, Trapezoid,
Scaphoid, Lunate, Distal Radius, and Distal Ulna. This systematic evaluation focused on
quantifying erosive changes at these predetermined anatomical sites.

With the division of these images, a comprehensive annotation pipeline was adopted, including
professional annotators and strict inspection procedures. Further details of the data division and
annotation can be found in Sec. B.
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Gender: Female Male Unknown

Phases per Patients: 1 Phase 2 Phase 3 Phase or More

Institution: HMCRD SCGH HU

SvdH BE Score in Wrist: 0 1~2 >2 N/A

DHA BTXRD FA

(B)
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Figure 2: Distribution and Statistics for the age, gender, institution, number of shots, and BE scores
in the RAM-W600 dataset. (A) Circular overview of the RA cohort. Each bar around the circular plot
represents a unique patient. The concentric layers from inner to outer encode: (i) Gender distribution.
(ii) Institution distribution. (iii) SvdH BE scores in both wrists for each study. Patients with multiple
shots are represented multiple times in this layer. (iv) The patient’s age at each acquisition. (B)
Circular overview of the Non-RA cohort. Similar to (A), each bar around the circular plot represents
a unique patient. (C) Distribution of SvdH BE scores by joint surface.

3.2 Statistics of RAM-W600

We present statistical analyses of the RAM-W600 dataset to characterize both the RA cohort and the
Non-RA cohort. Key attributes, including patient demographics (age, gender), institutional sources,
follow-up frequency (phase), and BE scores, were systematically examined. In addition, joint-specific
BE score distributions were compared across anatomical locations. Detailed statistics are summarized
in Fig. 2. The RA cohort (A) collected from HMCRD, SCGH, and HU primarily consists of female
patients. This pattern accords with epidemiologic evidence, since RA occurs most frequently in
women between 30 and 50 years of age [55, 37]. Most wrist joints in this cohort are annotated
with an SvdH BE score of 0, indicating minimal erosive changes, while non-zero scores remain
relatively uncommon. In addition, most patients underwent only a single imaging phase, and the age
distribution spans a broad range. The Non-RA cohort (B) includes healthy controls from HMCRD
and HU, as well as additional cohorts from DHA, BTXRD, and FA. This group exhibits a more
balanced gender ratio and also shows a broad age distribution. Joint-level SvdH BE annotations
in (C) reveal a highly imbalanced distribution across joint surfaces, with the vast majority of joint
faces assigned a score of 0. Higher scores, such as 3 or 5, are nearly absent. Such an imbalanced
distribution has been commonly reported in clinical cohorts [9, 33]. With advances in medical care,
early detection and the effective use of disease-modifying treatments have markedly reduced the
number of patients progressing to late-stage RA, making high BE scores increasingly rare in modern
cohorts. Moreover, CR imaging is primarily performed to monitor early and moderate stages of RA,
while advanced stages are less frequently imaged in current clinical practice.

4 Experiments and Benchmarks

4.1 Wrist Bone Segmentation

To evaluate wrist bone instance segmentation performance, we tested a series of widely used su-
pervised architectures and their variants on the RAM-W600 dataset, as well as recent foundation
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Table 4: Instance segmentation results obtained on the Test set. The best results in each column are
highlighted in bold, and the second-best values are underlined.

Model
DSC ↑ (%) NSD ↑ (%) VOE ↓

(%)
MSD ↓
(pix)

Params
(M)

Time
(ms)BE nonBE All BE nonBE All

Supervised Models
Unet [60] 96.70±0.05 96.83±0.09 96.79±0.08 83.59±0.41 83.27±0.58 83.36±0.52 6.13±0.14 1.83±0.10 7.94 13.57
DeepLabV3 [12] 96.55±0.03 96.86±0.02 96.78±0.02*** 82.17±0.28 82.89±0.23 82.69±0.19* 6.20±0.03 1.37±0.01 26.00 9.19
FPN [42] 96.59±0.07 96.85±0.07 96.78±0.07*** 81.45±0.68 81.83±0.63 81.73±0.64 6.19±0.13 1.38±0.02 23.15 8.43
PSPNet [82] 95.30±0.05 95.55±0.07 95.48±0.06* 71.58±0.46 71.02±0.47 71.17±0.45 8.52±0.10 2.05±0.04 21.49 4.46
DeepLabV3+ [13] 96.78±0.01 97.01±0.03 96.95±0.02*** 83.56±0.17 83.73±0.27 83.68±0.20 5.87±0.04 1.31±0.02 22.43 5.57
SegResNet [50] 96.48±0.21 96.64±0.20 96.60±0.20* 81.78±1.25 81.79±1.14 81.79±1.17 6.50±0.37 1.79±0.21 1.60 4.93
Unet++ [83] 97.21±0.02 97.37±0.04 97.33±0.03* 86.85±0.26 87.04±0.26 86.99±0.23 5.15±0.06 1.36±0.07 2.41 14.83
SegFormer [77] 96.82±0.06 97.09±0.02 97.01±0.03*** 84.24±0.46 84.65±0.20 84.53±0.25 5.74±0.06 1.28±0.00 21.87 5.04
TransUNet [11] 97.50±0.04 97.67±0.06 97.62±0.05*** 89.20±0.24 89.59±0.36 89.48±0.33 4.60±0.10 1.05±0.03 105.91 22.05
UKAN [39] 96.74±0.06 96.98±0.05 96.91±0.05*** 83.15±0.22 83.41±0.16 83.33±0.16 5.93±0.10 1.34±0.04 6.36 10.30
UMambaBot [45] 97.40±0.04 97.58±0.02 97.53±0.03** 88.77±0.23 88.94±0.18 88.89±0.20 4.76±0.05 1.13±0.01 4.42 15.12
UMambaEnc [45] 97.44±0.05 97.61±0.03 97.56±0.03** 88.92±0.31 89.17±0.29 89.10±0.28 4.71±0.06 1.11±0.02 4.58 16.44
SwinUMamba [43] 97.65±0.02 97.80±0.02 97.75±0.02** 90.56±0.12 90.77±0.15 90.71±0.14 4.35±0.03 1.06±0.05 59.89 38.52

Foundation Models
SAM (box) [36] 88.91±5.59 88.67±4.80 88.74±5.01 65.91±6.06 63.82±7.32 64.40±7.03 18.45±5.23 4.25±1.46 641.09 193.47
SAM (pt) [36] 80.18±7.10 80.46±11.13 80.38±10.14 55.56±9.93 55.84±12.06 55.76±11.47 28.42±10.82 18.21±16.08 641.09 32.72
MedSAM (box) [44] 85.07±2.05 85.06±2.69 85.07±2.52 39.91±6.46 38.38±7.28 38.81±7.07 25.15±3.59 5.97±1.19 93.74 99.48

Time: Inference time per image on RTX 4090 GPU.
Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).
Mann-Whitney U Test between BE & nonBE, *: P < 0.05; **: P < 0.01; ***: P < 0.001.

models. The supervised architectures included Unet [60], DeepLabV3 [12], FPN [42], PSPNet [82],
DeepLabV3+ [13], SegResNet [50], Unet++ [83], SegFormer [77], TransUNet [11], UKAN [39],
UMambaBot [45], UMambaEnc [45], SwinUMamba [43] , while the foundation models comprised
SAM [36] and MedSAM [44]. In line with standard practice, segmentation performance was quanti-
fied using Dice Similarity Coefficient (DSC) [15]; Normalized Surface Dice (NSD) [52]; Volumetric
Overlap Error (VOE) [67]; Mean Surface Distance (MSD) [67]; and Relative Absolute Volume
Difference (RAVD) [67]. The threshold for the NSD was set to 2 pixels.

Implementation details The dataset was split according to the configuration shown in Table 7
(a) in Sec. B.4. BE and Non-BE cases were stratified using the SvdH BE score, where radiographs
with a total BE score greater than 0 were considered BE cases. Cases were stratified based on the
SvdH BE score, where radiographs with a total score greater than zero were classified as BE, while
those with a score of zero were classified as non-BE. For supervised models, all experiments were
repeated five times on a single NVIDIA RTX 4090 GPU using five fixed random seeds (1024, 2025,
3407, 4096, and 5214) to ensure reproducibility, whereas foundation models were evaluated by a
single inference run without repetition. All radiographs were resized to 512×512 pixels and used
as input to the model. Model training employed the AdamW optimizer with a weight decay of
1e-2. The initial learning rate was set to 1e-4 and decayed according to a cosine annealing schedule
(CosineAnnealingLR). Training was carried out for 100 epochs using a batch size of 8 and standard
data augmentation techniques.

Benchmark results The results shown in Table 4 demonstrate that mainstream supervised models
achieve outstanding performance in terms of DSC, with the highest value reaching 97.75% (SwinU-
Mamba), indicating robust overlap accuracy in global segmentation regions. However, NSD values
remain comparatively low (peak: 90.71%), with significant variations across models, highlighting
persistent challenges in bone boundary delineation. This limitation is closely tied to the inherent
complexities of wrist bone segmentation: inter-bone occlusions leading to blurred boundaries, and BE
regions characterized by abnormal texture and edge variations, which further exacerbate segmentation
difficulty. Meanwhile, group analysis reveals statistically significant differences (p < 0.05–0.001)
in DSC between BE and nonBE samples for most models, confirming the detrimental impact of
BE on segmentation performance. In contrast, the NSD metric exhibited no statistically significant
differences between groups. This discrepancy may stem from the heightened sensitivity of NSD
to boundary errors and the larger variance in boundary-related discrepancies within the dataset,
underscoring the intrinsic difficulty in handling bone edges. In addition, foundation models such
as SAM and MedSAM achieved lower DSC (≤ 88.7% for SAM and 85.1% for MedSAM) and
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(B) Ground Truth (C) UNet(A) Image (D) DeepLabV3 (E) FPN (F) PSPNet

(G) DeepLabV3+ (H) SegResNet (I) Unet++ (J) SegFormer (K) TransUnet (L) UKAN

(M) UMambaBot (N) UMambaEnc (O) SwinUMamba (P) SAM_pt (Q) SAM_box (R) MedSAM_box

Figure 3: Wrist bone segmentation visualization results. The solid box indicates segmentation
challenges caused by BE, while the dashed box represents difficulties arising from bone overlap.

NSD (≤ 75.0%) compared with supervised models, further demonstrating the limited adaptability of
general-purpose segmentation priors to the specialized task of wrist bone delineation. In conclusion,
the primary bottleneck in this task lies in improving model robustness for complex bone boundaries.

Visualization Some representative results are shown in Fig. 3. Compared to the ground truth,
mainstream supervised networks exhibit performance degradation in segmenting bone edges with
multi-layer occlusions, a challenge that becomes particularly pronounced under complex occlusion
scenarios. Current models also demonstrate notable inconsistency, lacking reliable solutions to
address this issue effectively. Furthermore, in the context of BE (RA), most existing architectures
fail to adequately capture the inward collapse of bone edges caused by erosive changes. However,
networks incorporating Mamba-based architectures show partial improvements in handling such
morphological distortions, as evidenced by comparative analyses. Visualization results further
corroborate the persistent challenges in this segmentation task, primarily attributed to bone overlaps
and erosion-induced structural anomalies. These factors collectively lead to fragmented or inaccurate
edge predictions, emphasizing the need for dedicated architectural innovations. In contrast, foundation
models such as SAM and MedSAM exhibit less precise boundary localization and frequent edge
discontinuities, underscoring their limited adaptability to the fine-grained requirements of wrist bone
segmentation.

Unlike natural images or other medical imaging modalities such as MRI and CT, CR captures the
cumulative attenuation of X-rays along their path, resulting in grayscale representations of internal
structures. This often leads to overlapping anatomical features and blurred boundaries in two-
dimensional images. Moreover, pathological BE caused by RA can induce notable morphological
changes in bone structure, further complicating segmentation. Traditional image processing and
segmentation techniques often struggle to accurately delineate overlapping bone boundaries or detect
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Table 5: BE & nonBE classification results obtained on the Test set. The best results in each column
are highlighted in bold, and the second-best values are underlined.

Model BACC↑
(%)

F1-Score↑
(%) DOR↑ ACC↑

(%)
SEN↑
(%)

SPC↑
(%)

PRE↑
(%) Params Time

(ms)
MobileViT [47] 52.64±0.61 11.85±0.48 1.82±0.19 81.42±0.87 21.06±0.93 84.23±1.13 9.31±0.76 4.94M 4.53
ResNet [25] 51.75±1.02 10.89±1.06 1.16±0.41 78.27±1.31 23.10±2.54 80.40±1.60 7.79±0.74 0.70M 1.99
MobileNet [31] 47.84±2.52 10.79±1.98 0.89±0.38 74.08±6.31 17.02±4.60 78.66±7.31 9.07±2.99 0.69M 1.72
LeViT [23] 49.29±0.69 6.73±1.90 1.51±1.45 84.17±2.46 8.49±3.57 90.09±3.73 8.99±5.68 7.01M 2.65
EfficientFormer [40] 50.63±1.86 12.40±2.43 1.06±0.31 72.04±3.45 27.90±8.73 73.37±5.23 8.82±0.63 3.25M 3.63
MedMamba [81] 50.83±1.00 6.91±3.51 5.89±9.66 86.56±4.48 8.94±7.45 92.73±6.55 11.56±7.98 14.45M 6.06
ConvKAN [7] 49.26±0.84 3.49±3.13 0.44±0.37 87.42±4.55 3.82±4.89 94.70±6.32 6.56±7.09 3.49M 29.96

Time: Inference time per image on RTX 4090 GPU.

morphological abnormalities resulting from pathological alterations. To address these challenges,
future research may benefit from exploring multi-scale feature fusion strategies and advanced edge
refinement techniques. Given the relatively fixed spatial arrangement of bones, incorporating global
contextual information could be particularly advantageous for improving segmentation accuracy.

4.2 Classification of BE

The advanced binary classification methods of BE were evaluated on the RAM-W600 dataset. The
selected classification models included MobileViT [47], ResNet [25], MobileNet [31], LeViT [23],
EfficientFormer [40], MedMamba [81], and ConvKAN [7]. In line with standard practice, classifica-
tion performance was quantified using balanced accuracy (BACC) [8], F1-score [14], diagnostic odds
ratio (DOR) [22], accuracy (ACC) [21], sensitivity (SEN) [3], specificity (SPC) [3], and precision
(PRE) [64].

Implementation details The dataset was split according to the configuration shown in Table 7 (b)
in Sec. B.4. BE classification was performed on a joint-surface basis, focusing on the six joint
surfaces of clinical interest. A joint surface was labeled as BE if its corresponding SvdH BE score
was greater than 0. All experiments were repeated five times on a single NVIDIA RTX4090 GPU
using five fixed random seeds (1024, 2025, 3407, 4096, 5214) to ensure reproducibility. All ROIs
were resized to 224×224 pixels and used as input to the model. Model training utilized the AdamW
optimizer with a weight decay of 1e-2. The initial learning rate was set to 1e-6 and decayed using
a cosine annealing schedule (CosineAnnealingLR). Training was performed for 100 epochs with a
batch size of 16 and standard data augmentation techniques.

Benchmark results The results in Table 5 reveal that mainstream models achieve only modest
performance in terms of BACC and F1-score, with the best results reaching 52.64% (MobileViT)
and 12.40% (EfficientFormer), respectively, indicating limited robustness in distinguishing BE from
nonBE cases. In contrast, the DOR exhibits considerable variability across models, peaking at 5.89
(MedMamba). Notably, some models (e.g., ConvKAN) achieve relatively high specificity (94.70%)
while suffering from extremely low sensitivity (3.82%), reflecting a strong bias toward negative
predictions. This inconsistency across metrics underscores the difficulty of the task, likely stemming
from extreme class imbalance and the subtle radiographic presentation of BE. The confusion matrices
in Fig. 4 further illustrate this imbalance, showing that all models consistently perform better on
the majority class (nonBE) than on the minority class (BE), highlighting the inherent challenge of
detecting subtle BE features.

Future research should further focus on enhancing the model’s ability to detect subtle BE features
under highly imbalanced data conditions. In clinical practice, early or mild BE lesions typically
exhibit low visibility, presenting as small and inconspicuous regions that are easily confounded by
overlapping bones, imaging artifacts, or noise. Although advanced BE lesions are more prominent in
size, they often co-occur with other RA manifestations such as joint space narrowing and osteophyte
formation, introducing additional sources of interference. These challenges collectively complicate
the end-to-end scoring process for BE across different stages of the disease. To improve model
performance on such difficult samples, future efforts may explore targeted augmentation strategies
for minority classes or develop architectures capable of extracting weak pathological signals. Such
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Figure 4: BE & nonBE confusion matrix results for classification of BE.

advancements would enhance both the sensitivity and robustness of RA imaging assessment tools,
thereby promoting their clinical applicability and translational value.

5 Conclusions and Limitations

We have introduced RAM-W600, the first publicly available multi-task CR dataset for RA assessment,
which encompasses two key tasks: wrist bone segmentation and SvdH BE localization and scoring.
RAM-W600 has provided high-quality pixel-level annotations for the anatomically complex wrist
region, which often presents with severe bone overlapping and erosive changes. In addition to detailed
annotations, the dataset includes benchmark results for both segmentation and BE scoring tasks.
Experimental findings have demonstrated the considerable challenges posed by these tasks, including
the accurate delineation of bones in the presence of occlusion and erosion in the segmentation task,
and the robust scoring of affected joints in the grading task. By establishing RAM-W600 and its
associated benchmarks, we have offered a valuable resource for advancing research in medical image
analysis. This dataset has opened new avenues for the development and validation of robust CAD
systems and holds promise for improving diagnostic accuracy and clinical decision-making in the
management of RA.

Despite its contributions to advancing CAD for RA, the RAM-W600 dataset has several limitations.
First, the RA cases are primarily derived from a single geographic region and a relatively homo-
geneous ethnic population, which may limit the generalizability of models trained on the dataset
to more diverse clinical settings. This lack of demographic variability could reduce the robustness
of model performance across different populations. Second, the distribution of SvdH BE scores is
imbalanced, with certain score levels notably underrepresented. This imbalance poses challenges
for both training and evaluation, particularly in learning fine-grained disease severity and ensuring
consistent performance across all stages of RA progression.

For wrist bone segmentation, future research should focus on developing dedicated network archi-
tectures that incorporate multi-scale contextual information and boundary-sensitive mechanisms.
Such designs are essential to address the challenges posed by anatomical complexity and projection-
induced overlap in wrist radiographs, particularly for achieving accurate delineation in regions
affected by bone overlap and BE. Regarding the SvdH BE scoring task, early-stage lesions often
present weak radiographic signals and are obscured by overlapping structures, while advanced-stage
cases commonly exhibit coexisting RA-related features, resulting in complex local characteristics. In
addition, the highly imbalanced distribution of BE samples continues to hinder lesion recognition
in current approaches. To overcome these limitations, it is crucial to design model components
capable of extracting subtle pathological features, thereby improving sensitivity and robustness in
detecting early-stage BE. Advancements in these directions are expected to significantly enhance the
automation of RA wrist image analysis and reinforce its clinical utility in diagnosis and longitudinal
disease monitoring.
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A RAM-W600 Data Access and Format

The data can be accessed on HuggingFace at https://huggingface.co/datasets/
TokyoTechMagicYang/RAM-W600. The dataset has a permanent DOI: https://doi.org//10.
57967/hf/5328. The benchmark and code can be accessed on Github at https://github.com/
YSongxiao/RAM-W600.

The dataset is organised in two main folders (Segmentation/ and BE_SvdH_Prediction/) corre-
sponding to two tasks. The dataset structure is shown as follows:

RAM -W600/
|-- JointLocationDetection/
| |-- images/ # Contains all input images in BMP format
| |-- 0145 _0004_L.bmp
| |-- 0145 _0004_R.bmp
| |-- ...
| |-- Joints.coco.json # Ground -truth annotations for joints ’

↪→ locations
|-- BoneSegmentation/
| |-- images/ # Contains all input images in BMP

↪→ format
| |-- 0001 _0001_L.bmp
| |-- 0001 _0001_R.bmp
| |-- ...
| |-- masks/ # Contains corresponding masks in

↪→ NumPy (.npy) format
| |-- train/
| |-- 0006 _0001_L.npy
| |-- ...
| |-- val/
| |-- 0001 _0001_R.npy
| |-- ...
| |-- test/
| |-- 0002 _0001_L.npy
| |-- ...
|-- SvdHBEScoreClassification/
| |-- train/
| |-- 0003 _0001_L/
| |-- DistalRadius.bmp
| |-- DistalUlna.bmp
| |-- ...
| |-- ...
| |-- val/
| |-- 0001 _0001_R/
| |-- DistalRadius.bmp
| |-- DistalUlna.bmp
| |-- ...
| |-- ...
| |-- test/
| |-- 0005 _0001_L/
| |-- DistalRadius.bmp
| |-- DistalUlna.bmp
| |-- ...
| |-- ...
| |-- JointBE_SvdH_GT.json # Ground -truth annotations for joint

↪→ BE scores
|-- Metadata.xlsx # Metadata for the dataset

• BoneSegmentation/images/: Contains all original images in BMP format. Each file is
named as [PatientID]_[StudyID]_[L/R].bmp, where L and R indicate the left or right
hand, respectively.
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• BoneSegmentation/masks/: Contains the corresponding segmentation masks stored as
NumPy arrays (.npy). The masks are organized into train/, val/, and test/ subsets,
with filenames matching the corresponding images.

• JointLocationDetection/images/: Contains all original images in BMP format. Each
file is named as [PatientID]_[StudyID]_[L/R].bmp, where L and R indicate the left
or right hand, respectively.

• JointLocationDetection/Joints.coco.json: A JSON file containing ground-truth
annotations for the joint scores, indexed by case identifiers. The format of entries in JSON
file is shown as follows:

{
"images ": [

{
"id": 0,
"file_name ": "0334 _0001_R.bmp",
"width": 600,
"height ": 600

},
...

],
"annotations ": [

{
"id": 3281,
"image_id ": 546,
"category_id ": 1,
"bbox": [170.0 , 305.88 , 235, 235],
"area": 23680.95 ,
"segmentation ": [],
"iscrowd ": 0

},
...

],
"categories ": [

{
"id": 1,
"name": "DistalRadius",
"supercategory ": "joint"

},
{

"id": 2,
"name": "DistalUlna",
"supercategory ": "joint"

},
...

]
}

Each entry in the images list represents a wrist radiograph, while the annotations list con-
tains bounding box annotations for individual joints, identified by their category_id. The
categories section maps category IDs to specific joint names such as Lunate, Scaphoid,
and Trapezium.

• SvdHBEScoreClassification/train/val/test/: Each subset contains folders named
as [PatientID]_[StudyID]_[L/R], representing individual cases. Inside each folder are
six ROI images in BMP format, each corresponding to different joint surfaces.

• SvdHBEScoreClassification/JointBE_SvdH_GT.json: A JSON file containing
ground-truth annotations for the joint scores, indexed by case identifiers. The format
of entries in JSON file is shown as follows:

{
"identifier ": "0035 _0001_L",
"patient_id ": "0035" ,
"study_id ": "0001" ,

19



"hand": "L",
"joints ": {

"Metacarpal1st ": 0,
"Trapezium ": 0,
"Scaphoid ": 0,
"Lunate ": 0,
"DistalRadius ": 0,
"DistalUlna ": 0

}
}

• Metadata.xlsx: An Excel file containing patient-, study-, and image-level metadata. It
provides identifiers, demographic attributes, institutional sources, imaging parameters, and
clinical reference scores. The key columns are described as follows:

– Mapped Image Stem: A normalized identifier of each radiographic study in the format
XXXX_XXXX. This stem represents the study itself rather than a direct image file. The
corresponding radiographs are determined by appending the hand side (_L or _R) to
the stem, which specifies the left or right hand image.

– PatientID: An anonymized patient identifier, allowing multiple studies from the same
individual to be grouped.

– StudyID: An anonymized study identifier, denoting examinations at different time
points.

– IsRA: Binary flag for rheumatoid arthritis status (1 = RA patient, 0 = non-RA control).
– PatientSex: Patient sex, recorded as M (male), F (female) or O (unknown).
– PatientAge: Age at the time of the study, expressed in years (e.g., 59.5).
– InstitutionName: Source institution where the radiograph was acquired (e.g., HM-

CRD, SCGH, HU).
– StudyDate (Days): Relative day of the study, with baseline examination set to 0.
– ImagerPixelSpacing: In-plane resolution of the image in millimeters, recorded as
[row spacing, column spacing].

– [Rows, Columns]: Image resolution in pixels.
– L / R: Indicators for whether valid SvdH scores are available for the left or right hand

(1 = available, 0 = unavailable).
– SvdH_L / SvdH_R: Total Sharp/van der Heijde erosion scores for the left and right

hands.
– Joint-specific scores: Integer scores for six anatomical regions (Metacarpal1st,

Trapezium, Scaphoid, Lunate, DistalRadius, DistalUlna), recorded separately for left
(_L) and right (_R) hands. Higher scores indicate more severe erosion.

B Detailed Information of RAM-W600

B.1 License and Attribution

The conventional radiographs and associated annotations (segmentation masks and SvdH BE scores)
in the dataset are licensed under the Creative Commons Attribution 4.0 International License (CC BY
4.0).

For proper attribution when using this dataset in any publications or research outputs, please cite with
the DOI.

Suggested Citation: Yang, S., Wang, H., Fu, Y., Tian, Y., Kamishima, T., Ikebe, M., Ou, Y., &
Okutomi, M.(2025). RAM-W600: A Multi-Task Wrist Dataset and Benchmark for Rheumatoid
Arthritis. https://doi.org/10.57967/hf/5328

B.2 Data Rights Compliance and Issue Reporting

We are committed to complying data protection rights in accordance with relevant regulations, includ-
ing but not limited to the General Data Protection Regulation (GDPR). All personally identifiable
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Table 6: Radiographic imaging configuration parameters

HU HMCRD SCGH DHA BTXRD FA

Model - Radnext 32 KXO-50G IPI LAB(Secondary) - -
Manufacturer FUJIFILM HITACHI TOSHIBA Array(Secondary) - FUJIFILM

& Philips
Aluminum filter (mm) NO 0.5 NO - - -

Tube voltage (kV) - 50 45 - - -
Tube current (mA) - 100 250 - - -

Exposure time (mSec) - 25 14 - - -
Source to image (cm) - 100 100 - - -
Resolution (mm/pixel) 0.15 0.15 0.15 - - -

Image size (pixel) 2010×1670 2010×1490 2010×1490 1744×2126 - -
Bit depth (bit) 16 10 10 16 - -

HU: Faculty of Health Sciences, Hokkaido University.
HMCRD: Hokkaido Medical Center for Rheumatic Diseases, Japan.
SCGH: Sapporo City General Hospital, Japan.
DHA: Digital Hand Atlas, University of Southern California, US.
BTXRD: Bone Tumor X-ray Radiograph Dataset, Biomedicine Discovery Institute and Department of
Biochemistry and Molecular Biology, Monash University, Australia.
FA: FracAtlas, Islamic University of Technology, Bangladesh.

Bony Ankylosis in Advanced RA images 
430

External & Internal nonRA images
248

Raw Data
1048

External
(DICOM & BMP)

132

Internal 
(DICOM)

916
Wrist Bone Segmentation (BMP)

618

Classification of BE (BMP)
800   6

Figure 5: A total of 1048 DICOM-format wrist radiographs were collected, including 916 internal
cases from our institutions and 132 external cases from three different sources. Within the internal
cohort, 116 images were identified as non-RA, while the remaining were RA cases. All 132 external
images were non-RA. After filtering, 430 advanced RA cases with bony ankylosis were excluded. The
final dataset was used for two primary tasks: wrist bone instance segmentation (618 BMP images) and
BE classification (800 images × 6 joint areas). The external non-RA images were used exclusively
for comparison purposes.

information (PII) has been removed through anonymization techniques. If any individual represented
in the dataset wishes to have their data removed, we provide a clear and accessible process for issue
reporting and resolution via our GitHub repository. Concerned parties are encouraged to contact the
authors directly through the contact form linked on the GitHub page. Upon receiving a request, we
will engage with the individual to verify their identity and promptly remove the relevant data entries
from the dataset.

B.3 Data Acquisition

Radiographs were collected from six institutions with varying imaging configurations, including
differences in equipment models, acquisition settings, and image resolutions, as shown in Table 6.
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Table 7: Joint score distribution across train, valid, and test sets of RAM-W600.

(a) Wrist Bone Segmentation Dataset

Score MC 1 Tr Sca Lu Radius Ulna
Train Set

0 414 384 373 421 423 400
1 5 8 14 2 0 9
2 6 30 34 2 2 15
3 0 3 4 0 0 1
5 0 0 0 0 0 0

Valid Set

0 66 61 56 69 66 59
1 1 3 6 0 3 0
2 2 5 7 0 0 10
3 0 0 0 0 0 0
5 0 0 0 0 0 0

Test Set

0 117 110 110 121 120 116
1 4 4 0 1 1 2
2 3 8 11 2 3 6
3 0 2 3 0 0 0
5 0 0 0 0 0 0

(b) SvdH BE Scoring Dataset

Score MC 1 Tr Sca Lu Radius Ulna
Train Set

0 493 357 338 531 541 470
1 55 117 123 11 8 37
2 11 83 79 8 4 38
3 0 2 16 5 6 0
5 0 0 3 4 0 4

Valid Set

0 67 42 49 74 68 58
1 10 20 11 2 6 11
2 4 18 16 1 3 8
3 0 1 3 0 4 3
5 0 0 2 4 0 1

Test Set

0 140 90 94 157 151 123
1 18 39 36 2 7 21
2 2 28 26 0 1 13
3 0 3 4 0 1 3
5 0 0 0 1 0 0

Table 8: Institution score distribution across train, valid, and test sets of RAM-W600.

(a) Wrist Bone Segmentation Dataset

Score HMCRD SCGH HU DHA BTXRD FA
Train Set

NonRA 540 0 24 318 210 36
0 1038 208 41 0 0 0
1 26 9 3 0 0 0
≥2 76 17 4 0 0 0

Valid Set

NonRA 24 0 12 48 24 12
0 212 21 24 0 0 0
1 13 0 0 0 0 0
≥2 21 3 0 0 0 0

Test Set

NonRA 96 0 0 72 48 24
0 354 100 0 0 0 0
1 8 4 0 0 0 0
≥2 28 10 0 0 0 0

(b) SvdH BE Scoring Dataset

Score HMCRD SCGH HU
Train Set

0 1628 353 744
1 93 32 226
≥2 103 41 128

Valid Set

0 256 18 84
1 15 5 40
≥2 23 1 44

Test Set

0 408 92 255
1 21 8 94
≥2 39 8 35

B.4 Data Pre-Processing

In the pre-processing pipeline of RAM-W600 (Fig. 5), we first localize the ROI around the wrist
across all 1048 DICOM-format hand radiographs. For the wrist bone segmentation task, we exclude
430 images exhibiting bony ankylosis associated with advanced RA, resulting in a curated subset
of 618 BMP-format images for segmentation. For the BE classification task, we exclude only 248
non-RA images from the internal and external cohorts, retaining 800 RA cases from our internal
dataset. These cases are subsequently converted to BMP format, and six joint-level crops are extracted
per image, yielding a total of 4800 samples for BE classification.

The wrist bone segmentation dataset and the SvdH BE scoring dataset are split independently.
To prevent data leakage and reduce potential bias, we randomly partition the cases into training,
validation, and test sets based on unique patient IDs using an approximate ratio of 70%/10%/20%.
Table 7 summarizes the distribution of the six wrist joints (1st Metacarpal, Trapezium, Scaphoid,
Lunate, Radius, and Ulna) across scores 0–5 within the training, validation, and test subsets of both
datasets. The majority of joints are assigned an SvdH BE score of 0, while those with a score of 5 are
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(A) Wrist Image (C) Ground Truth(B) Predicted Masks

Metacarpal 1 (MC 1st)
Metacarpal 2 (MC 2nd)
Metacarpal 3 (MC 3rd)

Trapezoid (Tz)
Trapezium (Tr)
Scaphoid (Sca)

Metacarpal 4 (MC 4th)
Metacarpal 5 (MC 2th)
Hamate (Ham)

Capitate (Cap)
Lunate (Lu)
Pisiform & Triquetrum (Tri)

Radius
Ulna
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Bone DSC NSD
Cap 0.965 0.807

Radius 0.976 0.785
Ulna 0.985 0.957
Ham 0.965 0.773
Lu 0.894 0.428
Tri 0.968 0.873
Sca 0.967 0.877
Tz 0.970 0.817
Tr 0.942 0.762

MC 1st 0.984 0.958
MC 2nd 0.976 0.890
MC 3rd 0.967 0.846
MC 4th 0.980 0.952
MC 5th 0.977 0.948

Overall 0.965 0.834
Table 1: Segmentation performance metrics for case 0019_0001_L showing Dice Similarity Coeffi-
cient (DSC) and Normalized Surface Distance (NSD) values. All values rounded to three decimal
places.
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Figure 6: Wrist bone segmentation.(A) Original wrist radiograph. (B) Predicted instance segmentation
masks. (C) Ground truth annotations. The right panel reports the segmentation performance per bone.

(A) Wrist Image (B) Bone Mask Annotation (C) Bone Location Detection (D) SvdH BE Scoring

MC1 BE: 0

Lu BE: 0

Tr BE: 1

Radius BE: 0

Sca BE: 0

Ulna BE: 0

Figure 7: Image input and annotation.(A) Raw wrist radiograph. (B) Instance bone segmentation
mask annotation (C) bone location annotations for target regions. (D) SvdH BE scores assigned to
each joint region.

extremely rare. In both tasks, the number of joints decreases as the score increases, resulting in a
clearly imbalanced distribution.

In addition, Table 8 further details the institution-wise distribution of cases across the two datasets.
Table 8a presents the distribution for the wrist bone segmentation task, where both RA and nonRA
cases are included, while Table 8b shows the corresponding distribution of joint scores in the SvdH
BE scoring dataset. This breakdown highlights the contribution of each collaborating institution and
illustrates how score imbalance manifests across different sources and subsets.

B.5 Dataset Maintenance

As the authors and maintainers of this dataset, we affirm that while the dataset is self-contained and
does not depend on any external links or content, we may provide future updates, such as adding new
cases or incorporating additional tasks. These potential updates aim to enhance the dataset’s value
while maintaining its long-term usability.

B.6 Wrist Bone Segmentation

Wrist bone segmentation from radiographs is a critical prerequisite for downstream tasks such as joint
localization, morphological analysis, and BE scoring in RA assessment. As illustrated in Fig. 6, this
task involves delineating multiple overlapping and irregularly shaped carpal and metacarpal bones,
which often exhibit low contrast and anatomical ambiguity in radiographs. Accurate segmentation
enables reliable quantification of structural features and supports automated interpretation in clinical
workflows.

In this task, we annotate 14 distinct wrist bones, including both carpal, metacarpal components
and Distal Radius & Distal Ulna. Notably, the Pisiform and Triquetrum bones are difficult to
distinguish in clinical practice due to their overlapping appearance and low visibility on standard
radiographs. Consequently, it is challenging to evaluate them as independent diagnostic regions [51].
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MC1 BE 
GT: 0 Pred: 0

Lu BE 
GT: 0 Pred: 0

Tr BE 
GT: 1 Pred: 1

Radius  BE 
GT: 0 Pred: 0

Sca BE 
GT: 0 Pred: 0

Ulna BE 
GT: 0 Pred: 0

Figure 8: BE and nonBE Classification. The left panel shows six annotated joint regions used for BE
classification. The right panels display each joint with ground truth (GT) and predicted (Pred) SvdH
BE scores.

Therefore, we merge these two structures into a single category during annotation to reflect their
practical indistinguishability. The input to the segmentation model is the wrist ROI cropped from
the radiograph, and the output and ground truth are a pixel-wise mask for each annotated bone, as
illustrated in Fig. 7.

B.7 Classification of BE

BE classification is a key component of the SvdH scoring system, widely adopted in clinical practice
for evaluating joint damage in RA. As illustrated in Fig. 8, this task involves identifying subtle
pathological changes in individual carpal bones from radiographs, such as cortical breaks and
irregular bone surfaces. The classification task is particularly challenging due to the subtlety of
erosion features and the high degree of anatomical overlap in wrist joints. Accurate BE detection is
essential for automated RA scoring systems and downstream severity assessment, yet remains difficult
for both traditional and deep learning models, especially under class imbalance and in early-stage
lesions.

In this task, we annotate the SvdH BE scores for six joint surfaces within the wrist. To formulate
the problem as a binary classification task, all joint surfaces with non-zero scores were treated as
positive cases (i.e., exhibiting BE), while those with a score of zero were treated as negative cases
(i.e., without BE). The input to the model is the ROI corresponding to an individual joint surface, and
the output is a probability distribution over the two classes, representing the model’s confidence in
the presence or absence of BE, as shown in Fig. 7.

C Detailed Analysis of Experimental Results

C.1 Wrist Bone Segmentation

C.1.1 Overall Segmentation Results

Table 9 and Table 10 report the segmentation results in terms of DSC and NSD, which together provide
complementary perspectives on overlap accuracy and boundary precision. A consistent observation
across both metrics is that supervised models substantially outperform foundation models, with
Mamba-based architectures leading the performance on nearly all joints. This gap highlights that
current foundation models are not sufficient for wrist bone segmentation, making supervised baselines
essential for establishing reliable performance benchmarks.

In terms of DSC (Table 9), supervised models achieve very high overlap accuracy, often above 97%
across most bones. SwinUMamba yields the strongest results, surpassing all other methods in almost
every region. For example, it achieves 98.84% on the Radius, 98.74% on the MC1, and 98.64% on the
Metacarpal 5th. UMambaEnc and UMambaBot also deliver competitive results, particularly on large
and structurally less ambiguous bones such as the Distal Ulna (98.81% and 98.75%). Transformer-
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Table 9: DSC performance on all joints. The best results in each column are highlighted in bold, and
the second-best values are underlined.

Model Cap Radius Ulna Ham Lu Tri Sca
Supervised Models

UNet 96.24±0.11 98.17±0.05 98.20±0.06 96.25±0.09 95.29±0.19 96.37±0.08 96.80±0.13
DeepLabV3 96.49±0.08 98.32±0.04 97.98±0.02 96.26±0.04 95.47±0.06 96.20±0.06 96.68±0.06
FPN 96.32±0.08 98.21±0.03 98.22±0.06 96.08±0.09 95.43±0.12 96.26±0.13 96.45±0.12
PSPNet 94.91±0.13 97.39±0.15 96.87±0.20 94.78±0.05 93.51±0.20 94.93±0.09 94.69±0.26
DeepLabV3+ 96.50±0.08 98.39±0.01 98.44±0.03 96.21±0.06 95.52±0.03 96.55±0.04 96.73±0.07
SegResNet 95.68±0.31 97.97±0.15 98.16±0.03 95.84±0.22 95.10±0.25 96.00±0.20 96.60±0.24
UNet++ 97.06±0.08 98.46±0.06 98.55±0.13 96.75±0.04 95.91±0.13 97.11±0.09 97.28±0.05
SegFormer 96.63±0.06 98.34±0.04 98.37±0.04 96.35±0.08 95.78±0.09 96.56±0.08 96.84±0.08
TransUNet 97.41±0.10 98.71±0.07 98.88±0.02 97.18±0.03 96.51±0.06 97.30±0.06 97.73±0.02
UKAN 96.32±0.16 97.97±0.73 98.44±0.06 96.26±0.16 95.64±0.09 96.36±0.10 96.72±0.08
UMambaBot 97.32±0.04 98.55±0.05 98.75±0.02 97.04±0.04 96.26±0.07 97.23±0.09 97.59±0.03
UMambaEnc 97.33±0.06 98.56±0.12 98.81±0.03 97.00±0.05 96.38±0.10 97.40±0.08 97.59±0.10
SwinUMamba 97.58±0.02 98.84±0.02 98.91±0.06 97.29±0.05 96.66±0.09 97.50±0.06 97.85±0.03

Foundation Models
SAM (box) 90.67±3.68 92.49±2.35 93.21±11.63 87.29±3.57 83.38±5.17 92.72±3.71 87.64±5.09
SAM (pt) 75.64±27.72 92.04±6.54 96.56±5.28 73.56±22.31 81.30±13.21 91.08±8.03 79.09±18.78
MedSAM (box) 82.54±6.60 90.63±2.88 94.91±4.64 82.43±5.70 80.06±5.91 88.18±4.11 82.05±6.47

Model Tr Tz MC1 MC2 MC3 MC4 MC5
Supervised Models

UNet 95.69±0.19 94.14±0.08 98.14±0.09 97.72±0.27 96.87±0.09 97.30±0.07 97.90±0.07
DeepLabV3 95.53±0.08 93.98±0.07 97.98±0.02 97.77±0.08 97.00±0.03 97.30±0.02 97.89±0.03
FPN 95.43±0.11 93.86±0.07 97.90±0.10 97.96±0.05 97.14±0.09 97.53±0.06 98.06±0.05
PSPNet 94.12±0.09 92.90±0.08 96.67±0.08 96.94±0.02 95.90±0.12 96.17±0.05 96.96±0.14
DeepLabV3+ 95.67±0.06 94.04±0.07 98.21±0.02 98.01±0.04 97.18±0.02 97.62±0.03 98.18±0.02
SegResNet 95.36±0.30 94.07±0.13 97.93±0.25 97.22±1.10 96.86±0.13 97.48±0.17 98.05±0.09
UNet++ 96.16±0.08 94.62±0.07 98.39±0.09 98.32±0.07 97.52±0.04 98.03±0.03 98.44±0.05
SegFormer 95.75±0.06 94.24±0.10 98.16±0.03 98.07±0.04 97.20±0.04 97.72±0.02 98.17±0.03
TransUNet 96.54±0.04 95.05±0.09 98.64±0.06 98.45±0.15 97.65±0.08 98.16±0.16 98.49±0.21
UKAN 95.70±0.05 94.20±0.07 98.16±0.07 97.96±0.08 97.16±0.06 97.69±0.05 98.19±0.05
UMambaBot 96.42±0.07 94.85±0.05 98.56±0.04 98.42±0.03 97.69±0.04 98.21±0.02 98.55±0.02
UMambaEnc 96.50±0.06 94.90±0.11 98.60±0.08 98.44±0.04 97.69±0.05 98.13±0.08 98.54±0.06
SwinUMamba 96.67±0.02 95.14±0.04 98.74±0.04 98.57±0.01 97.84±0.02 98.31±0.01 98.64±0.01

Foundation Models
SAM (box) 83.89±7.05 85.81±6.99 97.13±1.06 91.08±18.93 88.96±14.95 78.39±31.39 89.68±20.65
SAM (pt) 66.05±22.68 59.37±19.22 96.90±1.74 83.90±20.71 86.35±17.22 76.50±22.18 67.02±25.35
MedSAM (box) 82.43±5.49 74.59±9.48 92.76±6.80 87.06±6.66 85.95±4.00 80.18±8.83 87.14±6.02

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).

based models including TransUNet and SegFormer maintain stable performance but are slightly
behind the Mamba-based architectures, while CNN-based methods such as UNet and DeepLabV3
show moderate accuracy with greater fluctuations across regions. In sharp contrast, foundation
models lag considerably, with SAM (pt) and MedSAM recording DSC values 10 to 20 points lower
than supervised models; for instance, SAM (pt) achieves only 75.64% on the Capitate and 76.50% on
the Metacarpal 4th.

Turning to NSD (Table 10), which emphasizes surface-level boundary precision, the same trend
persists but the performance gap becomes even more pronounced. SwinUMamba again dominates
with top results across nearly all joints, showing notable advantages on small and challenging
structures such as the Trapezium and Triquetrum where precise boundary delineation is critical.
UMambaEnc and UMambaBot remain highly competitive, confirming their robustness across both
large bones and finer anatomical details. By comparison, CNN-based models exhibit larger drops
in NSD despite acceptable DSC values, indicating difficulties in capturing fine boundary details
for complex joint shapes. Foundation models perform the worst under this metric, with SAM- and
MedSAM-based approaches consistently trailing far behind, underscoring their limited ability to
recover accurate anatomical boundaries in wrist bone segmentation. These findings indicate that
overlap-based DSC alone may mask boundary errors, and NSD is necessary to reveal clinically
critical differences in fine anatomical structures.
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Table 10: NSD performance on all joints. The best results in each column are highlighted in bold,
and the second-best values are underlined.

Model Cap Radius Ulna Ham Lu Tri Sca
Supervised Models

UNet 75.30±1.04 82.16±0.43 94.05±0.44 78.34±0.66 74.95±0.64 82.69±0.37 83.13±1.17
DeepLabV3 74.77±0.94 82.18±0.78 93.29±0.15 76.32±0.66 74.40±0.56 80.29±0.52 80.74±0.53
FPN 73.08±0.88 81.14±0.47 93.94±0.39 74.62±1.01 73.40±0.94 80.32±1.44 78.43±1.33
PSPNet 59.43±1.20 70.27±1.72 83.14±2.08 62.68±0.50 61.55±0.94 68.70±1.09 63.22±1.85
DeepLabV3+ 75.29±0.94 83.44±0.32 96.17±0.28 76.28±0.58 74.05±0.35 83.56±0.38 81.78±0.89
SegResNet 70.71±2.29 80.15±1.62 93.92±0.35 75.30±1.38 73.49±1.73 79.72±1.86 81.10±1.95
UNet++ 82.04±0.82 85.22±1.26 96.05±0.41 81.97±0.35 78.28±0.86 88.78±0.36 87.00±0.60
SegFormer 76.97±0.83 82.99±0.71 95.77±0.27 78.06±1.01 76.49±0.81 84.17±0.55 82.60±0.96
TransUNet 84.82±0.94 89.16±0.70 98.16±0.15 85.98±0.43 82.21±0.69 90.12±0.33 90.96±0.33
UKAN 74.13±1.17 81.26±2.53 95.25±0.41 77.15±1.03 75.89±0.87 82.19±0.82 81.38±0.79
UMambaBot 84.19±0.41 87.19±0.94 97.59±0.12 84.93±0.24 81.00±0.48 90.22±0.73 89.99±0.14
UMambaEnc 84.17±0.68 87.62±1.47 97.80±0.20 84.55±0.68 81.52±0.70 91.02±0.45 90.06±0.55
SwinUMamba 86.71±0.20 90.86±0.33 98.24±0.30 87.31±0.47 83.75±0.58 92.29±0.37 91.99±0.17

Foundation Models
SAM (box) 57.24±14.60 61.51±8.00 82.09±14.87 46.82±11.76 56.04±11.46 65.82±16.59 63.67±10.05
SAM (pt) 46.48±28.63 62.62±12.69 91.68±12.18 32.01±20.09 54.22±16.56 66.38±21.09 53.52±22.49
MedSAM (box) 20.81±13.22 45.31±13.06 75.01±19.14 18.82±10.95 38.20±17.00 37.38±16.40 26.78±12.72

Model Tr Tz MC1 MC2 MC3 MC4 MC5
Supervised Models

UNet 74.47±1.52 70.46±0.69 92.91±0.59 90.64±1.62 84.13±0.64 90.07±0.50 93.75±0.15
DeepLabV3 72.75±0.80 68.31±0.55 92.25±0.11 91.87±0.38 85.46±0.14 91.30±0.19 93.75±0.29
FPN 71.15±0.97 66.85±1.08 90.36±0.78 91.89±0.38 84.73±0.44 90.79±0.44 93.48±0.59
PSPNet 59.64±1.22 59.15±0.47 81.49±0.62 84.69±0.26 75.78±1.35 81.37±0.44 85.32±0.62
DeepLabV3+ 73.86±0.61 68.78±0.70 93.53±0.27 92.48±0.23 85.45±0.19 91.69±0.14 95.20±0.18
SegResNet 71.99±2.26 70.53±1.33 91.49±1.42 88.49±3.81 83.46±0.67 90.48±1.14 94.20±0.58
UNet++ 77.99±0.81 74.07±0.49 94.44±0.70 94.19±0.48 87.59±0.21 93.95±0.30 96.22±0.27
SegFormer 74.57±0.54 70.75±0.86 93.40±0.36 93.31±0.15 86.16±0.36 92.89±0.13 95.31±0.21
TransUNet 81.55±0.30 77.19±0.81 96.20±0.85 95.62±0.35 88.73±0.39 95.77±0.10 96.27±3.00
UKAN 73.97±0.65 69.99±0.92 92.62±0.35 91.38±0.59 85.07±0.41 91.83±0.36 94.59±0.44
UMambaBot 81.20±0.67 75.52±0.66 95.95±0.22 94.99±0.32 88.83±0.21 95.63±0.10 97.22±0.08
UMambaEnc 82.07±0.50 76.15±1.04 96.34±0.33 95.13±0.38 88.73±0.38 95.07±0.62 97.14±0.25
SwinUMamba 83.21±0.13 77.95±0.61 97.34±0.28 96.15±0.15 89.92±0.16 96.32±0.06 97.91±0.06

Foundation Models
SAM (box) 47.55±12.22 43.56±16.30 88.81±5.26 78.79±15.78 65.68±11.48 65.60±20.89 78.44±20.84
SAM (pt) 34.34±20.19 23.77±17.87 88.52±6.65 66.97±23.86 60.10±17.24 54.50±23.73 45.50±27.15
MedSAM (box) 32.61±10.31 15.90±12.79 61.62±12.88 48.02±17.31 40.55±15.58 38.63±14.70 43.69±13.67

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).
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Table 11: DSC performance on representative wrist bones. (Mann-Whitney U test between BE &
nonBE, *: P < 0.05; **: P < 0.01; ***: P < 0.001).

Model
Radius Ulna Lunate

BE nonBE P BE nonBE P BE nonBE P
Supervised Models

UNet 97.96±0.06 98.25±0.05 ** 98.31±0.03 98.16±0.08 94.76±0.08 95.49±0.23 ***
DeepLabV3 98.13±0.07 98.40±0.04 *** 97.92±0.02 98.00±0.02 94.61±0.15 95.81±0.05 ***
FPN 98.04±0.06 98.28±0.02 *** 98.24±0.06 98.21±0.06 94.77±0.14 95.69±0.13 ***
PSPNet 97.28±0.13 97.44±0.17 * 96.93±0.23 96.85±0.20 93.30±0.17 93.59±0.25 **
DeepLabV3+ 98.21±0.03 98.46±0.02 *** 98.45±0.03 98.44±0.03 94.85±0.09 95.79±0.05 ***
SegResNet 97.79±0.12 98.05±0.16 ** 98.24±0.12 98.14±0.08 94.73±0.22 95.25±0.26 ***
UNet++ 98.39±0.05 98.48±0.07 98.68±0.10 98.49±0.15 95.18±0.11 96.20±0.14 ***
SegFormer 98.17±0.05 98.40±0.04 *** 98.35±0.04 98.37±0.05 95.07±0.12 96.06±0.08 ***
TransUNet 98.63±0.06 98.75±0.07 *** 98.89±0.02 98.87±0.02 95.82±0.09 96.78±0.05 ***
UKAN 97.79±0.80 98.04±0.69 ** 98.44±0.12 98.44±0.03 94.75±0.10 95.98±0.10 ***
UMambaBot 98.54±0.07 98.55±0.06 98.52±0.05 98.84±0.02 95.69±0.04 96.48±0.09 ***
UMambaEnc 98.54±0.09 98.57±0.13 98.66±0.08 98.86±0.03 95.81±0.12 96.60±0.10 ***
SwinUMamba 98.80±0.03 98.86±0.02 * 98.97±0.02 98.88±0.08 95.95±0.10 96.94±0.09 ***

Foundation Models
SAM (box) 92.51±2.43 92.48±2.34 95.68±2.22 92.24±13.54 83.28±4.56 83.42±5.41
SAM (pt) 92.25±5.13 91.95±7.04 97.55±2.37 96.18±6.02 83.16±5.49 80.58±15.15
MedSAM (box) 90.32±3.48 90.75±2.62 95.09±3.38 94.84±5.06 78.68±6.17 80.59±5.75

Model
Scaphoid Trapezium MC1

BE nonBE P BE nonBE P BE nonBE P
Supervised Models

UNet 96.86±0.15 96.77±0.12 95.30±0.20 95.84±0.21 * 98.15±0.04 98.13±0.12
DeepLabV3 96.56±0.10 96.73±0.06 94.88±0.13 95.78±0.08 *** 97.91±0.03 98.01±0.02 *
FPN 96.22±0.14 96.54±0.12 * 94.85±0.12 95.66±0.10 *** 97.92±0.10 97.89±0.11
PSPNet 94.35±0.44 94.82±0.25 ** 93.83±0.12 94.23±0.13 96.52±0.13 96.74±0.08
DeepLabV3+ 96.69±0.05 96.74±0.08 95.05±0.05 95.91±0.07 *** 98.19±0.01 98.22±0.03
SegResNet 96.54±0.31 96.62±0.21 94.91±0.32 95.54±0.30 ** 97.98±0.20 97.91±0.27 *
UNet++ 97.37±0.06 97.24±0.06 * 95.59±0.11 96.38±0.07 *** 98.46±0.11 98.36±0.08
SegFormer 96.66±0.15 96.91±0.06 95.19±0.07 95.96±0.07 ** 98.18±0.03 98.16±0.04
TransUNet 97.73±0.03 97.73±0.03 96.03±0.08 96.74±0.05 *** 98.68±0.03 98.62±0.07 *
UKAN 96.59±0.12 96.77±0.07 95.15±0.08 95.91±0.05 ** 98.23±0.05 98.13±0.09 *
UMambaBot 97.65±0.05 97.57±0.03 * 95.81±0.07 96.65±0.09 *** 98.63±0.03 98.54±0.05 *
UMambaEnc 97.62±0.13 97.59±0.11 95.87±0.12 96.75±0.06 *** 98.68±0.03 98.57±0.11 *
SwinUMamba 97.92±0.04 97.82±0.03 96.17±0.08 96.87±0.03 *** 98.76±0.04 98.74±0.05

Foundation Models
SAM (box) 87.82±5.20 87.58±5.07 82.26±8.43 84.52±6.37 97.17±1.08 97.12±1.06
SAM (pt) 76.62±22.58 80.05±17.13 65.13±22.88 66.40±22.71 96.56±2.10 97.03±1.58
MedSAM (box) 81.55±6.35 82.25±6.55 81.69±6.59 82.71±5.01 93.37±5.55 92.52±7.24

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).

C.1.2 Impact of BE

Table 11 and Table 12 report segmentation outcomes for representative wrist bones with and without
BE. Both DSC and NSD indicate that joints affected by BE are harder to segment. The gap is
generally small for DSC, typically about 1%, but it is more evident for NSD, commonly 2% to
6%. Across both metrics, supervised methods outperform foundation models. Since BE alters bone
morphology through erosion and deformation, analyzing BE versus nonBE groups allows us to assess
whether such pathological changes affect segmentation accuracy.

For DSC (Table 11), supervised approaches achieve very high accuracy above 95% in both the BE
and nonBE groups. SwinUMamba attains the best scores on nearly all bones, remaining between
98% and 99% in nonBE cases and only slightly lower in BE cases, for example 98.0% on the Distal
Radius and 97.9% on the Ulna. UMambaEnc and UMambaBot also maintain stable performance
above 97%. By contrast, CNN baselines such as UNet and DeepLabV3 yield slightly lower values,
typically 96% to 97%, and foundation models perform worse overall with DSC around 90% to 95%,
regardless of BE status.
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Table 12: NSD performance on representative wrist bones. (Mann-Whitney U test between BE &
nonBE, *: P < 0.05; **: P < 0.01; ***: P < 0.001).

Model
Radius Ulna Lunate

BE nonBE P BE nonBE P BE nonBE P
Supervised Models

Unet 80.57±0.62 82.78±0.51 * 94.12±0.21 94.02±0.56 72.24±0.69 76.00±0.86 ***
DeepLabV3 79.68±1.15 83.15±0.70 *** 93.01±0.43 93.40±0.21 71.71±1.13 75.45±0.57 ***
FPN 78.61±0.91 82.12±0.43 *** 93.73±0.24 94.02±0.47 72.70±1.30 73.68±1.12
PSPNet 69.94±1.87 70.40±1.80 83.78±2.46 82.90±1.97 61.34±1.35 61.63±1.10
DeepLabV3+ 81.31±0.45 84.27±0.37 *** 95.96±0.33 96.25±0.27 72.56±0.67 74.63±0.59 *
SegResNet 78.70±1.60 80.71±1.67 * 94.07±1.06 93.86±0.20 71.80±1.58 74.15±1.80 *
Unet++ 84.84±1.10 85.36±1.34 96.49±0.37 95.88±0.47 74.94±0.86 79.57±0.94 ***
SegFormer 81.01±0.73 83.76±0.71 *** 95.72±0.35 95.78±0.29 74.84±1.33 77.14±0.64 *
TransUNet 87.96±0.72 89.63±0.72 ** 97.79±0.11 98.31±0.17 79.20±0.97 83.39±0.73 ***
UKAN 79.61±2.39 81.90±2.60 ** 94.99±0.55 95.35±0.35 73.07±1.11 76.98±0.82 ***
UMambaBot 86.83±1.42 87.33±0.88 96.66±0.29 97.95±0.12 ** 78.85±0.23 81.84±0.64 ***
UMambaEnc 87.19±1.27 87.79±1.58 97.16±0.20 98.05±0.24 * 79.42±0.86 82.34±0.72 **
SwinUMamba 90.63±0.50 90.95±0.35 98.45±0.21 98.15±0.36 81.05±0.58 84.81±0.60 ***

Foundation Models
SAM (box) 63.34±7.41 60.80±8.14 85.47±7.28 80.78±16.78 55.49±10.55 56.26±11.84
SAM (pt) 63.67±11.79 62.22±13.06 93.45±8.22 91.00±13.38 54.76±13.71 54.01±17.61
MedSAM (box) 44.22±16.33 45.73±11.62 74.88±18.11 75.06±19.63 32.76±15.99 40.32±16.99 *

Model
Scaphoid Trapezium MC1

BE nonBE P BE nonBE P BE nonBE P
Supervised Models

Unet 84.69±1.41 82.52±1.14 ** 73.35±1.63 74.90±1.58 93.61±0.34 92.64±0.71 **
DeepLabV3 80.82±1.11 80.71±0.61 70.01±1.07 73.81±0.80 ** 92.29±0.33 92.24±0.16
FPN 77.30±1.43 78.88±1.33 69.27±1.39 71.88±0.81 * 91.02±0.70 90.10±0.81 *
PSPNet 61.72±2.67 63.81±1.73 60.33±1.06 59.37±1.37 81.94±1.14 81.31±0.44
DeepLabV3+ 81.97±0.51 81.71±1.06 71.63±0.46 74.73±0.75 * 93.89±0.31 93.39±0.31
SegResNet 80.83±2.88 81.20±1.61 70.73±2.73 72.48±2.10 92.39±0.91 91.14±1.64 **
Unet++ 87.84±0.61 86.68±0.67 75.68±0.99 78.89±0.85 * 95.06±0.77 94.19±0.72
SegFormer 81.93±1.63 82.86±0.74 72.84±0.88 75.24±0.57 93.91±0.32 93.21±0.43
TransUNet 90.86±0.27 91.01±0.45 79.43±0.43 82.38±0.37 * 96.53±0.52 96.08±0.99
UKAN 81.20±0.80 81.45±0.90 72.05±0.67 74.71±0.70 93.46±0.44 92.29±0.42 *
UMambaBot 90.60±0.38 89.75±0.09 78.82±0.33 82.13±0.90 ** 96.31±0.23 95.81±0.32
UMambaEnc 90.56±0.97 89.86±0.70 79.46±0.70 83.09±0.55 ** 96.83±0.13 96.14±0.44
SwinUMamba 92.47±0.36 91.80±0.13 81.13±0.53 84.02±0.17 * 97.48±0.18 97.28±0.32

Foundation Models
SAM (box) 63.44±11.32 63.76±9.58 47.29±14.25 47.64±11.42 89.71±5.22 88.46±5.27
SAM (pt) 51.73±25.27 54.21±21.42 33.50±21.40 34.66±19.81 88.06±7.41 88.70±6.37
MedSAM (box) 26.40±14.98 26.92±11.81 35.81±10.66 31.37±9.96 * 63.48±13.71 60.90±12.55

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).

For NSD (Table 12), the difference between BE and nonBE cases is more pronounced, especially
in the Lunate and Trapezium. SwinUMamba again delivers the highest accuracy, reaching about
90% to 97% in nonBE cases and only a few percentage points lower in BE cases. UMambaEnc and
UMambaBot remain competitive, whereas CNN baselines generally fall to the low 80s in BE joints.
Foundation models show the weakest boundary accuracy, often dropping below 70% in BE cases.
For example, MedSAM records only 32.8% on the Lunate with BE. These findings indicate that
BE degrades boundary precision more than volumetric overlap, and that supervised Mamba family
models, particularly SwinUMamba, are the most resilient to these challenges. This suggests that
accurate segmentation in BE-affected regions remains a critical challenge for clinical applicability, as
these areas are most relevant for disease monitoring and treatment decisions.
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Table 13: Instance segmentation results on overlapping regions. The best results in each column are
highlighted in bold, and the second-best values are underlined.

Model DSC ↑ (%) NSD ↑ (%) VOE ↓ (%) MSD ↓ (pix) MSD Fail Rate (%)
Supervised Models

UNet 65.80±0.83 66.60±1.30 46.10±0.88 2.77±0.15 3.28±0.31
DeepLabV3 68.60±0.36 67.01±0.45 43.49±0.36 2.27±0.04 3.07±0.10
FPN 67.11±0.39 64.68±0.82 45.32±0.45 2.41±0.03 2.83±0.20
PSPNet 61.12±0.54 54.42±0.60 52.07±0.55 3.10±0.07 4.20±0.15
DeepLabV3+ 68.02±0.29 66.39±0.38 44.21±0.35 2.31±0.02 2.69±0.05
SegResNet 57.30±5.65 58.63±7.12 53.38±4.36 3.22±0.74 8.51±10.72
UNet++ 70.16±0.68 71.31±0.57 41.46±0.62 2.16±0.04 2.81±0.21
SegFormer 68.61±0.15 67.94±0.35 43.37±0.20 2.30±0.04 2.63±0.13
TransUNet 73.27±1.01 75.66±0.51 37.70±0.90 1.91±0.04 2.61±0.23
UKAN 62.68±1.86 63.85±1.85 48.73±1.72 2.67±0.44 3.72±0.51
UMambaBot 72.70±0.18 74.55±0.40 38.55±0.17 2.08±0.18 2.60±0.11
UMambaEnc 72.45±0.47 74.67±0.51 38.79±0.52 1.97±0.03 2.77±0.15
SwinUMamba 74.45±0.25 77.15±0.20 36.25±0.27 1.83±0.02 2.69±0.20

Foundation Models
SAM (box) 3.78±2.83 2.51±1.88 97.09±2.34 9.49±7.79 89.96
SAM (pt) 3.41±1.90 2.58±1.72 97.91±1.29 49.63±23.80 61.13
MedSAM (box) 5.32±4.16 3.34±2.52 96.31±3.12 12.10±5.43 75.79

Foundation models: one inference (mean ± std across cases, MSD Fail Rate excluded).
Supervised models: five runs (mean ± std across runs).

C.1.3 Segmentation of Overlapping Regions

Although overall DSC and NSD values are high, visual inspection reveals that overlapping bones
remain problematic, motivating a focused evaluation on these regions. Table 13, Table 14, and
Table 15 demonstrate that overlapping wrist bones are particularly difficult to segment. SwinUMamba
achieves the best performance across all metrics. In Table 13, it reaches 74.5% DSC and 77.2% NSD,
while also obtaining the lowest VOE (36.3%) and the lowest MSD (1.83 pixels). The failure rate
remains below 3%, indicating strong robustness. In contrast, foundation models almost completely
fail in this scenario, with DSC values below 6% and NSD values below 4%. These results show that
such models cannot effectively separate closely packed structures without task-specific training.

For DSC in Table 14, SwinUMamba ranks first in nearly all pairwise regions. For example, it achieves
88.1% on the Radius–Lunate interface and 89.7% on the Capitate–Scaphoid interface. These results
are about 1% to 3% higher than those of UMambaEnc and UMambaBot. CNN-based models such
as UNet and DeepLabV3 are usually more than 10% lower. TransUNet is the only Transformer
baseline that approaches the Mamba-based models, with 86.3% on Distal Radius–Lunate and 85.0%
on Trapezium–Meracarpal 2nd, but its performance is less consistent. SegResNet produces the lowest
results, especially on Hamate-related overlaps, where its accuracy falls below 50%.

For NSD in Table 15, a similar trend is observed, with boundary effects more evident. SwinU-
Mamba again achieves the best results, reaching 87.1% on the Hamate–MC5 interface and 86.6%
on the Capitate–Scaphoid interface, while remaining above 79% even on difficult regions such as
Trapezium–Trapezoid. UMambaEnc and UMambaBot follow closely, usually within 2% to 3%
of SwinUMamba. TransUNet shows mixed performance; for instance, it improves to 69.9% on
Capitate–Metacarpal 3rd but lags behind on other pairs due to underestimation of overlap. CNN
baselines drop further, often to 60% to 70%, and foundation models show the weakest performance,
with NSD consistently below 5% on almost all overlapping regions.

These results suggest that overlapping regions remain the most challenging aspect of wrist bone
segmentation. Future work should focus on developing specialized strategies to improve performance
in these areas, such as overlap-aware loss functions, boundary refinement modules, or targeted data
augmentation. Enhancing segmentation accuracy in overlapping regions will be critical for achieving
reliable and clinically applicable models. Improving overlap segmentation is especially important
for clinical reliability, since diagnostic assessment often depends on accurate separation of adjacent
bones in crowded anatomical areas.
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Table 14: Overlap DSC performance on overlapping regions. The best results in each column are
highlighted in bold, and the second-best values are underlined.

Model Cap-Sca Cap-Tz Cap-MC3 Radius-Lu Radius-Sca Ham-MC4 Ham-MC5
Supervised Models

Unet 84.47±0.70 49.31±1.78 39.78±7.58 81.30±0.63 76.06±0.94 43.49±7.90 85.74±0.28
DeepLabV3 84.85±0.26 50.78±2.23 49.65±0.70 82.73±0.73 76.18±0.88 51.81±1.82 85.86±0.20
FPN 83.57±0.40 48.86±1.14 45.76±2.51 81.15±0.55 75.50±0.67 50.23±1.67 85.03±0.43
PSPNet 75.76±0.74 49.85±1.10 35.00±1.90 73.82±0.44 69.53±1.68 39.91±1.21 80.24±0.54
DeepLabV3+ 84.04±0.47 50.46±0.59 49.34±1.83 82.75±0.12 76.73±0.15 51.92±1.86 85.48±0.18
SegResNet 83.38±1.53 31.14±14.43 19.11±12.34 78.97±1.51 74.26±1.49 22.44±14.80 85.21±1.15
Unet++ 86.99±0.27 55.20±1.52 50.89±1.80 84.07±0.49 78.59±0.45 52.37±2.20 87.51±0.41
SegFormer 85.12±0.39 49.64±0.86 49.08±1.20 83.03±0.54 77.59±0.83 50.73±0.98 86.34±0.23
TransUNet 88.96±0.19 59.28±1.15 51.39±10.98 88.04±0.26 83.01±0.44 57.01±1.23 88.92±0.19
UKAN 84.74±0.54 38.25±13.95 28.58±10.77 66.13±36.37 74.94±2.83 42.81±10.79 86.04±0.35
UMambaBot 88.58±0.14 59.13±0.97 56.24±0.91 85.74±0.64 81.01±0.60 56.31±1.06 88.48±0.16
UMambaEnc 88.71±0.54 58.56±0.82 54.49±2.11 86.25±0.34 80.90±0.90 53.31±3.81 88.26±0.19
SwinUMamba 89.71±0.13 60.01±0.52 57.51±0.64 88.09±0.13 83.40±0.27 59.59±0.78 89.48±0.19

Foundation Models
SAM (box) 1.00±5.86 0.03±0.34 0.00±0.00 0.54±5.94 0.40±4.38 0.00±0.00 0.14±0.65
SAM (pt) 2.09±7.30 0.69±4.10 0.12±0.54 0.84±6.05 0.66±5.06 0.31±1.13 1.21±3.53
MedSAM (box) 8.88±21.35 0.43±4.64 0.45±3.44 2.14±10.70 4.94±14.02 0.11±0.83 5.48±13.45

Model Lu-Sca Sca-Tr Tr-Tz Tz-MC1 Tr-MC2 Tz-MC2 MC2-MC3
Supervised Models

Unet 74.14±0.39 66.03±0.96 88.07±0.31 68.08±0.88 73.79±10.99 26.74±6.07 64.24±1.09
DeepLabV3 73.72±0.50 66.20±0.72 88.08±0.20 69.26±0.28 80.35±0.42 33.18±0.83 67.74±0.49
FPN 72.27±0.65 66.26±0.96 87.49±0.21 65.91±1.20 78.46±0.65 33.33±1.96 65.71±0.65
PSPNet 63.95±1.10 61.35±0.39 85.16±0.30 58.42±1.39 72.12±0.61 31.25±1.58 59.39±1.66
DeepLabV3+ 72.65±0.43 66.50±0.43 88.01±0.14 66.68±0.92 79.07±0.59 32.02±1.14 66.62±0.77
SegResNet 72.70±1.67 65.25±1.25 88.00±0.22 53.52±18.05 58.48±33.39 12.36±8.09 57.38±4.50
Unet++ 75.60±0.72 69.77±1.13 88.99±0.09 70.08±1.25 81.46±0.70 32.46±2.67 68.26±1.16
SegFormer 73.72±0.79 67.87±0.73 88.39±0.17 70.48±0.64 80.39±0.32 31.28±0.74 66.85±0.34
TransUNet 77.80±0.26 72.16±0.50 89.95±0.20 74.58±0.58 83.90±0.16 39.27±3.11 71.50±0.59
UKAN 73.87±0.83 65.82±1.42 88.39±0.17 63.17±3.31 79.20±1.10 25.24±3.39 60.31±7.51
UMambaBot 77.67±0.33 71.11±0.65 89.44±0.15 74.14±0.85 83.14±0.32 36.43±0.77 70.32±0.55
UMambaEnc 77.75±0.35 72.17±0.51 89.79±0.19 73.97±0.44 82.90±0.43 36.79±1.79 70.38±0.77
SwinUMamba 79.70±0.60 71.94±0.41 90.21±0.13 77.24±0.95 84.53±0.06 38.71±1.21 72.18±0.68

Foundation Models
SAM (box) 0.52±4.92 0.00±0.00 46.72±32.90 0.00±0.00 1.02±6.01 0.29±2.25 0.00±0.00
SAM (pt) 1.14±3.49 1.24±4.44 31.73±17.32 0.05±0.31 3.85±5.32 1.93±6.69 0.10±0.53
MedSAM (box) 1.77±6.18 0.33±1.76 38.47±28.17 2.50±8.19 3.97±11.70 0.80±3.33 0.42±2.58

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).
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Table 15: Overlap NSD performance on overlapping regions. The best results in each column are
highlighted in bold, and the second-best values are underlined.

Model Cap-Sca Cap-Tz Cap-MC3 Radius-Lu Radius-Sca Ham-MC4 Ham-MC5
Supervised Models

UNet 74.70±1.62 68.99±1.00 64.07±4.10 72.51±0.89 73.19±0.84 53.46±4.02 78.07±1.33
DeepLabV3 72.88±0.76 67.01±1.18 67.08±0.65 71.83±1.73 70.15±1.77 57.32±0.46 77.14±0.32
FPN 68.41±1.18 67.91±0.74 65.33±1.09 69.49±1.27 68.44±1.54 56.62±1.90 74.32±1.35
PSPNet 51.44±1.21 62.87±0.98 55.30±0.83 56.47±0.98 57.62±2.00 44.42±0.59 61.76±1.50
DeepLabV3+ 71.16±1.40 67.90±1.31 67.72±0.75 71.37±0.62 70.40±0.47 58.40±0.58 75.64±0.59
SegResNet 71.48±3.92 58.18±12.06 41.02±24.53 69.84±1.65 70.77±1.59 36.11±21.44 77.50±1.42
UNet++ 80.33±0.76 71.79±0.98 69.30±0.51 77.23±1.18 75.37±0.84 60.32±1.06 82.17±0.89
SegFormer 73.21±1.41 69.25±0.75 67.99±0.62 71.79±0.81 71.10±1.89 59.48±0.92 79.04±0.71
TransUNet 84.69±0.57 74.89±1.31 69.91±4.83 84.13±0.16 82.37±0.43 66.49±1.64 85.67±0.60
UKAN 73.75±0.77 60.99±13.29 56.68±7.33 59.72±26.29 69.73±2.49 52.76±4.84 78.49±1.11
UMambaBot 83.93±0.41 74.89±0.31 72.12±0.42 80.31±1.66 79.30±1.69 64.90±1.73 84.62±0.42
UMambaEnc 84.32±1.41 74.88±1.06 71.52±0.59 81.15±1.32 79.16±1.40 62.80±3.55 84.25±0.35
SwinUMamba 86.58±0.46 75.22±0.37 73.42±0.43 85.37±0.39 83.53±0.52 67.44±0.51 87.13±0.49

Foundation Models
SAM (box) 0.98±5.41 0.16±1.73 0.00±0.00 0.26±2.84 0.47±4.71 0.00±0.00 1.31±5.52
SAM (pt) 1.32±4.61 1.34±4.08 0.50±1.97 0.80±4.61 1.22±5.00 0.76±2.40 2.97±5.18
MedSAM (box) 3.64±8.67 0.17±1.89 0.73±5.19 2.14±8.44 4.62±10.37 0.15±1.52 6.18±12.19

Model Lu-Sca Sca-Tr Tr-Tz Tz-MC1 Tr-MC2 Tz-MC2 MC2-MC3
Supervised Models

UNet 68.15±0.60 68.29±0.93 63.58±1.52 72.96±1.32 57.88±10.60 50.17±5.65 66.45±1.39
DeepLabV3 66.52±0.91 67.51±1.73 62.41±1.17 72.29±0.84 63.09±0.89 52.59±1.35 67.01±0.45
FPN 62.54±1.43 67.31±0.62 59.06±1.30 67.25±1.30 58.59±1.86 52.31±1.63 64.68±0.82
PSPNet 48.54±1.87 57.64±1.25 50.13±1.02 58.50±1.24 48.71±0.77 48.97±0.85 54.42±0.60
DeepLabV3+ 64.20±0.79 68.70±1.26 62.06±0.44 69.61±1.23 60.82±1.13 52.35±0.62 66.39±0.38
SegResNet 65.16±2.72 67.23±1.39 63.21±1.64 59.98±14.16 45.19±26.18 31.04±18.28 58.63±7.12
UNet++ 71.29±1.61 72.70±1.66 67.06±0.48 75.67±1.43 67.84±1.59 55.13±1.63 71.30±0.57
SegFormer 66.06±1.79 70.09±1.39 64.00±0.80 74.29±0.97 63.59±1.00 52.11±0.89 67.94±0.34
TransUNet 76.90±0.89 75.67±0.68 71.88±0.80 81.25±0.57 73.38±0.35 58.16±2.20 73.89±0.73
UKAN 68.05±1.24 68.51±0.89 63.42±0.81 66.16±3.47 62.21±2.08 48.77±3.72 63.86±1.86
UMambaBot 74.86±0.71 75.95±0.72 70.21±0.56 80.82±1.34 72.76±0.73 55.81±0.85 74.55±0.39
UMambaEnc 75.08±1.18 77.10±0.39 71.72±0.86 81.01±0.68 72.31±1.40 56.19±0.98 74.67±0.51
SwinUMamba 78.88±0.86 77.27±0.61 73.40±0.64 84.71±0.98 75.61±0.41 56.37±0.83 75.24±0.64

Foundation Models
SAM (box) 0.33±2.64 0.00±0.00 27.66±19.73 0.00±0.00 1.79±7.52 0.86±4.99 0.00±0.00
SAM (pt) 1.67±4.55 1.85±5.79 12.41±12.48 0.45±1.77 5.24±8.63 4.72±9.65 0.36±1.65
MedSAM (box) 0.73±3.84 0.60±2.87 15.03±14.29 5.15±10.61 3.97±11.70 0.80±3.33 0.70±3.29

Foundation models: one inference (mean ± std across cases).
Supervised models: five runs (mean ± std across runs).
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Figure 9: Additional visual results for wrist bone segmentation (Part A).
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Figure 10: Additional visual results for wrist bone segmentation (Part B).

C.1.4 Qualitative Visualization

The visualization in Fig. 9 and Fig. 10 provides a detailed comparison of wrist bone segmentation
results across different models. Visual inspection is crucial because numerical metrics alone may
overlook local errors that are clinically significant, particularly around overlaps and pathological
regions. All methods show noticeable errors compared to the ground truth, especially around
boundaries where bones overlap or the image contrast is low. These problems are most pronounced
in the Trapezium, Trapezoid, and Scaphoid, where irregular bone shapes and partial occlusions cause
broken or incomplete predictions. In these regions, CNN-based models such as UNet, DeepLabV3,
and FPN often produce blurred edges and fail to separate adjacent bones. Transformer-based models
like TransUNet and SegFormer generate smoother boundaries, but they still lose fine details in
overlapping areas. Mamba-based models, including UMambaEnc, UMambaBot, and SwinUMamba,
show more stable performance. Their predictions follow bone contours more closely and reduce
over-segmentation in crowded regions. SwinUMamba in particular achieves consistent delineation
across both central and peripheral bones, with fewer gaps along thin boundaries. Nevertheless, even
these models struggle in cases with severe overlap, where errors such as bone merging or missing
edges remain visible. Foundation models perform poorly in visual comparison. SAM and MedSAM
often produce coarse or fragmented masks that do not align with bone structures, highlighting their
limitations when applied directly without fine-tuning. These models frequently miss small bones
or collapse large bones into a single region, showing that task-specific supervision is essential for
accurate wrist bone segmentation. In addition, BE-affected regions reveal another challenge. Across
all models, bone erosion leads to irregular segmentation, with inward collapse or shape distortion
often under-segmented. While some models occasionally capture these abnormalities, no architecture
provides consistent results in such cases. This emphasizes the need for future work on methods
that can better handle overlapping boundaries, subtle bone structures, and pathological deformations
in order to achieve robust clinical applicability. Such qualitative evaluation further highlights that
achieving clinically trustworthy segmentation requires not only high numerical scores but also
consistent performance on challenging anatomical and pathological cases.

C.1.5 Summary and Discussion

Our quantitative and qualitative analyses lead to the following view. Current foundation models
are not yet able to capture fine anatomical boundaries or resolve closely apposed bones in wrist
radiographs, therefore supervised baselines remain necessary as clinically meaningful references that
exploit pixel-level annotations. Although overall DSC and NSD are high, these global metrics can
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Figure 11: Confusion matrix results for classification of BE and nonBE.

conceal systematic errors that concentrate at bone interfaces and in low-contrast zones; the overlap-
focused evaluation exposes these failure modes and aligns with visual inspection. Bone erosion alters
local geometry and degrades boundary fidelity more than volumetric overlap, hence BE-stratified
reporting is essential for clinical relevance. Among supervised methods, Mamba-based architectures
strike a favorable balance between global context and local detail, whereas Transformers may sacrifice
small-structure precision and CNNs struggle at complex interfaces; this mechanism-level difference
explains the observed ranking across DSC and NSD. Moving toward clinical reliability will likely
require a combination of architectural and procedural advances, including interface-aware or contour-
consistency losses, boundary refinement and instance disambiguation modules, targeted augmentation
that simulates occlusion and erosion, sampling curricula that oversample rare overlap patterns and
BE cases, active learning to prioritize uncertain regions for annotation, and uncertainty estimation
or test-time adaptation to mitigate distribution shift. Evaluation practice should likewise move
beyond single numbers by reporting per-interface metrics, BE-stratified results, failure rates, and
distance-based errors alongside DSC and NSD. Together, these directions align the benchmark with
clinical priorities and outline a path toward robust and deployable wrist bone segmentation.

C.2 Classification of BE

Figure 11 shows confusion matrices for BE and nonBE classification across six representative
carpal joints. Most models achieve high accuracy on nonBE cases, where predictions are strongly
concentrated along the diagonal. However, substantial misclassification occurs in BE cases, reflecting
the inherent difficulty of detecting pathological changes. This contrast shows that overall accuracy can
be misleading, as it is dominated by the abundance of nonBE cases while failing to reflect systematic
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errors in BE detection. For example, MobileNet and ResNet frequently misclassify BE samples as
nonBE in the Distal Ulna and Trapezium, indicating a bias toward conservative predictions. Similar
trends are observed in the Scaphoid, where BE cases are often confused with nonBE due to irregular
joint boundaries. This joint-specific variability indicates that anatomical complexity directly affects
classification difficulty, and a single model may not perform equally well across all regions.

More advanced architectures show partial improvements. MedMamba and ConvKAN achieve more
balanced predictions, particularly in the Lunate and Distal Radius, where BE cases are identified
with higher sensitivity compared to earlier CNN-based models. Nevertheless, even these models still
exhibit notable false negatives, especially in challenging regions such as the Scaphoid and Trapezium.
This suggests that while recent methods better capture morphological changes, robust recognition
of erosive patterns remains unresolved. Clinically, missing even a small number of BE cases may
delay diagnosis or underestimate disease severity, underscoring the need for higher sensitivity in
BE detection. These results highlight the importance of designing models capable of learning
discriminative features that generalize well to pathological variations, especially in early-stage RA
where accurate BE detection is clinically critical.

Future work should address the extreme class imbalance between BE and nonBE cases through
techniques such as focal loss or targeted data augmentation, and explore generative approaches for
synthesizing BE-like patterns, in order to enhance the ability of models to capture subtle pathological
features.

D Broader Impact

This work provides a publicly available and well-annotated multi-task wrist dataset and benchmark
designed to advance research in RA diagnosis using conventional wrist radiographs. This resource
enables researchers to build and evaluate advanced models for RA-related tasks with consistency
and rigor. The authors do not anticipate any negative societal impacts stemming from this work.
On the contrary, a positive impact may arise through the development of robust computer-aided
diagnosis systems, which can facilitate early detection and monitoring of RA with reduced reliance
on manual annotations. This has the potential to enhance clinical efficiency, reduce expert workload,
and improve access to specialized care, particularly in under-resourced healthcare settings.
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