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Abstract

The plug-and-play priors (PnP) and regularization by denoising (RED) methods
have become widely used for solving inverse problems by leveraging pre-trained
deep denoisers as image priors. While the empirical imaging performance and the
theoretical convergence properties of these algorithms have been widely investi-
gated, their recovery properties have not previously been theoretically analyzed.
We address this gap by showing how to establish theoretical recovery guarantees
for PnP/RED by assuming that the solution of these methods lies near the fixed-
points of a deep neural network. We also present numerical results comparing the
recovery performance of PnP/RED in compressive sensing against that of recent
compressive sensing algorithms based on generative models. Our numerical results
suggest that PnP with a pre-trained artifact removal network provides significantly
better results compared to the existing state-of-the-art methods.

1 Introduction

Many imaging problems—such as denoising, inpainting, and super-resolution—can be formulated as
an inverse problem involving the recovery of an image * € R” from noisy measurements

y=Ax" +e, ey

where A € R™*"™ is the measurement operator and e € R is the noise. Compressed sensing
(CS) [1,2] is a related class of inverse problems that seek to recover a sparse vector * from m < n
measurements. The sparse recovery is possible under certain assumptions on the measurement
matrix, such as the restricted isometry property (RIP) [1] or the restricted eigenvalue condition
(REC) [3,4]. While traditional CS recovery relies on sparsity-promoting priors, recent work on
compressed sensing using generative models (CSGM) [5] has broadened this perspective to priors
specified through pre-trained generative models. CSGM has prompted a large amount of follow-up
work on the design and theoretical analysis of algorithms that can leverage generative models as
priors for image recovery [6-9].

Plug-and-play priors (PnP) [10, 11] and regularization by denoising (RED) [12] are two methods
related to CSGM that can also leverage pre-trained deep models as priors for inverse problems.
However, unlike CSGM, the regularization in PnP/RED is not based on restricting the solution to
the range of a generative model, but rather on denoising the iterates with an existing additive white
Gaussian noise (AWGN) removal method. The effectiveness of PnP/RED has been shown in a number
of inverse problems [13—18], which has prompted researchers to investigate the theoretical properties
and interpretations of PnP/RED algorithms [19-30].
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Despite the rich literature on both PnP/RED and CSGM, the conceptual relationship between these
two classes of methods has never been formally investigated. In particular, while PnP/RED algorithms
enjoy computational advantages over CSGM by not requiring nonconvex projections onto the range
of a generative model, they lack theoretical recovery guarantees available for CSGM. In this paper, we
address this gap by presenting the first recovery analysis of PnP/RED under the assumptions of CSGM.
We show that if a measurement matrix satisfies a variant of REC from [5] over the range of a denoiser,
then the distance of the PnP solutions to the true * can be explicitly characterized. We also present
conditions under which the solutions of both PnP and RED coincide, providing sufficient conditions
for the exact recovery of * using both methodologies. Our results highlight that the regularization
in PnP/RED is achieved by giving preference to images near the fixed points of pre-trained deep
neural networks. Besides new theory, this paper also presents numerical results directly comparing
the recovery performance of PnP/RED against the recent algorithms in compressed sensing from
random projections and subsampled Fourier measurements. These numerical results lead to new
insights highlighting the excellent recovery performance of both PnP and RED, as well as the benefit
of using priors specified as pre-trained artifact removal (AR) operators rather than AWGN denoisers.

All proofs and some technical details that have been omitted for space appear in the Supplement,
which also provides more background and simulations. The code for our numerical evaluation is
available at: https://github.com/wustl-cig/pnp-recovery.

2 Background
Inverse problems. A common approach to estimating ™ in (1) is to solve an optimization problem:

. . 1
min g(z) +h(z) with g(z) = [y - A3, @)
where ¢ is a data-fidelity term that quantifies consistency with the observed data y and h is a
regularizer that encodes prior knowledge on . For example, a widely-used regularizer in inverse
problems is the nonsmooth fotal variation (TV) function h(x) = 7||Dx||1, where D is the gradient
operator and 7 > 0 is the regularization parameter [31-33].

Compressed sensing using generative models. Generative priors have recently become popular for
solving inverse problems [5], which typically require solving the optimization problem:

1 )
min 5lly — AW, 3)

where W : RF — Im(W) C R" is a pre-trained generative model, such as StyleGAN-2 [34, 35].
The set Im(W) is the image set (or the range set) of the generator W. In the past few years, several
algorithms have been proposed for solving this optimization problem [6-9], including the recent
algorithms PULSE [36] and intermediate layer optimization (ILO) [37] that can recover highly-
realistic images. The recovery analysis of CSGM was performed under the assumption that A
satisfies the set-restricted eigenvalue condition (S-REC) [5] over the range of the generative model:

| Az — Az[3 > plle — 23— Va,z € Im(W), )

where 1 > 0and > 0. S-REC implies that the pairwise distances between vectors in the range of the
generative model must be well preserved in the measurement space. It thus broadens the traditional
notions of REC and the restricted isometry property (RIP) in CS beyond sparse vectors [38].

PnP and RED. PnP [10, 11] refers to a family of iterative algorithms that are based on replacing the
proximal operator prox., of the regularizer i within a proximal algorithm [39] by a more general
denoiser D : R™ — Im(D) C R™, such as BM3D [40] or DnCNN [41]. For example, the widely used
proximal gradient method (PGM) [42—45] can be implemented as a PnP algorithm as [46]

¥ = T(z"1) with T := D(I—~Vyg), (5)

where g is the data-fidelity term in (2), | denotes the identity mapping, and v > 0 is the step size.
Remarkably, this heuristic of using denoisers not associated with any & within a proximal algorithm
exhibited great empirical success [13—18] and spurred a great deal of theoretical work on PnP [19-28].
In particular, it has been recently shown in [23] that, when the residual of D is Lipschitz continuous,
PnP-PGM converges to a point in the fixed-point set of the operator T that we denote Fix(T).
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RED [12] is a related method, inspired by PnP, for integrating denoisers as priors for inverse problems.
For example, the steepest descent variant of RED (SD-RED) [12] can be summarized as

xb = zF ! —4G(zF"!) with G = Vg+7(1-D), (6)

where v > 0 is the step size and 7 > 0 is the regularization parameter. For a locally homogeneous
D that has a strongly passive and symmetric Jacobian, the solution of RED solves (2) with h(x) =
(1/2)x" (x — D(x)) [12,22]. Subsequent work has resulted in a number of extensions of RED [29,
30,47-49]. For example, it has been shown in [29] that, when D is a nonexpansive operator, SD-RED
converges to a point in the zero set of operator G that we denote as Zer(G).

Other related work. While not directly related to our main theoretical contributions, it is worth
briefly mentioning other important related families of algorithms that also use deep neural nets
for regularizing ill-posed imaging inverse problems (see recent reviews of the area [50-53]). This
work is most related to methods that rely on pre-trained priors that are integrated within iterative
algorithms, such as a class of algorithms in compressive sensing known as approximate message
passing (AMP) [54-57]. Another related family of algorithms are those based on the idea of deep
unrolling (for an overview see Section IV-A in [53]). Inspired by LISTA [58], the unrolling algorithms
interpret iterations of a regularized inversion as layers of a CNN and train it end-to-end in a supervised
fashion [59-64]. Deep image prior [65] and deep decoder [66] also use neural networks as prior for
images; instead of using a pre-trained generative network, they learn the parameters of the network
while solving the inverse problem using the available measurements.

3 Recovery Analysis for PnP and RED

We present two sets of theoretical results for PnP-PGM (5) using the measurement model (1) and the
least-squares data-fidelity term (2). We first establish recovery bounds for PnP under a set of sufficient
conditions, and then address the relationship between the solutions of PnP and RED. The proofs of
all the theorems will be provided in the Supplement. We start by discussing two assumptions that
serve as sufficient conditions for our analysis of PnP.

Assumption 1. The residual R = | — D of the operator D is bounded by § and Lipschitz continuous
with constant o > 0, which can be written as
IR()||l2 <¢ and |R(z)—R(z)|2 <alx—z|2, Vx,zeR". (7)

The rationale for stating Assumption 1 in terms of the residual R is based on our interest in residual
deep neural nets that take a noisy or an artifact-corrupted image at the input and produce the
corresponding noise or artifacts at the output. The success of residual learning in the context of
image restoration is well known [41]. Prior work has also shown that Lipschitz constrained residual
networks yield excellent performance without sacrificing stable convergence [23,29].

Related assumptions have been used in earlier convergence results for PnP [19,23]. For example,
one of the most-widely known PnP convergence results relies on the boundedness of D [19]. The
Lipschitz continuity of the residual R has been used in the recent analysis of several PnP algorithms
in [23]. Both of these assumptions are relatively easy to implement for deep priors. For example,
the boundedness of R can be enforced by simply bounding each output pixel to be within [0, v/] for
images in [0, ¥]™ C R™ for some v > 0. The a-Lipschitz continuity of R can be enforced by using
any of the recent techniques for training Lipschitz constrained deep neural nets [23,67-69]. Fig. 1
presents an empirical evaluation of the Lipschitz continuity of R used in our simulations.

Assumption 2. The measurement operator A € R™*"™ satisfies the set-restricted eigenvalue condi-
tion (S-REC) over Im(D) C R™ with u > 0, which can be written as

|Az — Az|]3 > ul|lz — 2|3, Vz,z € Im(D). ®)

S-REC in Assumption 2 was adopted from the corresponding assumption for CSGM stated in (4),
which establishes a natural conceptual link between those two classes of methods. The main limitation
of Assumption 2, which is also present in the traditional RIP/REC assumptions for compressive
sensing, lies in the difficulty of verifying it for a given measurement operator A. There has been
significant activity in investigating the validity of related conditions for randomized matrices for
different classes of signals [4,70-72], including for those synthesized by generative models [5,6,9,37].
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Figure 1: Empirical evaluation of the Lipschitz continuity of R and D used in our simulations and
stated in Assumptions 1 and 3. As described in the main text, we trained two types of Lipschitz
constrained networks, where the first simply denoises AWGN and the second removes artifacts
specific to the PnP iterations. (a) and (b) show the histograms of |R(x) — R(2)||2/||x — z||2 for
the denoiser and the artifact-removal operator, respectively. (c) and (d) show the histograms of
ID(x) — D(2)||2/||x — z||2 for the same two operators. Note the empirical nonexpansiveness of D
despite the fact that Lipschitz continuity was only imposed on the residual R during training.

Despite this limitation, Assumption 2 is still conceptually useful as it allows us to relax the strong
convexity assumption used in the convergence analysis in [23] by stating that it is sufficient for the
strong convexity to hold only over the image set Im(D) rather than over the whole R™. This suggests
a new research direction for PnP on designing deep priors with range spaces restricted to satisfy
S-REC for some A. In the Supplement, we present an empirical evaluation of u for the measurement
operators used in our experiments by sampling from Im(D).

Consider the set Fix(D) = {x € R" : & = D(«)} of the fixed points of D. Note that Fix(D) is
equivalent to the set Zer(R) = {x € R™ : R(x) = 0} of the zeros of the residual R = | — D.
Intuitively, Zer(R) consists of all images that produce no residuals, and therefore can be interpreted
as the set of all noise-free images according to the network. Similarly, when R is trained to predict
artifacts in an image, Zer(R) is the set of images that are artifact-free according to R. In the subsequent
analysis, we use the notation Zer(R), but these results can be equivalently stated using Fix(D).

We first state the PnP recovery in the setting where there is no noise and * € Zer(R).

Theorem 1. Run PnP-PGM fort > 1 iterations under Assumptions 1-2 for the problem (1) with no
noise and ©* € Zer(R). Then, the sequence x* generated by PnP-PGM satisfies

et =2 < clla’ ™ — a¥|l2 < ¢'fla’ — a7z ©)
where £° € Im(D) and ¢ = (1 + o) max{|1 — yu|, |1 — YA} with X == Apax(ATA).

The proof of the theorem is available in the Supplement. Theorem 1 extends the theoretical analysis
of PnP in [23] by showing convergence to the true solution * of (1) instead of the fixed points
Fix(T) of T in (5). The condition £° € Im(D) can be easily enforced by simply passing any initial
image through the operator D. One does not necessarily need o < 1, for the convergence result in
Theorem 1. As shown in [23], the coefficient ¢ in Theorem 1 is less than one if

2 |
W11/ TS T XI 1 1)

which is possible if o < 21/(A — ). Since all PnP algorithms have the same fixed points [20,24],
our result implies that PnP can exactly recover the true solution x* to the inverse problem, which
extends the existing theory in the literature that only shows convergence to Fix(T).

(10)

We now present a more general result that relaxes the assumptions in Theorem 1.

Theorem 2. Run PnP-PGM for t > 1 iterations under Assumptions 1-2 for the problem (1) with
x* € R" and e € R™. Then, the sequence x' generated by PnP-PGM satisfies

e(1—ch)
(1-c) ~

e’ — a2 < clla’ ™ — a2 + e < 2’ — @2 +

1D
where £° € Im(D) and

e = (140 [(1+2/N1) 2" = projzeury(@)ll2 + 2/ ViHllellz + 501 +1/a)]  (12)
and ¢ = (1+ a)max{|1 — yu|, |1 — yA|} with A = Amax(ATA).



Theorem 2 extends Theorem 1 by allowing x* to be outside of Zer(R) and extends the analysis in [5]
by considering operators D that do not necessarily project onto the range of a generative model.
In the error bound &, the first two terms are the distance of * to Zer(R) and the magnitude of the
error e, and have direct analogs in standard compressed sensing. The third term is the consequence
of the possibility for the solution of PnP not being in the zero-set of R and one can show that
when Zer(R) N Zer(Vg) # @, then the third term disappears. As reported in the Supplement, we
empirically verified that the distance of the PnP solution to Zer(R) is small for both the denoiser and
the artifact-removal operators used in our experiments.

Our final result explicitly relates the solutions of PnP and RED. In order to obtain the result, we need
an additional assumption that the denoiser D = | — R is nonexpansive.

Assumption 3. The denoiser D is nonexpansive

ID(®) —=D(2)l2 < |l — 2]2, V&,zeR".

This is related but different from Assumption 1 that assumes the residual R is a-Lipschitz continuous.

The convergence of SD-RED in (6) to Zer(G) can be established for a nonexpansive operator D [29].
In principle, the nonexpansiveness of D can be enforced during the training of the prior in the
same manner as that of the more general Lipschitz continuity. However, the prior in our numerical
evaluations is trained to have a contractive residual R without any explicit constraints on D. As
a reminder, the nonexpansiveness of R is only a necessary (but not sufficient) condition for the
nonexpansiveness of D [73]. Despite this fact, our empirical evaluation of the Lipschitz constant of D
in Fig. 1 indicates that D used in our experiments is nonexpansive.

Theorem 3. Suppose that Assumptions 1-3 are satisfied and that Zer(V g) N Zer(R) # &, then PnP
and RED have the same set of solutions: Fix(T) = Zer(G).

As a reminder, the solutions of PnP correspond to the fixed-points of the operator T defined
in (5), while those of RED to the zeroes of the operator G defined in (6). The assumption that
Zer(Vg) N Zer(R) # @ implies that there exist vectors that are noise/artifact free according to R
and consistent with the measurements y. While this assumption is not universally applicable to
all the inverse problems and priors, it still provides a highly-intuitive sufficient condition for the
PnP/RED equivalence. Although the relationship between PnP and RED has been explored in the
prior work [22,30], to the best of our knowledge, Theorem 3 is the first to prove explicit equivalence.
If one additionally considers PnP-PGM with a step size that satisfies the condition in (10), then T
is a contraction over Im(D), which implies that PnP-PGM converges linearly to its unique fixed
point in Im(D). The direct corollary of our analysis is that, in the noiseless scenario y = Ax* with
x* € Zer(R), the image * is the unique fixed point of both PnP and RED over Im(D).

It is worth mentioning that several of our assumptions have been stated in a way that simplifies
mathematical exposition, but can alternatively be presented in a significantly weaker form. For
example, the boundedness assumption in (1)—which is used only in the proof of Theorem 2—does
not have to hold everywhere, but only at the fixed points of PnP. Indeed, as can be seen in eq. (6)
of the Supplement, the constant ¢ is only used to bound the norm of the residual at the fixed-point
of PnP-PGM. Similarly, we do not need the nonexpansiveness of D in Assumption 3 to be true
everywhere, but only at the fixed points of RED-SD (see page 4 of the Supplement).

In summary, our theoretical analysis reveals that the fixed-point convergence of PnP/RED algorithms
can be strengthened to provide recovery guarantees when S-REC from CSGM is satisfied. Since
PnP/RED algorithms do not require nonconvex projections onto the range of a generative model,
they enjoy computational benefits over methods that use generative models as priors. However, the
literature on generative models is rich with theoretical bounds and recovery guarantees compared
to that of PnP/RED. We believe that our work suggests an exciting new direction of research for
PnP/RED by showing that a similar analysis can be carried out for PnP/RED.

4 Numerical Evaluation

Before presenting our numerical results, it is important to note that PnP and RED are well-known
methods and it is not our aim to claim any algorithmic novelty with respect to them. However,
comparing PnP/RED to state-of-the-art compressed sensing (CS) algorithms is of interest in the
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Figure 2: Empirical evaluation of the convergence of PnP/RED to the true solution x* using a
denoiser and an artifact removal (AR) operator. Average normalized distance and PSNR relative to
the true solution x* are plotted with the shaded areas representing the range of values attained over
all test images. Note the similar recovery performance of PnP and RED, as well as the improvement
in performance due to a prior trained to remove artifacts specific to PnP iterations (rather than an
AWGN denoiser).

Table 1: Numerical evaluation of the CS recovery in terms of PSNR (dB) on BSD68 and Set11.

CS Ratio BSD68 | Setl1
Method 10%  30%  40% 50%  10% 30% 40% 50%
TV 2456 2861 3027 3198 2447 3021 3229 3427
SDA [76] 2312 2638 2741 2835 2265 2663 2779 2895
ReconNet [77] 2415 2753 2908 2986 2428 2874 3058 3150
ISTA-Net [62] 2502 2993 3185 3361 2580 3291 3536 3743
ISTA-Net" [62] 2533 3034 3221 3401 2664 3382 3606 3807
“RED (dencising) | 2657 3020 325343 2770 350l 3728 3026
PnP (denoising) 2506 3031 3229 3435 2776 3506  37.30 3921
PnP (AR) 2646 3133 3318 3492 2898 3553 3734 39.29

context of our theory. Our goal in this section is thus to both (a) empirically evaluate the recovery
performance of PnP/RED and (b) compare their performances relative to widely-used CS algorithms.

We consider two scenarios: (a) CS using random projections and (b) CS for magnetic resonance
imaging (CS-MRI). In order to gain a deeper insights into performance under subsampling, we use an
idealized noise-free setting; however, we expect similar relative performances under noise. For each
scenario, we include comparisons with several well-established methods based on deep learning.

We consider two priors for PnP/RED: (i) an AWGN denoiser and (ii) an artifact-removal (AR) operator
trained to remove artifacts specific to the PnP iterations. We implement both priors' using the DnCNN
architecture [41], with its batch normalization layers removed for controlling the Lipschitz constant of
the network via spectral normalization [68]. We train the denoiser as a nonexpansive residual network
R that predicts the noise residual from a noisy input image. Thus, R satisfies the necessary condition
for the nonexpansiveness of D. Similar to [74], we train the AR prior by including it into a deep
unfolding architecture that performs PnP iterations. When equipped with spectral normalization [68],
the residual R of the AR operator still satisfies Lipschitz continuity assumptions and achieves superior
performance compared to the denoiser (as corroborated by our results). Our implementation also relies
on the scaling strategy from [75] for controlling the influence of D relative to g. The reconstruction
quality is quantified using the peak signal-to-noise ratio (PSNR) in dB.

4.1 Reconstruction of Natural Images from Random Projections

We adopt a simulation setup widely-used in the CS literature, in which non-overlapping 33 x 33
patches of an image are measured using the same m x n random Gaussian matrix A, whose rows
have been orthogonalized [62,77]. The patches are vectorized to n = 1089-length vectors *. The
training data for the denoiser is generated by adding AWGN to the images from the BSD500 [78] and

'For additional details and code see the Supplement and the GitHub repository.
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Figure 3: Visual evaluation of various compressive sensing algorithms at 10% sampling on two
imaging problems: (top) reconstruction of Butterfly from Setl 1; (bottom) reconstruction of a brain
MR image from its radial Fourier measurements. The pink box in the bottom image provides the error
residual that was amplified by 10X for better visualization. Note the similar performance of PnP
and RED, as well as the competitiveness of both relative to other methods. Additionally, note the
improvement due to the usage of an AR prior instead of an AWGN denoiser within PnP.

Table 2: Average PSNR values for various CS-MRI methods on test images from [62].

Method CS Ratio 10% 20% 30% 40% 50%
vV 31.36 35.62 38.41 40.43 4220
ADMM-Net [61] 34.19 37.17 39.84 41.56 43.00
ISTA-Net* [62] 34.65 38.70 40.97 42.65 44.12
RED (denoising) 3437 38.63 40.94 42.62 4421
PnP (denoising) 34.56 38.74 41.06 42.73 44.24
PnP (AR) 3521 39.05 41.28 42.96 44.47

DIV2K datasets [79]. We pre-train several deep models as denoisers for o € [1, 15], using ¢ intervals
of 0.5, and use the denoiser achieving the best PSNR value in each experiment. We use the same set
of 91 images as in [77] to train the AR operators that are implemented on individual image patches at
a time for the CS ratios (m/n) of {10%, 30%, 40%, 50%}. In order to overcome the block-artifacts
in the recovered images, we implement PnP and RED regularizers over the entire image while still
using the per-patch measurement model for Vg.

Our first numerical study in Fig. 1 evaluates the Lipschitz continuity of our pre-trained denoisers and
the AR operators by following the procedure in [23]. We use the residual R and its corresponding
operator D = | — R and plot the histograms of «; = ||R(x) — R(2)||2/||x — 2|2 and as =
ID(x) — D(2)]||2/||lz — z||2 over 1160 AWGN corrupted image pairs extracted from BSD68. The
maximum value of each histogram is indicated by a vertical bar, providing an empirical bound on the
Lipschitz constants. Fig. 1 confirms empirically that both R and D are contractive operators.

Theorem 2 establishes that the sequence of iterates ! generated by PnP-PGM converges to the true
solutions * up to an error term. Fig. 2 illustrates the convergence behavior of PnP/RED in terms of
|zt — x*||3/||=*||3 and peak signal-to-noise ratio (PSNR) for CS with subsampling ratio of 30% on
Setl1. The shaded areas represent the range of values attained across all test images. The results in
Fig. 2 are consistent with our general observation that the PnP/RED algorithms converge in all our
experiments for both types of priors and achieve excellent recovery performance.

We also report the average PSNR values obtained by five baseline CS algorithms, namely TV [33],
SDA [76], ReconNet [77], ISTA-Net [62] and ISTA-Net+ [62]. TV is an iterative methods that
does not require training, while the other four are all deep learning-based methods that have publicly
available implementations. The numerical results on Setl1 and BSD68 with respect to four measure-
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Figure 4: Visual evaluation of PnP/RED and two methods using generative models as priors on
the CelebA HQ [82] dataset at 10% CS sampling. Note the visual and quantitative similarity of
PnP and RED when both are using AWGN denoisers. PnP using an artifact-removal (AR) prior
visually matches the performance of ILO based on StyleGAN2, which highlights the benefit of using
pre-trained AR operators within PnP. Best viewed by zooming in the display.

Table 3: Average PSNR (dB) values for several algorithms on test images from CelebA HQ.

Vethod CS Ratio 10% 20% 30% 40% 50%
™v 3213 3504 3741 39.35 4129
PULSE [36] 2745 2998 3306 3425 34.77
ILO [37] 3615 4098 4346 47.89 4821
RED (denoising) 3546 41.59 4565 4813 52.17
PnP (denoising) 35.61 4151 4571 48.05 5224
PnP (AR) 3919 44.20 4866 5132 53.89

ment rates are summarized in Table 1. We observe that the performances of PnP and RED are nearly
identical to one another. The result also highlights that PnP using the AR prior provides the best
performance® compared to all the other methods, outperforming PnP using the AWGN denoiser by at
least 0.57 dB on BSD68. Fig. 3 (top) shows visual examples for an image from Setl 1. Note that both
PnP and RED yield similar visual recovery performance. The enlarged regions in the image suggest
that PnP (AR) better recovers the fine details and sharper edges compared to other methods.

4.2 TImage reconstruction in Compressed Sensing MRI

MRI is a widely-used medical imaging technology that has known limitations due to the low speed of
data acquisition. CS-MRI [80, 81] seeks to recover an image «* from its sparsely-sampled Fourier
measurements. We simulate a single-coil CS-MRI using radial Fourier sampling. The measurement
operator A is thus A = PF', where P is the diagonal sampling matrix and F' is the Fourier transform.

The priors for PnP/RED were trained using the brain dataset from [62], where the test set contains
50 slices of 256 x 256 images (i.e., n = 65536). We train seven variants of DnCNN, each using a
separate noise level from o € {1,1.5,2,2.5,3,4,5}. Similarly, we separately train the AR operators
for different CS ratios (m/n), initializing the weights of the models from the pre-trained denoiser with
o = 2. For these sets of experiments, we also equipped PnP/RED with Nesterov acceleration [83]
for faster convergence. We compare PnP/RED against publicly available implementations of several
well-known methods, including TV [33], ADMM-Net [61], and ISTA-Net™ [62]. The last two are
deep unrolling methods that train both image transforms and shrinkage functions within the algorithm.

Table 2 reports the results for five CS ratios. The visual comparison can be found in Fig. 3 (bottom).
It can been seen that PnP/RED with an AWGN denoiser matches the performance of ISTA-Net™

2We did not use RED with the AR prior in our experiments since it is expected to closely match PnP.



and outperforms ADMM-Net at higher sampling ratios, while PnP with an AR prior improves over
PnP/RED with an AWGN denoiser [84]. Note also the similarity of PnP and RED performances.

4.3 Comparison with generative models on human faces

We numerically evaluated the recovery performance of PnP/RED in CS against two recent algorithms
using generative models: PULSE [36] and ILO [37]. Similar to the measurement matrix used for
grayscale images, we use orthogonalized random Gaussian matrices for sampling image blocks of
size 33 x 33 x 3. The test images correspond to 15 images randomly selected from CelebA HQ [82]
dataset, each of size 1024 x 1024 pixels. We use the DIV2K [79] and 200 high quality face images
from FFHQ dataset [34] to train the PnP/RED denoisers for color image denoising at six noise levels
corresponding to o € {1,2,3,4,7,10}. We use the same training set to train the AR operators
for CS ratios of [10%, 50%)], using the ratio intervals of 10%. Similar to CS-MRI, we equipped
PnP/RED with Nesterov acceleration. The PSNR comparison between different methods is presented
in Table 3. It can be seen that ILO outperforms PULSE in terms of PSNR, which is consistent with
the results in [37]. Note also how PnP/RED match or sometimes quantitively outperform ILO at high
CS ratios, with PnP (AR) leading to significantly better results compared to PnP (denoising). Fig. 4
provides visual reconstruction examples. Note the ILO images are sharper compared to PnP/RED
with denoisers because ILO uses a state-of-the-art generative model specifically trained on face
images. However, PnP (AR) achieves better PSNR and a similar visual quality as ILO.

5 Conclusion and Future Work

The main goal of this work is to address the theoretical gap between two-widely used classes of
methods for solving inverse problems, namely PnP/RED and CSGM. Motivated by the theoretical
analysis of CSGM, we used S-REC to establish recovery guarantees for PnP/RED. Our theoretical
results provide a new type of convergence for PnP-PGM that goes beyond a simple fixed-point
convergence by showing convergence relative to the true solution. Additionally, we show the
full equivalence of PnP and RED under some explicit conditions on the inverse problem. While
the focus of this work is mainly theoretical, we presented several numerical evaluations that can
provide additional insights into PnP/RED and their performance relative to standard methods used in
compressed sensing. Empirically, we observed the similarity of PnP/RED in image reconstruction
from subsampled random projections and Fourier transform. We also provided additional evidence on
the suboptimality of AWGN denoisers compared to artifact-removal operators that take into account
the actual artifacts within PnP iterates.

The work presented in this paper has a certain number of limitations and possible directions for
improvement. The main limitation of our theoretical analysis, which is common to all compressive
sensing research, is in the difficulty of theoretically verifying S-REC for a given measurement
operator. One can also consider the Lipschitz assumptions on R/D as a limitation, since those can
have a negative impact on the recovery. However, our results suggest that even with Lipschitz
constrained priors, PnP/RED are competitive with widely-known CS algorithms. While PnP/RED can
be implemented using non-Lipschitz-constrained priors, we expect that this will reduce their stability
and ultimately hurt their recovery performances. A relatively minor limitation of our simulations is
that they were performed without AWGN. One can easily re-run our code by including AWGN and
we expect that the relative performances will be preserved for a reasonable amount of noise. We hope
that this work will inspire further theoretical and algorithmic research on PnP/RED that will lead to
extensions and improvements to our results.

6 Broader impact

This work is expected to impact the area of imaging inverse problems with potential applications
to computational microscopy, computerized tomography, medical imaging, and image restoration.
There is a growing need in imaging to deal with noisy and incomplete measurements by integrating
multiple information sources, including physical information describing the imaging instrument and
learned information characterizing the statistical distribution of the desired image. The ability to
accurately solve inverse problems has the potential to enable new technological advances for imaging.
These advances might lead to new imaging tools for diagnosing health conditions, understanding



biological processes, or inferring properties of complex materials. Traditionally, imaging relied on
linear models and fixed transforms (filtered back projection, wavelet transform) that are relatively
straightforward to understand. Learning based methods, including PnP and RED, have the potential
to enable new technological capabilities; yet, they also come with a downside of being much more
complex. Their usage might thus lead to unexpected outcomes and surprising results when used by
non-experts. While we aim to use our method to enable positive contributions to humanity, one can
also imagine nonethical usage of imaging technology. This work focuses on understanding theoretical
properties of imaging algorithms using learned priors, but it might be adopted within broader data
science, which might lead to broader impacts that we have not anticipated.
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