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ABSTRACT

To obtain a joint representation from multimodal data in variational autoencoders
(VAEs), it is important to infer the representation from arbitrary subsets of modal-
ities after learning. A scalable way to achieve this is to aggregate the inferences
of each modality as experts. A state-of-the-art approach to learning this aggre-
gation of experts is to encourage all modalities to be reconstructed and cross-
generated from arbitrary subsets. However, this learning may be insufficient if
cross-generation is difficult. Furthermore, to evaluate its objective function, expo-
nential generation paths concerning the number of modalities are required. To al-
leviate these problems, we propose to explicitly minimize the divergence between
inferences from arbitrary subsets and the surrogate joint posterior that approxi-
mates the true joint posterior. We also proposed using a gradient origin network, a
deep generative model that learns inferences without using an inference network,
thereby reducing the need for additional parameters by introducing the surrogate
posterior. We demonstrate that our method performs better than existing scalable
multimodal VAEs in inference and generation.

1 INTRODUCTION

Our world is characterized by many kinds of information. This multimodal information can be
used to form common concepts. For instance, by recognizing information, such as the landscape
of the beach and the salty scent of the ocean, we can form a concept about the sea. In multi-
modal learning (Baltrušaitis et al., 2018), it has been studied as the learning of joint representations
from multimodal data, especially using variational autoencoders (VAEs) (Kingma & Welling, 2013;
Rezende et al., 2014).

The goal of multimodal representation learning with VAEs (Suzuki et al., 2016; Vedantam et al.,
2018; Wu & Goodman, 2018; Shi et al., 2019) is to learn all given multimodal data and to infer a
joint representation from arbitrary subsets of modalities. This representation is useful as an input
to predict the corresponding label information or as an intermediate representation to generate other
modalities, i.e., cross-generations. However, this is difficult because a joint representation must be
inferred even when some of the modalities are missing at test time. The most naive way to deal
with this difficulty is to have inference models for all possible combinations of modalities, which is
exponentially necessary given the number of modalities.

A scalable way to address this is to consider the inferences for each modality as experts and
combine them to approximate the inferences from an arbitrary subset of modalities. There are
two types of methods for aggregating inferences: products of experts (PoE) (Hinton, 2002)
and mixtures of experts (MoE); VAEs that use these as approximate posteriors are proposed as
MVAE (Wu & Goodman, 2018) and MMVAE (Shi et al., 2019), respectively. Each method has dif-
ferent advantages that exist in a trade-off relationship, i.e., PoE increases the amount of mutual
information with joint representation by increasing the number of modalities, while MoE has the
effect of encouraging cross-generation between modalities.

Sutter et al. (2021) defined the objective of multimodal VAEs to be that the inference of all possi-
ble subsets approximate the true joint posterior, and derived a generalized evidence lower bound
(ELBO) as a lower bound of that objective. This ELBO can be viewed as using a mixture of prod-
ucts of experts (MoPoE) as an aggregation method for inference, which is to generate all modalities
from PoE-aggregated inference of arbitrary subsets. In other words, this model, called MoPoE-VAE,
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tries to achieve the above objective of multimodal VAEs by minimizing all reconstruction and cross-
generation errors in all modality combinations. They showed that this is a generalization that has
the advantages of both PoE and MoE. However, these properties of MoPoE-VAE imply that infer-
ence may not be sufficiently learned when cross-generation is difficult. Furthermore, the number of
paths for this reconstruction and cross-generation in MoPoE-VAE is required to be exponential with
respect to the number of modalities. Therefore, we pursue a scalable method that realizes the above
objective of multimodal VAEs.

In this paper, we propose a different approach to achieve this objective. We first prepare a surrogate
joint posterior, which approximates the true joint posterior given all modalities, and then minimize
the divergence between the PoE-aggregated inferences and this surrogate posterior. The approx-
imation of surrogate posterior is perform by the usual VAE optimization, and we simultaneously
perform this optimization and the divergence minimization above.

The advantages of this new approach are twofold. First, if the surrogate model is sufficiently close
to the true posterior, then optimizing this objective function explicitly achieves the objective of
multimodal VAEs defined in MoPoE, i.e, approximating inferences from arbitrary subsets to the true
posterior. Second, unlike MoPoE, this method is not exponentially more expensive. This is because
this method is based on divergence minimization of all inference models, rather than reconstruction
or cross-generation of all modalities in combination. Although this method requires an additional
surrogate model, the size is not exponential as in previous similar methods (Suzuki et al., 2016;
Vedantam et al., 2018), but only doubles the number of parameters in encoders. Therefore, we call
this method a scalable multimodal VAE (SMVAE).

Furthermore, to reduce the number of parameters in the surrogate posterior, we propose to use
variational gradient origin networks (VGONs) (Bond-Taylor & Willcocks, 2020) for training the
surrogate posterior. VGONs are deep generative models that can rapidly acquire amortized inference
to representations without a trainable network. We call our method that uses VGONs for surrogate
posterior SMVGON.

Experiments show that the proposed method performs better than conventional methods in infer-
ring joint representations and generating modalities on commonly used multimodal benchmarks.
In particular, we show that the proposed method improves the performance in situations where the
conventional methods have difficulty in cross-generation. We also confirm that the performance of
SMVGONs with VGONs is comparable to that of SMVAEs when the input modalities are relatively
simple, without the need for additional inference networks for surrogate posteriors.

2 PRELIMINARY

2.1 MULTIMODAL VAES

Suppose that we are given an i.i.d. dataset {X(i)}Ni=1, where each example is a set of M modalities

X(i) = {x
(i)
m }Mm=1 and where each modality x

(i)
m = [x

(i)
1m, ..., x

(i)
Dmm] has its own dimension Dm

and domain. We assume that these examples are derived from data distribution pdata(X) and that

each example X(i) has a corresponding common latent concept z(i) = [z
(i)
1 , ..., z

(i)
j , ..., z

(i)
J ] ∈ R

J ,
i.e., a joint representation.

Given a training set {X(i)}Ni=1, our objective is to infer a joint representation from the subset of

modalities1 Xs ⊆ X and to generate another subset X ′
s ⊆ X via that representation. In other words,

we aim to obtain an inference p(z|X) and a joint distribution p(X, z) =
∏

xm∈X p(xm|z)p(z) using

a training set. In this study, we designate the generation when Xs = X ′
s as reconstruction and when

Xs ∩X ′
s = ∅ as cross-generation.

To achieve this, we use VAEs (Kingma & Welling, 2013; Rezende et al., 2014), which are deep gen-
erative models that can learn inference in addition to generative models. Therefore, we can acquire
representations of data by inference. The generative model pΘ(X|z) =

∏

xm∈X pθm(xm|z), where

Θ = {θm}Mm=1 is a set of parameters, is parameterized by deep neural networks, and the prior of

1We denote the multimodal set and any subset of it by X and Xs, respectively. We also omit the index of
each example for brevity.
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the latent variable is set as a standard Gaussian p(z) = N (0, I). The objective function of VAEs

is to maximize the marginal log-likelihood of the multimodal dataset:
∑N

i=1 log pΘ(Xi). However,
since it is tractable to optimize this likelihood directly, we introduce an inference model qΦ(z|X) to
approximate the posterior pΘ(z|X), and instead optimize the following lower bound of the marginal
log-likelihood given X , which is called the ELBO:

L(Θ,Φ;X) ≡EqΦ(z|X)[log pΘ(X|z)]−DKL(qΦ(z|X)||p(z)). (1)

Here, the optimization of ELBO with respect to the parameters of the inference model corresponds
to minimizing the following Kullback-Leiber (KL) divergence:

DKL(qΦ(z|X)||pΘ(z|X)). (2)

In other words, maximizing the ELBO encourages bringing the true posterior closer to the inference
model.

After optimizing Equation 1, we aim to infer a joint representation z from an arbitrary subset of
modalities Xs. However, this is challenging because Equation 1 only models joint inferences from
all modalities. Therefore, for inferences from a subset of modalities Xs, other modality inputs are
missing, which results in the inability to infer the representation properly (Suzuki et al., 2016).

A scalable way to alleviate this difficulty is to consider the inference model for each modality as an
expert and approximate the inference model for arbitrary modalities by combining them. There are
two ways to combine experts: product and mixture.

2.1.1 AGGREGATED INFERENCE WITH POE AND MOE

A joint inference given all modalities X is expressed as the following using PoE (Hinton, 2002):

qPoE(z|X) ∝ p(z)
∏

xm∈X

qφm
(z|xm). (3)

In general, PoE cannot be calculated as closed-form, but if we restrict each expert to Gaus-
sian qφm

(z|xm) = N
(

µm, diag(σ2
m))

)

, then Equation 3 is calculable as qPoE(z|X) =

N (µ, diag(σ2)), where µj =
∑

m
µjmσ

−2

jm∑
m

σ
−2

jm

and σ2
j = 1∑

m
σ
−2

jm

. Therefore, the Gaussian PoE

enables us to infer the representation from subset Xs.

However, if we optimize this inference model with Equation 1, then the inference of arbitrary
modalities is not optimized explicitly. Wu & Goodman (2018) proposed to train ELBOs with PoE-
aggregated inferences of all modality combinations

∑

Xs∈X L(Θs,Φs;Xs); however, since the
number of ELBOs increases exponentially, they used the subsampled version. The model that learns
PoE inference by this objective function is called MVAE (Wu & Goodman, 2018).

Another method to combine experts is to use MoE:

qMoE(z|X) =
∑

xm∈X

wmqφm
(z|xm), (4)

where wm is a mixing coefficient of each expert and where
∑

xm∈X wm = 1. Shi et al. (2019)
proposed a VAE with MoE-aggregated inference models called MMVAE.

There is a trade-off between the approximate posterior with PoE and MoE. PoE can perform infer-
ence given any subset and MVAE can learn inference explicitly during training. PoE also has the
property that increasing the size of the subset, i.e., the number of input modalities, leads to an in-
crease in the information content of the inferred latent variables. However, the objective function of
MVAE does not guarantee that the inferences from any subset are the same, since it only learns re-
construction and not cross-generation. Sutter et al. (2021) also pointed out that its objective function
by subsampling is not a valid lower bound.

MMVAE based on MoE, on the other hand, has a valid ELBO and learns to explicitly encourage
cross-generation, which ensures that the inferences from each modality remain consistent. However,
this method only learns inferences from a single modality, and increasing the number of modalities
does not necessarily increase the information content of the representation.
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2.1.2 MOPOE-VAE

Sutter et al. (2021) considered optimization on all possible subsets, i.e., the powerset P(X), and
reestablished the minimization of the following KL divergence as the objective of multimodal VAEs:

argmin
φ

∑

Xc∈P(X)

DKL (qφc
(z|Xk) ‖pΘ(z|X)) . (5)

They then proposed a generalized ELBO that is a valid lower bound on the log-likelihood pΘ(X)
and whose maximization corresponds to the minimization of Equation 5:

EqMoPoE(z|X)[log pΘ(X|z)]−DKL(qMoPoE(z|X)||p(z)), (6)

where the form of the posterior of qMoPoE(z|X) is called MoPoE and is defined as follows:

qMoPoE(z|X) =
1

2M

∑

Xc∈P(X)

qPoE(z|Xc). (7)

A feature of the model that maximizes Equation 6, called MoPoE-VAE, is that it learns to generate all
modalities from all possible subsets, including reconstruction and cross-generation, which improves
the performance of inference and generation from all subsets. In addition, they showed that this
MoPoE-VAE is a generalization of MVAE and MMVAE, specifically MVAE when the summation
in Equation 7 is taken only for a set of all modalities X and MMVAE when it is taken for the single
modalities {xm}Mm=1. Therefore, MoPoE-VAE can be regarded as having the advantages of both
MVAE and MMVAE.

2.2 VARIATIONAL GRADIENT ORIGIN NETWORKS

VGONs (Bond-Taylor & Willcocks, 2020) are deep generative models that can perform amortized
inference equivalent to VAEs without an inference network.2

Given an observed variable x and a latent variable z, let the generative model be pθ(x|z), and
the inference model be qφ,z0

(z) = N (µφ(z0), σ
2
φ(z0)I) with the mean and variance mapped by

trainable linear transformations (µφ and σ2
φ) from a parameter z0. This objective function, ELBO,

given x is defined as follows:

LV GON (θ, φ, z0;x) ≡Eqφ,z0
(z)[log pθ(x|z)]−DKL(qφ,z0

(z)||p(z)). (8)

In VGONs, the estimator for z0 is calculated by a single update based on the gradient of Equation 8:

ẑ0 = z0 +∇z0
LV GON (θ, φ, z0;x), (9)

where z0 = 0, i.e, the initial value of z0 is set to the origin. Using this estimator ẑ0, we can
obtain inference as z ∼ qφ,ẑ0

(z) and can evaluate the objective function as LV GON (θ, φ, ẑ0;x). In
learning, we also backpropagate the gradient of the objective function through Equation 9, which
allowed us to learn both inference and generation simultaneously as in VAEs.

3 METHODS

3.1 ISSUES OF MOPOE-VAE

MoPoE-VAE aims at the objective of Equation 5 by maximizing the ELBO of Equation 6. The two
are equivalent in variational inference, but have different implications for learning including genera-
tive models, i.e., whether the Equation 5 is achieved depends on the performance of all modalities of
reconstruction and cross-generation. Therefore, in situations where cross-generation is difficult, this
objective might not be fully achieved, specifically, the inference and generation of some modalities
might be significantly worse than others.

2In the original paper (Bond-Taylor & Willcocks, 2020), gradient origin networks were introduced first, and
then variational GONs and implicit GONs were introduced as an extension of them.
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Another issue is that the computational cost of evaluating Equation 6 increases exponentially with
the number of modalities. Specifically, we consider a computational path that generates modalities
from inferred representations. In this case, since there are 2M representations to be inferred by
MoPoE, the generation path required to evaluate Equation 6 is M × 2M ; therefore, as the number
of modalities increases, the evaluation of the ELBO becomes more intractable and might also lead
to insufficient learning of cross-generation.

3.2 A SURROGATE JOINT POSTERIOR AND THE REFORMULATION OF THE OBJECTIVE

To address the above issues, we aim to explicitly realize Equation 5. However, since a true posterior
cannot be obtained, we prepare a surrogate joint posterior qΛ(z|X), which is a Gaussian distri-
bution parameterized by a neural network and should approximate the true posterior pΘ(z|X). We
then reformulate our objective as minimizing the KL divergence between subset inferences and this
surrogate posterior:

argmin
φ

∑

Xc∈P(X)

DKL (qφc
(z|Xc) ‖qΛ(z|X)) . (10)

Here, we consider each inference from a subset qφc
(z|Xc) to be expressed in PoE form. Then, since

the surrogate posterior is defined as Gaussian, this KL divergence can be calculated analytically.

If DKL(qΛ(z|X)||pΘ(z|X)) ≈ 0 is satisfied, then this optimization problem is the same as Equa-
tion 5. As explained in Section 2.1, minimizing the KL divergence between the approximate pos-
terior (in this case, the surrogate posterior) and the true posterior is equivalent to maximizing the
ELBO. Therefore, we can first maximize the ELBO L(Θ,Λ;X) sufficiently, and then fix the sur-
rogate posterior and perform the optimization of Equation 10. However, this requires a two-step
learning process, which can be time consuming. Therefore, we propose to optimize these two steps
simultaneously, referring to existing multimodal VAEs with additional inference models such as
JMVAE (Suzuki et al., 2016) (see Section 4), i.e., maximize the following objective function:

L(Θ,Λ;X)−
β

2M

∑

Xc∈P(X)

DKL (qφc
(z|Xc) ‖qΛ(z|X)) , (11)

where β is a hyperparameter that adjusts for the effect of KL divergence in the objective function. We
train this objective function in an end-to-end fashion. Empirically, we have found that this end-to-
end optimization results in higher performance than the two-stage optimization (see Appendix D). At
test time, we infer representations from subsets using a PoE-aggregated inference model qφc

(z|Xc).

The advantages of this objective function are as follows. First, inference models from arbitrary
subsets are learned not by cross-generation, but by explicitly minimizing the divergence between
them and the surrogate posterior. Moreover, the surrogate posterior is learned based on the maxi-
mization of ELBO L(Θ,Λ;X), i.e., based on the reconstruction in all modalities, rather than cross-
generation. Therefore, this objective can mitigate the impact of the difficulty of cross-generation on
the performance of inference and generation.

Secondly, the computational cost can be significantly reduced compared to MoPoE-VAE. There is
only one pass for generation in evaluating this objective function for each modality in L(Θ,Λ;X).
In addition, the second term of Equation 11 computes the inference for all possible subsets, which is
obtained by aggregating the inferences for each modality; therefore, the inference pass is also only
once for each modality.

We call the proposed model a scalable multimodal VAE (SMVAE) because it is scalable to the number
of modalities while explicitly optimizing toward the objective of multimodal VAEs.

3.3 REDUCING THE PARAMETERS IN SURROGATE INFERENCE MODELS

Although the proposed method alleviate the issues of previous multimodal VAEs, it also has the
disadvantage of requiring more parameters for the inference model. The added surrogate posterior
requires as many parameters as all of the unimodal inference models, i.e., the parameter size of the
inference model is twice as large as that of previous models such as MoPoE-VAE. Note that in ex-
isting studies of multimodal VAEs with additional inference models, such as JMVAE, the parameter
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size increases exponentially because inference models are required for each subset. In comparison,
SMVAE keeps the number of required parameters linear with respect to the number of modalities.

To reduce the number of required parameters, we propose to use VGONs to train the surrogate
posterior and generative models for all modalities. In the VGON framework, the surrogate posterior
given multimodal inputs can be defined as qλ,z0

(z) = N (µλ(z0), σ
2
λ(z0)I), where the estimator

of z0 is calculated as ẑ0 = ∇z0
LV GON (Θ, λ, z0;X). Therefore, the objective function of the

proposed method using VGONs is as follows:

LV GON (Θ, λ, z0;X)−
β

2M

∑

Xc∈P(X)

DKL (qφc
(z|Xc) ‖qλ,z0

(z)) . (12)

We refer to this model as SMVGON to distinguish it from SMVAE.

Note that the surrogate posterior is used to approximate the aggregated inference model during train-
ing and is not used during testing; therefore, it is possible to use other iterative inference algorithms.
In this study, however, we used VGONs, which can perform inference in a single iteration, to avoid
slow training.

4 RELATED WORKS

For learning unsupervised joint representations from multimodal data, autoencoder-based methods
have been used (Ngiam et al., 2011; Silberer & Lapata, 2014); however, they have difficulties in the
challenge of missing modalities. Joint representation learning using deep belief networks (Hinton,
2009) or deep Boltzmann machines (Salakhutdinov & Hinton, 2009) can adequately handle missing
modalities (Srivastava & Salakhutdinov, 2012; Srivastava et al., 2012; Sohn et al., 2014), but has
difficulty scaling to large dataset.

Early multimodal learning using VAEs dealt with cross-generation of two modalities, such as
conditional VAEs (Sohn et al., 2015; Kingma et al., 2014) and conditional multi-modal autoen-
coders (Pandey & Dukkipati, 2017). However, because these methods directly learn conditional
generative models, they cannot perform bidirectional generation between modalities, nor can they
obtain joint latent representations of different modalities.

Some studies of multimodal VAEs require additional inference models (Suzuki et al., 2016;
Vedantam et al., 2018; Korthals et al., 2019; Wu & Goodman, 2019). Suzuki et al. (2016) pointed
out that VAEs trained on all modalities have the problem of missing modalities in inference, and
propose to approximate the unimodal inference models to explicitly approach the joint inference
model of VAEs. The objective function of JMVAE is the ELBO of VAE given multimodal inputs
minus the KL divergence corresponding to the above approximation.3 Vedantam et al. (2018) intro-
duced TELBO, where the objective function is composed of the sum of ELBOs that take each set
of modalities as input, using the same models as JMVAE. Korthals et al. (2019) introduced M2VAE
that can be regarded as a combination of JMVAE and TELBO, and Wu & Goodman (2019) pro-
posed VAEVAE that excludes a KL divergence term between joint inference and prior from it. They
are learned end-to-end with a single objective function, except for TELBO.

The challenge with these models is that they require inference models for all modality combina-
tions, i.e., the number of inference models grows exponentially with the number of modalities. Our
proposed method is similar to these methods; however, unlike these methods, required memory cost
is linear in the number of modalities. Kutuzova et al. (2021) proposed to introduce additional uni-
modal inference models instead of a joint inference model, and to reduce the number of required
inference models to the square of the number of modalities. However, this also does not scale with
the number of modalities compared to our linear cost model.

MMJSD proposed by Sutter et al. (2020) is closer to our work, i.e., it encourages unimodal infer-
ence to be closer to joint inference from all modalities. The differences between our work and

3When the number of modalities is two, our proposed method is similar to JMVAE, except that the direction
of KL divergence is reversed and PoE-aggregation is used for inference. Please refer to Appendix A for the
similarity and performance difference between JMVAE and SMVAE. When the number of modalities is two,
the performance of the representations is comparable, but SMVAE outperforms in the cross-generation.
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MMJSD are twofold. First, while MMJSD only considers unimodal inference, our work approx-
imates joint inference with any combination of unimodals, which allows to learn inferences from
arbitrary modalities. The second is the design of a joint inference. MMJSD considers a dynamic
prior that combines all unimodal inferences and considers it a joint inference. However, there is
no guarantee that this dynamic prior approximates the true posterior as in the surrogate posterior
of SMVAE. In addition, since MMJSD uses the same networks for a joint inference and unimodal
inferences, it might be difficult for this joint inference to achieve all of the approximations to the
true posterior and to inferences from arbitrary modalities.

The other topic in multimodal VAEs is the acquisition of modality-specific latent variables, apart
from the global latent variables that embed all modalities (Tsai et al., 2018; Hsu & Glass, 2018;
Sutter et al., 2020). Our study is in a different direction from these, since we are addressing the
possibility of inferring a single joint representation from arbitrary subset of modalities. In the exper-
iments, we confirm that SMVAE achieves high performance with a single latent variable in a task
where the conventional method achieves by adding modality-specific latent variables.

Recently, contrastive-based multimodal (multi-view) learning (Tian et al., 2019; Alayrac et al.,
2020; Tsai et al., 2021) has been gaining attention instead of autoencoder-based, but these aim to
acquire coordinated representations (Baltrušaitis et al., 2018), i.e., they do not assume inference
from a subset of arbitrary modalities.

5 EXPERIMENTS

We use MNIST-SVHN-Text (Sutter et al., 2020), Bimodal CelebA (Sutter et al., 2020), and
PolyMNIST (Sutter et al., 2021) datasets for evaluation. MNIST-SVHN-Text is the MNIST-
SVHN (Shi et al., 2019) with the addition of the text modality, which represents the English name
of each number as text and randomly changes the starting index to give a diversity. Bimodal CelebA
is a dataset of face images from the CelebA (Liu et al., 2015) with additional text describing the
corresponding attribute labels. The PolyMNIST dataset consists of a set of five different MNIST
images with different backgrounds and handwriting styles, each of which is considered a different
modality. Different modalities of the same example have the same digits.

We confirm that the proposed model realizes the objective of Equation 5, i.e., it can properly infer
representations and generate modalities from arbitrary subsets. To evaluate this quantitatively, we
estimate the performance of the representation by training a linear classifier under inference from
all modalities and predicting by it from the representation inferred from subsets. If this evaluation
results in high performance on different subsets, it means that the inference from the subsets is suc-
cessful. We also perform cross-generation from arbitrary modalities and evaluate the performance
of the generated modalities by pre-trained classifiers from Sutter et al. (2020). 4 The interpretation
of this evaluation is the same as in the case of representation.

For the network architectures, we follow Sutter et al. (2020), with 32-dimensional latent variables
for MNIST-SVHN-Text and Bimodal CelebA and 256 for PolyMNIST. The distributions for images
are set to Laplace, and Text is set to categorical. To align the scaling of the likelihoods for each
modality, we divided each likelihood by the dimension of each modality and multiplied the largest
dimension value by all likelihoods so that the coefficient of the likelihood term with the largest
dimension was 1. We use Adam (Kingma & Ba, 2014) for optimization, with a learning rate of
0.001, and a mini-batch size of 256. We set β = 1, and train 50 epochs for MNIST-SVHN-Text and
Bimodal CelebA and 300 epochs for PolyMNIST. All experimental results are the average of three
runs. We implement them using PyTorch (Paszke et al., 2019) and Pixyz (Suzuki et al., 2021).

5.1 MNIST-SVHN-TEXT

Table 1 shows the results of the performance of representations in MNIST-SVHN-Text. MVAE
has better performance for joint representations, but poorer performance for representations inferred
from single modalities. MMVAE has better performance for inference from single modalities, but
worse performance for joint inference. The performance of MoPoE compensates for the shortcom-
ings of both methods. In contrast, the proposed method outperforms MoPoE in inference from

4https://github.com/thomassutter/MoPoE
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Table 1: Classification accuracy on the latent representation in MNIST-SVHN-Text. Bold represents
the highest accuracy in each modality.

MODEL M S T M+S M+T S+T M+S+T

MVAE 0.82 0.43 0.85 0.86 0.98 0.82 0.98
MMVAE 0.97 0.83 0.99 0.90 0.99 0.91 0.93
MOPOE-VAE 0.88 0.75 0.99 0.91 0.98 0.93 0.98
SMVAE 0.95 0.78 0.99 0.96 0.99 0.99 0.99
SMVGON 0.96 0.80 0.99 0.98 0.99 0.99 0.99

Table 2: Classification accuracy of image generations on MNIST-SVHN-Text. The top line shows
modalities generated, and the second line shows modalities conditioned when generating it.

M S T

MODEL S T S+T M+S+T M T M+T M+S+T M S M+S M+S+T

MVAE 0.23 0.17 0.27 0.95 0.44 0.37 0.65 0.78 0.97 0.19 0.25 0.99

MMVAE 0.80 0.99 0.91 0.92 0.36 0.38 0.37 0.45 0.97 0.82 0.89 0.93

MOPOE-VAE 0.79 0.99 0.94 0.96 0.34 0.35 0.35 0.85 0.97 0.81 0.98 0.99

SMVAE 0.72 0.99 0.97 0.97 0.74 0.82 0.77 0.90 0.94 0.74 0.95 0.99

SMVGON 0.75 0.99 0.98 0.97 0.75 0.82 0.78 0.90 0.93 0.75 0.95 0.99

most of the subsets, though it is lower than MMVAE for single modalities. This indicates that
approximations that minimize the divergence from the surrogate posterior are more effective than
computationally expensive approximations based on cross-generation. In addition, the performance
of SMVGON is almost the same as that of SMVAE, which means that the surrogate posterior using
VGON is sufficient as a joint inference model even without inference networks. See Appendix for
the results of inference and generation when training with VGON alone. This result confirms that
the performance of the surrogate posterior is sufficient for this dataset.

The results for generation in Table 2 are similar to those of the inference of the representation. It
can be seen that the performance of the previous work on generating SVHN from subsets is greatly
degraded. This is thought to be due to the difficulty in cross-generation to SVHN, which resulted
in poor learning. On the other hand, the proposed method is able to generate from subsets with
the same performance as from all modalities. This shows that the proposed method achieves our
objective, i.e., to make inference from any modality as good as from all modalities.

Figure 1 shows the results of SVHN generation given different modalities for MoPoE-VAE, SM-
VAE, and SMVGON. We can see that MoPoE-VAE fails to generate SVHN from both MNIST and
Text modalities. On the other hand, SMVAE can generate corresponding and diverse SVHN images
from each modality. Sutter et al. (2020) attempted this generation by introducing modality-specific
latent variables, but these results suggest that our proposed SMVAE can perform cross-generation
of SVHN with only a single latent variable. In addition, it can be confirmed that SMVGON can
generate images with similar performance, indicating that our objective can be achieved without
inference networks.

5.2 BIMODAL CELEBA

Table 3 shows the results of representation and generation for Bimodal CelebA. On this dataset,
SMVAE performs better than the other methods. We believe this is due to the challenging nature of
this dataset. Although this dataset is bimodal, it has a larger diversity of images and text compared to
MNIST-SVHN-Text. Therefore, it becomes difficult to learn reconstructions and cross-generations
from a single modality, which makes previous methods that rely on this to learn inference insuffi-

!"#$%"&'&%(#$%
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Figure 1: Cross-generation of SVHN on MoPoE, SMVAE, and SMVGON. Each row of SVHN in
each cross-generation corresponds to a different sample from the inference model.
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Table 3: Performance on the latent representation and modality generation in Bimodal CelebA. I and
T respectively stand for Image and Text. We report the mean average precision across all modalities.

LATENT REPRESENTATION GENERATION

I T
MODEL I T I+T T I+T I I+T

MVAE 0.48 0.39 0.54 0.30 0.51 0.25 0.50
MMVAE 0.51 0.48 0.50 0.45 0.45 0.34 0.34
MOPOE-VAE 0.51 0.43 0.53 0.42 0.50 0.32 0.40
SMVAE 0.56 0.56 0.59 0.46 0.53 0.36 0.50
SMVGON 0.50 0.56 0.52 0.47 0.45 0.32 0.45

!"
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!"&'!#'('!)
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Figure 2: Performance on the PolyMNIST dataset. Left: Performance of the inferred latent repre-
sentation given a set of modalities for each number. The markers are the means of the three runs, and
the error bands are their standard deviations. Center: Performance of generating modalities given a
set of modalities corresponding to each number. Right: Conditional generation of PolyMNIST.The
top panel shows examples of modalities M0 to M3 (we refer to the five different modalities as M0
to M4), and the middle and bottom panels show the generation of M4 conditioned on the respective
modality sets by MoPoE-VAE and SMVAE. Images in each column belong to the same example.

cient. Our proposed method, on the other hand, learns the surrogate joint posterior by reconstructing
all modalities, and approximates the inferences from arbitrary subsets to be close to it. Therefore,
our method is less sensitive to the difficulty of cross-generation. On the other hand, SMVGON
has not reached the same level of performance as SMVAE. This may be due to the difficulty of the
multimodal dataset, which makes VGON’s inference insufficient. For the training results of VGON
alone on this dataset, please refer to Appendix C. For qualitative generation results, see Appendix E.

5.3 POLYMNIST

Figure 2 shows the results of PolyMNIST. First, we can see that SMVAE outperforms the existing
methods in both representation and generation. Also, the generation results show that SMVAE is
able to generate corresponding numbers more clearly than MoPoE-VAE. This result confirms that
SMVAE is a scalable model not only in terms of computational cost but also in terms of performance
when the number of modalities increases. On the other hand, the performance of SMVGON is lower
than that of other models in both generation and representation. This might be because, as in the case
of bimodal CelebA, inference by VGON becomes difficult as the number of modalities increases.

5.4 CONCLUSION

In this study, we proposed SMVAE, which approximates inference from subsets by explicitly mini-
mizing the divergence from the surrogate posterior distribution. The model is scalable with respect
to the number of modalities and shows high performance in inference and generation, especially
in the case where cross-generation is difficult. Furthermore, to reduce the parameters of the infer-
ence model, we introduced SMVGON using VGON, which can learn inference without inference
networks. The remaining task of this study is to find a way to introduce a surrogate posterior dis-
tribution that will result in good inference with low memory and computational costs. VGON per-
formed well on MNIST-SVHN-Text, but did not perform well on challenging problem settings such
as Bimodal CelebA and PolyMNIST. In the future, we would like to address this issue and pursue
effective methods for a wide range of multimodal datasets.
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6 ETHICS STATEMENT

This work is a state-of-the-art method for multimodal VAEs, which will have an impact on the
machine learning domain due to its scalability. Our method can cross-generate from one modality
to another corresponding modality; therefore, we have to be aware that it can be used to generate
non-existent facial images, text, spoken voices, etc. In addition, since the attributes in the CelebA
dataset used for training in this study have biases (Prabhu et al., 2019), it is necessary to remove
these biases when training the proposed method in practice.

7 REPRODUCIBILITY STATEMENT

All codes and datasets necessary to reproduce the experiments in this paper will be available after
the paper review is concluded. The hyperparameters and other details in the training were written at
the beginning of Section 5, and the architecture of the networks is the same as in Sutter et al. (2020).
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A COMPARISON BETWEEN SMVAE AND JMVAE WHEN THE NUMBER OF

MODALITIES IS 2

When the number of modalities is two, the objective function of JMVAE (Suzuki et al., 2016) is as
follows:

L(Θ,Λ;X)− βDKL (qΛ(z|X)||qφ1
(z|x1))− βDKL (qΛ(z|X)||qφ2

(z|x2)) . (13)

Compared to Equation 11, the difference is that the direction of KL divergence is reversed and
aggregation by PoE is not used. Table 4 shows the results of comparing SMVAE and JMVAE on
the Bimodal CelebA dataset. The performance of the representations is almost the same, but the
generation results are better for SMVAE. This may indicate that the KL divergence direction of
SMVAE is better for cross-generation.

B COMPARISON OF VAE AND VGON IN MNIST-SVHN-TEXT

Table 5 shows the inference and generation performance of VAE and VGON for multimodal inputs.
It can be seen that VGON can generally learn inference models equivalent to VAE without inference
networks, although its performance is slightly lower than that of VAE.

C COMPARISON OF VAE AND VGON IN BIMODAL CELEBA

Table 6 shows the comparison between VAE and VGON in Bimodal CelebA. The results confirm
that the performance of VGON is lower than that of VAE in all tasks.

D EFFECTIVENESS OF END-TO-END LEARNING IN SMVAE

Figure 3 compares the results of end-to-end learning in SMVAE, i.e., optimizing Equation 11, and
the results of two steps, i.e., first optimizing surrogate inference and then minimizing KL divergence
with inference from arbitrary modalities. The dataset is PolyMNIST; in two stages, 200 epochs were
trained in the first stage and 100 epochs in the second stage. The results show that the end-to-end
method gives better results. This may be due to the fact that the two distributions are more easily
approximated by training them simultaneously.

E CONDITIONAL GENERATION ON BIMODAL CELEBA

Figure 4 shows the results of conditional generation of Bimodal CelebA given a text modality. We
used SMVAE as the model.

Table 4: Performance on the latent representation and modality generation in Bimodal CelebA.

Latent representation Generation
I T

MODEL I T I+T T I+T I I+T

JMVAE 0.56 0.56 0.59 0.42 0.54 0.30 0.49
SMVAE 0.58 0.56 0.59 0.46 0.53 0.36 0.50

12



Under review as a conference paper at ICLR 2022

Table 5: Classification accuracy on the latent representation and generated modalities in MNIST-
SVHN-Text. M, S and T respectively stand for MNIST, SVHN, and Text, indicating that the rep-
resentations are inferred from these modalities. M+S means both M and S. A→ B means that the
corresponding column is the performance of generating B conditioned on A.

LATENT REPRESENTATION GENERATION

MODEL M+S+T M+S+T → M M+S+T→S M+S+T→T

VAE 0.99 0.96 0.87 0.99
VGON 0.99 0.91 0.85 0.99

Table 6: Classification accuracy on the latent representation and generated modalities in Bimodal
CelebA.

LATENT REPRESENTATION GENERATION

MODEL I+T I+T → I I+T→T

VAE 0.59 0.97 0.50
VGON 0.57 0.92 0.45

F RANDOM IMAGE GENERATION

Figure 5 shows the results of generating all modalities from random noise in the latent space for
each dataset. We used SMVAE as the model. Each sample was generally generated correspondingly
across modalities, but the text for Bimodal CelebA was not generated well.

Figure 3: Performance on the PolyMNIST dataset. Left: Performance of the inferred latent rep-
resentation given a set of modalities for each number as input.Right: Performance of generating
modalities given a set of modalities corresponding to each number.
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Figure 4: Conditional generation of Bimodal CelebA on SMVAE.

Figure 5: The results of generating all modalities from random noise in the latent space on each
dataset. Top: MNIST-SVHN-Text (from top to bottom: MNIST, SVHN, Text). Center: Bimodal
CelebA (Image ,Text). Bottom: PolyMNIST (M0, M1, M2, M3, M4). Each column of each dataset
corresponds to the same random noise.
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