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ABSTRACT

We propose an adaptive (stochastic) gradient perturbation method for differen-
tially private empirical risk minimization. At each iteration, the random noise
added to the gradient is optimally adapted to the stepsize; we name this process
adaptive differentially private (ADP) learning. Given the same privacy budget,
we prove that the ADP method considerably improves the utility guarantee com-
pared to the standard differentially private method in which vanilla random noise
is added. Our method is particularly useful for gradient-based algorithms with
non-constant learning rate, including variants of AdaGrad (Duchi et al., 2011).
We provide extensive numerical experiments to demonstrate the effectiveness of
the proposed adaptive differentially private algorithm.

1 INTRODUCTION

Publishing deep neural networks such as ResNets (HZRS16) and Transformers (VSP+17) (with bil-
lions of parameters) trained on private datasets has become a major concern in the machine learning
community; these models can memorize the private training data and can thus leak personal informa-
tion, such as social security numbers (CTW+20). Moreover, these models are vulnerable to privacy
attacks, such as membership inference (SSSS17; GSL+21) and reconstruction (FJR15; NHN+20).
Therefore, over the past few years, a considerable number of methods have been proposed to ad-
dress the privacy concerns described above. One main approach to preserve data privacy is to apply
differentially private (DP) algorithms (DKM+06; DR+14; ACG+16; JWK+20) to train these mod-
els on private datasets. Differentially private stochastic gradient descent (DP-SGD) is a common
privacy-preserving algorithm used for training a model via gradient-based optimization; DP-SGD
adds random noise to the gradients during the optimization process (BST14; SCS13; BFGT20).

To be concrete, consider the empirical risk minimization (ERM) on a dataset D = {xi}ni=1, where
each data point xi ∈ X . We aim to obtain a private high dimensional parameter θ ∈ Rd by solving

min
θ∈Rd

F (θ) :=
1

n

n∑

i=1

f(θ;xi), (1)

where the loss function f(·) : Rd×X → R is non-convex and smooth at each data point. To measure
the performance of gradient-based algorithms for ERM, which enjoys privacy guarantees, we define
the utility by using the expected `2-norm of gradient, i.e., E[‖∇F (θ)‖], where the expectation is
taken over the randomness of the algorithm (WYX17; ZZMW17; WJEG19; ZCH+20).1 The DP-
SGD with a Gaussian mechanism solves ERM in (1) by performing the following update at the t-th
iteration, for t ≥ 0 and θ0 ∈ Rd

(DP-SGD) θt+1 = θt − ηtgt with the released gradient gt = ∇f(θt;xξt) + Z, (2)

where Z ∼ N (0, σ2I), ξt ∼ Uniform({1, 2, . . . , n}), and ηt > 0 is the stepsize or learning rate.
Choosing the appropriate stepsize ηt is challenging in practice, as ηt depends on the unknown Lips-
chitz parameter of the gradient ∇f(θ;xi) (GL13). Recent popular techniques for tuning ηt include
adaptive gradient methods (DHS11) and decaying stepsize schedules (GDG+17). When applying

1We examine convergence through the lens of utility guarantees; one may interchangeably use the two
words “utility” or “convergence”.
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Figure 1: Comparison between αt = 1 and αt = 1/
√
ηt

in (3). Set the stepsize ηt = 1/
√

1 + t and the same privacy
budget at final iteration. The blue curves corresponding to the
right vertical axis show the overall privacy for αt = 1 (DP-
SGD), represented by the dashed line, and αt = 1/

√
ηt (ADP-

SGD), represented by the solid line. The green curves corre-
sponding to the left vertical axis show the actual Gaussian noise
(i.e., ηtαtZ ) added to the parameter θt for αt = 1 (dash line)
and αt = 1/

√
ηt (solid line). The variance of the perturba-

tion using our proposed ADP-SGD decreases much slower than
that using DP-SGD. Note that the privacy value we used here is
based on the theoretical upper bound.
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non-constant stepsizes, most of the existing differentially private algorithms directly follow the stan-
dard DP-SGD strategy by adding a simple perturbation (i.e, Z ∼ N (0, σ2I)) to each gradient over
the entire sequence of iterations (ZCH+20). This results in a uniformly-distributed privacy budget
for each iteration (BST14).

Several theoretical, as well as experimental results, corroborate the validity of the DP-SGD method
with a uniformly-distributed privacy budget (BDLS20; ZKY+20; ZCH+20). Indeed, using a con-
stant perturbation intuitively makes sense after noticing that the update in (2) is equivalent to
θt+1 = θt − ηt∇f(θt;xξt) − ηtZ. This implies that the size of the true perturbation (i.e., ηtZ)
added to the updated parameters is controlled by ηt. The decaying learning rate ηt thus diminishes
the true perturbation added to θt. Although the DP-SGD algorithm with decaying noise ηtZ is
reasonable, it remains to be seen whether or not it is the optimal strategy using the utility measure.

To study the above question, we propose adding a hyperparameter αt > 0 to the private mechanism:

(ADP-SGD) θt+1 = θt − ηtgt with the released gradient gt = ∇f(θt;xξt) + ηtαtZ. (3)

The role of the hyperparameter αt is to adjust the variance of the added random noise given the
stepsize ηt. It is thus natural to add “adaptive” in front of the name DP-SGD and call our proposed
algorithm ADP-SGD. To establish the privacy and utility guarantees of this new method, we first
extend the advanced composition theorem (DR+14) so that it treats the case of a non-uniformly
distributed privacy budget. We then show that our method achieves an improved utility guarantee
when choosing αt = 1/

√
ηt, compared to the standard method using uniformly-distributed privacy

budget, which corresponds to αt = 1.

This relationship between αt and ηt is surprising. Given the same privacy budget and the decaying
stepsize ηt < 1, the best choice – αt = 1/

√
ηt – results in θt+1 = θt−ηt∇f(θt;xξt)−

√
ηtZ. This

implies that the actual Gaussian noise
√
ηtZ of ADP-SGD decreases more slowly than that of the

conventional DP-SGD (i.e., ηtZ). To some extent, this is counter-intuitive in terms of convergence:
one may anticipate that a more accurate gradient or smaller perturbation will be necessary as the
parameter θt reaches a stationary point (i.e., as ‖∇F (θt)‖ → 0) (LK18). See Figure 1 for an
illustration. We will explain this interesting finding in Section 4.

Contribution. We summarize our contributions below:

• We propose an adaptive (stochastic) gradient perturbation method – “Adaptive Differentially Pri-
vate Stochastic Gradient Descent” (ADP-SGD) (Algorithm 1 or (3)) – and show how it can be
used to perform differentially private empirical risk minimization. We show that APD-SGD pro-
vides a solution to the core question of this paper: given the same overall privacy budget and
iteration complexity, how should we select the gradient perturbation adaptively - across the en-
tire SGD optimization process - to achieve better utility guarantees? To answer this, we establish
the privacy guarantee of ADP-SGD (Theorem 4.1) and find that the best choice of αt follows
an interesting dynamics: αt = 1/

√
ηt (Theorem 4.2). Compared to the conventional DP-SGD,

ADP-SGD with αt = 1/
√
ηt results in a better utility given the same privacy budget.

• As the ADP-SGD method can be applied using any generic ηt, we discuss the two widely-used
stepsize schedules: (1) the polynomially decaying stepsize of the form ηt = 1/

√
1 + t, and (2) ηt

updated by the gradients (DHS11). When using ηt = 1/
√

1 + t, given the same privacy budgets
ε, we obtain a stochastic sequence {θADP

t } for ADP-SGD with αt = 1/
√
ηt, and {θDP

t } for
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standard DP-SGD. We have the utility guarantees of the two methods, respectively2

E[‖∇F (θADP
τ )‖2] = Õ

(
log(T )√

T
+
d
√
T

n2ε2

)
; E[‖∇F (θDP

τ )‖2] = Õ
(

log(T )√
T

+
d log(T )

√
T

n2ε2

)
,

where τ := arg mink∈[T−1] E[‖∇F (θk)‖2]. Compared to the standard DP-SGD, ADP-SGD with
αt = 1/

√
ηt improves the bound by a factor of O(log(T )) when T and d are large (i.e. high-

dimensional settings). When ηt is updated by the gradients (DHS11), the same result holds. See
Section 5 for the detailed discussion.
• Finally, we perform numerical experiments to systematically compare the two algorithms: ADP-

SGD (αt = 1/
√
ηt) and DP-SGD. In particular, we verify that ADP-SGD with αt = 1/

√
ηt

consistently outperforms DP-SGD when d and T are large. Based on these theoretical bounds
and supporting numerical evidence, we believe ADP-SGD has important advantages over past
work on differentially private empirical risk minimization.

Notation. In the paper, [N ] := {0, 1, 2, . . . , N} and {·} := {·}Tt=1. We write ‖ · ‖ for the `2-norm.
F ∗ is a global minimum of F assuming F ∗ > 0. In addition, we use DF := F (θ0) − F ∗ and set
stepsize ηt = η/bt and denote the d-dimensional identity matrix by Id.

2 PRELIMINARIES

We first make the following assumptions for the objective loss function in (1).
Assumption 2.1. Each component function f(·) in (1) has L-Lipschitz gradient, i.e.,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd. (4)
Assumption 2.2. Each component function f(·) in (1) has bounded gradient, i.e.,

‖∇f(x)‖ ≤ G, ∀x ∈ Rd. (5)
The bounded gradient assumption is a common assumption for analysis of DP-SGD algorithms
(WYX17; ZCH+20; ZKY+20) and also common for general adaptive gradient methods such as
Adam (RCZ+21; CLSH18; RKK18). One recent popular approach to relax this assumption is
through gradient clipping method (CWH20; ATMR19; PSY+19) that we will discuss more in Sec-
tion 6 as well as in Appendix A. Nevertheless, this assumption would serve a good starting to analyze
our proposed method. Next, we introduce differential privacy (DMNS06).
Definition 2.1 ((ε, δ)-DP). A randomized mechanismM : D → R with domain D and range R is
(ε, δ)-differentially private if for any two adjacent datasets D,D′ differing in one sample, and for
any subset of outputs S ⊆ R, we have

Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.

Lemma 2.1 (Gaussian Mechanism). For a given function h : D → Rd, the Gaussian mechanism
M(D) = h(D) + Z with Z ∼ N (0, σ2Id) satisfies (

√
2 log(1.25/δ)∆/σ, δ)-DP, where ∆ =

supD,D′ ‖h(D)− h(D′)‖, D,D′ are two adjacent datasets, and ε, δ > 0.

To achieve differential privacy, we can use the above Gaussian mechanism (DR+14). In our paper,
we consider iterative differentially private algorithms, which prompts us to use privacy composition
results to establish the algorithms’ privacy guarantees after the completion of the final iteration. To
this end, we extend the advanced composition theorem (DR+14) to the case in which each mecha-
nismMi has its own specific εi and δi parameters.
Lemma 2.2 (Extended Advanced Composition). Consider two sequences {εi}ki=1, {δi}ki=1 of pos-
itive numbers satisfying εi ∈ (0, 1) and δi ∈ (0, 1). LetMi be (εi, δi)-differentially private for all
i ∈ {1, 2, . . . , k}. ThenM = (M1, . . . ,Mk) is (ε̃, δ̃)-differentially private for δ′ ∈ (0, 1) and

ε̃ =

√√√√
k∑

i=1

2ε2
i log

(
1

δ′

)
+

k∑

i=1

εi(e
εi − 1)

(eεi + 1)
, δ̃ = 1− (1− δ1)(1− δ2) . . . (1− δk) + δ′.

When εi = ε0 and δi = δ0 for all i, Lemma 2.2 reduces to the classical advanced composition
theorem (DR+14) restated in Lemma A.2 in the Appendix.

2This is an informal statement of Proposition 5.1; the order Õ hides log(1/δ), LG2 and F (θ0)−F ∗ terms.
We keep the iteration number T in our results since the theoretical best value of T depends on some unknown
parameters such as the Lipschitz parameter of the gradient, which we try to tackle using non-constant stepsizs.
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3 AN ADAPTIVE DIFFERENTIALLY PRIVATE ALGORITHM

In this section, we present our proposed algorithm: adaptive differentially private stochastic gradient
descent (ADP-SGD, Algorithm 1). The “adaptive” part of the algorithm is tightly connected with the
choice of the hyper-parameter αt (see line 5 of Algorithm 1). For αt = 1, ADP-SGD reduces to DP-
SGD. As mentioned before, we aim to investigate whether an uneven allocation of the privacy budget
for each iteration (via ADP-SGD) will provide a better utility guarantee than the default DP-SGD
given the same privacy budget. To achieve this, our proposed ADP-SGD with hyper-parameter αt
adjusts the privacy budget consumed at the t-th iteration according to the current learning rate η/bt+1

(see line 6 of Algorithm 1). Moreover, we will update αt dynamically (see line 5 of Algorithm 1)
and show how to choose αt in Section 4. Before proceeding to analyze Algorithm 1, we state
Definition 3.1 to clearly explain the adaptive privacy mechanism for the algorithm.

Definition 3.1 (Adaptive Gaussian
Mechanism). At iteration t in Algo-
rithm 1, the privacy mechanism Mt :
Rd → Rd is:

Mt(X) = ∇f(θt;xξt) + αt+1ct.

The hyper-parameter αt+1 is adaptive
to the DP-SGD algorithm – specifically,
to the stepsize ηt+1 := η/bt+1.

Algorithm 1 ADP-SGD (Reduces to DP-SGD if αt = 1)
1: Input: θ0, b0, α0 and η > 0
2: for t = 0, 1, . . . , T − 1 do
3: ξt ∼ Uniform(1, ..., n) and ct ∼ N (0, σ2I)
4: update bt+1 = φ1(bt,∇f(θt;xξt))
5: update αt+1 = φ2(αt, bt+1)
6: release gbt = η

bt+1
(∇f(θt;xξt) + αt+1ct)

7: update θt+1 = θt − gbt
8: end for

Algorithm 1 is a general framework that can cover many variants of stepsize update schedules,
including the adaptive gradient algorithms (DHS11; KB14). In particular, we use functions φ1 :
R2 → R and φ2 : R2 → R to denote the updating rules for parameters bt and αt, respectively. For
example, when φ1 is 1/

√
a+ ct, φ2 is the constant 1 for all t and a, c > 0, ADP-SGD reduces to

DP-SGD with polynomial decaying stepsizes (BST14). When φ1 is bt+1 =
√
b2t + ‖∇f(θt;xξt)‖2

and φ2 is the constant 1, the algorithm reduces to DP-SGD with a variant of adaptive stepsizes
(DHS11). In particular, if we choose φ2 to be 0, the algorithm reduces to the standard SGD.

Similar to classical works studying the convergence of the SGD algorithm (BFGT20; BCN18;
WWB19), we will use Assumption 3.1 in addition to Assumption 2.2 and Assumption 2.1.
Assumption 3.1. ∇f(θt;xξt) is an unbiased estimator of ∇F (θk). The random indices ξt, t =
0, 1, 2, . . . , are independent of each other and also independent of θt and c1, . . . , ct−1.

Having defined the ADP-SGD algorithm and established our assumptions, in what follows, we will
be answering the paper’s central question: Given the same privacy budget ε, how should one design
the gradient perturbation parameters αt adaptively for each iteration t to achieve a better utility
guarantee? Solving this question is of paramount importance as one can only run these algorithms
for a finite number of iterations, therefore, given these constraints, a clear and efficient strategy for
improving the constants of the utility bound is necessary.

4 THEORETICAL RESULTS FOR ADP-SGD

In this section, we provide the main results for our method – the privacy and utility guarantees.

Theorem 4.1 (Privacy Guarantee). Suppose the sequence {αt}Tt=1 is known in advance and that
Assumption 2.2 holds. Algorithm 1 satisfies (ε, δ)-DP if the random noise ct has variance

σ2 =
(16G)2Bδ
n2ε2

T−1∑

t=0

1

α2
t+1

with Bδ = log(16T/nδ)) log(1.25/δ). (6)

The theorem is proved by using Lemma 2.2 and Definition 3.1 (see Appendix C.1 for details).
Note that the term Bδ could be improved by using the moments accountant method (MTZ19), to
O(log(1.25/δ)) independent of T but with some additional constraints (ACG+16). We keep this
format of Bδ as in (6) in order to compare directly with (BST14). Theorem 4.1 shows that σ2 must
scale with

∑T
t=1 1/α2

t . When the complexity T increases, the variance σ2, regarded as a function
of T , could be either large or small, depending on the sequence {αt}. If αt is monotone with rate
α2
t ∝ tp, where p ∈ [0, 1], then σ2 ∝ T 1−p for 0 < p < 1; σ2 ∝ log(T ) for p = 1; and σ2 ∝ T for
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p = 0 (the default DP-SGD). From a convergence view, θt+1 = θt−ηt∇f(θt;xξt)−ηtαtZ implies
that the actual Gaussian noise added to the updated parameter θt has variance η2tα

2
tσ

2. Therefore, it
is subtle to determine what p would be the best choice for ensuring convergence. In Theorem 4.2,
we will see that the optimal choice of the sequence {αt}Tt=1 is closely related to the stepsize.
Theorem 4.2 (Convergence for ADP-SGD). Suppose we choose σ2 - the variance of the ran-
dom noise in Algorithm 1 - according to (6) in Theorem 4.1 and that Assumption 2.1, 2.2 and 3.1
hold. Furthermore, suppose αt, bt are deterministic. The utility guarantee of Algorithm 1 with
τ , arg mink∈[T−1] E[‖∇F (θk)‖2] and Bδ = log(16T/nδ)) log(1.25/δ) is

E‖∇F (θτ )‖2 ≤ 1∑T−1
t=0

1
bt+1

(
DF
η

+
ηL

2

T−1∑

t=0

E
[
‖∇f(θt, ξt)‖2

]

b2t+1

+
d(16G)2Bδ

2n2ε2
M({αt}, {bt})

)
(7)

where M({αt}, {bt}),
∑T
t=1(αt/bt)

2∑T
t=1 1/α2

t .

Although the theorem assumes independence between bt+1 and the stochastic gradient∇f(θt;xξt),
we shall see in Section 5.2 that a similar bound holds for correlated bt and ∇f(θt;xξt).
Remark 4.1 (An optimal relationship between αt and bt). According to (7), the utility guarantee
of Algorithm 1 consists of three terms. The first two terms correspond to the optimization error and
the last term is introduced by the privacy mechanism, which is also the dominating term. Note that
if we fix {bt} and minimize M with respect to {αt}, the minimal value denoted by Madp express as

min
{αt}

M({αt}, {bt}) = Madp ,
( T−1∑

t=0

1/bt+1

)2
. (8)

Furthermore, M({αt}, {bt}) = Madp if α2
t = bt. Therefore, if we choose αt, bt such that the

relationship of α2
t = bt holds, we can achieve the minimum utility guarantee for Algorithm 1.

Suppose the third term in (7) is much larger than the first two terms. We can compare the utility
bound for some arbitrary setting of {αt} with the utility bound associated with the optimal setting
α2
t = bt by examining the ratioM({αt}, {bt})/Madp; a large value of this ratio implies a significant

reduction in the utility bound is achieved by using Algorithm 1 with αt =
√
bt. For example, for the

standard DP-SGD method, the function M reduces to Mdp , T
∑T−1
t=0 1/b2t+1. Thus, our proposed

method - involving αt =
√
bt - admits a bound improved by a factor of

Mdp

Madp
= T

∑T−1
t=0 1/b2t+1

(
∑T−1
t=0 1/bt+1)2

,

which is bounded below by one using the Cauchy-Schwarz inequality; thus, ADP-SGD is not
worse than DP-SGD for any choice of {bt}. In the following section, we will analyze this factor of
Mdp/Madp for two widely-used stepsize schedules: (a) the polynomially decaying stepsize given
by ηt = 1/

√
1 + t; and (b) a variant of adaptive gradient methods (DHS11).

Note that, in addition to α2
t = bt, there are other relationships between the sequences {(αt/bt)2} and

{α2
t } that could lead to the sameMadp. For instance, setting αtαT−(t−1) = bt is another possibility.

Nevertheless, in this paper, we will focus on the α2
t = bt relation, and leave the investigation of other

appropriate choices to future work. We emphasize that the bound in Theorem 4.2 only assumes f
to have Lipschitz smooth gradients and be bounded. Thus, the theorem applies to both convex or
non-convex functions. Since our focus is on the improvement factor Mdp/Mtadp, we will assume
our functions are non-convex, but the results will also hold for convex functions.

5 EXAMPLES FOR ADP-SGD
We now analyze the convergence bound given in Theorem 4.2 and obtain an explicit form for M in
terms of T by setting the stepsize to be 1/bt+1 ∝ 1/

√
t, which is closely related to the polynomially

decreasing rate of adaptive gradient methods (DHS11; WWB19) studied in Section 5.2.

Constant stepsize v.s. time-varying stepsize. If the constant step size is used, then there is no
need to use the adaptive DP mechanism proposed in this paper as we verify that constant perturbation
to the gradient is optimal in terms of convergence. However, as we have explained in introduction,
to ease the difficulty of stepsize tuning, time varying stepsize is widely used in many practical
applications of deep learning. We will discuss two examples below. In these cases, the standard DP
mechanism (i.e. constant perturbation to the gradient) is not the most suitable technique, and our
proposed adaptive DP mechanism can give better utility results.
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Achieve log T improvement. We present Proposition 5.1 and Proposition 5.2 to show that our
method achieve log(T ) improvement over the vanilla DP-SGD. Although this log(T ) improvement
can also be achieved by using the moments accountant method (MAM) (MTZ19), we emphasize that
our proposed method is orthogonal and complementary to MAM in that the log(T ) improvement
is over Bδ using MAM (See discussion after Theorem 4.1) while ours is during the optimization
process depending on stepsizes. Nevertheless, since the two techniques are complementary to each
other, we can apply them simultaneously, and achieve a log2(T ) improvement over DP-SGD using
advanced composition for O(1/

√
t) stepsizes, compared to a log(T ) improvement using either of

them. Thus, an adaptive DP mechanism for algorithms with time-varying stepsizes is very useful.

5.1 EXAMPLE 1: ADP-SGD WITH POLYNOMIALLY DECAYING STEPSIZES

The first case we consider is the stochastic gradient descent with polynomially decaying stepsizes.
More specifically, we let bt = (a+ ct)1/2, where a > 0, c > 0.
Proposition 5.1 (ADP-SGD v.s. DP-SGD with a polynomially decaying stepsize schedule). Un-
der the conditions of Theorem 4.2 on f and σ2, let bt = (a + ct)1/2 with a > 0, c > 0 in Algo-
rithm 1. Denote τ = arg mint∈[T−1] E[‖∇F (θt)‖2], and Bδ = log(16T/nδ)) log(1.25/δ). If we
choose T ≥ 5+4a/c, we have the following utility guarantee for ADP-SGD (α2

t = bt) and DP-SGD
(α2
t = 1) respectively,

(ADP-SGD) E[‖∇F (θADP
τ )‖2] ≤

√
c
(
DF
η

+ ηG2LBT
2c

)

√
T − 1

+
ηdL(16G)2Bδ

√
T

2n2ε2
√
c

; (9)

(DP-SGD) E[‖∇F (θDP
τ )‖2] ≤

√
c
(
DF
η

+ ηG2LBT
2c

)

√
T − 1

+
ηdL(16G)2Bδ

√
T log

(
1 + T c

a

)

n2ε2
√
c

. (10)

The proof of Proposition 5.1 is given in Appendix D.1 and Appendix D.2. Proposition 5.1 implies
Mdp/Madp = O(log T ) – that is, ADP-SGD has an improved utility guarantee compared to DP-
SGD. Such an improvement can be significant when d is large and LG2 is large.

5.2 EXAMPLE 2: ADP-SGD WITH ADAPTIVE STEPSIZES

We now examine another choice of the term bt, which relies on a variant of adaptive gradient meth-
ods (DHS11). To be precise, we assume bt is updated according to the norm of the gradient, i.e.,
b2t+1 = b2t + max{‖∇f(θt;xξt)‖2, ν}, where ν > 0 is a small value to prevent the extreme case
in which 1/bt+1 goes to infinity. When b20 = ‖∇f(θt;xξt)‖2 → 0, then η/b1 → ∞. We choose
this precise equation formula because it is simple and it also represents the core of adaptive gradient
methods - updating the stepsize on-the-fly by the gradients (LYC18; WWB19). The conclusions for
this variant may transfer to other versions of adaptive stepsizes, and we defer this to future work.

Observe that bt ∝ t1/2 since b2t ∈ [b20 + tv, b20 + tG], which at a first glance indicates that the
bound for this adaptive stepsize could be derived via a straightforward application of Proposition 5.1.
However, since bt is now a random variable correlated to the stochastic gradient ∇f(θt;xξt), we
cannot directly apply Theorem 4.2 to study bt. To tackle this, we adapt the proof technique from
(WWB19) and obtain Theorem D.1, which we deferred to Appendix D.3 due to space limitation.

As we see, bt is updated on the fly during the optimization process. Applying our propsoed method
with α2

t = bt for this adaptive stepsize is not possible since αt has to be set beforehand according to
Equation (6) in Theorem 4.1. To address this, we note b2t ∈ [b20 + tv, b20 + tG]. Thus, we propose to
set α2

t =
√
b20 + tC for some C ∈ [ν,G2] and obtain Proposition 5.2 based on Theorem D.1.

Proposition 5.2 (ADP v.s. DP with an adaptive stepsize schedule). Under the same conditions of
Theorem D.1 on f , σ2, and bt, if αt = (b20 + tC)1/4 for some C ∈ [ν,G2], then

(ADP-SGD) E‖∇F (θADP
τ )‖2 ≤ 2GBsgd√

T − 1
+

128G3ηdLBδ
√
T

n2ε2ν
. (11)

(DP-SGD) E‖∇F (θDP
τ )‖2 ≤ 2GBsgd√

T − 1
+

32G3ηdLBδ
√
T log

(
1 + T ν

b20

)

n2ε2ν
. (12)

See the proof in Appendix D.4. Similar to the comparison in Proposition 5.1, the key difference
between two bounds in (11) and (12) is the last term; using ADP-SGD gives us a tighter utility guar-
antee than the one provided by DP-SGD by a factor of O(log(T )). This improvement is significant
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when the dimension d is very high, or when either L, G, or T are sufficiently large. Note that the
bound in Proposition 5.2 does not reflect the effect of the different choice of C, as the bound corre-
sponds to the worse case scenarios. We will perform experiments testing a wide range of C values
and this will allow us to thoroughly examine the properties of ADP-SGD for adaptive stepsizes.

6 EXPERIMENTS

In this section, we present numerical results to support the theoretical findings of our proposed
methods. We perform two sets of experiments: (1) when bt =

√
20 + t, we compare ADP-SGD

(α2
t = bt) with DP-SGD (setting αt = 1 in Algorithm 1 ); and (2) when bt is updated by the norm of

the gradients, we compare ADP-SGD (α2
t =

√
b20 + tC) with DP-SGD. The first set of experiments

is meant to examine Proposition 5.1, while the second concerns Proposition 5.2. In addition to
the experiments above, in the supplementary material (Appendix F.3), we present strong empirical
evidence in support of the claim that using a decaying stepsize schedule yields better results than
simply employing a constant stepsize schedule.

Datasets and models. We perform our experiments on CIFAR-10 (KH+09) and MNIST
(LBBH98), using a convolution neural network (CNN) for the former and the logistic regression
model for the latter. See our CNN design in the appendix. Notably, following previous work
(ACG+16), the CNN model is pre-trained on CIFAR-100 and fined-tuned on CIFAR-10. The mini-
batch size is 256, and each independent experiment runs on one GPU. We set η = 1 in Algorithm 1
(line 6) and use the gradient clipping with CG ∈ {0.5, 1, 2.5, 5} (CWH20; ATMR19; PSY+19).
Note that one might need to think about CG as being approximately closer to the bounded gradient
parameter G. We provide a more detailed discussion in Appendix F.1. The privacy budget is set to
be ε̄ = ε/Cε ∈ {0.8, 1.2, 1.6, 3.2, 6.4} and we choose δ = 10−5.3 Given these privacy budgets, we
calculate the corresponding variance using Theorem 4.1 (See Appendix G for the code to obtain σ).

6.1 ADP-SGD V.S. DP-SGD WITH POLYNOMIALLY DECAYING STEPSIZES

We focus on understanding the optimality of the theoretical guarantees of Proposition 5.1; the exper-
iments help us further understand how this optimality reflects in generalization. We consider training
with T = 11700, 23400, 39000 iterations corresponding to 60, 120, 200 training epochs, which rep-
resents the practical scenarios of inadequately limited, considerably standard and sufficiently large
time budgets. We repeat the experiments five times, and report the average test accuracy and stan-
dard deviation in Table 1 for gradient clipping values CG ∈ {1, 2.5}. We include plots in Figure 2
to provide detailed comparisons between ADP-SGD and DP-SGD. In Appendix F.1 of the supple-
mental material, we present additional experiments for CG ∈ {0.5, 5}. In addition to the learning
rate ηt = 1/

√
20 + t, we also consider in Appendix F.1 an alternative decaying schedule.

The results in Table 1 and Figure 2 show that the overall performance of our method (ADP-SGD)
is better than DP-SGD given a fixed privacy budget and the same complexity T . Particularly, the
increasing T tends to enlarge the gap between ADP-SGD and DP-SGD, especially for smaller pri-
vacy; for ε̄ = 0.8 with CG = 1, we have improvements of 0.8% at epoch 60, 1.48% at epoch 120,
and 7.03% at epoch 200. This result is reasonable since, as explained in Proposition 5.1, ADP-SGD
improves over DP-SGD by a factor log(T ).

Furthermore, our method is more robust to the predefined complexity T and thus provides an advan-
tage when using longer iterations. For example, for ε̄ = 3.2 with CG = 2.5, our method increases
from 65.34% to 66.41% accuracy when the iteration complexity of 60 epochs is doubled; it main-
tains the accuracy 65.74% at the longer epoch 200. In contrast, under the same privacy budget and
gradient clipping, DP-SGD suffers the degradation from 66.08% (epoch 60) to 65.17% (epoch 200).

6.2 ADP-SGD V.S. DP-SGD WITH ADAPTIVE STEPSIZES

In this section, we focus on understanding the optimality of the theoretical guarantees of Proposi-
tion 5.2; we study the numerical performance of ADP-SGD with stepsizes updated by the gradi-
ents. We notice that, at the beginning of the training, the gradient norm in our model lies between

3The constant Cε = 16 in (6). Although ε = 16ε̄ is large for ε̄ ∈ {0.8, 1.2, 1.6, 3.2, 6.4}, they match
the numerical privacy {0.29, 0.43, 0.57, 1.23, 3.24} calculated by the moments accountant with the noise
determined by T = 11700 (60 epochs) and the gradient clipping CG = 1.0.
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ε̄ Alg Gradient clipping CG = 1.0 Gradient clipping CG = 2.5
epoch=60 epoch= 120 epoch= 200 epoch= 60 epoch= 120 epoch= 200

0.8
ADP 56.38± 0.092 54.20± 0.730 51.71± 1.092 48.61± 1.003 44.11± 1.097 39.92± 0.284
DP 56.13± 0.909 52.72± 0.938 44.68± 0.576 38.06± 1.029 23.64± 0.796 17.75± 1.068
Gap 0.25 1.48 7.03 10.55 20.47 22.17

1.2
ADP 60.26± 0.319 60.24± 0.365 58.68± 0.505 56.63± 0.308 52.26± 0.328 50.7± 1.038
DP 60.09± 0.450 60.02± 0.204 57.56± 0.514 55.71± 0.418 43.16± 0.604 32.00± 2.281
Gap 0.17 0.22 1.12 0.92 9.1 18.7

1.6
ADP 61.30± 0.219 61.98± 0.420 61.88± 0.507 61.52± 0.313 58.60± 0.352 56.07± 0.046
DP 61.18± 0.195 61.89± 0.317 61.46± 0.490 61.76± 0.454 55.68± 0.243 46.74± 0.428
Gap 0.12 0.09 0.42 −0.24 2.92 9.33

3.2
ADP 61.76± 0.490 64.27± 0.257 65.54± 0.066 65.34± 0.12 66.41± 0.054 65.74± 0.106
DP 62.02± 0.248 63.88± 0.275 65.11± 0.359 66.08± 0.130 65.73± 0.353 65.17± 0.115
Gap −0.26 0.39 0.43 −0.44 0.68 0.57

6.4
ADP 62.2± 0.270 64.57± 0.515 65.74± 0.270 67.35± 0.057 68.72± 0.045 69.51± 0.179
DP 62.06± 0.244 64.61± 0.180 65.84± 0.206 67.06± 0.244 68.46± 0.321 69.28± 0.147
Gap 0.14 −0.04 −0.1 0.29 0.26 0.23

Table 1: Mean accuracy of ADP-SGD/DP-SGD with polynomially decaying stepsizes. This table reports
Accuracy with the mean and the corresponding standard deviation over five independent runs given a pair of
(ε̄, CG, T,Alg). The difference (“Gap”) between DP and ADP is provided for visualization purpose. The
results suggest that the more iterations or epochs we use, the more improvements ADP-SGD can potentially
gain over DP-SGD. The results are reported in percentage (%). The highlight number is the best accuracy in a
row among epoch 60, 120 and 200 for the same gradient clipping CG.

Figure 2: Detailed performance ADP-SGD/DP-SGD with polynomially decaying stepsizes. The top row
is for gradient clipping CG = 1.0 and bottom for CG = 2.5. Each plot corresponds to a fixed T (see x-axis)
and a privacy budget ε (see title). The solid orange and light-blue curves, which correspond to the right vertical
y-axis, show the averaged test accuracy for ADP-SGD (solid line) and DP-SGD (dash line). The shaded region
is one standard deviation. Same as Figure 1, the monotone green curves, which correspond to the left vertical
y-axis, show the actual noise for αt = 1/

√
ηt (ADP-SGD, the solid line) and αt = 1 (DP-SGD, the dashed

line). The top/bottom rows from 1st to 4th column correspond to the privacy budgets from 0.8 (epoch 60), 1.2
(epoch 60), 1.6 (epoch 120), and 3.2 (epoch 200).

0.0001 and 0.001 when CG = 1.0. To remedy this small gradient issue, we let bt follow a more
general form: b2t+1 = b2t + max {βt‖∇f(θt;xξt)‖2, 10−5} with βt > 1. Specifically, we set
βt = max{β/((t mod 195) + 1)), 1} with β searching in a set {1, 512, 1024, 2048, 4096, 8192}.4
See Appendix F.2 for a detailed description. As mentioned in Section 5.2, we set α2

t =
√
b20 + tC in

advance with b20 = 20, and choose C ∈ {10−5, 10−4, 0.001, 0.01, 0.1, 1}. We consider the number
of iterations to be T = 11700 with the gradient clipping 1.0 and 2.5. Table 2 summarizes the results
of DP-SGD and ADP-SGD with the best hyper-parameters averaged over five experimental trials.

4This set for β is due to the values of gradient norm as mentioned in the main text. These elements cover a
wide range of values that the best test errors are doing as good as or better than the ones given in Table 1.
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CG Alg ε̄ = 0.8 ε̄ = 1.6 ε̄ = 3.2 ε̄ = 6.4

1.0
ADP 56.68± 0.646 (57.65) 62.09± 0.346 (62.57) 64.51± 0.100 (64.61) 67.75± 0.171 (67.91)
DP 56.24± 0.535 (57.02) 62.02± 0.264 (62.33) 64.33± 0.329 (65.03) 67.42± 0.141 (67.7)

2.5
ADP 56.27± 0.174 (56.46) 62.38± 0.428 (62.86) 64.29± 0.408 (64.85) 67.55± 0.156 (67.77)
DP 55.65± 0.448 (55.98) 62.23± 0.238 (62.62) 64.26± 0.140 (64.39) 66.23± 0.367 (66.62)

Table 2: Errors of ADP-SGD vs. DP-SGD with adaptive stepsizes. This table reports accuracy with the
mean and the corresponding standard deviation over five independent runs. The value inside the bracket is the
highest accuracy over the five runs. Each entry is the best value over 36 pairs of (β,C) for ADP-SGD and 6
values of β for DP-SGD. See the corresponding (β,C) in Table 4. The results indicate that when using adaptive
stepsizes, ADP-SGD with various C performs better than DP-SGD.

7 RELATED WORK

Differentially private empirical risk minimization. Differentially Private Empirical Risk Min-
imization (DP-ERM) has been widely studied over the past decade. Many algorithms have been
proposed to solve DP-ERM including objective perturbation (CMS11; KST12; INS+19), output
perturbation (WLK+17; ZZMW17), and gradient perturbation (BST14; WYX17; JW18). While
most of them focus on convex functions, we study DP-ERM with nonconvex loss functions. As
most existing algorithms achieving differential privacy in nonconvex ERM are based on the gradient
perturbation (BST14; WYX17; WJEG19; ZCH+20), we will also focus on gradient perturbation.

Non-constant stepsizes for SGD and DP-SGD. To ease the difficulty of stepsize tuning, we
could apply polynomially decaying stepsize schedules (GKKN19) or adaptive gradient methods
that update the stepsize using the gradient information (DHS11; MS10). We called them adaptive
stepsizes to distinguish our adaptive deferentially private methods. These non-private algorithms
update the stepsize according to the noisy gradients, and achieve favorable convergence behavior
(LYC18; LO19; WWB19; RCZ+21).

Empirical evidence suggests that differential privacy with adaptive stepsizes could perform al-
most as well as – and sometimes better than – DP-SGD with well-tuned stepsizes. This re-
sults in a significant reduction in stepsize tuning efforts and also avoids the extra privacy cost
(BDLS20; ZKY+20; ZCH+20). Several works (LK18; KH20) also studied the nonuniform allo-
cation of the privacy budget for each iteration. However, (LK18) only proposes a heuristic method
and the purpose of (KH20) is to avoid the need for a validation set used to tune stepsizes. In this
work, we emphasize on the optimal relationship between the stepsize and the variance of the random
noise, and aim to improve the utility guarantee of our proposed method.

8 CONCLUSION AND FUTURE WORK

In this paper, we proposed an adaptive differentially private stochastic gradient descent method in
which the privacy mechanisms can be optimally adapted to the choice of stepsizes at each round, and
thus obtain improved utility guarantees over prior work. Our proposed method has not only strong
theoretical guarantees but also superior empirical performance. Given high-dimensional settings
with only a fixed privacy budget available, our approach with a decaying stepsize schedule shows
an improvement in convergence by a magnitude O(d log(T )

√
T/n2) or a factor with O(log(T ))

relative to DP-SGD.

Note that the sequence {αt} has to be fixed before the optimization process begins, as our method
require that the variance σ2 for some privacy budget ε depends on the {αt} (Theorem 4.1). However,
our theorem suggests that the optimal choice of αt depends on the stepsize (Theorem 4.2), meaning
that we have to know the stepsizes a priori; this is not possible for those stepsizes updated on the
fly, such as AdaGrad (DHS11) and Adam (KB14). Thus, one potential avenue of future work is
to see whether {αt} can be updated on the fly in line with AdaGrad and Adam while maintaining
a predefined privacy budget ε. Other future directions can be related to examining more choices
of αt given bt. As mentioned in the main text, the relation α2

t = bt is not the unique setting to
achieve the improved utility guarantees. A thorough investigation on αt and bt with various gradient
clipping values would therefore be an interesting extension. Finally, our adaptive differential privacy
is applied only to a simple first-order optimization; generalizing the analysis to variance-reduced or
momentum-based methods could be another interesting direction.

9



Under review as a conference paper at ICLR 2022

REFERENCES

[ACG+16] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal
Talwar, and Li Zhang. Deep learning with differential privacy. In Proceedings of the
2016 ACM SIGSAC conference on computer and communications security, pages 308–
318, 2016.

[ATMR19] Galen Andrew, Om Thakkar, H Brendan McMahan, and Swaroop Ramaswamy. Dif-
ferentially private learning with adaptive clipping. arXiv preprint arXiv:1905.03871,
2019.
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