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Abstract

The last decade has seen tremendous progress in
our ability to generate realistic-looking data, be
it images, text, audio, or video. Here, we discuss
the closely related problem of quantifying realism,
that is, designing functions that can reliably tell
realistic data from unrealistic data. This problem
turns out to be significantly harder to solve and
remains poorly understood, despite its prevalence
in machine learning and recent breakthroughs in
generative AI. Drawing on insights from algo-
rithmic information theory, we discuss why this
problem is challenging, why a good generative
model alone is insufficient to solve it, and what a
good solution would look like. In particular, we
introduce the notion of a universal critic, which
unlike adversarial critics does not require adver-
sarial training. While universal critics are not
immediately practical, they can serve both as a
North Star for guiding practical implementations
and as a tool for analyzing existing attempts to
capture realism.

1. Introduction
What distinguishes realistic images from unrealistic images?
Humans are able to detect a wide variety of flaws in images
and other sensory data, yet there are no robust losses which
could be used to penalize unrealistic images across a broad
set of tasks in machine learning, and no widely accepted
formal notion of realism exists today. In particular, we are
interested in real-valued functions U producing a low value
U(x) when some data x is realistic and a large value when
x is unrealistic. Here, x could be a single image, a small set
of images, or a video. But our discussion will also be rele-
vant for other types of data such as text of arbitrary length
or more generally any data drawn from some distribution
which we will denote P .
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Potential applications of such functions are plentiful and
include anomaly detection (Ruff et al., 2021), deepfake de-
tection (Sha et al., 2023; Pondoc et al., 2023), generative
model evaluation (Theis et al., 2016; Heusel et al., 2017;
Borji, 2019), model distillation (van den Oord et al., 2018;
Yin et al., 2023), neural compression (Ballé et al., 2021;
Yang et al., 2023), computational photography (Fang et al.,
2020), and computer graphics (Herzog et al., 2012; Rein-
hard et al., 2013; Poole et al., 2023). Unfortunately, their
implementation is extremely challenging. Our ability to gen-
erate realistic data is rapidly improving (e.g., Dhariwal and
Nichol, 2021) yet no reliable candidates or recipes for con-
structing U exist in machine learning today. This is not for a
lack of trying. While some progress has been made in the de-
tection of unrealistic examples, the design of functions that
are robust to optimization (for tasks involving generation)
has been less successful. The latter problem is significantly
harder because our function now not only has to detect a
limited set of artefacts but has to anticipate any unrealistic
examples an optimization might run into. Weaknesses in a
function’s design often only make themselves known once
we start optimizing (Ding et al., 2021). Complicating the
matter is the fact that the optimization depends on U itself.

To give a more concrete example of the kind of tasks we are
interested in, consider the following loss which naturally
comes up in lossy compression. If x = g(z) is the output
of a neural network, we may want to find a representation z
such that

R(z) + αd(x,x∗) + βU(x) (1)

is minimal, where d measures the distance to some target
image x∗ and R is the number of bits required to encode z.

In this paper we will take the view that x is realistic if it
appears to have come about in a particular way, which is
another way of saying that x is a plausible sample of a
distribution P capturing the data generating process. What
is considered realistic therefore depends on P . If P is a
distribution over natural images then most photos would
qualify as realistic. While an MNIST image (LeCun and
Cortes, 2010) would not be considered a realistic example
of a natural image, we would still consider it to be realistic
if P is the distibution of MNIST digits.

In Section 2 we will first review why common approaches
to formalizing realism in terms of probability and typicality
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fail. This will highlight the challenges involved in defin-
ing realism and provide motivation for later sections. In
Section 3 we will review much more successful notions of
realism based on divergences, adversarial losses, and fea-
ture statistics, and discuss how they still fall short of our
goal. In Section 4 we will make the case that randomness
deficiency (Li and Vitányi, 1997) captures realism and
introduce the concept of a universal critic. Finally, in Sec-
tion 5 we will apply our newly gained understanding of
realism to examples from the machine learning literature.

What has been referred to as realism (e.g., Fan et al., 2018;
Theis and Wagner, 2021; Careil et al., 2023) is also often
referred to as perceptual quality (e.g., Blau and Michaeli,
2018; Fang et al., 2020; Salehkalaibar et al., 2023). It is
therefore natural to wonder to what extent human perception
should factor into its formalization. Our approach to defin-
ing realism is normative, that is, we consider how an ideal-
ized observer would judge realism. Similar to how Bayesian
inference does not take inspiration from neuroscience but
Bayesian decisions resemble human decisions (e.g., Knill
and Pouget, 2004), we too can hope that human perception
agrees with our definition of realism because it addresses a
similar task as that faced by humans. In Section 4.4, we will
further make the case that batched universal critics not only
generalize no-reference metrics and divergences—which
represent the prevalent ways of formalizing realism—but
are also a better model of a human observer.

2. Probability and Typicality
In this section we review the two most common approaches
to capture realism found in machine learning, namely those
based on probability and typicality, and their failures. Sim-
ilar failures of probability and typicality have been docu-
mented in the anomaly detection literature (e.g., Choi et al.,
2019; Le Lan and Dinh, 2021; Osada et al., 2023) but are
worth repeating as they continue to be a source of confusion.

2.1. Probability

If x is discrete, it is natural to consider its probability un-
der P to determine whether it is a realistic example of P .
After all, if x has low probability then it seems unlikely to
have come from P . This intuition is widespread in machine
learning. Unsupervised anomaly detection, for instance,
generally defines anomalies as those data points having low
probability or density under a distribution of normal ex-
amples (Ruff et al., 2021), where the probability is often
measured in some feature space (e.g., Zong et al., 2018).
Probability density is also frequently maximized in an at-
tempt to guide synthetic images towards more realistic ex-
amples (e.g., Sønderby et al., 2017; Graikos et al., 2022).
To see how this approach might fail, consider the following
simple example.

Example 1 (Probability). Consider a computer program
simulating a sequence of independent and nearly unbiased
coin tosses, xN = (x1, . . . , xN ) with P (xn = 1) = 0.5+ε
for some very small ε > 0. For reasonably large N , we
would expect the program to output a number of 1s which
is close to N/2 and we would suspect a bug if the program
outputs a sequence of only 1s, yet this is the most probable
sequence.

Example 1 shows that maximizing P (x) can lead to unre-
alistic examples. It also shows that P (x) would not detect
a bug which causes a program to only output 1s. If instead
we count the number of 1s, k =

∑N
n=1 xn, and measure the

probability of k, this bug could be detected. Does this mean
we only need to find the right set of features? By ignoring
some aspects of the data, we risk not detecting unrealistic
examples. We might therefore conclude that we simply
need to test sufficiently many features. Unfortunately this
approach also runs into trouble. Consider testing whether x
has 1s in even places and 0s in odd places, x = 0101..01.
The probability of this sequence is approximately 2−N so
that we would reject it with high confidence if we happen
to observe it. However, since all sequences have roughly
the same probability, we would reject every sequence as
unrealistic if we tested all features identifying a specific
sequence.

Using densities instead of probabilities introduces an ad-
ditional challenge, namely that our answer now depends
on the parametrization of the data. If P is an exponential
distribution with rate 1, say, then values of x close to zero
seem preferable over larger values if judged by their density.
But if we consider y = e−x instead, then all values of y
would now be considered equally preferable.

2.2. Weak Typicality

Many readers will not have been surprised by the inabil-
ity of probabilities to capture realism thanks to the widely
known asymptotic equipartition property (AEP) of random
sequences (Cover and Thomas, 2006). This property is such
that if xN = (x1, . . . ,xN ) is a sequence of i.i.d. random
variables drawn from P , then with probability 1 we have

limN→∞− 1
N logP (x1, . . . ,xN ) = H[xn] (2)

almost surely, where H[xn] is the entropy of P . The typical
set is defined as (Cover and Thomas, 2006)

ANδ = {x : | − 1
N logP (xN )−H[xn]| < δ} (3)

and elements from this set are considered weakly typical.
While other notions of typicality exist, weak typicality is the
one most commonly encountered in the machine learning lit-
erature (Nalisnick et al., 2019b; Choi et al., 2019; Dieleman,
2020). The AEP implies that as N increases, the probability
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that a randomly drawn sequence is contained in the typical
set ANδ approaches 1 for any δ > 0. That is, a realistic
sequence is likely to be typical. (While we have stated the
AEP for sequences of independent and discrete random vari-
ables, generalizations to dependent and continuous sources
exist and are well known; e.g., Algoet and Cover, 1988).

The above suggests that instead of expecting the probability
to be large, we should expect realistic x to have negative
log-probability close to the entropy—or the probability to
be roughly 2−H[x], especially if x is high-dimensional. It
therefore appears that |− logP (x)−H[x]| would be a good
candidate for a measure of realism (Choi et al., 2019; Nalis-
nick et al., 2019b). Unfortunately, also this definition fails
to quantify realism as the following examples demonstrate.

Example 2 (Typicality). Consider again a sequence of
independent coin tosses. If the coin is unbiased, then
the log-probability of any sequence is exactly the entropy,
− log2 P (xN ) = N . In other words, in this case the proba-
bility of xN under P is completely uninformative and the
typical set contains every sequence. Does this mean that
every sequence of coin flips is realistic? Clearly, there is
a sense in which the sequence 0000000000 is less real-
istic than 1100010100 which is not captured by weak
typicality.

Example 3 (Typicality). As another example, consider
a multivariate Gaussian distribution with density p(x) ∝
exp(−‖x‖2). With high probability, the negative log-
density of a random sample will be close to the differential
entropy, which amounts to the norm ‖x‖ being roughly
constant. While we would expect realistic examples from
our distribution to look like uncorrelated noise, optimizing
for typicality will only constrain the norm. If x represents
an image, our optimization will merely adjust its contrast
but will not decorrelate pixels as one might hope.

Weak typicality may be a necessary criterion for realism but
it is clearly not sufficient. Put differently, the typical set
contains the realistic sequences we care about but also many
sequences which are unrealistic, such as long sequences of
fair coin flips which all come up heads.

Probability and typicality both fail as a measure of real-
ism because they address the wrong question. They tell
us something about x assuming that x has distribution P .
However, we cannot make this assumption, since whether
or not x follows P is precisely the question we are trying to
answer. That is, we are not interested in the probability
(or typicality) of x given P , but in the probability of P
given x.

An extended discussion of typicality can be found in Ap-
pendix A.

3. Divergences
More successful notions of realism are based on divergences
between a ground-truth data distribution P and a distribution
Q which we are trying to evaluate. In line with our intuitive
notion of realism, if a divergence is zero, then instances
of Q are indistinguishable from instances of P , that is, we
have perfect realism.

In coding theory, formalizing realism in terms of diver-
gences (Matsumoto, 2018; Blau and Michaeli, 2019; Chen
et al., 2022) has resulted in an improved understanding of
the lossy compression problem and novel methods to solve
them (e.g., Theis and Agustsson, 2021). In practical applica-
tions, generative adversarial networks (GANs; Goodfellow
et al., 2014) trained with adversarial losses (which approxi-
mate divergences) significantly advanced the state of the art
in the perceptual quality of generated images (e.g., Denton
et al., 2015; Ledig et al., 2017). For the evaluation of gener-
ated images, the Fréchet inception distance (Heusel et al.,
2017) has established itself as the method of choice and is
based on a divergence between distributions over feature
activations.

In the following, we review two approaches to approximat-
ing divergences based on samples.

3.1. Adversarial Losses

Adversarial losses provide lower bounds on divergences.
For the broad class of f -divergences (Rényi, 1961) between
two distributions with densities p and q, we can write

Df [q ‖ p] =

∫
p(x)f

Å
q(x)

p(x)

ã
dx, (4)

where f is a convex function with f(1) = 0. This class of
divergences includes the Jensen-Shannon divergence, the to-
tal variation distance, and the Kullback-Leibler divergences.
For a real-valued function T (with an appropriately limited
output range), we obtain the lower bound (Nguyen et al.,
2010; Nowozin et al., 2016)

Df [q ‖ p] ≥ Eq[T (x)]− Ep[f∗(T (x))], (5)

where f∗ is the convex conjugate of f . T acts as a critic
whose purpose is to produce values which are large for
samples drawn from q and small for samples drawn from
p. In practice, the critic may be a neural network Tθ and
adversarial training amounts to alternating between maxi-
mizing the lower bound with respect to its parameters, θ,
and minimizing the bound with respect to the parameters
of q (although practical implementations often deviate from
this basic recipe).

For the Kullback-Leibler divergence, for instance, we have

f(u) = u log u, f∗(t) = exp(t− 1), (6)
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and the bound is tight for

Tq(x) = log q(x)− log p(x) + 1. (7)

Note that this optimal critic depends on the distribution q
that we are trying to evaluate. In contrast, in our setting we
may only have access to a single instance or a few instances
drawn from q. Furthermore, the dependence of the critic
on q is responsible for optimization instabilities that are
known to plague adversarial training and which we would
like to avoid. In Section 4 we will discuss critics which
are universal in the sense that they do not depend on q and
therefore do not require adversarial training.

3.2. Maximum Mean Discrepancy

Maximum mean discrepancy (MMD; Gretton et al., 2012)
refers to a class of divergences which have been used for
hypothesis testing as well as for generating realistic images
(Li et al., 2015; Dziugaite et al., 2015). Given two sets of
i.i.d. examples—x1, . . . ,xM and x̃1, . . . , x̃N—estimates
of MMD can be used to decide whether the two sets were
drawn from the same distribution. Formally, we compute

MMD2(xM , x̃N ) =
∥∥ 1
M

∑
m Φ(xm)− 1

N

∑
n Φ(x̃n)

∥∥2
in some potentially very high (even infinite) dimensional
feature space Φ to estimate a squared MMD. Notably, the
estimator depends on the two distributions only through
examples and unlike adversarial losses does not require
optimization of any critic. This makes it worthwhile to
consider as a candidate for our function U , especially in
regimes where we have access to at least a small number of
unrealistic examples. The basic idea is that we would fix a
relatively large number of realistic examples and compare
it to a small batch of examples we wish to test for real-
ism. Support for this idea also comes from Amir and Weiss
(2021) who have shown that MMD can be used to construct
an effective full-reference perceptual metric1 which agrees
with human judgments in determining the similarity of pairs
of images. To construct the metric, each image was treated
as a distribution over small patches.

It remains unclear how to use MMD to quantify the realism
of a single data point without a reference. For an image,
one might compare features averaged over image patches
to the features obtained from patches of a larger dataset
of images, and similar ideas have shown promise in image
quality assessment (e.g., Mittal et al., 2013; Zhang et al.,
2015). But the limitations of this approach are also clear as
not all realistic images have statistics representative of the
entire data distribution.

A bigger concern perhaps is that the statistical power of
MMD can drop quickly as the dimensionality of the problem

1A full-reference metric takes two images as arguments where
a no-reference metric only has a single input.

increases2 (Ramdas et al., 2015), suggesting that we might
need a very large number of examples if we want to identify
defects in reasonably sized images or videos.

The MMD estimator makes fewer assumptions than is nec-
essary for us. In particular, it seems reasonable to assume
access to P (or a good approximation) both from a concep-
tual and a practical point of view, given the power of today’s
generative models. By incorporating P into our definition
of realism, we can hope to quantify realism more efficiently.
MMD leaves it to us to choose Φ and does not provide a
clear mechanism for incorporating P .

4. Universal Critics
In this section, we introduce an alternative notion of real-
ism based on concepts from algorithmic information theory
(AIT) (Martin-Löf, 1966; Chaitin, 1987; Li and Vitányi,
1997). AIT is concerned with whether a given sequence
of bits is a random sequence of independent coin flips. If
we can answer this question, then the answer to the more
general question of whether x is an instance of P directly
follows, since if we use P to (losslessly) compress x then
the resulting bits should appear random. Several notions of
randomness have been proposed and studied in AIT. Some
have been rejected on the basis of flaws, such as von Mises
randomness (Mises, 1919). Other notions survived scrutiny
and turned out to be equivalent (Chaitin, 2001, Chapter 3),
namely Martin-Löf randomness (Martin-Löf, 1966), Solo-
vay randomness (Solovay, 1975), incompressibility (Li and
Vitányi, 1997), and Chaitin randomness (Chaitin, 2001).
The fact that multiple authors converged to essentially the
same answer should give us hope that there is something
fundamental about the concepts they discovered. Instead
of reviewing the different (equivalent) definitions of ran-
domness, we start with the conclusion relevant for us and
then develop a justification for it below. In particular, AIT
suggests the following measure of randomness to decide
whether x was drawn from a distribution P :

U(x) = − logP (x)−K(x) (8)

Here, K(x) is the Kolmogorov complexity of x which is
defined as the length of a shortest program (in some Turing
complete programming language) which outputs x. The
quantity U(x) is also known as randomness deficiency3 (Li
and Vitányi, 1997) but for reasons that will become clear
soon, we will refer to U as a universal critic.

The following characterization of Kolmogorov complexity

2This assumes that the difficulty of the estimation problem
remains constant, as measured by the KL divergence between the
two distributions being tested.

3A more accurate definition of randomness deficiency would
be over sequences of arbitrary length but for simplicity we will
work with Eq. 8.
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will be more convenient for us,

K(x) = − logS(x), S(x) =
∑
n πnQn(x), (9)

where S(x) is Solomonoff’s probability (Solomonoff, 1960)
and requires some explanation. Consider the set of all dis-
crete probability distributions implementable in a program-
ming language of your choice. Each program corresponds
to a sequence of bits and we are free to interpret those bits
as a natural number. In other words, the set of computable
probability distributions is countable and we can assign each
such distribution Qn a number n. S is a mixture of all of
these. The choice of weights πn is not critical for now and
we can choose πn ∝ 1/n2 or πn = 2−C(n) where C(n) is
the number of bits assigned to n by some universal code.

A similar argument holds for continuous sample spaces
(Li and Vitányi, 1997, Chapter 4.5). That is, there is a
corresponding S for continuous sample spaces which sums
over measures, or lower semicomputable semimeasures4

to be precise. A measure is semicomputable if it can be
approximated from below to arbitrary precision, that is, it is
enough to be able to compute approximations of a measure
for it to be included in the mixture S. For simplicity, we
will focus on discrete spaces even though continuous spaces
are relevant in practice if we want to optimize for realism.

For a more thorough treatment of these concepts, see the
excellent introduction to Kolmogorov complexity by Li and
Vitányi (1997). Here we will try to not get hung up on tech-
nical details since we are ultimately interested in practical
applications and—as some readers may already rightfully
object—Kolmogorov complexity and S are uncomputable.
Nevertheless, we will argue that universal critics as defined
in Eq. 8 correctly formalize realism, and that it is useful to
understand practical approaches as (good or bad) approxi-
mations of it—similar to how deriving Bayesian posteriors
is useful even when they are intractable since they can guide
us towards better approximations.

As a first step, note that if P is computable (or just lower
semi-computable), then there exists an m with Qm = P . If
πn is our prior belief that x was generated by Qn, then

−U(x) = logP (x)− logS(x) (10)

= log
πmQm(x)∑
n πnQn(x)

− log πm (11)

= log Pr(m | x)− log πm (12)

can be seen as the log-posterior probability of P given x up
to a constant, consistent with our earlier notion of realism.

4A semimeasure integrates to a value less or equal 1. S itself
is an example of a semimeasure with

∑
x S(x) < 1. This is due

to the halting problem causing some unknowable set of indices n
to correspond to programs which never stop running. For these n,
we set Qn(x) = 0.

4.1. Batched Universal Critics

How does our new notion of realism compare to existing no-
tions of realism? U is a particular instance of a no-reference
metric since it can be applied to a single instance x. But it
turns out that we can also use it to approximate divergences
by taking averages, as we will demonstrate. Consider evalu-
ating the distribution Q based on its average realism score
as assigned by U . We have

EQ[U(x)] = EQ[logS(x)− logP (x)] (13)
≤ EQ[logQ(x)− logP (x)] (14)
= DKL[Q‖P ], (15)

where Eq. 14 is due to Q minimizing cross-entropy when
the data is distributed according to Q. On the other hand, if
Q is computable (or just lower semicomputable), we have

EQ[U(x)] = EQ[log
∑
n πnQn(x)− logP (x)] (16)

≥ EQ[log(πmQm(x))− logP (x)] (17)

= DKL[Q‖P ]− log 1
πQ

(18)

since we must have Qm = Q for some m. For ease of
notation, we also write πQ to refer to πm. The inequality
follows because the terms we dropped from the sum are all
non-negative. What this sandwich bound implies is that our
universal critic works well as a replacement for the optimal
critic TQ (Eq. 7) if the complexity of Q, log(1/πQ), is low
relative to the KL divergence between Q and P . This agrees
with our intuition for realism. In particular, we are more
likely to accept an alternative explanation of the data if the
explanation is simple, that is, if it can be described in a few
words (or bits). A sequence of zeros (Examples 1 and 2)
is easy to detect because it is cheap to describe (“always
output 0”). While the critic U depends on P , it is universal
in the sense that it does not depend on Q.

Example 4 (Low Complexity). Consider a distribution
over natural images P and a distribution Q0 which assigns
all its mass to a single flat image, Q0(x = 0) = 1. Based
on our bounds above, we should expect U to detect Q0 as
unrealistic since it is cheap to describe, that is, log(1/πQ0)
is small for any reasonable coding scheme. In contrast,
using − logP (x) instead of U(x) would fail to detect Q0

since natural image distributions generally assign high prob-
ability to flat images. Similarly, images of Gaussian white
noise would be detected since their distribution is cheap to
describe as independent copies of a simple distribution.

Note from Example 4 that low-complexity distributions can
have both low or high entropy, that is, the complexity (or
coding cost) log(1/πQ) of a distribution Q is different from
its entropy.
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Example 5 (High Complexity). As another example, con-
sider a distribution which has memorized a training set of
natural images, QD(x) ∝

∑
x′∈D δx′(x). This distribution

will remain undetected since its complexity is high. To
describe QD, we would have to encode every image in the
training set D. On the one hand, this means that U may
perform poorly as an approximation of the KL divergence
between QD and P (due to the loose lower bound, Eq. 17).
On the other hand, this behavior is in line with our intuitive
notion of realism since we would also fail to tell a single
example generated by P from a single example selected
from the training set. Like the universal critic, we consider
training set images to be realistic5.

As a side note, a tighter bound can be obtained by choos-
ing m which maximizes πmQm(x) instead of choosing m
with Qm = Q as in Eq. 17. This would correspond to the
minimum description length (MDL) principle of selecting
models based on the total cost of describing the data and the
model (Rissanen, 1978). That is, where adversarial train-
ing uses objectives such as maximum likelihood to select a
critic, the universal critic can be viewed as selecting a critic
based on MDL.

We can further improve the critic’s odds of detecting Q
by feeding it multiple independent examples. We define a
batched universal critic as a critic of the form

UB(xB) = log
∑
n

πn
∏
b

Qn(xb)− log
∏
b

P (xb), (19)

where xB = (x1, . . . ,xB). In the following, let QB in-
dicate the product measure, that is, a distribution over B
independent samples from Q. Then

1
BEQB [UB(xB)] (20)

≥ 1
BEQB

[
log
(
πmQ

B
m(xB)

)
− logPB(xB)

]
(21)

= 1
B

∑
b EQ [logQm(xb)− logP (xb)] + 1

B log πm

= EQ [logQ(xb)− logP (xb)] + 1
B log πQ (22)

= DKL[Q‖P ]− 1
B log 1

πQ
(23)

for some m where Qm = Q. Compared to Eq. 17, we now
obtain a tighter bound, which agrees with our intuition that
upon observing multiple examples we should be able to do
a better job of discriminating Q from P . In the limit of
large B we recover the KL divergence. In this sense our
notion of realism generalizes prior notions of realism based
on no-reference metrics or divergences, and allows us to
interpolate between the two.

5More concretely, we can say that an average training set image
would be considered realistic in the sense that ED[EQD [U(x)]] =
EP [U(x)] ≤ 0 (Eq. 14).

4.2. Universal Tests

Deciding whether x is realistic or not means deciding be-
tween two hypotheses. The null hypothesis is that x is
realistic, by which we mean that x came about in a particu-
lar way, modelled by x being drawn from the distribution P .
Our alternative hypothesis is that x is unrealistic, or that it
came about by some other process Q. For example, P may
be a distribution over photos but an alternative explanation
could involve heavy compression with JPEG, corresponding
to a distribution over images with blocking artefacts. If there
are multiple ways in which x can fail to be realistic, Qn,
then it is natural to assign probabilities πn to these events
and to consider a mixture distribution as our alternative hy-
pothesis. We end up with S as our alternative hypothesis if
the only assumption we are willing to make is that x was
generated by some computable process. By the well-known
Neyman-Pearson lemma (Neyman et al., 1933), the most
powerful test is then a likelihood ratio test of the form

logS(x)− logP (x) > η, (24)

where η is a parameter which controls the trade-off between
false positives and false negatives. Note that the left-hand
side is our universal critic. If we accept the Neyman-Pearson
lemma then it is easy to accept that our measure of realism
should take the form of a likelihood ratio instead of just
P (x). However, this does not yet explain why our choice
of alternative hypothesis should be S.

We can provide the following additional justification for
the universal critic. Assume that instead of S we decide to
use another alternative hypothesis corresponding to a com-
putable (or just lower semicomputable) measure Q. Then it
is not difficult to see that

UB(xB) ≥ logQB(xB)− logPB(xB)− log 1
πQ

(25)

for all xB and all B (following the same reasoning as in
Eqs. 20-23). That is, UB additively dominates any com-
putable likelihood ratio test and the constant log(1/πQ)
becomes negligible for sufficiently large B. Asymptotically,
the universal critic is as sensitive to unrealistic examples as
any other test based on an alternative hypothesis Q.6

4.3. MCMC

When optimizing data for realism it is natural to look to
Markov chain Monte Carlo (MCMC) methods for solutions.
In MCMC, the data is stochastically perturbed until it con-
verges to a sample from our target distribution P (at which
point it would appear realistic). For example, for a con-
tinuous distribution with differentiable density p, a simple

6Li and Vitányi (1997, Chapter 4.3) proved the stronger result
that randomness deficiency additively dominates any so-called
sum-P test.
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MCMC strategy based on Langevin diffusion uses updates
of the form

xt+ε = xt + ε
Ä
∇ log p(xt) +

√
2ηt
ä
, (26)

where ηt ∼ N (0, I) is independent Gaussian noise. For
infinitesimal ε, the sequence of xt converges to the distribu-
tion P . For a fixed ε > 0 the stationary distribution will only
approximate P , but this can be addressed by performing
additional Metropolis-Hastings accept/reject steps (Besag,
1994; Welling and Teh, 2011).

While MCMC produces realistic examples, it is not directly
applicable to problems of the form of Eq. 1, since it is
unclear how to translate an MCMC algorithm into a loss
function U . If we naively interpreted Eq. 26 as a noisy
gradient update, then this would correspond to using p as a
measure of realism and is bound to fail (Section 2.1).

In a second attempt to make MCMC work for us, consider
the sequence of distributions generated by Eq. 26. Let q0 be
the density used to initialize x0. Then each update produces
a new density qt which approaches p as t goes to infinity.
Maoutsa et al. (2020) and Song et al. (2021) showed that
the deterministic updates

xt+ε = xt + ε
(
∇ log p(xt)−∇ log qt(xt)

)
(27)

follow the same sequence of distributions qt (for infinitesi-
mal ε, or approximately for ε > 0). Eq. 27 suggests mov-
ing xt towards high-density regions of p but away from
high-density regions of its current distribution qt. When
optimizing for realism, we do not know qt. But assuming
an underlying qt exists, a Bayesian approach would be to
estimate the missing gradient in Eq. 27 by assigning prior
probabilities πn to candidate densities qn and then to form
the posterior expectation∑

n P (n | xt)∇ log qn(xt) = ∇ log
∑
n πnqn(xt) (28)

where P (n | xt) ∝ πnqn(xt) (Appendix B). Note the
resemblance of the right-hand side to Solomonoff’s proba-
bility. If we restrict the universal critic to distributions with
differentiable densities, then gradient descent on its density
can be viewed as a Bayesian’s attempt to simulate Eq. 27.

4.4. Limited-Memory Observer

We demonstrated useful statistical properties of universal
critics and discussed connections to adversarial critics, sig-
nificance testing, and MCMC. However, did we capture
anything about how humans perceive inputs? In this section
we will argue that batched universal critics not only general-
ize no-reference metrics and divergences, but also represent
a more realistic model of human observers.

No-reference metrics are motivated by the idea that humans
can look at a single image and decide whether it is realistic

or not. It should therefore be possible to design a function
which performs this task similarly well. However, in prac-
tice, even human observers often have access to not just
a single image but a number of images. When evaluating
the quality of image codecs or generative models, for ex-
ample, human raters typically receive a stream of images
and are asked to rate them. Mean opinion score tests ask
raters to assign a score between 1 and 5 to each image while
an alternative approach asks raters to classify between real
and generated images (Denton et al., 2015). A generative
model which always produces the same output would eas-
ily be identified by humans in such a task, even when the
image appears realistic when viewed in isolation. While
humans would be able to better detect a faulty generative
model over time, no-reference metrics continue to produce
the same output no matter how many examples they receive.
That is, a no-reference metric is memoryless. While it may
have been obtained through training on a set of realistic and
unrealistic examples, it is unable to adapt to the method(s)
currently under evaluation once it has been fixed.

Divergences represent the other extreme as they have access
to the entire distribution. This corresponds to a human
observer who has received an infinite stream of examples of
either real or generated data. The total variation distance, for
example, measures the probability of an optimal observer
correctly classifying real from generated data (Nguyen et al.,
2009; Blau and Michaeli, 2018),

psuccess =
1

2
DTV[Q,P ] +

1

2
, (29)

that is, an observer who has had access to infinitely many
training examples. Other divergences can be similarly inter-
preted as classifiers which are optimal but with respect to
different losses (Nguyen et al., 2009).

Like other no-reference metrics and human observers, uni-
versal critics provide a score for individual examples. Like
divergences they can also be viewed as the score of a clas-
sifier deciding between two hypotheses, but unlike diver-
gences they only have access to a finite set of training ex-
amples. This limitation means that prior assumptions be-
come more important. Alternatively, universal critics can be
viewed as measuring the performance of an ideal observer
with limited memory (Appendix C). In this sense, batched
universal critics are a better model of human observers than
either no-reference metrics (memoryless) or divergences
(infinite memory).

Universal critics as defined in Eq. 8 depend on an uncom-
putable Kolmogorov complexity and therefore could be
implemented neither by humans nor computers. Given suffi-
cient evidence, it will detect any failures a human observer
might detect (Section 4.2) but will also detect any unrealistic
properties that would be missed by us. In this sense, univer-
sal critics provide a sufficient but not necessary criterion for
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high perceptual quality (unlike typicality, which is necessary
but not sufficient). The limitations of human observers can
be incorporated naturally into universal critics by limiting
S to a mixture over fewer components. However, charac-
terizing the limitations and abilities of human observers is
beyond the scope of this paper. We refer to Griffiths and
Tenenbaum (2003), who studied the ability of humans to
detect randomness in binary sequences, and compared it to
algorithmic notions of randomness.

5. Related Work
Given the wide range of related fields and the vast amount
of work in them (Section 1), it is impossible to review any
meaningful fraction of related work here. Instead, we will
focus on two successful examples with interesting connec-
tions to universal critics.

5.1. Input Complexity

Several papers on outlier detection made the puzzling ob-
servation that generative models trained on one dataset of
images can assign higher probability to other datasets (Choi
et al., 2019; Nalisnick et al., 2019a; Hendrycks et al., 2019).
Serrà et al. (2020) found that the issue virtually disappears
if instead of measuring log-probabilities, the negative log-
probability under the model is compared with the coding
cost of a lossless image compression method such as PNG,

− logP (x)− C(x), (30)

where C(x) is the coding cost obtained via compression.
The authors found that this signal performed significantly
better for outlier detection, providing support for our defini-
tion of realism (Eq. 8) by viewingC(x) as an approximation
to Kolmogorov complexity. It is further enouraging that a
simple but flexible compression scheme can provide a useful
signal. An interesting question for future research is what a
differentiable analogue of C would look like, and whether
it can be made robust enough for optimization.

We note that input complexity has also been considered in
statistics for its applications in hypothesis testing, including
as an approximation to universal tests (Ryabko et al., 2006).

5.2. Score Distillation Sampling

Score distillation sampling (SDS; Poole et al., 2023) is a
technique which has gained a lot of popularity for training
3D generative models. Training 3D generative models is
challenging due to the high cost associated with collecting
3D data. SDS tries to overcome these limitations by lever-
aging diffusion models (Sohl-Dickstein et al., 2015) trained
on large amounts of 2D images to guide text-to-3D models
towards realistic outputs. Briefly, diffusion models define
latent variables zt = αtx + σtε where ε ∼ N (0, I) and

a function ε̂t(zt) is trained to predict ε. For a conditional
diffusion model whose outputs depend on text y, we have
the important relationship (Robbins, 1956)

ε̂t(zt; y) ≈ E[ε | zt, y] = −σt∇zt
log pt(zt | y), (31)

where pt is the distribution of zt so that ε̂t can also be used
to estimate the gradient of these log-densities.

Simplifying a bit, Poole et al. (SDS; 2023) propose the
following gradient,

∇xLSDS(x; y) = Et,ε[w(t)(ε̂t(zt; y)− ε)] (32)

where w(t) are hyperparameters assigning weights to the
different noise levels. Is LSDS a good candidate for U? We
can see that SDS tries to find x such that zt is near modes
of pt. Note that pt is essentially the density of x smoothed
via convolution with a Gaussian kernel, and so SDS appears
fundamentally similar to using p as a measure of realism
(Section 2.1) and susceptible to similar failures. Indeed,
if the data distribution was Gaussian, then pt would also
be Gaussian and the optimal x would be the mean, which
tends to be unrealistic. This raises the question of why
SDS performs well in practice. The key to its success lies
in classifier-free guidance (CFG; Ho and Salimans, 2021).
Instead of using ε̂t directly, this common trick is to use

ε̂vt (zt; y) = (1 + v)ε̂t(zt; y)− vε̂t(zt), (33)

where ε̂t(zt) is an unconditional prediction of ε and the guid-
ance weight v ≥ 0 is a hyperparemeter. This corresponds to
a gradient signal proportional to

v∇zt log pt(zt)− (1 + v)∇zt log pt(zt | y). (34)

Implicit in the marginal density pt(zt) is a large mixture
over all possible texts y,

pt(zt) =
∑
y p(y)pt(zt | y). (35)

Note the resemblance of Eq. 34 to our universal critic. For
large v, the constant 1 becomes negligible and we are left
with a density ratio between the target distribution and a
large mixture distribution over alternative explanations. In-
deed, Poole et al. (2023) found that SDS without CFG pro-
duced blurry 3D scenes and very large guidance weights
worked best.

We therefore submit that the reason SDS works well is
not explained by its ability to find modes in densities or
its connections to model distillation techniques, but by its
ability to approximate universal critics. Reinterpreting SDS
in this way suggests new ways of overcoming its weaknesses
(e.g., its tendency to produce oversaturated images), such as
a more intentional design of the mixture of alternatives, or
batched losses analogous to Eq. 19.
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6. Discussion
In this position paper we have argued that the question of
realism is equivalent to the question of randomness, that is,
whether observations originated from a particular distribu-
tion. This allowed us to draw on insights from algorithmic
information theory and to propose universal critics, or ran-
domness deficiency (Li and Vitányi, 1997), as a rational
answer. Perceptual quality can be viewed as the result of
a (necessarily) imperfect approximation of universal crit-
ics. However, despite the relevance of these concepts to
problems in machine learning, discussions of randomness
deficiency are notably absent from its literature. Instead,
dominant notions of realism continue to be based on proba-
bility (e.g., Ruff et al., 2021; Poole et al., 2023), typicality
(e.g., Nalisnick et al., 2019b) or divergences (e.g., Blau and
Michaeli, 2018; Theis and Wagner, 2021).

A divergence of zero is a sufficient condition for perfect
realism but corresponds to an ideal observer with access to
an infinite stream of examples. As such, it is stronger than
required for most practical applications where observers
only have access to one or a few examples. At the other
end of the spectrum, weak typicality is an example of a
criterion which only considers a necessary criterion, while
most no-reference metrics correspond to neither a necessary
nor a sufficient criterion (e.g., high probability in some fea-
ture space). Universal critics enable principled relaxations
of divergence-based constraints. While weaker than diver-
gences (in the desired way), they are still strong in the sense
that they are as strong as other likelihood-ratio tests for real-
ism, up to a constant which depends on the complexity of
the competing test (Section 4.2).

Many interesting practical and theoretical questions remain.
For example, what is the impact of different choices of
πn on the sample efficiency of universal critics? What are
the implications of using universal critics in rate-distortion-
realism trade-offs? Most importantly, what do practical
approximations to universal critics (Eqs. 8 or 19) look like
that can serve as optimization targets?
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What makes an image realistic?

A. Typicality
In Appendix A.1 we extend our discussion of weak typicality. In particular, we elaborate on how a majority of examples in
the typical set can be unrealistic. In Appendix A.2 we additionally consider strong typicality.

A.1. Bounded size of weakly typical sets

As discussed in the main text, the typical set contains sequences xN ∼ PN with high probability, that is, ANδ is large enough
that PN (ANδ ) approaches 1 as N goes to infinity. On the other hand, the typical set is small in the sense that the number of
elements is bounded by (Cover and Thomas, 2006)

|ANδ | ≤ 2H[xN ]+Nδ. (36)

This fact is exploited in information theory to build simple but efficient codes for data compression. Using

log2 |ANδ |+ 1 ≤ H[xN ] +Nδ + 1 (37)

bits, we can address each element in the typical set. Normalized by the number of elements, this becomes

1

N
H[xN ] + δ +

1

N
= H[xn] + δ +

1

N
, (38)

approaching the entropy of P as N increases and δ decreases. Counter-intuitively, this suggests that the typical set cannot
contain too many unrealistic sequences, or else our compression scheme would be inefficient. However, note that while the
coding rate overhead is only (δ + 1/N) above H[xn] (Eq. 38), the number of elements in the typical set already exceeds
2H[x] by a factor of up to 2Nδ (Eq. 36). If we relax the threshold δ so that Nδ increases by 1, then this would increase the
total coding cost of a sequence by only 1 bit, yet the number of elements in the typical set increases by a factor of up to 2.

A.2. Strong typicality

Here we consider strong typicality. A closely related notion (P -typicality) was considered by Chen et al. (2022) to quantify
the realism of a batch of examples. Strong typicality is also similar in spirit to maximum mean discrepancy (MMD; Gretton
et al., 2012), which was discussed in Section 3.2.

Let X be a finite set and let #(x,xN ) be the number of occurrences of x in a sequence xN = (x1, . . . , xN ), that is, a
histogram. The set of strongly typical sequences is defined as (Cover and Thomas, 2006)

TNδ =

{
xN ∈ XN :

∑
x∈X

∣∣∣∣ 1

N
#(x,xN )− P (x)

∣∣∣∣ < δ

}
. (39)

As for weakly typical sets ANδ , the probability that a randomly drawn sequence xN ∼ PN is strongly typical approaches 1
for any δ > 0 as N increases. Strong typicality requires the empirical distribution of elements in a sequence to be close to
the distribution of interest, P . For large N , a randomly selected element of a strongly typical sequence will appear like a
sample from P , that is, it will appear realistic. However, the main challenge we are trying to overcome is to define realism
for short sequences and individual x. If we naively apply strong typicality to a single element (N = 1), we obtain∑

x∈X |#(x, (x1))− P (x)| = |1− P (x1)|+
∑
x6=x1

|0− P (x)| (40)

= 1− P (x1) +
∑
x 6=x1

P (x) (41)

= 1− P (x1) + 1− P (x1) (42)
= 2− 2P (x1), (43)

that is, we are effectively back to measuring the probability of x1. It is therefore unclear how strong typicality could
be used to evaluate objects as high-dimensional as images. One might consider dividing an image into patches of lower
dimensionality and treating the image as a sequence of these. However, this would ignore dependencies between patches
and we would further have to assume that the statistics of each realistic image is representative of the entire distribution (i.e.,
ergodicity), which may not be the case.
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B. Expected gradient of log-density
Let P (n | x) ∝ πnqn(x) be the posterior probability that x was drawn from qn. Then the expected gradient of the
log-density is: ∑

n P (n | x)∇ log qn(x) =
∑
n P (n | x) 1

qn(x)
∇qn(x) (44)

=
∑
n

πnqn(x)∑
m πmqm(x)

1
qn(x)

∇qn(x) (45)

= 1∑
n πnq(x)

∇
∑
n πnqn(x) (46)

= ∇ log
∑
n

πnqn(x) (47)

C. Limited-memory observer
Here we elaborate on the relationship between the batched universal critic and an ideal observer in a sequential prediction
task. Assume an observer assigns a value T (x) to an image x. Further assume we ask the observer to

maximize
T

EQ[T (x)]− EP [exp(T (x))], (48)

that is, the observer receives a reward of T (x) if x ∼ Q and a penalty of exp(T (x)) if x ∼ P . The optimal output is then
given by (Glaser et al., 2021)

TQ(x) = logQ(x)− logP (x). (49)

Note that

EP [exp(TQ(x))] = EP [Q(x)/P (x)] =
∑
x

Q(x) = 1. (50)

TQ remains the optimal solution if we solve the following closely related constrained optimization problem,

maximize
T

EQ[T (x)] subject to EP [exp(T (x))] ≤ 1, (51)

and so we can use EQ[T (x)] to evaluate T if we fix P and restrict the class of allowed T in this way. In other words, an
equivalent task presents raters only with examples from Q, but applies restrictions to the scores that can be assigned.

Unlike typical classification problems where both P and Q are unknown and must be learned, we can assume P to be
known to the observer through prior experience while Q still needs to be learned. A rational observer who expects x to be
distributed according Qn with probability πn would maximize the expected reward by using

U(x) = logP (x)− logS(x), where S(x) =
∑
n πnQn(x). (52)

After receiving B examples from Q, xB = (x1, . . . ,xB), a rational observer would update those beliefs to

π(n | xB) ∝ πnQBn (xB) = πn
∏B
b=1Qn(xb) (53)

and receive a reward of

U(x | xB) = logP (x)− logS(x | xB), where S(x | xB) =
∑
n π(n | xB)Qn(x) (54)

for a subsequent example x from the unknown Q. This score is slightly different from the batched universal critic, which is
more readily interpreted as the combined value assigned to an entire batch of examples. However, the following relationship
holds:

U(xB) = logPB(xB)− log
∑
n πnQ

B
n (xB) (55)

= logPB(xB)− log
∑
n πnQ

B−1
n (xB−1)Qn(xB) (56)

= logPB(xB)− log
∑
n

πnQ
B−1
n (xB−1)∑

m πmQ
B−1
m (xB−1)

Qn(xB)− log
∑
m πmQ

B−1
m (xB−1) (57)

= logP (xB)− log
∑
n π(n | xB−1)Qn(xB) + logPB−1(xB−1)− log

∑
m πmQ

B−1
m (xB−1) (58)

= U(xB | xB−1) + U(xB−1) (59)

=
∑B
b=1 U(xb | xb−1) (60)
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That is, the output of the batched universal critic can be viewed as the sum of scores achieved in B sequential prediction
tasks.
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