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ABSTRACT

LLM inference often generates a batch of candidates for a prompt and selects one
via strategies like majority voting or Best-of-N (BoN). For difficult tasks, this
single-shot selection often underperforms. Consequently, evaluations commonly
report Pass@k: the agent may submit up to k responses, and only the best of them
is used when computing regret. Motivated by this, we study inference scaling in
the more general Pass@k inference setting, and prove that neither majority voting
nor BoN exhibits the desirable scaling with k and the sampling budget N . Com-
bining the advantages of majority voting and BoN, we propose a new inference
strategy called Best-of-Majority (BoM), with a pivotal step that restricts the can-
didates to the responses with high frequency in the N samples before selecting
the top-k rewards. We prove that when the sampling budget is N = Ω̃(C∗), the
regret of BoM is O(ϵopt +

√
ϵ2RMC∗/k), where C∗ is the coverage coefficient,

ϵRM is the estimation error of the reward model, and ϵopt is the estimation error
of reward at the optimal response. We further establish a matching lower bound,
certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a
key advantage: unlike majority voting and BoN, its performance does not degrade
when increasing N . Experimental results of inference on math problems show
BoM outperforming both majority voting and BoN.

1 INTRODUCTION

Scaling law serves as a powerful tool for guiding the training of large language models (LLMs),
providing insight into how increased training compute, data, and model size contribute to perfor-
mance improvements. Originating in the early days of deep neural networks (Hestness et al., 2017;
Rosenfeld et al., 2019), the concept has since demonstrated remarkable predictive power across
a variety of domains, including strategic board games (Jones, 2021), image generation (Henighan
et al., 2020; Yu et al., 2022; Peebles & Xie, 2023), video modeling (Brooks et al., 2024), language
generation (Kaplan et al., 2020; Hoffmann et al., 2022; Achiam et al., 2023), retrieval systems (Fang
et al., 2024; Cai et al., 2025), and reward modeling (Gao et al., 2023; Rafailov et al., 2024). While
training-time scaling has proven effective, it is also highly resource-intensive. As a result, increas-
ing attention has been directed toward a complementary paradigm: inference, which examines how
model performance can be improved after training. This relationship between additional compute at
inference time and performance improvement is known as the inference scaling law (Brown et al.,
2024; Snell et al., 2024; Wu et al., 2024b; Guo et al., 2025).
Compared to training-time scaling, inference scaling allows for increasing computational cost in
several distinct ways, including expanding the generation input via chain-of-thought prompting (Wei
et al., 2022; Li et al., 2024), incorporating iterative self-improvement, (Zheng et al., 2023; Wu et al.,
2024a), and applying search-based algorithms (Yao et al., 2023; Feng et al., 2023; Gao et al., 2024;
Zhang et al., 2024). It can also be realized through repeated sampling, using strategies such as
majority voting (Wang et al., 2022; Lewkowycz et al., 2022; Li et al., 2023) or Best-of-N (BoN)
(Lightman et al., 2023). In parallel, a growing line of works has sought to establish theoretical
guarantees for inference strategies. Wu et al. (2024b) provided convergence bounds and rates for
the scaling of majority voting algorithms. Huang et al. (2024) showed that BoN can achieve self-
improvement via a special mechanism called sharpening. Huang et al. (2025) analyzed the sample
complexity of BoN and proposed a pessimistic inference algorithm with provable benefits.
While most existing analyses focus on inference algorithms that output a single response, there are
tasks that allow for multiple candidate outputs, where it is considered solved if any one of them is
correct. This setting is captured by the Pass@k metric (Li et al., 2022). Building on this metric,
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Table 1: Comparison of Pass@k inference strategies. Our algorithm BoM is the first minimax-
optimal Pass@k inference strategy. Compared with majority voting and BoN, BoM is scaling-
monotonic, indicating that the optimal performace can be achieved with large sampling budget N ,
making it preferable when scaling up N to achieve better performance. Additionally, the term
O(

√
ϵ2RMC∗/k) in the regret of BoM scales optimally with k, while majority voting suffers from

constant regret. BoN lacks the regret upper bound in the Pass@k inference problem.

Algorithm Worst-case regret Scaling-monotonic Optimal k-scaling

Majority voting Ω(1) No No
Best-of-N Ω(min{1,

√
ϵ2RMN/k}) No Unknown

Best-of-Majority (Ours) O(ϵopt +
√

ϵ2RMC∗/k) Yes Yes

Lower Bound Ω(ϵopt +
√
ϵ2RMC∗/k) - -

we propose a novel Pass@k inference framework, in which the inference algorithm is allowed to
generate N responses and return up to k of them. Since N > k, the performance depends not only
on generating a diverse set of candidates but also on the algorithm’s ability to effectively select the
k outputs that are most likely to be correct. Brown et al. (2024) conducted empirical studies on this
inference framework and observed the relationship between the coverage and the performance of
the algorithm. However, this work is restricted to the majority voting and BoN inference strategies,
and failed to theoretically justify the inference scaling law.
As there have been few works on understanding the scaling of the Pass@k inference problem, we
are motivated to investigate the following fundamental question:
Q1: What is the optimal scaling of the Pass@k inference problem?
To answer this question, we derive a minimax lower bound as a function of k that characterizes the
fundamental limits of any Pass@k inference strategy, establishing the theoretical scaling behavior
for Pass@k inference problems.
Going one step further, we also aim to evaluate existing inference strategies for the Pass@k inference
problem and find a strategy that achieves the optimal scaling. Beyond standard metrics like regret
and sample complexity, we further introduce a formal definition of scaling-monotonicity (Huang
et al., 2025), which captures whether an inference algorithm maintains (or improves) its performance
as the number of samples N increases. This leads to our second question:
Q2: What inference strategies are scaling-monotonic and optimal in the Pass@k inference setting?
Unfortunately, our analysis reveals that majority voting and BoN are not scaling-monotonic. Fur-
thermore, these methods face fundamental limitations that make it difficult, if not impossible, to
attain the optimal regret scaling with respect to k. To address this issue, we propose a new infer-
ence strategy, Best-of-Majority (BoM), which integrates the core ideas of both majority voting and
BoN. We establish a regret upper bound for BoM that matches the minimax lower bound, thereby
demonstrating that our algorithm is minimax optimal. Please refer to Table 1 for detailed results.
We summarize our main contributions as follows:
• Inference scaling laws for Pass@k. We show that the minimax lower bound of the regret is
Ω(ϵopt +

√
ϵ2RMC∗/k) for any Pass@k inference strategy, where ϵopt is the error of the reward

model at the optimal response, ϵRM is the expected error of the reward model, and C∗ is the
coverage of the reference LLM.

• Optimal algorithm for Pass@k. We propose a new Pass@k inference strategy called Best-of-
Majority (BoM). At the core of BoM is a step similar to majority voting that restricts the candidates
to the responses with high frequencies in the generated samples, before selecting responses with
top-k rewards. We prove that the regret of BoM is O(ϵopt +

√
ϵ2RMC∗/k) with sample complexity

N = Θ̃(C∗), thus matching the minimax lower bound without increasing the computation over-
head. With a formal definition of scaling monotonicity, we show that BoM is scaling monotonic,
while majority voting and BoN are not.

• Experiments. We compare our algorithm BoM against majority voting and BoN. Our results
empirically demonstrate the superiority of BoM against majority voting and BoN and verify the
scaling monotonic properties of three algorithms, which corroborates our theoretical results.

Notations. We use [M ] to denote the set of integers {1, 2, . . . ,M}. We use 1[·] to denote the
indicator function. We use δij to denote the Kronecker delta, i.e., δij = 1 if i = j, and δij = 0
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otherwise. We use y, yi to denote the elements in the set of response Y , ŷ, ŷi to denote the generated
responses, and ỹ, ỹi to denote the final outputs. We use standard asymptotic notations O(·), Ω(·),
and Θ(·), and use Õ(·), Ω̃(·) and Θ̃(·) to further hide the logarithmic factors.

2 RELATED WORK

Inference-time scaling. Compared to training-time scaling laws, the study of inference-time scal-
ing laws has emerged much more recently. Sardana et al. (2024) extended the Chinchilla scaling
law (Hoffmann et al., 2022) to incorporate inference costs. Wu et al. (2024b) conducted a sys-
tematic study of inference scaling laws, analyzing a range of inference strategies including greedy
search, majority voting, best-of-N , weighted voting, and two variants of tree-based search algo-
rithms. Concurrently, Snell et al. (2024) analyzed the inference scaling problem by searching against
process-based verifier reward models. In contrast, Brown et al. (2024) explored repeated sampling
as a simple scaling method to improve performance. Chen et al. (2024) studied the performance
of majority voting and a variant that incorporates a filtering mechanism. They observed that as the
number of generated samples N increases, performance initially improves but eventually declines.
They also proposed a predictive scaling model to characterize the performance trend. Muennighoff
et al. (2025) developed simple methods to construct a sample-efficient test-time scaling dataset.
Inference strategies. One of the most straightforward inference strategies is best-of-N , which has
been widely adopted in the inference of language models (Stiennon et al., 2020; Nakano et al., 2021;
Touvron et al., 2023; Gao et al., 2023). For its theoretical guarantees, Yang et al. (2024a) established
a connection between the asymptotic behavior of BoN and KL-constrained reinforcement learning
methods, characterizing this relationship through information-theoretic quantities. Beirami et al.
(2024) provided a tighter upper bound for the KL divergence between the BoN policy and the ref-
erence policy. Mroueh (2024) proved guarantees for BoN algorithm from a information theoretic
view. Huang et al. (2025) further provided guarantees on performance when the estimated reward
model and true reward are mismatched. Aminian et al. (2025) extended the analysis to a smoothed
variant of BoN. Another common inference strategy is majority voting (Lewkowycz et al., 2022;
Wang et al., 2022; Li et al., 2023). Wu et al. (2024b) established convergence bounds and rates char-
acterizing how the performance of majority voting algorithms scales with the number of samples.
Other inference strategies include variants of BoN (Jinnai et al., 2024; Qiu et al., 2024), rejection
sampling (Liu et al., 2023; Xu et al., 2024), and search-based algorithms (Yao et al., 2023; Feng
et al., 2023; Gao et al., 2024; Zhang et al., 2024).
Pass@k alignment. To the best of our knowledge, the theoretical Pass@k inference framework is
novel and remains unexplored in the existing literature. However, Pass@k has also been proved use-
ful in the training of large language models. Tang et al. (2025) demonstrated that training language
models using a Pass@k-based objective can lead to improved overall model performance. More
recently, Chen et al. (2025) used Pass@k as the reward to train the language model and observe
improvements on its exploration ability. Liang et al. (2025) proposed training methods to mitigate
entropy collapse, which in turn lead to improved performance on the Pass@k metric.

3 PASS@k INFERENCE SCALING PROBLEM

Let X be the set of prompts and Y the set of responses. We represent an LLM as a conditional policy
π(· | x) that maps each prompt x ∈ X to a distribution over Y . We have access to a reference policy
πref, which, for instance, can be trained using the supervised finetuning (SFT) method. For each pair
(x, y) ∈ X × Y , we assume the existence of a ground-truth reward model r∗ : X × Y → [0, 1],
which evaluates the quality of response y given prompt x.
During inference time, we can use the reference policy πref to generate multiple responses. To
evaluate the quality of these responses, we utilize an imperfect reward model r̂ : X × Y → [0, 1],
which provides approximate assessments of response quality. For a given prompt x, we make the
following assumptions regarding the accuracy of the reward model.
Assumption 3.1 (Reward Estimation Error). The expected squared error between r∗ and r̂ is upper
bounded by ϵ2RM(x), i.e,

Ey∼πref(·|x)

[(
r∗(x, y)− r̂(x, y)

)2] ≤ ϵ2RM(x).

Assumption 3.2. There exists a unique y∗ = argmaxy∈Y r∗(x, y), with r∗(x, y∗) = 1. Moreover,
the estimated reward at y∗ is close to optimal, satisfying

|r∗(x, y∗)− r̂(x, y∗)| = ϵopt(x).
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Combining Assumption 3.1 with Assumption 3.2, we directly know πref(y
∗|x) · ϵ2opt(x) ≤ ϵ2RM(x).

In practice, an accurate reward model is crucial for the post-training and inference of large language
models. A common approach is to align the model with human preference data through supervised
learning or reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper
et al., 2023; Zhu et al., 2024; Yang et al., 2024b). Since the training of the reward model extensively
studied and is not the focus of this work, we directly assume access to a pre-training reward model
that satisfies Assumptions 3.1 and 3.2.
In this work, we study a novel setting called the Pass@k inference scaling problem. Different from
the settings where the model is allowed to generate and submit k candidate responses, our goal is
to maximize the highest ground-truth reward of the k samples. Specifically, for a given prompt x,
the model is allowed to generate up to N candidate responses and select a subset y1, y2, . . . , yk for
submission. Increasing N improves the likelihood of obtaining high-quality outputs, but also incurs
greater computational cost, a trade-off between accuracy and efficiency. We consider the following
regret metric:

Regret(x) = Eπ∗
[
r∗(x, ·)

]
− Ey1,y2,...,yk

[
max
1≤i≤k

{r∗(x, yi)}
]
, (3.1)

where π∗ = π∗(·|x) is the maximizer of r∗.
In tasks with a unique correct answer, such as mathematical problem solving, the ground-truth re-
ward model r∗ functions as a binary verifier, returning values in {0, 1}. In this case, the regret (3.1)
naturally aligns with the Pass@k metric (Li et al., 2022), since minimizing (3.1) is equivalent to
maximizing the probability that at least one of the k selected responses is correct.
Remark 3.3. Compared with the sample-and-evaluate framework (Huang et al., 2025), our frame-
work goes one step further by explicitly characterizing the dependence on k. This dependence con-
stitutes a novel focus of our analysis, as it has not been examined in prior works on inference-time
algorithms (Huang et al., 2024; 2025; Verdun et al., 2025).

In addition, following Huang et al. (2025), we introduce the reference policy’s L1-coverage coeffi-
cient as follows:

C∗(x) := Ey∼π∗(·|x)
[
π∗(y|x)/πref(y|x)

]
. (3.2)

Moreover, the uniform coverage coefficient is defined as

C∗
∞(x) := sup

y

[
π∗(y|x)/πref(y|x)

]
. (3.3)

Since Assumption 3.2 ensures that the optimal policy π∗ is deterministic and uniquely defined as
π∗(y|x) = 1(y = y∗), the L1 and uniform coverage coefficients coincide. Consequently, we have
C∗(x) = C∗

∞(x) = 1/πref(y
∗|x).

Besides the regret, we are also concerned with the following important property of the algorithm,
named as scaling-monotonicity (Huang et al., 2025). We provide the formal definition as follows:
Definition 3.4. Assume that k, prompt x and the coverage coefficient C∗(x) are fixed. An algorithm
is scaling-monotonic if for any δ > 0, there exists ϵ0 > 0 and N0 ∈ N+ such that for any N ≥ N0

and any instance that satisfies Assumption 3.1 with ϵRM(x) ≤ ϵ0, the regret satisfies

Regret(x) ≤ δ.

Intuitively, a scaling-monotonic algorithm should achieve arbitrarily small regret if the reward model
r̂ is accurate and sufficiently many samples are observed. Furthermore, scaling monotonicity also
guarantees that the performance of the algorithm does not degrade when increasing N . Therefore,
it is a crucial property in practice because the sampling budget N can be easily scaled up in hard
instances instead of requiring accurate tuning.

4 SUBOPTIMALITY OF EXISTING INFERENCE STRATEGIES

In this section, we first introduce two commonly used strategies for LLM inference, namely
(weighted) majority voting (Section 4.1) and Best-of-N (BoN, Section 4.2). We will show that
neither strategy is scaling-monotonic by constructing hard instances where the inference strategies
suffer from constant regret even when N → ∞. Additionally, the Pass@k inference problem is less
stringent than Pass@1, since it only requires success in any of the k sampled attempts rather than
a single one. Consequently, the regret is expected to decrease as k increases, suggesting a negative
association between regret and the sampling budget k.
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4.1 (WEIGHTED) MAJORITY VOTING

Algorithm 1 (Weighted) Majority Voting
Require: Reference policy πref, sampling budget N , number

of candidates k, (estimated reward model r̂, weight func-
tion w(·)).

1: Observe context x.
2: Independently generate N responses Ŷ =

{ŷ1, ŷ2, . . . , ŷN} from πref(·|x).
3: if |Ŷ| ≤ k then
4: return Ŷ .
5: else
6: Calculate frequency of each response y ∈ Ŷ: π̂(y) =

1
N

∑N
i=1 1[ŷi = y].

7: if weighted then
8: Query reward labels (r̂(x, ŷ1), . . . , r̂(x, ŷN ))

9: Select ỹ1, . . . , ỹk = Top-k
{
y ∈ Ŷ : w(r̂(y)) · π̂(y)

}
.

10: else
11: Select ỹ1, . . . , ỹk = Top-k

{
y ∈ Ŷ : π̂(y)

}
.

12: end if
13: return {ỹ1, . . . , ỹk}.
14: end if

Majority voting is a simple en-
semble method for LLM inference:
Multiple responses to the same
prompt are sampled using the ref-
erence policy πref(·|x) to make the
responses diverse enough, and the
answer occurring most often is se-
lected as the final output.
Specifically, let ŷ1, . . . , ŷN denote
the N generated responses for a
given query. After calculating the
frequency of each response π̂(y) =
1
N

∑N
i=1 1(ŷi = y), the final pre-

diction is then chosen as the answer
that appears most frequently among
these samples, i.e.,

ỹ1, . . . , ỹk = Top-k
{
y ∈ Ŷ : π̂(y)

}
.

Majority voting has demonstrated
strong empirical performance
(Wang et al., 2022; Lewkowycz
et al., 2022; Li et al., 2023). With a reliable reward model r̂, it can be further enhanced by
weighting candidate frequencies with reward scores. Using an increasing weighting function w(·),
the selection rule becomes:

ỹ1, . . . , ỹk = Top-k
{
y ∈ Ŷ : w

(
r̂(y)

)
· π̂(y)

}
.

While the reward weighting introduces extra computation for reward evaluation, weighted majority
voting has been shown to achieve better performance than the unweighted version (Wu et al., 2024b).
Despite its empirical success, we show that (weighted) majority voting is suboptimal in the worst
case, even when the exact reward function is available, i.e., ϵ2RM(x) = 0.
Theorem 4.1. For the (weighted) majority voting Algorithm 1 with weight function w(·), assume
that C∗(x) ≥ 1 + 2kw(1)/w(1/2). Then, there exists an instance I = (X ,Y, π∗, r∗, πref, r̂)
such that the coverage coefficient is C∗(x), and r̂ = r∗ satisfies Assumptions 3.1 and 3.2 with
ϵRM(x) = ϵopt(x) = 0. If N ≥ 9C∗(x) log(2k + 2), the algorithm suffers from a constant regret:

Regret(x) = Ω
(
1
)
.

Majority voting relies on exploiting the reference model’s distribution. Consequently, the hard case
can be constructed by designing multiple distinct “bad” answers, each receiving higher probability
under πref. Theorem 4.1 demonstrates that increasing the sampling budget N or the number of
submitted responses k does not guarantee consistent improvement for (weighted) majority voting.
In fact, when N is sufficiently large, (weighted) majority voting incurs constant regret even if the
reward model is accurate.

4.2 BEST-OF-N
Algorithm 2 Best-of-N (BoN)
Require: Estimated reward model r̂, reference pol-

icy πref, sampling budget N , number of candi-
dates k.

1: Observe context x.
2: Independently generate N responses Ŷ =

{ŷ1, ŷ2, . . . , ŷN} from πref(·|x).
3: Query reward labels (r̂(x, y1), . . . , r̂(x, yN )).
4: if |Ŷ| ≤ k then
5: return Ŷ .
6: else
7: Select ỹ1, . . . , ỹk = Top-k

{
y ∈ Ŷ : r̂(x, y)

}
.

8: return {ỹ1, . . . , ỹk}.
9: end if

Best-of-N is another effective LLM in-
ference strategy. Instead of aggregating
answers by frequency, the model gener-
ates multiple candidate responses for the
same query and then selects the single
best response according to a reward model
r̂. Formally, given N sampled responses
ŷ1, . . . , ŷN , the Best-of-N strategy selects
the outputs that maximize the reward signal
r̂, i.e.,

ỹ1, . . . , ỹk = Top-k
{
y ∈ Ŷ : r̂(y)

}
.

For the BoN algorithm, we have the follow-
ing theorem on the lower bound of the regret.

5
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Theorem 4.2. For BoN (Algorithm 2), assume that C∗(x) ≥ 2k. Then, there exists an instance
I = (X ,Y, π∗, r∗, πref, r̂) such that the coverage coefficient is C∗(x), and (r̂, r∗) satisfies Assump-
tions 3.1 and 3.2 with ϵRM(x) and ϵopt(x). If N ≤ C∗(x), Algorithm 2 suffer from a constant regret,
i.e.,

Regret(x) = Ω
(
1
)
.

Otherwise, the regret satisfies

Regret(x) = Ω
(
min

{
1,
√

Nϵ2RM(x)/k
})

.

BoN leverages the reward model’s signal, but this makes it vulnerable to reward overoptimization
(Gao et al., 2023; Stroebl et al., 2024) when the reward model is inaccurate. Thus, we construct the
hard case by introducing multiple distinct “bad” answers that are assigned higher estimated rewards.
With a carefully chosen, problem-dependent sampling budget N = Θ̃(C∗(x)), the lower bound will
become Ω̃(

√
C∗(x)ϵ2RM(x)/k), which aligns with the general lower bound for inference algorithms

(as will be discussed in Section 6). However, this lower bound implies that BoN is not scaling-
monotonic, as for fixed k and ϵRM(x), the regret converges to a non-zero constant when N becomes
sufficiently large. Thus, increasing N for BoN not only causes higher computational overhead, but
can also degrade performance when the reward model is inaccurate.
Remark 4.3. When k = 1, Theorem 3.4 in Huang et al. (2025) shows that the regret of BoN
can be upper bounded by Õ

(√
C∗(x)ϵ2RM(x)

)
with N = Θ̃

(
C∗(x)

)
. Compared with the lower

bound in Theorem 4.2, the regret bound for BoN still exhibits a gap of 1/
√
k under the Pass@k

setting. However, the proof techniques for BoN in Pass@1 inference problems cannot be directly
extended to the Pass@k setting. Specifically, their analysis introduces an auxiliary distribution
induced by rejection sampling, which becomes difficult to generalize when the algorithm is allowed
to select k distinct responses as in our framework. More importantly, their proof relies on bounding
the expected squared error of the reward model under the optimal policy π∗, i.e., Eπ∗ [|r∗(x, y) −
r̂(x, y)|], which can be upper bounded by

√
C∗(x)ϵ2RM(x) using the Cauchy-Schwarz inequality.

While this quantity does not affect the regret bound in their original setting, it becomes the dominant
term in our case, which prevents the derivation of the optimal 1/

√
k regret scaling. For these reasons,

we conjecture that it may be inherently impossible to obtain a regret upper bound for BoN with the
optimal 1/

√
k scaling under the Pass@k setting. We leave this to future work.

5 OPTIMAL ALGORITHM FOR PASS@K INFERENCE

Algorithm 3 Best-of-Majority (BoM)
Require: Estimated reward model r̂, reference policy

πref, frequency threshold α, sampling budget N ,
number of candidates k.

1: Observe context x.
2: Independently generate N responses Ŷ =

{ŷ1, ŷ2, . . . , ŷN} from πref(·|x).
3: Calculate frequency of each response y ∈ Y:

π̂(y) = 1
N

∑N
i=1 1(ŷi = y).

4: Eliminate responses with frequency less than α:
Ŷα = {y ∈ Ŷ : π̂(y) ≥ α}.

5: Query reward labels (r̂(x, ŷ1), . . . , r̂(x, ŷN )).
6: if |Ŷα| ≤ k then
7: return Ŷα.
8: else
9: Select ỹ1, . . . , ỹk = Top-k

{
y ∈ Ŷα : r̂(y)

}
.

10: return {ỹ1, . . . , ỹk}.
11: end if

In Section 4, we have proved that nei-
ther (weighted) majority voting nor BoN
is scaling monotonic, and neither demon-
strates the desirable scaling with k for the
Pass@k inference scaling problem. More-
over, our earlier analysis reveals comple-
mentary strengths of these methods: ma-
jority voting performs well when the ref-
erence policy assigns a higher probability
to the ground-truth answer than to incor-
rect ones, while Best-of-N can be highly
effective when the reward model r̂ is accu-
rate. However, each method also exhibits
weaknesses, as they fail to fully exploit the
available information from either the pol-
icy or the reward model. To address these
limitations, we introduce a new algorithm,
Best-of-Majority (BoM), which integrates
the advantages of both approaches.
Our algorithm is built upon the principles
of pessimism commonly used in reinforcement learning (Buckman et al., 2020; Jin et al., 2021).
When the reference policy πref assigns low probability to a response, that response is rarely observed
in the training data. Consequently, the reward model receives limited supervision in this region,
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leading to higher uncertainty and likelihood of error. The pessimism principle advocates making
conservative predictions under such uncertainty, which motivates our design choice: we rely on
the reward model only when πref assigns sufficiently high probability to the candidate. Since πref
cannot be directly observed, we approximate it using empirical frequencies of generated responses.
Specifically, let ŷ1, . . . , ŷN denote the N generated responses for a given query. We first calculate
the empirical frequency of each emerging response:

π̂(y) =
1

N

N∑
i=1

1(ŷi = y).

Guided by the pessimism principle, we discard responses whose frequency falls below a threshold
α, retaining only the subset

Ŷα = {y ∈ Ŷ : π̂(y) ≥ α}.
Then we query the reward model on the surviving candidates and select the top k responses ac-
cording to their predicted rewards, ỹ1, . . . , ỹk = Top-k

{
y ∈ Ŷα : r̂(y)

}
. The following theorem

demonstrates the upper bound of BoM.
Theorem 5.1. Assume that the threshold is α = 3/(4C∗(x)), and the sampling budget is N ≥
16C∗(x) log

(
kC∗(x)/ϵ2RM(x)

)
. Then the regret of BoM (Algorithm 3) satisfies

Regret(x) ≤ ϵopt(x) +O
(√

C∗(x)ϵ2RM(x)/k
)
.

When ϵopt(x) ≪
√
C∗(x)ϵ2RM(x), the second term dominates, and consequently the overall regret

scales as 1/
√
k, consistent with the intuition that increasing k enlarges the candidate set and thereby

makes the problem easier. Moreover, for fixed x, k, and C∗(x), the regret bound converges to 0 as
N → ∞ and ϵRM(x) → 0. This yields the following corollary.
Corollary 5.2. BoM (Algorithm 3) is scaling-monotonic.

Computational Complexity. According to Theorem 5.1, the BoM algorithm requires approxi-
mately Ω̃(C∗(x)) samples to achieve low regret. In comparison, Theorem 3.4 in Huang et al. (2025)
shows that when k = 1, the Best-of-N (BoN) algorithm also requires Θ̃(C∗(x)) samples. This
means for Pass@k inference, BoM achieves a better regret bound with a 1/

√
k improvement with-

out incurring additional generation cost. Moreover, BoM only queries the reward model for a filtered
subset of candidates (see Algorithm 3, Line 5), which can reduce the number of reward evaluations.

Proof Sketch of Theorem 5.1. The crucial step of BoM involves the construction of Ŷα to approxi-
mate the set of all responses y with πref(y|x) ≥ α, denoted by Yα. The following two properties of
Yα makes it preferable as the set of candidates: Firstly, if ỹi ∈ Yα(x) for all i ∈ [k], we have an
upper bound of the minimum estimation error mini∈[k] ∆i, where ∆i = |r̂(x, ỹi)− r∗(x, ỹi)|:

min
i∈[k]

∆i ≤
√∑k

i=1
∆2

i /k ≤
√∑k

i=1
πref(ỹi|x)∆2

i /(αk) ≤
√
ϵ2RM(x)/(αk), (5.1)

where we used the property πref(ỹi|x) ≥ α in the second inequality. Secondly, since πref(y
∗|x) ≥

1/C∗(x), we have y∗ ∈ Y1/C∗(x). Therefore, if Ŷα(x) = Y1/C∗(x)(x), the algorithm either outputs
y∗ among the k submitted responses, incurring zero regret, or outputs k responses with r̂(x, ỹi) ≥
r̂(x, y∗), where the regret can be decomposed as

r∗(x, y∗)− r∗(x, ỹi) ≤ |r∗(x, y∗)− r̂(x, y∗)|︸ ︷︷ ︸
ϵopt(x)

+ [r̂(x, y∗)− r̂(x, ỹi)]︸ ︷︷ ︸
≤0

+ |r̂(x, ỹi)− r∗(x, ỹi)|︸ ︷︷ ︸
∆i

.

We take the minimum, plug in (5.1), and obtain

r∗(x, y∗)−max
i∈[k]

r∗(x, ỹi) ≤ ϵopt(x) + min
i∈[k]

∆ỹi
≤ ϵopt(x) +

√
4C∗(x)ϵ2RM(x)/k.

However, without direct access to πref, we use the empirical frequency π̂ instead of πref in the con-
struction of Ŷα, making Ŷα an approximation of Yα. To extend the two properties of Yα to Ŷα, we
require the following event that sandwiches Ŷ3/(4C∗(x))(x) with Y1/C∗(x)(x) and Y1/(4C∗(x))(x):

E : Y1/C∗(x)(x) ⊂ Ŷ3/(4C∗(x))(x) ⊂ Y1/(4C∗(x))(x).
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Under event E , α can be set as 1/(4C∗(x)) in (5.1). The complete expectation formula gives

Regret(x) = E
[
r∗(x, y∗)−max

i∈[k]
r∗(x, ỹi)

∣∣∣E] · P(E) + E
[
r∗(x, y∗)−max

i∈[k]
r∗(x, ỹi)

∣∣∣¬E] · P(¬E)
≤ ϵopt(x) +

√
4C∗(x)ϵ2RM(x)/k + P(¬E),

so it remains to characterize the probability of E .
The probability of Y1/C∗(x)(x) ̸⊂ Ŷ3/(4C∗(x))(x) can be characterized by first bounding
P(y ̸∈ Ŷ3/(4C∗(x))(x)) for any y ∈ Y1/C∗(x)(x) using the Chernoff bound, and then apply-
ing the union bound with the crucial observation of |Y1/C∗(x)(x)| ≤ C∗(x). When char-
acterizing P(Ŷ3/(4C∗(x))(x) ̸⊂ Y1/(4C∗(x))(x)), we can similarly use the Chernoff bound in
P(y ∈ Ŷ3/(4C∗(x))(x)) for any y ∈ Y(x)\Y1/(4C∗(x)(x), but the union bound does not hold
because the cardinality of the set Y(x)\Y1/(4C∗(x)(x) is unknown. To resolve this issue, we
assign elements of Y(x)\Y1/(4C∗(x)(x) into “bins” {Gj}, each with capacity 1/(2C∗(x)), i.e.,
πref(Gj |x) ≤ 1/(2C∗(x)). The smallest number of bins is no more than 4C∗(x) because any
two bins with πref(Gj |x) ≤ 1/(4C∗(x)) can be merged. With this assignment, we can bound
P(Gj ∩ Ŷ3/(4C∗(x))(x) ̸= ∅) with the Chernoff bound, and then use the union bound with the bins,
which resolves the problem because the number of bins is bounded.

6 GENERAL LOWER BOUNDS

In this section, we establish a lower bound that highlights the fundamental factors influencing the
Pass@k inference problem. Specifically, the bound depends on the coverage coefficient C∗(x), the
reward model estimation error ϵ2RM(x) and ϵopt(x), and the number of candidates k. It matches the
upper bound in Theorem 5.1, which indicates that the algorithm BoM is minimax optimal.

Theorem 6.1. For a given prompt x, assume that C∗(x) ≥ 2k. Then for any algorithm A for
the Pass@k inference problem, there exists an instance I = (X ,Y, π∗, r∗, πref, r̂) such that the
coverage coefficient is C∗(x), and (r∗, r̂) satisfies Assumptions 3.1 and 3.2. Moreover, and regret
can be lower bounded by

Regret(x) = Ω
(
ϵopt(x) +

√
C∗(x)ϵ2RM(x)/k

)
.

Theorem 6.1 shows that the term ϵopt(x) is unavoidable in the Pass@k inference problem and does
not diminish as the number of candidates k increases. In contrast, the component associated with the
expected squared loss, ϵRM(x), decreases at a rate of 1/

√
k. This bound matches the upper bound

for BoM (Theorem 5.1), demonstrating that BoM is minimax optimal.

7 EXPERIMENTS

In this section, we empirically verify the effectiveness of our proposed BoM algorithm on mathe-
matical reasoning tasks.

7.1 EXPERIMENT SETUP

Models and Datasets. We use Qwen3-4B-Instruct-2507 (Team, 2025) (Qwen3-4B) as the reference
policy πref

1. We adopt AceMath-7B-RM (Liu et al., 2024) as the reward model r̂, a mathematical
reward model trained on a large corpus generated by different language models which is selected
due to its strong performance and moderate size. We adopt the widely used GSM8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021), and AIME242 dataset as our testing corpus. We first
sample N trajectories and call the reward model to evaluate each trajectory. The answers are then
extracted from the trajectories and clustered by mathematical equivalence. For each answer group,
we use the average of the rewards of all the corresponding trajectories as the reward of this group.
We also calculate the frequency of each answer group as an estimation of πref(·).
Method and Baselines. Given a specific k, we consider our method BoM, and two baselines,
majority voting and BoN. In BoM, we set a threshold α and select the k answers (up to mathematical

1Please see Appendix C for results on additional models.
2https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
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Figure 1: The results with different k. BoM consistently outperforms the baselines on MATH-500
for all k and on AIME24, GSM8K when k is small, and matches the performance of baselines in
other settings.
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(b) k = 3
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(c) k = 5

Figure 2: The results with fixed k and different N . When N increases, the performance of BoN is
likely to decrease over all the k. The performance of Majority voting remains at a low level. Among
them, BoM has a more consistent performance and outperforms baselines with larger N .

equivalence) with highest reward score and frequency greater than α. In BoN, we directly select
the k answers (up to mathematical equivalence) with highest rewards. As for majority voting, we
directly select k answers (up to mathematical equivalence) with highest frequency.

7.2 RESULTS

Results with varying k. We first plot the results for k ∈ {1, 2, 3, 5, 10} in Figure 1(a) for GSM8K,
Figure 1(b) for MATH-500, and Figure 1(c) for AIME24. We sample N = 2000 for GSM8k, and
N = 500 for MATH-500 and AIME24. On MATH-500, the performance of BoM consistently
outperforms the baselines. On GSK8K and AIME24, BoM also shows a large improvement over
majority voting and outperforms BoN for small k. These results empirically verify the effectiveness
of the BoM algorithm.
Results with varying N . We also study the performance of the three methods under different sample
sizes. We conduct the experiments on the AIME24 dataset and vary N between 100 and 2000, with
k = 1, 3, 5. Except for the case of N = 100 where the threshold of BoM is set to α = 0.015, we
use α = 0.005 in all other settings. We compile the results in Figure 2. the performance of majority
voting remains consistently low, which aligns with Theorem 4.1, demonstrating that majority voting
incurs constant regret and does not benefit from increased sample size. The performance of BoN
tends to degrade as N increases. In contrast, when N ≥ 200, BoM consistently outperforms both
baselines and does not decrease significantly with the increase of N . This observation is consistent
with our theoretical results, as BoM is scaling-monotonic.

8 CONCLUSION

In this work, we demonstrate the scaling laws of the Pass@k inference problem by displaying the
minimax lower bound of the regret and proposing the algorithm BoM with regret matching the lower
bound. We also show that BoM has the advantage of scaling monotonicity compared with majority
voting and BoN, which makes BoM preferable when scaling up the generation budget. In future
works, we plan to extend the study of inference strategies from the optimization of inference-time
performance to the impact of combining the trajectory sampling process during the post-training of
LLMs with Pass@k inference strategies.
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ETHICS STATEMENT

Our work investigates a novel Pass@k inference problem, focusing on the theoretical analysis of
different inference strategies. In addition, we propose a new algorithm, Best-of-Majority (BoM),
which achieves optimal theoretical guarantees, and we further provide empirical validation to sup-
port its effectiveness. Importantly, our experiments focus on solving mathematical problems with
LLMs, and the language models do not generate or promote harmful content, nor does it raise issues
related to discrimination, bias, or fairness.

REPRODUCIBILITY STATEMENT

In this paper, we conduct experiments with open-source LLMs on widely used mathematical
datasets. A detailed description of the models and datasets is provided in Section 7.1, while the key
experimental parameters are discussed in Section 7.2. On the theoretical side, we present a proof
sketch of the upper bound of the BoM algorithm in Section 5, with the complete proof deferred to
Appendix A. Appendix B contains several lower-bound results, corresponding to the theorems in
Sections 4.1, 4.2, and 6.
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A THEORETICAL GUARANTEE OF BOM (ALGORITHM 3)
In this section, we will prove Theorem 5.1, which provides the theoretical upper bound of Algorithm
3. To start with, for any α > 0, we denote

Yα(x) = {y ∈ A(x) : πref(y|x) ≥ α},

indicating the set of responses with relatively high probability for πref. Using the definition of the
coverage coefficient (3.2), we have y∗ ∈ Yα(x) as long as α ≥ 1/C∗(x). Next, we will build the
relationship between the empirical set Ŷα(x) and Yα(x). Denote E as the event such that

Y1/C∗(x)(x) ⊂ Ŷ3/(4C∗(x)) ⊂ Y1/(4C∗(x))(x).

Our proof consists of two parts:
Step 1: We first show that E holds with high probability.
Step 2: Provided that E holds, since y∗ ∈ Y1/C∗(x)(x), we have y∗ ∈ Ŷ3/(4C∗(x)); furthermore,
since ỹi ∈ Ŷ3/(4C∗(x)), we have ỹi ∈ Y1/(4C∗(x))(x), so πref(ỹi|x) ≥ 1/(4C) for every submitted
response ỹi. We can then characterize ∆i = |r∗(x, ỹi) − r̂(x, ỹi)| using the definition of the esti-
mation error ϵ2RM. If y∗ ∈ {ỹ1, . . . , ỹk}, then the regret is zero; if y∗ ̸∈ {ỹ1, . . . , ỹk}, then using
Assumption 3.2, we have

r∗(x, y∗)− r∗(x, ỹi) ≤ |r∗(x, y∗)− r̂(x, y∗)|︸ ︷︷ ︸
ϵopt(x)

+ [r̂(x, y∗))− r̂(x, ỹi)]︸ ︷︷ ︸
≤0

+ |r̂(x, ỹi)− r∗(x, ỹi)|︸ ︷︷ ︸
∆i

.

Combining these parts together, we complete the proof of Theorem 5.1.
We now get into the details of the proof. The following lemma states that the event of E will occur
with high probability:

Lemma A.1. E holds with probability at least 1− 5C∗(x)e−N/(32C∗(x)).

Proof. The proof consists of two parts that characterize the probabilities of Y1/C(x)(x) ̸⊂
Ŷ3/(4C∗(x)) and Ŷ3/(4C∗(x)) ̸⊂ A1/(4C∗(x))(x), respectively:

Part I: Probability of Y1/C∗(x)(x) ̸⊂ Ŷ3/(4C∗(x)). We first fix any y ∈ Y1/C∗(x)(x). By Chernoff
bound, we have

P
(
π̂(y) < 3/(4C∗(x))

)
≤ exp

(
− Nπref(y|x)

2

(
1− 3

4C∗(x)πref(a|x)

)2)
≤ e−N/(32C∗(x)),

(A.1)

where the first inequality holds due to the Chernoff bound, and the second inequality holds because
πref(y|x) ≥ 1/C∗(x). Applying the union bound to all y ∈ Y1/C∗(x)(x), we have

P
(
Y1/C∗(x)(x) ̸⊂ Ŷ3/(4C∗(x))

)
= P

( ∨
y∈Y1/C∗(x)(x)

1[π̂(y) ≤ 3/(4C∗(x))]

)
≤

∑
y∈Y1/C∗(x)(x)

P
(
π̂(y) < 3/(4C∗(x))

)
≤ 1−

∣∣Y1/C∗(x)(x)
∣∣ · e−N/(32C∗(x))

≤ 1− C∗(x)e−N/(32C∗(x)), (A.2)

where the first inequality holds due to the union bound, the second inequality holds due to (A.1),
and the last inequality holds because |Y1/C∗(x)(x)| ≤ C∗(x).

Part II: Probability of Ŷ3/(4C∗(x)) ̸⊂ A1/(4C∗(x))(x). We cannot use the same union bound as
(A.2) because the cardinality of the set to take union bound Y\Y1/(4C∗(x))(x) is unknown. To
resolve this issue, we first partition Y\Y1/(4C∗(x))(x) into groups, then apply Chernoff bound to
each group, and finally apply the union bound to the groups. This technique resolves the problem
because the number of groups is in the order of O(C∗(x)), and the union bound goes through
without incurring the cardinality of Y\Y1/(4C∗(x))(x).
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In detail, suppose that Y\Y1/(4C∗(x))(x) = {yi}i≥1. We start with a single group G1 = ∅, and add
yi to one of the groups sequentially. For each response yi ∈ Y\Y1/(4C∗(x))(x), if there exists group
Gj such that

πref(yi|x) +
∑
y∈Gj

πref(y|x) ≤
1

2C∗(x)
, (A.3)

then we update Gj with Gj ∪ {ai} where j is the smallest index that satisfies (A.3). Otherwise, we
create a new group {ai}. From the construction of the groups, we can easily see that the probability
of any group Gj under the reference model satisfies

πref(Gi|x) =
∑
a∈Gj

πref(a|x) ≤
1

2C∗(x)
. (A.4)

Furthermore, the total number of groups M should be no larger than 4C∗(x) because otherwise,
suppose that (A.3) does not holds for yi and any existing group Gj(j ∈ [M ]) where M > 4C∗(x)−
1, i.e., ∑

y∈Gj

πref(y|x) >
1

2C∗(x)
− πref(yi|x) >

1

4C∗(x)
, (A.5)

where the last inequality holds because πref(a) < 1/(4C∗(x)). We then have

1 =
∑
y∈Y

πref(y|x)

≥
[
πref(yi|x) +

∑
y∈G1

πref(y|x)
]
+

M∑
j=2

[ ∑
y∈Gj

πref(y|x)
]

≥ 1

2C∗(x)
+ (M − 1) · 1

4C∗(x)

>
1

2C∗(x)
+ (4C∗(x)− 1− 1) · 1

4C∗(x)
= 1,

where the first inequality holds because the union of ai and all existing groups is a subset of A(x),
the second inequality holds due to (A.5), and the last inequality holds due to the assumption of
M > 4C∗(x)− 1. We have thus arrived at a contradiction, and we conclude that M ≤ 4C∗(x).
For each group, we apply the Chernoff bound:

P
( ∨

y∈Gj

1[π̂(y) ≥ 3/(4C∗(x))]

)
≤ P

(
π̂(Gj) ≥ 3/(4C∗(x))

)
≤ exp

(
−N

(3/(4C∗(x))− πref(Gi|x))2

3/(4C∗(x)) + πref(Gi|x)

)
≤ e−N/(20C∗(x)), (A.6)

where the first inequality holds because if the frequency of one response in Gj is larger than
3/(4C∗(x)), then the total frequency of group Gj should be larger than 3/(4C∗(x)); the second
inequality holds due to the Chernoff bound; the last inequality holds due to (A.4). Applying the
union bound to all groups,

P
(
Ŷ3/(4C∗(x)) ̸⊂ A1/(4C∗(x))(x)

)
= P

( ∨
y∈Y\Y1/(4C∗(x))

1[π̂(y) ≥ 3/(4C∗(x))]

)

≤
M∑
j=1

P
( ∨

y∈Gj

1[π̂(y) ≥ 3/(4C∗(x))]

)
≤ Me−N/(20C∗(x))
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≤ 4C∗(x)e−N/(32C∗(x)), (A.7)

where the first inequality holds due to the union bound, the second inequality holds due to (A.6), and
the last inequality holds because M ≤ 4C∗(x) and e−N/(20C∗(x)) ≤ e−N/(32C∗(x)). Combining
(A.2) and (A.7), using the union bound, we have

P(E) ≥ 1− 5Ce−N/(32C∗(x)).

Thus, we have completed the proof of Lemma A.1.

Using this lemma, we then proceed with the proof of Theorem 5.1:

Proof of Theorem 5.1. Suppose that E holds. If y∗ is included in the submitted responses, then the
regret is 0. We now consider the case where y∗ is not submitted. According to the definition of the
coverage coefficient, we have

πref(y
∗|x) ≥ π∗(y∗|x)/C∗(x) ≥ 1/C∗(x),

so y∗ ∈ Y1/C∗(x)(x). Furthermore, since Y1/C∗(x)(x) ⊂ Ŷ3/(4C∗(x)) when E holds, we have
y∗ ∈ Ŷ3/(4C∗(x)). Since y∗ is not selected as the output, we know that (i) at least k responses are
submitted because otherwise all responses in Ŷ3/(4C∗(x)) would be submitted, and (ii) r̂(x, y∗∗) ≤
r̂(x, ỹi) for any i ∈ [k]. We thus have

r̂(x, ỹi) ≥ r̂(x, y∗) ≥ r∗(x, y∗)− ϵopt(x), (A.8)

where the second inequality holds due to Assumption 3.2. Therefore, the regret conditioned on event
E is

min
i∈[k]

{r∗(x, y∗)− r∗(x, ỹi)} ≤ ϵopt(x) + min
i∈[k]

{r̂(x, ỹi)− r∗(x, ỹi)}

≤ ϵopt(x) +

√√√√1

k

k∑
i=1

|r̂(x, ỹi)− r∗(x, ỹi)|2

≤ ϵopt(x) +

√√√√4C∗(x)

k

k∑
i=1

πref(ỹi|x)|r̂(x, ỹi)− r∗(x, ỹi)|2

≤ ϵopt(x) +

√√√√4C∗(x)

k

∑
y∈Y

πref(y|x)|r̂(x, y)− r∗(x, y)|2

= ϵopt(x) +

√
4C∗(x)ϵ2RM(x)

k
, (A.9)

where the first inequality holds due to (A.8), the second inequality holds because the minimum is
no larger than the average, the third inequality holds because πref(y|x) ≥ 1/(4C∗(x)) for any y ∈
Ŷ3/(4C∗(x)) when Ŷ3/(4C∗(x)) ⊂ Y1/(4C∗(x))(x), the fourth inequality holds because {ỹ1, . . . , ỹk}
is a subset of Y , and the last equality holds due to the definition of the estimation error ϵ2RM(x).
Combining (A.9) with the case where y∗ ∈ {ỹ1, . . . , ỹk} and the regret is 0, we conclude that under
condition E ,

r∗(x, y∗)−max
i∈[k]

r∗(x, ỹi) ≤ ϵopt(x) +

√
4C∗(x)ϵ2RM(x)

k
. (A.10)

Finally, we take the complete expectation of the regret:

Regret(x) = E
[
r∗(x, y∗)−max

i∈[k]
r∗(x, ỹi)

∣∣∣E] · P(E) + E
[
r∗(x, y∗)−max

i∈[k]
r∗(x, ỹi)

∣∣∣¬E] · P(¬E)
≤

(
ϵopt(x) +

√
4C∗(x)ϵ2RM(x)

k

)
· P(E) + 1 · P(¬E)

≤ ϵopt(x) +

√
4C∗(x)ϵ2RM(x)

k
+ 5C∗(x)e−N/(32C∗(x)),
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where the first inequality holds due to (A.10) and Regret(x) ≤ 1, and the second inequality holds
because P(E) ≤ 1 and due to Lemma A.1. Finally, when N ≥ 16C∗(x) log

(
kC∗(x)/ϵ2RM(x)

)
, we

have

Regret(x) ≤ ϵopt(x) +O
(√

C∗(x)ϵ2RM(x)/k
)
.

We complete the proof of Theorem 5.1.

B PROOF OF LOWER BOUNDS

In this section, we will prove the lower bounds used in the main text of this paper. Specifically, we
establish the results for majority voting (Theorem 4.1), Best-of-N (Theorem 4.2), and the general
case of Pass@k inference algorithms (Theorem 6.1). Before proceeding, we first establish an inde-
pendent lower bound regarding ϵopt(x). This result is general and can be applied to any subsequent
lower bound, introducing an additional ϵopt(x) term.

B.1 LOWER BOUND REGARDING ϵOPT(x)

We first study the following hard case where any algorithm for the Pass@k inference problem suffers
from the regret of Ω(ϵopt(x)). Combining this lower bound with any algorithm-dependent lower
bound b (obtained from the analysis of a hard instance), we can show that the lower bound of the
algorithm is

Ω(max{ϵopt(x), b}) = Ω(ϵopt(x) + b).

Lemma B.1. Assume that ϵopt(x) ≤
√

C∗(x)ϵ2RM(x) and C∗(x) ≥ 2k. Then there exists an
instance I = (X ,Y, π∗, r∗, πref, r̂) such that the coverage coefficient is C∗(x), and (r∗, r̂) satisfy
Assumptions 3.1 and 3.2. Furthermore, for any prompt x ∈ X , the regret of any algorithm for the
Pass@k inference problem satisfies

Regret(x) = Ω(ϵopt(x)).

Proof. For simplicity, we omit the prompt x in our proof. We apply the idea of averaging hammer,
and consider a total of M hard instances such that no algorithm can perform well on all instances.
The responses set is {y0, y1, . . . , yM} for all M hard instances. The reference policy and the ap-
proximate reward model are also shared by all instances:

πref(y0) = 1−M/C∗, πref(y1) = · · ·πref(yM ) = 1/C∗;

r̂(y0) = 0, r̂(y1) = · · · = r̂(yM ) = 1− ϵopt.

The hard instances are different only in the ground-truth reward model and π∗. For instance Ij =
(X ,Y, π∗

j , r
∗
j , r̂, πref) where j ∈ [M ], we set

π∗
j (yi) = δij , r∗j (yi) =


0 i = 0;

1 i = j;

1− ϵopt otherwise.

For all hard cases, the total estimation error is ϵ2opt/C∗ ≤ ϵ2RM. Among these M hard instances, any
algorithm that outputs up to k responses will fail to output the optimal response in at least M − k
instances, inducing the regret of ϵopt. Therefore, the average regret of these M instances is at least

Regret ≥ M − k

M
ϵopt.

Setting M = 2k, we have Regret = Ω(ϵopt).

B.2 LOWER BOUND OF MAJORITY VOTING (THEOREM 4.1)

Proof of Theorem 4.1. For simplicity, we omit the prompt x in our proof. Consider the following
hard instance. The size of the response set is 2 + k, with Y = {y0, y∗, y1, y2, . . . , yk}. The ground
truth reward satisfies:

r∗(y0) = 0; r∗(y∗) = 1; r∗(yi) = 1/2, ∀1 ≤ i ≤ k.
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Therefore, the optimal policy π∗ satisfies:

π∗(y0) = 0; π∗(y∗) = 1; π∗(yi) = 0, .

In this instance, we assume that the estimated reward function r̂ is accurate. Let η = 2w(1)/w(1/2).
We further define the reference policy as:

πref(y0) = 1− (1 + ηk)/C∗; πref(y
∗) = 1/C∗; πref(yi) = η/C∗, ∀1 ≤ i ≤ k.

The reference polity is well defined as long as C∗ ≥ 1 + 2kw(1)/w(1/2). Now we consider the
sampled responses ŷ1, ŷ2, . . . , ŷN . Define

N∗ =

N∑
j=1

1(ŷj = y∗); Ni =

N∑
j=1

1(ŷj = yi), ∀i ∈ [k].

Then the expectations of N∗ and Ni are

E[N∗] =
N

C∗ ; E[Ni] =
ηN

C∗ , ∀1 ≤ i ≤ k.

Using the Chernoff bounds, we have

P
[N∗

N
≥ 3

2C∗

]
≤ exp

(−N

9C∗

)
, P

[Ni

N
≤ 3η

4C∗

]
≤ exp

(−Nη

4C∗

)
. (B.1)

Denote E as the event such that
N∗

N
≤ 3

2C∗ ;
Ni

N
≥ 3η

4C∗ , ∀i ∈ [k].

Taking the union bound with (B.1), we have

P(E) ≥ 1− exp
(−N

9C∗

)
− k exp

(−Nη

4C∗

)
≥ 1− (k + 1) exp

(−N

9C∗

)
,

where the last inequality holds because η > 1. Under event E , we have

w(1/2)Ni

w(1)N∗ =
Ni/N

N∗/N
· w(1/2)

w(1)
≥ 3η/(4C∗)

3/(2C∗)
· 2
η
= 1,

where the inequality holds due to the definition of the event E and the definition of η. Therefore,
conditioned on event E , the (weighted) majority voting (Algorithm 1) will output {y1, . . . , yk} and
suffer from a 1/2 regret. To summarize, the regret satisfies

Regret ≥ P(E) · E[Regret|E ] ≥ 1

2

(
1− (k + 1) exp

(−N

9C∗

))
.

When N ≥ 9C∗(x) log(2k + 2),

1− (k + 1) exp
[−N

9C∗

]
≥ 1/2.

B.3 LOWER BOUND OF BON (THEOREM 4.2)

To prove Theorem 4.2, we construct two hard instances to accommodate two cases: (i) When N
is small, then it is very likely that y∗ does not even appear in {ŷ1, . . . , ŷN}; (ii) When N is large,
then it is very likely that a number of responses that are suboptimal in r∗ but better than y∗ in r̂ are
sampled. The two hard instances share the same structure but are different in parameters.

Proof of Theorem 4.2. For simplicity, we omit the prompt x. We consider two hard instances, one
for N ≤ C∗ and the other for N ≥ C∗.
Case 1: N ≤ C∗. We consider a hard instance with Y = {y0, y∗}, and

π∗(y0) = 0, π∗(y∗) = 1; r∗(y0) = 0, r∗(y∗) = 1;

πref(y0) = 1− 1/C∗, πref(y
∗) = 1/C∗; r̂(y0) = 0, r̂(y∗) = 1.
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For this instance, the estimation errors are ϵopt = ϵRM = 0. If no sample in ŷ1, . . . , ŷN is y∗, then
the regret is 1. The probability that y∗ /∈ {ŷ1, . . . , ŷN} is (1− 1/C∗)N . Therefore, we have

Regret ≥ (1− 1/C∗)N ≥ (1− 1/C∗)C
∗
≥ 1/4,

where the second inequality holds because N ≤ C∗, and the second inequality holds because C∗ ≥
2. Therefore, the BoN algorithm incurs constant regret in this hard instance when N ≤ C∗.
Case 2: N ≥ C∗. We consider the following hard instance: The response set is Y =
{y∗, y0, y1, . . . , yM}. Let p > 0 be a parameter to be determined. The reward models are

r∗(y∗) = 1, r∗(y0) = 0, r∗(yi) = 1− ϵRM

2
√
p
;

r̂(y∗) = 1− δ, r̂(y0) = 0, r̂(yi) = 1.

where δ < ϵopt is a sufficiently small positive number to ensure that the reward of y1, . . . , yM is
slightly better than y∗ in r̂, but y∗ is still the optimal response in r∗. In this way, π∗(y∗) = 1 and
π∗(yi) = 0 for i = 0, 1, . . . ,M . The reference model satisfies

πref(y
∗) = 1/C∗, πref(y0) = 1− 1/C∗ − p, πref(yi) = p/M.

For this instance, the coverage is C∗, and the estimation error is less than ϵ2RM when δ is sufficiently
small.
Simple analysis. We first consider a simple setting where M = k. When ŷ1, . . . , ŷN covers ev-
ery response in {y1, . . . , yk}, then {y1, . . . , yk} will be the output of BoN, causing the regret of
ϵRM/2

√
p. The probability of any yi not being covered is

(1− p/k)N .

Using the union bound, the probability that there exists yi not being coverer is upper bounded by

P[∃i, yi /∈ {ŷ1, . . . , ŷN}] ≤ k(1− p/k)N .

Thus, the regret of making the wrong decisions in y1, . . . , yk is lower bounded by

1− k(1− p/k)N .

Then the regret satisfies

Regret ≥
(
1− k(1− p/k)N

)
· ϵRM

2
√
p
.

In this instance, when
√
Nϵ2RM/[k log(2k)]/2 < 1, we select p = (k/N) · log(2k). Then we have

1− k(1− p/k)N ≥ 1/2,

and thus the regret can be lower bounded by Ω(
√
Nϵ2RM/(k log k)). Otherwise, let p = ϵ2RM/4.

And the regret can be lower bounded by Ω(1). Therefore, we have

Regret ≥ Ω
(
min

{
1,
√
Nϵ2RM/(k log k)

})
.

This analysis will lead to an additional logarithmic term on k, which is unnecessary. To avoid this
term, we consider the following improved analysis.
Improved analysis. We consider the instance where M = 2k. Consider the event where at least k
responses among y1, . . . , yM are covered by ŷ1, . . . , ŷN . Since r̂(yi) > r̂(y∗) for i = 1, . . . ,M , the
optimal responses y∗ is not included in ỹ1, . . . , ỹk, which also incurs the regret of ϵRM/(2

√
p). We

now consider the probability of this event. Define the following random variables:

• Define S as the number of samples within y1, . . . , yM , i.e.,

S =

N∑
i=1

M∑
j=1

1[ŷi = yj ].
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• Define Oj as the occupancy of yj , i.e.,

Oj =

N∨
i=1

1[ŷi = yj ].

• Define D as the total occupancy of {y1, . . . , yM}, i.e.,

D =

M∑
j=1

Oj .

Our goal is to lower bound P(D ≥ k). Fix s0 > k. Using the total expectation formula, we have

P(D ≥ k) =
∑
s≥k

P(D ≥ k|S = s)P(S = s)

≥
∑
s≥s0

P(D ≥ k|S = s)P(S = s)

≥ P(D ≥ k|S = s0)P(S ≥ s0), (B.2)

where the first inequality holds because s0 ≥ k, and the second inequality holds because P(D ≥
k|S = s) ≥ P(D ≥ k|S = s0) when s ≥ s0. We then calculate the two probabilities separately.
We first use the Chernoff bound to characterize P(S ≥ s0). The expectation of S is

E[S] =
N∑
i=1

P(ŷi ∈ {y1, . . . , yM}) = Np.

Then by the Chernoff bound, we have

P(S ≥ s0) ≥ 1− exp
(
− (Np− s0)

2

2Np

)
. (B.3)

We then calculate the conditional probability P(D ≥ k|S = s0), and we assume without loss of
generality that ŷ1, . . . , ŷs0 fall within {y1, . . . , yM}. Conditioned on this event E , we have P(ŷi =
yj) = 1/M for 1 ≤ i ≤ s0 and 1 ≤ j ≤ M . Although we cannot use the vanilla Chernoff bound
to bound P(D ≥ k|S = s), we can use the Chernoff bound for negatively-correlated random
variables to bound the probability. We first calculate the expectation of D, which is

E[D|S = s0] = ME[Oj ] = M(1− P[ŷi ̸= yj ,∀i ∈ [s0]]) = M(1− (1− 1/M)s0).

We then verify that O1, . . . , OM are negatively correlated, which is to show that for any subset
J ⊂ [M ], we have E[

∏
j∈J Oj ] ≤

∏
j∈J E[Oj ], i.e., P(Oj = 1,∀j ∈ J ) ≤

∏
j∈J P(Oj = 1).

We prove by induction with respect to the cardinality of J . The inequality is trivial When |J | = 1.
Suppose that the inequality holds for all J such that |J | ≤ n. It then suffices to show the inequality
holds for J = [n+ 1]. Note that

P(O1 = 1, . . . , On+1 = 1)

= P(O1 = 1, . . . , On = 1)− P(O1 = 1, . . . , On = 1|On+1 = 0) · P(On+1 = 0)

= P(O1 = 1, . . . , On = 1) · P(On+1 = 1)

+
[
P(On = 1, . . . , On = 1)− P(O1 = 1, . . . , On = 1|On+1 = 0)

]
· P(On+1 = 0),

Using the induction hypothesis, we have

P(O1 = 1, . . . , On = 1) · P(On+1 = 1) ≤
n+1∏
j=1

P(Oj = 1).

It then suffices to show that

P(On = 1, . . . , On = 1) ≤ P(O1 = 1, . . . , On = 1|On+1 = 0),

which is trivial because the event ŷi = yj(j ∈ [n]) becomes more likely conditioned of the event
that ŷi ̸= yn+1. Therefore, the inequality holds for |J | = n + 1, and we complete the verification
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of Oj being negatively correlated. Therefore, using the Chernoff bound for negatively-correlated
random variables, we have

P(D ≥ k|S = s0) ≥ 1− exp

(
− {M [1− (1− 1/M)s0 ]− k}2

2M [1− (1− 1/M)s0 ]

)
. (B.4)

Substituting (B.3) and (B.4) into (B.2), we have

Regret ≥ P(D ≥ k) · ϵRM

2
√
p

≥ ϵRM

2
√
p
·
[
1− exp

(
− {M [1− (1− 1/M)s0 ]− k}2

2M [1− (1− 1/M)s0 ]

)]
·
[
1− exp

(
− (Np− s0)

2

2Np

)]
.

Let M = 2k, s0 = 3k. If
√
Nϵ2RM/k/4 ≤ 1, we set p = 4k/N . In this case, we have

1− (1− 1/M)s0 = 1−
(
1− 1

2k

)3k

≥ 1− e−1.5 ≥ 3

4
.

We thus have

1− exp

(
− {M [1− (1− 1/M)s0 ]− k}2

2M [1− (1− 1/M)s0 ]

)
≥ 1− exp

(
− (2k · 3/4− k)2

2 · 2k · 3/4

)
= 1− e−k/12 ≥ 1− e−1/12,

where the second inequality holds because k ≥ 1. We also have Np = 4k, so

1− exp

(
− (Np− s0)

2

2Np

)
= 1− exp

(
− (4k − 3k)2

2 · 4k

)
= 1− e−k/8 ≥ 1− e8,

where the last inequality holds because k ≥ 1. Combining all the above, we have

Regret ≥ ϵRM√
4k/N

· (1− e−1/12) · (1− e−1/8) ≥ 0.004

√
Nϵ2RM

k
.

Otherwise, the regret is lower bounded by Ω(1). Therefore, we have

Regret ≥ Ω
(
min

{
1,
√

Nϵ2RM/k
})

.

B.4 GENERAL LOWER BOUND (THEOREM 6.1)

We first provide a more general version of Theorem 6.1:

Theorem B.2. Assume that C∗(x) ≥ max{k, 2}. Then for any positive integer M ∈ [k,C∗(x)]
and any algorithm A that outputs k responses, there exists a hard instance I = (X ,Y, π∗, r∗, πref, r̂)
such that the coverage is C, the estimation error is ϵ2RM, and the regret of algorithm A satisfies

Regret(x) ≥ M − k

M

√
C∗(x)ϵ2RM

M − 1
.

When C ≥ 2k, we can set M = 2k and obtain the regret lower bound of Ω(
√
Cϵ2RM/k) in Theorem

6.1. We now present the proof of Theorem B.2.

Proof of Theorem B.2. We consider the case of X = {x}, and omit the prompt x in A(x), πref(·|x),
r̂(x, ·), etc.
To prove Theorem 6.1, we apply the idea of averaging hammer, and consider a total of M hard
instances such that no algorithm can perform well on all instances. All of these hard instances have
a total of M + 1 possible responses Y = {y0, . . . , yM}, and we aim to make y1, . . . , yM hard to
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distinguish from each other. In detail, all hard instances also share the same reference model and the
same r̂:

πref(y0) = 1−M/C, πref(y1) = · · · = πref(yM ) = 1/C;

r̂(y0) = 0, r̂(y1) = · · · = r̂(yM ) = 1.

For hard instance Ij(j ∈ [M ]), we make yj the optimal response with ground truth reward be-
ing 1 and π∗(yj) = 1, and make all other responses suboptimal with a gap of δ, i.e., Ij =
(X ,Y, π∗

j , r
∗
j , πref, r̂), where

π∗
j (yl) = δjl, r∗j (yl) =


0 l = 0;

1 l = j;

1− δ otherwise.

In this hard instance, the coverage is C, and in order to make the estimation error equal to ϵ2RM, we
require

(M − 1) · δ2 · 1/C = ϵ2RM,

which indicates that δ =
√

Cϵ2RM/(M − 1). Since any algorithm can only output a maximum of
k different responses, it cannot output the optimal response in at least M − k out of the M hard
instances, suffering from the regret of at least δ. Therefore, the averaged regret of the M instances
is at least

1

M

M∑
j=1

Eỹ1,...,ỹk∼A

[
r∗j (yj)−max

{
r∗j (ỹ1), · · · , r∗j (ỹk)

}]
≥ 1

M
· (M − k) · δ =

M − k

M

√
Cϵ2RM

M − 1
.

Therefore, there exists an instance Ij∗ within the M hard instances such that

Eỹ1,...,ỹk∼A

[
r∗j∗(yj∗)−max

{
r∗j∗(ỹ1), · · · , r∗j∗(ỹk)

}]
≥ M − k

M

√
Cϵ2RM

M − 1
.
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Figure 3: The results of different k with N = 500 on Qwen2.5-1.5B.
In this section, we conduct experiments on an additional model, Qwen2.5-Math-1.5B-Instruct
(Qwen2.5-1.5B) for more results. The other experiment setups follows the experiments on Qwen3
unless specified. The results on Qwen2.5-1.5B are compiled in Figure 3. In particular, BoM matches
the performance of BoN on GSM8k and outperforms BoN on MATH-500 and AIME24. The per-
formance of BoM also surpasses majority voting on GSM8k and MATH-500 with k ≤ 5. These
results shows that BoM demonstrates a better overall performance over baselines when k is small.

THE USE OF LARGE LANGUAGE MODELS (LLMS)
We use LLMs as a tool to refine our writing and correct grammatical errors.

22


	Introduction
	Related Work
	Pass@k Inference scaling problem
	Suboptimality of Existing inference strategies
	(Weighted) majority voting
	Best-of-N

	Optimal algorithm for Pass@k inference
	General lower bounds
	Experiments
	Experiment Setup
	Results

	Conclusion
	Theoretical guarantee of BoM (Algorithm 3)
	Proof of Lower Bounds
	Lower bound regarding opt(x)
	Lower bound of majority voting (Theorem 4.1)
	Lower bound of BoN (Theorem 4.2)
	General lower bound (Theorem 6.1)

	Additional Experiments

