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ABSTRACT

LLM inference often generates a batch of candidates for a prompt and selects one
via strategies like majority voting or Best-of-N (BoN). For difficult tasks, this
single-shot selection often underperforms. Consequently, evaluations commonly
report Pass@k: the agent may submit up to k responses, and only the best of them
is used when computing regret. Motivated by this, we study inference scaling in
the more general Pass@Fk inference setting, and prove that neither majority voting
nor BoN exhibits the desirable scaling with k£ and the sampling budget N. Com-
bining the advantages of majority voting and BoN, we propose a new inference
strategy called Best-of-Majority (BoM), with a pivotal step that restricts the can-
didates to the responses with high frequency in the N samples before selecting

the top-k rewards. We prove that when the sampling budget is N = Q(C*), the

regret of BoM is O(eopt + /€50 C*/k), where C* is the coverage coefficient,
erm 1s the estimation error of the reward model, and ¢, is the estimation error
of reward at the optimal response. We further establish a matching lower bound,
certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a
key advantage: unlike majority voting and BoN, its performance does not degrade
when increasing N. Experimental results of inference on math problems show
BoM outperforming both majority voting and BoN.

1 INTRODUCTION

Scaling law serves as a powerful tool for guiding the training of large language models (LLMs),
providing insight into how increased training compute, data, and model size contribute to perfor-
mance improvements. Originating in the early days of deep neural networks (Hestness et al., 2017}
Rosenfeld et al., |2019), the concept has since demonstrated remarkable predictive power across
a variety of domains, including strategic board games (Jones, 2021)), image generation (Henighan
et al., 2020; |Yu et al., 2022} |Peebles & Xiel 2023), video modeling (Brooks et al., 2024), language
generation (Kaplan et al.,2020; |Hoffmann et al.,|2022; |Achiam et al.,|2023)), retrieval systems (Fang
et al.} |2024; |Cai et al.| 2025)), and reward modeling (Gao et al., [2023} [Rafailov et al.[2024). While
training-time scaling has proven effective, it is also highly resource-intensive. As a result, increas-
ing attention has been directed toward a complementary paradigm: inference, which examines how
model performance can be improved after training. This relationship between additional compute at
inference time and performance improvement is known as the inference scaling law (Brown et al.,
2024; Snell et al., 2024} |Wu et al ., |2024b; /Guo et al.,[2025).

Compared to training-time scaling, inference scaling allows for increasing computational cost in
several distinct ways, including expanding the generation input via chain-of-thought prompting (Wei
et al.}2022;|Li et al., [2024), incorporating iterative self-improvement, (Zheng et al., [2023; Wu et al.,
2024a)), and applying search-based algorithms (Yao et al.,[2023; [Feng et al., 2023} |Gao et al., 2024;
Zhang et al.| 2024). It can also be realized through repeated sampling, using strategies such as
majority voting (Wang et al., 2022} [Lewkowycz et al., 2022; |Li et al.l 2023) or Best-of-N (BoN)
(Lightman et al., 2023). In parallel, a growing line of works has sought to establish theoretical
guarantees for inference strategies. [Wu et al.| (2024b) provided convergence bounds and rates for
the scaling of majority voting algorithms. |[Huang et al.| (2024) showed that BoN can achieve self-
improvement via a special mechanism called sharpening. [Huang et al.| (2025) analyzed the sample
complexity of BoN and proposed a pessimistic inference algorithm with provable benefits.

While most existing analyses focus on inference algorithms that output a single response, there are
tasks that allow for multiple candidate outputs, where it is considered solved if any one of them is
correct. This setting is captured by the Pass@k metric (Li et al., [2022). Building on this metric,
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Table 1: Comparison of Pass@Fk inference strategies. Our algorithm BoM is the first minimax-
optimal Pass@Fk inference strategy. Compared with majority voting and BoN, BoM is scaling-
monotonic, indicating that the optimal performace can be achieved with large sampling budget IV,
making it preferable when scaling up NV to achieve better performance. Additionally, the term
O(\/ €4, C*/k) in the regret of BoM scales optimally with k, while majority voting suffers from
constant regret. BoN lacks the regret upper bound in the Pass @k inference problem.

Algorithm Worst-case regret Scaling-monotonic ~ Optimal k-scaling
Majority voting Q1) No No
Best-of-IV Q(min{1, /et N/k}) No Unknown
Best-of-Majority (Ours)  O(€opt + /€5 C* /) Yes Yes

Lower Bound Qleope + /€2 C* k) - -

we propose a novel Pass@Fk inference framework, in which the inference algorithm is allowed to
generate N responses and return up to k of them. Since N > k, the performance depends not only
on generating a diverse set of candidates but also on the algorithm’s ability to effectively select the
k outputs that are most likely to be correct. Brown et al.| (2024) conducted empirical studies on this
inference framework and observed the relationship between the coverage and the performance of
the algorithm. However, this work is restricted to the majority voting and BoN inference strategies,
and failed to theoretically justify the inference scaling law.

As there have been few works on understanding the scaling of the Pass@Fk inference problem, we
are motivated to investigate the following fundamental question:

Q1: What is the optimal scaling of the Pass @k inference problem?

To answer this question, we derive a minimax lower bound as a function of k that characterizes the
fundamental limits of any Pass@F inference strategy, establishing the theoretical scaling behavior
for Pass@Fk inference problems.

Going one step further, we also aim to evaluate existing inference strategies for the Pass @k inference
problem and find a strategy that achieves the optimal scaling. Beyond standard metrics like regret
and sample complexity, we further introduce a formal definition of scaling-monotonicity (Huang
et al.,[2025), which captures whether an inference algorithm maintains (or improves) its performance
as the number of samples N increases. This leads to our second question:

Q2: What inference strategies are scaling-monotonic and optimal in the Pass@F; inference setting?
Unfortunately, our analysis reveals that majority voting and BoN are not scaling-monotonic. Fur-
thermore, these methods face fundamental limitations that make it difficult, if not impossible, to
attain the optimal regret scaling with respect to k. To address this issue, we propose a new infer-
ence strategy, Best-of-Majority (BoM), which integrates the core ideas of both majority voting and
BoN. We establish a regret upper bound for BoM that matches the minimax lower bound, thereby
demonstrating that our algorithm is minimax optimal. Please refer to Table [I] for detailed results.
We summarize our main contributions as follows:

* Inference scaling laws for Pass@k. We show that the minimax lower bound of the regret is
Qeopt + /€ C* /k) for any Pass@Fk inference strategy, where eqy is the error of the reward
model at the optimal response, egyr is the expected error of the reward model, and C* is the
coverage of the reference LLM.

* Optimal algorithm for Pass@k. We propose a new Pass@Fk inference strategy called Best-of-
Majority (BoM). At the core of BoM is a step similar to majority voting that restricts the candidates
to the responses with high frequencies in the generated samples, before selecting responses with
top-k rewards. We prove that the regret of BoM is O (€qp + 1/ €4y, C* /) with sample complexity

N = é(C *), thus matching the minimax lower bound without increasing the computation over-
head. With a formal definition of scaling monotonicity, we show that BoM is scaling monotonic,
while majority voting and BoN are not.

» Experiments. We compare our algorithm BoM against majority voting and BoN. Our results
empirically demonstrate the superiority of BoM against majority voting and BoN and verify the
scaling monotonic properties of three algorithms, which corroborates our theoretical results.

Notations. We use [M] to denote the set of integers {1,2,...,M}. We use 1[-] to denote the
indicator function. We use J;; to denote the Kronecker delta, ie., 6;; = 1if ¢ = j, and ;; = 0
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otherwise. We use ¥, y; to denote the elements in the set of response Y, ¥, ¥; to denote the generated
responses, and ¥, y; to denote the final outputs. We use standard asymptotic notations O(-), Q(+),

and O(-), and use O(-), (-) and O(-) to further hide the logarithmic factors.

2 RELATED WORK

Inference-time scaling. Compared to training-time scaling laws, the study of inference-time scal-
ing laws has emerged much more recently. Sardana et al.| (2024) extended the Chinchilla scaling
law (Hoffmann et al., 2022) to incorporate inference costs. Wu et al.| (2024b) conducted a sys-
tematic study of inference scaling laws, analyzing a range of inference strategies including greedy
search, majority voting, best-of-N, weighted voting, and two variants of tree-based search algo-
rithms. Concurrently, Snell et al.|(2024) analyzed the inference scaling problem by searching against
process-based verifier reward models. In contrast, Brown et al.|(2024) explored repeated sampling
as a simple scaling method to improve performance. |Chen et al.| (2024)) studied the performance
of majority voting and a variant that incorporates a filtering mechanism. They observed that as the
number of generated samples N increases, performance initially improves but eventually declines.
They also proposed a predictive scaling model to characterize the performance trend. Muennighoff
et al.[(2025) developed simple methods to construct a sample-efficient test-time scaling dataset.
Inference strategies. One of the most straightforward inference strategies is best-of-/V, which has
been widely adopted in the inference of language models (Stiennon et al.,[2020; [Nakano et al.| 2021}
Touvron et al., 2023} Gao et al.,|2023)). For its theoretical guarantees, [Yang et al.| (2024a) established
a connection between the asymptotic behavior of BoN and KL-constrained reinforcement learning
methods, characterizing this relationship through information-theoretic quantities. [Beirami et al.
(2024) provided a tighter upper bound for the KL divergence between the BoN policy and the ref-
erence policy. Mroueh! (2024)) proved guarantees for BoN algorithm from a information theoretic
view. [Huang et al.| (2025) further provided guarantees on performance when the estimated reward
model and true reward are mismatched. |Aminian et al.| (2025) extended the analysis to a smoothed
variant of BoN. Another common inference strategy is majority voting (Lewkowycz et al., 2022}
Wang et al.|, 2022} [Li et al., 2023)). Wu et al.|(2024b)) established convergence bounds and rates char-
acterizing how the performance of majority voting algorithms scales with the number of samples.
Other inference strategies include variants of BoN (Jinnai et al., 2024; |Qiu et al., |2024)), rejection
sampling (Liu et al} 2023} Xu et al., [2024), and search-based algorithms (Yao et al.| [2023; [Feng
et al.| 2023;|Gao et al., |2024; |Zhang et al., [2024).

Pass@F alignment. To the best of our knowledge, the theoretical Pass@k inference framework is
novel and remains unexplored in the existing literature. However, Pass@Fk has also been proved use-
ful in the training of large language models. [Tang et al.|(2025) demonstrated that training language
models using a Pass@Fk-based objective can lead to improved overall model performance. More
recently, [Chen et al.| (2025) used Pass@k as the reward to train the language model and observe
improvements on its exploration ability. [Liang et al.| (2025) proposed training methods to mitigate
entropy collapse, which in turn lead to improved performance on the Pass @k metric.

3 PASS@k INFERENCE SCALING PROBLEM

Let X be the set of prompts and ) the set of responses. We represent an LLM as a conditional policy
(- | ) that maps each prompt x € X to a distribution over ). We have access to a reference policy
Tt, Which, for instance, can be trained using the supervised finetuning (SFT) method. For each pair
(z,y) € X x ), we assume the existence of a ground-truth reward model 7* : X x )} — [0,1],
which evaluates the quality of response y given prompt z.

During inference time, we can use the reference policy m.r to generate multiple responses. To
evaluate the quality of these responses, we utilize an imperfect reward model 7 : X x ) — [0, 1],
which provides approximate assessments of response quality. For a given prompt =, we make the
following assumptions regarding the accuracy of the reward model.

Assumption 3.1 (Reward Estimation Error). The expected squared error between r* and 7 is upper
bounded by €%,,(z), i.e,

By )| (77 (@,9) = 7(@,)°] < h(@):

Assumption 3.2. There ex.ists a unique y* = argmax,cy r*(z,y), with r*(z, y*) = 1. Moreover,
the estimated reward at y* is close to optimal, satisfying

(2, y7) = (@, y")| = eopt(@)-
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Combining Assumption [3.1|with Assumption we directly know mer(y*[x) - €2, (x) < €fyy ().

In practice, an accurate reward model is crucial for the post-training and inference of large language
models. A common approach is to align the model with human preference data through supervised
learning or reinforcement learning from human feedback (RLHF) (Ouyang et al. 2022} |Casper
et al.| 2023 |Zhu et al.| [2024;|Yang et al., 2024b). Since the training of the reward model extensively
studied and is not the focus of this work, we directly assume access to a pre-training reward model
that satisfies Assumptions[3.1)and [3.2]

In this work, we study a novel setting called the Pass@F inference scaling problem. Different from
the settings where the model is allowed to generate and submit & candidate responses, our goal is
to maximize the highest ground-truth reward of the k£ samples. Specifically, for a given prompt z,
the model is allowed to generate up to /N candidate responses and select a subset y1, yo, . . . , yi for
submission. Increasing /N improves the likelihood of obtaining high-quality outputs, but also incurs
greater computational cost, a trade-off between accuracy and efficiency. We consider the following
regret metric:

Regret(x) = E . [r*(a:, )] —Ey vorun [fgﬂxk{r*(x, yL)}}, 3.1
where 7* = 7*(-|x) is the maximizer of r*.
In tasks with a unique correct answer, such as mathematical problem solving, the ground-truth re-
ward model 7* functions as a binary verifier, returning values in {0, 1}. In this case, the regret
naturally aligns with the Pass@¥k metric (Li et al} [2022), since minimizing (3.1)) is equivalent to
maximizing the probability that at least one of the k selected responses is correct.

Remark 3.3. Compared with the sample-and-evaluate framework (Huang et al., 2025), our frame-
work goes one step further by explicitly characterizing the dependence on k. This dependence con-
stitutes a novel focus of our analysis, as it has not been examined in prior works on inference-time
algorithms (Huang et al., 2024} 2025; |Verdun et al., 2025)).

In addition, following |[Huang et al.|(2025), we introduce the reference policy’s L;-coverage coeffi-
cient as follows:

C*(z) :== Eyor=(|a) [w*(y\x)/wref(ym)] (3.2)
Moreover, the uniform coverage coefficient is defined as
C% (z) :=sup [ﬂ*(y|x)/7rref(y|x)]. 3.3)
y

Since Assumption [3.2] ensures that the optimal policy 7* is deterministic and uniquely defined as
™ (y|z) = 1(y = y*), the Ly and uniform coverage coefficients coincide. Consequently, we have
C*(x) = O (x) = 1/mret(y"[).

Besides the regret, we are also concerned with the following important property of the algorithm,
named as scaling-monotonicity (Huang et al.,[2025). We provide the formal definition as follows:

Definition 3.4. Assume that &, prompt 2 and the coverage coefficient C* (x) are fixed. An algorithm
is scaling-monotonic if for any § > 0, there exists g > 0 and Ny € N such that for any N > Ny
and any instance that satisfies Assumptionwith erM () < €, the regret satisfies

Regret(z) < 6.

Intuitively, a scaling-monotonic algorithm should achieve arbitrarily small regret if the reward model
7 is accurate and sufficiently many samples are observed. Furthermore, scaling monotonicity also
guarantees that the performance of the algorithm does not degrade when increasing N. Therefore,
it is a crucial property in practice because the sampling budget /N can be easily scaled up in hard
instances instead of requiring accurate tuning.

4 SUBOPTIMALITY OF EXISTING INFERENCE STRATEGIES

In this section, we first introduce two commonly used strategies for LLM inference, namely
(weighted) majority voting (Section {.T) and Best-of-N (BoN, Section 4.2). We will show that
neither strategy is scaling-monotonic by constructing hard instances where the inference strategies
suffer from constant regret even when N — oo. Additionally, the Pass@Fk inference problem is less
stringent than Pass@1, since it only requires success in any of the k& sampled attempts rather than
a single one. Consequently, the regret is expected to decrease as k increases, suggesting a negative
association between regret and the sampling budget k.
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4.1 (WEIGHTED) MAJORITY VOTING

Majority voting is a simple en- Algorithm 1 (Weighted) Majority Voting
semble method for LLM inference: Require: Reference policy T, sampling budget N, number

Multiple responses to the same of candidates k, (estimated reward model 7, weight func-
prompt are sampled using the ref- tion w(-)).

erence policy mf(-|x) to make the Observe context .

responses diverse enough, and the Independently  generate N  responses Y =
answer occurring most often is se- {1, G2, ., yn} from (-] ).

lecteq as the ﬁnaloutput.A if |37| < J: then
Specifically, let y1,...,yn denote 5

return ).
the N generated responses for a else

given query. After calculating the S~y
frequency of each response 7 (y) = Calculate frequency of each response y € V: w(y) =

L ZN 1(y; = y), the final pre- % Zfil 1y: = yl.
N Zai=1 - \Yi = Y), P 7. if weighted then
diction is then chosen as the answer

N =

AN AN

that appears most frequently among 8: Query ieward lfbels (M@, 1), - - T(x;yN ) R

these samples, i.e., o: Select §1, ..., 0 = Top-k{y ey :w((y)) W(y)}
~ 10:  else

Ui 0k = Topk{y € V: 7(y)}. 11 Select g1, ..., 5k = Top-k{y € Y : 7T(y) }.

Majority voting has demonstrated 12:  end if

strong  empirical performance 13: return {yi,...,Yx}.

(Wang et all 2022; [Lewkowycz 14: end if

et al., 2022 |Li et al., [2023). With a reliable reward model 7, it can be further enhanced by
weighting candidate frequencies with reward scores. Using an increasing weighting function w(-),
the selection rule becomes:

Ylye o Yk = Top-k{y ey: w(?(y)) . %(y)}
While the reward weighting introduces extra computation for reward evaluation, weighted majority
voting has been shown to achieve better performance than the unweighted version (Wu et al.} 2024b).

Despite its empirical success, we show that (weighted) majority voting is suboptimal in the worst
case, even when the exact reward function is available, i.e., €2RM () =0.

Theorem 4.1. For the (weighted) majority voting Algorithm |1| with weight function w(+), assume
that C*(z) > 1+ 2kw(1)/w(1/2). Then, there exists an instance Z = (X, ), 7, r*, Mpef, 7)
such that the coverage coefficient is C*(x), and 7 = r* satisfies Assumptions and with
erm () = €ope(x) = 0. If N > 9C*(z) log(2k + 2), the algorithm suffers from a constant regret:

Regret(z) = Q(1).

Majority voting relies on exploiting the reference model’s distribution. Consequently, the hard case
can be constructed by designing multiple distinct “bad” answers, each receiving higher probability
under 7f. Theorem .1 demonstrates that increasing the sampling budget N or the number of
submitted responses k£ does not guarantee consistent improvement for (weighted) majority voting.
In fact, when NV is sufficiently large, (weighted) majority voting incurs constant regret even if the
reward model is accurate.

4.2 BEST-OF-N

Algorithm 2 Best-of-IV (BoN)

Best-of-IV is another effective LLM in- Require: Estimated reward model 7, reference pol-

ference strategy. Instead of aggregating icy Tef, sampling budget N, number of candi-
answers by frequency, the model gener- dates k.

ates multiple candidate responses for the ;. Opcerve context .
same query and then selects the single ,
best response according to a reward model
7. Formally, given N sampled responses
Y1,---,Yn, the Best-of-N strategy selects
the outputs that maximize the reward signal
7, 1.e.,
gl? .- '7gk = TOp-k{y € y : ?(y)}

For the BoN algorithm, we have the follow-
ing theorem on the lower bound of the regret.

~

: Independently generate N responses Y =
{@\1, :7/\2, ey @N} from Wref(~|l‘).

3: Query reward labels (7(x, y1), ..., 7(z,yn))-

4: if |Y| < k then

5: return JA)

6: else R

7. Selectyi,...,Jx = Topk{y € ¥V : 7(z,y)}.

8 return {y1,...,Ur}

9: end if
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Theorem 4.2. For BoN (Algorithm , assume that C*(z) > 2k. Then, there exists an instance
T = (X, Y, 7", r*, mer, 7) such that the coverage coefficient is C*(z), and (7, r*) satisfies Assump-
tions|3.1|and [3.2) with erni () and egp (). If N < C* (), Algorithmsuffer from a constant regret,
i.e.,

Regret(z) = Q(1).

Otherwise, the regret satisfies

Regret(z) = Q(min {1, \/NGQRM(J))/]C}).

BoN leverages the reward model’s signal, but this makes it vulnerable to reward overoptimization
(Gao et al., 2023} |Stroebl et al., |2024) when the reward model is inaccurate. Thus, we construct the
hard case by introducing multiple distinct “bad” answers that are assigned higher estimated rewards.
With a carefully chosen, problem-dependent sampling budget N = O(C*(z)), the lower bound will

become (1/C*(z)ey(x)/k), which aligns with the general lower bound for inference algorithms
(as will be discussed in Section [6). However, this lower bound implies that BoN is not scaling-
monotonic, as for fixed k and egn (), the regret converges to a non-zero constant when N becomes
sufficiently large. Thus, increasing /N for BoN not only causes higher computational overhead, but
can also degrade performance when the reward model is inaccurate.

Remark 4.3. When k£ = 1, Theorem 3.4 in Huang et al.| (2025) shows that the regret of BoN
can be upper bounded by O(/C*(z)e}(x)) with N = ©(C*(z)). Compared with the lower
bound in Theorem the regret bound for BoN still exhibits a gap of 1/ vk under the Pass@Fk
setting. However, the proof techniques for BoN in Pass@1 inference problems cannot be directly
extended to the Pass@k setting. Specifically, their analysis introduces an auxiliary distribution
induced by rejection sampling, which becomes difficult to generalize when the algorithm is allowed
to select k distinct responses as in our framework. More importantly, their proof relies on bounding
the expected squared error of the reward model under the optimal policy 7*, i.e., B «[|r* (z,y) —
7(z,y)|], which can be upper bounded by /C*(x)e%,,(z) using the Cauchy-Schwarz inequality.
While this quantity does not affect the regret bound in their original setting, it becomes the dominant
term in our case, which prevents the derivation of the optimal 1/+/k regret scaling. For these reasons,
we conjecture that it may be inherently impossible to obtain a regret upper bound for BoN with the
optimal 1/ Vk scaling under the Pass @k setting. We leave this to future work.

5 OPTIMAL ALGORITHM FOR PASS @K INFERENCE

In Section 4, we have proved that nei- - —
ther (weighted) majority voting nor BoN Algorithm 3 Best-of-Majority (BoM)

is scaling monotonic, and neither demon- Require: Estimated reward model 7, reference policy

strates the desirable scaling with k for the Tref, frequency threshold v, sampling budget N,
Pass @F; inference scaling problem. More- number of candidates £.

over, our earlier analysis reveals comple- ~ 1: Observe context x. -
mentary strengths of these methods: ma- ~ 2° Independently ~generate N responses ) =
jority voting performs well when the ref- 191,92, ..., yn} from Teer(-|).

erence policy assigns a higher probability 3 Calculate frequency of each response y € J:
to the ground-truth answer than to incor- 7ly) =+ SN 1@ = ).

rect ones, while Best-of-NV can be highly ~ 4: Eliminate responses with frequency less than o
effective when the reward model 7 is accu- Y, = {y € NE w(y) > a}.

rate. However, each method also exhibits Query reward labels (7(z,51), ..., 7(z,Gn)).
weaknesses, as they fail to fully exploit the if | j}a‘ < k then

available information from either the pol- retur:l y

icy or the reward model. To address these else o

limitations, we introduce a new algorithm,
Best-of-Majority (BoM), which integrates
the advantages of both approaches.

Our algorithm is built upon the principles
of pessimism commonly used in reinforcement learning (Buckman et al., |2020; Jin et al.| [2021).
When the reference policy s assigns low probability to a response, that response is rarely observed
in the training data. Consequently, the reward model receives limited supervision in this region,

Select y1,...,0, = Top-k{y € 37(, : ?(y)}
return {y1,..., Yk}
end if

T2YeXR W

1
1
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leading to higher uncertainty and likelihood of error. The pessimism principle advocates making
conservative predictions under such uncertainty, which motivates our design choice: we rely on
the reward model only when ¢ assigns sufficiently high probability to the candidate. Since s
cannot be directly observed, we approximate it using empirical frequencies of generated responses.
Specifically, let 71, . ..,y denote the N generated responses for a given query. We first calculate
the empirical frequency of each emerging response:

1 N
7) = 5 1@ =v).

Guided by the pessimism principle, we discard responses whose frequency falls below a threshold
«, retaining only the subset

Vo ={y €Y :7(y) >a}.
Then we query the reward model on the surviving candidates and select the top k responses ac-
cording to their predicted rewards, 71, ..., 7, = Top-k{y € Vo 7(y)}. The following theorem
demonstrates the upper bound of BoM.
Theorem 5.1. Assume that the threshold is @ = 3/(4C*(x)), and the sampling budget is N >
16C* () log (kC* (x)/€ek (). Then the regret of BoM (Algorithm satisfies

Regret(z) < eopi(z) + O( C*(:C)e%{M(m)/k)

When €,p4(7) < /C*(x)ek;(2), the second term dominates, and consequently the overall regret

scales as 1/ V/k, consistent with the intuition that increasing k enlarges the candidate set and thereby
makes the problem easier. Moreover, for fixed x, k, and C*(x), the regret bound converges to 0 as
N — oo and egm(z) — 0. This yields the following corollary.

Corollary 5.2. BoM (Algorithm 3) is scaling-monotonic.

Computational Complexity. According to Theorem the BoM algorithm requires approxi-
mately Q(C *(x)) samples to achieve low regret. In comparison, Theorem 3.4 in Huang et al. (2025)
shows that when k = 1, the Best-of-N (BoN) algorithm also requires ©(C*(x)) samples. This
means for Pass@F inference, BoM achieves a better regret bound with a 1/ vk improvement with-

out incurring additional generation cost. Moreover, BoM only queries the reward model for a filtered
subset of candidates (see Algorithm E} Line E]), which can reduce the number of reward evaluations.

Proof Sketch of Theorem[5.1] The crucial step of BoM involves the construction of ), to approxi-
mate the set of all responses y with m(y|z) > «, denoted by ). The following two properties of
Y. makes it preferable as the set of candidates: Firstly, if ; € YV, () for all i € [k], we have an
upper bound of the minimum estimation error min; ey A, where A; = [7(z, y;) — r*(z, yi)|:

k k
Zr_gggAisJZi_lAf/ksJzi_lmef@Ax)Af/(ak)s Gu(®)/ (), G

where we used the property mf(y;|z) > « in the second inequality. Secondly, since 7f(y*|z) >
1/C*(x), we have y* € Vi /(4. Therefore, if Vo (2) = Vi /¢« (o) (2), the algorithm either outputs
y* among the k submitted responses, incurring zero regret, or outputs k responses with 7(x, y;) >
7(x,y*), where the regret can be decomposed as

T*(ma y*) - T*(I, gz) < |’I"*(l‘, y*) - ?(l‘, y*)l + [?(37, y*) - ?(37, gl)] + |?(.T, gl) - T*(Q?, gz)‘ :

€opt () <0 Ay

We take the minimum, plug in (5.I)), and obtain

iz, y7) - grelz[%;](r*(x, i) < eop() + min Ay, < () + \/40* () ek () / k.

However, without direct access to mf, we use the empirical frequency 7 instead of 7. in the con-
struction of ),,, making ), an approximation of ),,. To extend the two properties of ), to V,, we
require the following event that sandwiches Vs (4c (z)) () With V1 /= (z) (2) and V1 /(ac+ () (2):

£ V10 (®) C Vs/0a0+ (2))(®) € V1 j(ac (a)) (@)
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Under event &, a can be set as 1/(4C*(z)) in (3.1I). The complete expectation formula gives

Regret(z) =E {r*(x, y*) — maxr*(x,y;)
1€[k]

€] - B(E) +E[r" (r.y") — maxr* (2. 53)

ﬂs} P(=E)

< eon(®) + (/40" (@) () [k + P(-),

so it remains to characterize the probability of &.
The probability of V) o« (2) ¢ )73/(40*(95))(35) can be characterized by first bounding

Py ¢ §3/(4C*(9c))(1')) for any y € Vi c+(x)(2) using the Chernoff bound, and then apply-
ing the union bound with the crucial observation of [V;,c«(y)(2)] < C*(x). When char-

acterizing P()A)3/(4C*($))(a:) ¢ Yijac+(z)) (), we can similarly use the Chernoff bound in

Py € 373/(40*(03))(@) for any y € Y(2)\V1/(c+(x)(x), but the union bound does not hold
because the cardinality of the set }(2)\)1/(1c+(2) () is unknown. To resolve this issue, we
assign elements of Y(x)\V1,ac+(z)(x) into “bins” {G;}, each with capacity 1/(2C*(x)), i.e.,
Tef(Gjlz) < 1/(2C*(x)). The smallest number of bins is no more than 4C*(x) because any
two bins with mf(Gj|z) < 1/(4C*(z)) can be merged. With this assignment, we can bound
P(G; N Vs /(4C+(z))(x) # D) with the Chernoff bound, and then use the union bound with the bins,
which resolves the problem because the number of bins is bounded. O

6 GENERAL LOWER BOUNDS

In this section, we establish a lower bound that highlights the fundamental factors influencing the
Pass@F inference problem. Specifically, the bound depends on the coverage coefficient C*(x), the
reward model estimation error €%,;(z) and €. (), and the number of candidates k. It matches the
upper bound in Theorem [5.1} which indicates that the algorithm BoM is minimax optimal.

Theorem 6.1. For a given prompt x, assume that C*(x) > 2k. Then for any algorithm A for
the Pass@Fk inference problem, there exists an instance Z = (X, ), 7, r*, mer, 7) such that the
coverage coefficient is C*(z), and (r*,7) satisfies Assumptions [3.1)and 3.2} Moreover, and regret
can be lower bounded by

Regret(z) = Q(eopt(x) +1/C* () ek (@) /k).

Theorem shows that the term eopl(a:) is unavoidable in the Pass @k inference problem and does
not diminish as the number of candidates & increases. In contrast, the component associated with the
expected squared loss, egni(z), decreases at a rate of 1/+/k. This bound matches the upper bound
for BoM (Theorem[5.1)), demonstrating that BoM is minimax optimal.

7 EXPERIMENTS

In this section, we empirically verify the effectiveness of our proposed BoM algorithm on mathe-
matical reasoning tasks.

7.1 EXPERIMENT SETUP

Models and Datasets. We use Qwen3-4B-Instruct-2507 (Team, [2025) (Qwen3-4B) as the reference
policy wreﬂ We adopt AceMath-7B-RM (Liu et al., 2024) as the reward model 7, a mathematical
reward model trained on a large corpus generated by different language models which is selected
due to its strong performance and moderate size. We adopt the widely used GSM8K (Cobbe et al.,
2021), MATH-500 (Hendrycks et al., 2021, and AIMEZ4E] dataset as our testing corpus. We first
sample N trajectories and call the reward model to evaluate each trajectory. The answers are then
extracted from the trajectories and clustered by mathematical equivalence. For each answer group,
we use the average of the rewards of all the corresponding trajectories as the reward of this group.
We also calculate the frequency of each answer group as an estimation of ().

Method and Baselines. Given a specific k£, we consider our method BoM, and two baselines,
majority voting and BoN. In BoM, we set a threshold « and select the k£ answers (up to mathematical

"Please see Appendix[afor results on additional models.
https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
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Figure 1: The results with different . BoM consistently outperforms the baselines on MATH-500
for all £ and on AIME24, GSMS8K when k is small, and matches the performance of baselines in
other settings.
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Figure 2: The results with fixed k£ and different V. When N increases, the performance of BoN is
likely to decrease over all the k. The performance of Majority voting remains at a low level. Among
them, BoM has a more consistent performance and outperforms baselines with larger N.

equivalence) with highest reward score and frequency greater than «. In BoN, we directly select
the k answers (up to mathematical equivalence) with highest rewards. As for majority voting, we
directly select k& answers (up to mathematical equivalence) with highest frequency.

7.2 RESULTS

Results with varying k. We first plot the results for k € {1,2,3,5,10} in Figurefor GSMS8K,
Figure [I(b)] for MATH-500, and Figure for AIME24. We sample N = 2000 for GSM8k, and
N = 500 for MATH-500 and AIME24. On MATH-500, the performance of BoM consistently
outperforms the baselines. On GSK8K and AIME24, BoM also shows a large improvement over
majority voting and outperforms BoN for small k. These results empirically verify the effectiveness
of the BoM algorithm.

Results with varying N. We also study the performance of the three methods under different sample
sizes. We conduct the experiments on the AIME24 dataset and vary N between 100 and 2000, with
k = 1,3,5. Except for the case of N = 100 where the threshold of BoM is set to a = 0.015, we
use o = 0.005 in all other settings. We compile the results in Figure 2] the performance of majority
voting remains consistently low, which aligns with Theorem 4.1 demonstrating that majority voting
incurs constant regret and does not benefit from increased sample size. The performance of BoN
tends to degrade as [V increases. In contrast, when N > 200, BoM consistently outperforms both
baselines and does not decrease significantly with the increase of N. This observation is consistent
with our theoretical results, as BoM is scaling-monotonic.

8 CONCLUSION

In this work, we demonstrate the scaling laws of the Pass@F inference problem by displaying the
minimax lower bound of the regret and proposing the algorithm BoM with regret matching the lower
bound. We also show that BoM has the advantage of scaling monotonicity compared with majority
voting and BoN, which makes BoM preferable when scaling up the generation budget. In future
works, we plan to extend the study of inference strategies from the optimization of inference-time
performance to the impact of combining the trajectory sampling process during the post-training of
LLMs with Pass@F inference strategies.
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ETHICS STATEMENT

Our work investigates a novel Pass@F inference problem, focusing on the theoretical analysis of
different inference strategies. In addition, we propose a new algorithm, Best-of-Majority (BoM),
which achieves optimal theoretical guarantees, and we further provide empirical validation to sup-
port its effectiveness. Importantly, our experiments focus on solving mathematical problems with
LLMs, and the language models do not generate or promote harmful content, nor does it raise issues
related to discrimination, bias, or fairness.

REPRODUCIBILITY STATEMENT

In this paper, we conduct experiments with open-source LLMs on widely used mathematical
datasets. A detailed description of the models and datasets is provided in Section while the key
experimental parameters are discussed in Section On the theoretical side, we present a proof
sketch of the upper bound of the BoM algorithm in Section [5] with the complete proof deferred to
Appendix [A] Appendix [B] contains several lower-bound results, corresponding to the theorems in

Sections (4.1} [4.2] and[6]
REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Gholamali Aminian, Idan Shenfeld, Amir R Asadi, Ahmad Beirami, and Youssef Mroueh. Best-of-n
through the smoothing lens: Kl divergence and regret analysis. arXiv preprint arXiv:2507.05913,
2025.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’ Amour, Jacob Eisenstein, Chirag
Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
arXiv preprint arXiv:2401.01879, 2024.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAl
Blog, 1(8):1, 2024.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-
dataset policy optimization. arXiv preprint arXiv:2009.06799, 2020.

Hongru Cai, Yongqi Li, Ruifeng Yuan, Wenjie Wang, Zhen Zhang, Wenjie Li, and Tat-Seng Chua.
Exploring training and inference scaling laws in generative retrieval. In Proceedings of the 48th
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp- 1339-1349, 2025.

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomek Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. Transactions on
Machine Learning Research, 2023.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia, and
James Y Zou. Are more llm calls all you need? towards the scaling properties of compound ai
systems. Advances in Neural Information Processing Systems, 37:45767-45790, 2024.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass @ k training for adaptively balancing exploration and exploitation of large reasoning models.
arXiv preprint arXiv:2508.10751, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

10



Under review as a conference paper at ICLR 2026

Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Weihang Su, Jia Chen, and Yiqun Liu. Scaling
laws for dense retrieval. In Proceedings of the 47th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1339-1349, 2024.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
arXiv preprint arXiv:2309.17179, 2023.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835-10866. PMLR, 2023.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu,
and Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. arXiv preprint
arXiv:2410.01707, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. arXiv preprint arXiv:2412.01951, 2024.

Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. arXiv
preprint arXiv:2503.21878, 2025.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline r1? In
International conference on machine learning, pp. 5084-5096. PMLR, 2021.

Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi Abe. Regularized best-of-n sampling to
mitigate reward hacking for language model alignment. In ICML 2024 Workshop on Models of
Human Feedback for Al Alignment, 2024.

Andy L Jones. Scaling scaling laws with board games. arXiv preprint arXiv:2104.03113, 2021.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843-3857, 2022.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315—
5333, 2023.

11



Under review as a conference paper at ICLR 2026

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. arXiv preprint arXiv:2402.12875, 1, 2024.

Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. arXiv preprint
arXiv:2508.14029, 2025.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2023.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint
arXiv:2309.06657, 2023.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
frontier math reasoning with post-training and reward modeling. arXiv preprint, 2024.

Youssef Mroueh. Information theoretic guarantees for policy alignment in large language models.
arXiv preprint arXiv:2406.05883, 2024.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195-4205, 2023.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sushil Sikchi, Joey Hejna, Brad Knox,
Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct align-
ment algorithms. Advances in Neural Information Processing Systems, 37:126207-126242, 2024.

Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
of the generalization error across scales. arXiv preprint arXiv:1909.12673, 2019.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Ac-
counting for inference in language model scaling laws. In International Conference on Machine
Learning, pp. 43445-43460. PMLR, 2024.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in neural information processing systems, 33:3008-3021, 2020.

12



Under review as a conference paper at ICLR 2026

Benedikt Stroebl, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
resampling with imperfect verifiers. arXiv preprint arXiv:2411.17501, 2024.

Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
inference time objectives using reinforcement learning. arXiv preprint arXiv:2503.19595, 2025.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Claudio Mayrink Verdun, Alex Oesterling, Himabindu Lakkaraju, and Flavio P Calmon. Soft best-
of-n sampling for model alignment. arXiv preprint arXiv:2505.03156, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
llm-as-a-meta-judge. arXiv preprint arXiv:2407.19594, 2024a.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
An empirical analysis of compute-optimal inference for problem-solving with language models.
arXiv preprint arXiv:2408.00724, 2024b.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
and Sumitra Ganesh. Genarm: Reward guided generation with autoregressive reward model for
test-time alignment. arXiv preprint arXiv:2410.08193, 2024.

Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad Beirami.
Asymptotics of language model alignment. In 2024 IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 2027-2032. IEEE, 2024a.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
enables learning generalizable reward model for llms. Advances in Neural Information Processing
Systems, 37:62279-62309, 2024b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809-11822, 2023.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: LIm
self-training via process reward guided tree search. Advances in Neural Information Processing
Systems, 37:64735-64772, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in neural information processing systems, 36:46595-46623, 2023.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang,
and Jiantao Jiao. Starling-7b: Improving helpfulness and harmlessness with rlaif. In First Con-
ference on Language Modeling, 2024.

13


https://arxiv.org/abs/2505.09388

Under review as a conference paper at ICLR 2026

A THEORETICAL GUARANTEE OF BOM (ALGORITHM

In this section, we will prove Theorem|5.1] which provides the theoretical upper bound of Algorithm
To start with, for any o > 0, we denote

Yo(z) = {y € Al2) : meet(y|2) > 0},

indicating the set of responses with relatively high probability for ms. Using the definition of the
coverage coefficient (3.2), we have y* € Y, (x) as long as @ > 1/C*(x). Next, we will build the

relationship between the empirical set V, (x) and YV, (x). Denote £ as the event such that

W1/0 () (@) C Vapacn(z)) C Vij@c- (o)) (@)-
Our proof consists of two parts:
Step 1: We first show that £ holds with high probability.
Step 2: Provided that £ holds, since y* € yl/c*(z)(x), we have y* € 373/(4@(1)); furthermore,

since ¥; € V340 (x))» We have ; € V1 /0= (a)) (%), 50 Tret(ys|z) > 1/(4C') for every submitted

response ;. We can then characterize A; = |r*(z,y;) — 7(x, y;)| using the definition of the esti-

mation error €3y If y* € {U1,..., Uk}, then the regret is zero; if y* & {¥1,...,Ux}, then using
Assumption[3.2] we have
iz, y") — (@) < |r(wy”) = (e, y)| + [P y) — 7, 9] + [P, gs) — 7 (2, 90)]
€opt(T) <0 A

Combining these parts together, we complete the proof of Theorem 5.1]

We now get into the details of the proof. The following lemma states that the event of £ will occur
with high probability:

Lemma A.1. £ holds with probability at least 1 — 5C™* (:)e~N/(32C7 (),

Proof. The proof consists of two parts that characterize the probabilities of Yy c(y)(7) ¢
V3/(ac(z)) and V340 (z)) € A1jac+()) (), respectively:

Part I: Probability of )V, /o, (z) ¢ 373/(40*(95)). We first fix any y € Vi /¢« (5 (). By Chernoff
bound, we have

P(7(y) < 3/(4C*(x))) < exp ( _ Nrwe(yle) 3 (a|x))2) < e~ NV/(3207 (@)

2 (1 ACH () e -
(A1)

where the first inequality holds due to the Chernoff bound, and the second inequality holds because
et (y|2) > 1/C*(x). Applying the union bound to all y € Y /¢« (o) (), we have

B0y (@) £ Fosacecoy) = P( Vo IRG) < 3/<4C*<m>>1)
YEV1/c* () (T)
< > P(F(y) <3/(4C*(x)))
YEV1 /0% (o) (T)
<1 — | V1o (@)] - e N/ G207 @)
<1 — O ()e” N/B32C7 (=) (A2)

where the first inequality holds due to the union bound, the second inequality holds due to (A:T),
and the last inequality holds because |V; /¢ () ()] < C* ().

Part II: Probability of )73/(40*(30)) ¢ Ai/uc+(2)) (). We cannot use the same union bound as
because the cardinality of the set to take union bound Y\ ¢+ (a)) () is unknown. To
resolve this issue, we first partition Y\V /(4c+(2))(2) into groups, then apply Chernoff bound to
each group, and finally apply the union bound to the groups. This technique resolves the problem
because the number of groups is in the order of O(C*(x)), and the union bound goes through
without incurring the cardinality of Y\V; /(ac+(a)) (%)

14
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In detail, suppose that Y\V; /(ac+(x)) () = {yi}i>1. We start with a single group G; = @, and add
y; to one of the groups sequentially. For each response y; € Y\ /(ac+(x))(2). if there exists group
G such that

1
. < .
Tret (i |2) +y§lﬂref(i‘/|x) = 20*(x)’ (A-3)

then we update G; with G; U {a;} where j is the smallest index that satisfies (A.3). Otherwise, we
create a new group {a; }. From the construction of the groups, we can easily see that the probability
of any group G; under the reference model satisfies

1
71—ref(c"vi|x) = § Wref(a‘x) < 20*(33) (A4)
acGy

Furthermore, the total number of groups M should be no larger than 4C*(x) because otherwise,
suppose that (A.3) does not holds for y; and any existing group G, (j € [M]) where M > 4C*(z) —
1,1.e.,

1 1
Z Wref(y‘x) > o w N ’/Tref(yi|x) > . 5 (AS)
e 2C* () 4C*(x)

where the last inequality holds because mr(a) < 1/(4C*(z)). We then have

1= Z Wref(y|x)

yey
M
> |:7Tref(yix) + Z Tref y|$ :| + Z |: Z Tref y|1’ :|
y€G1 J=2 ~y€eG;
| |
> ~1).
Z 5o TM -V =
1 1
L U4C @) —1-1) — =1
> 50e() T U@ Vi@ b

where the first inequality holds because the union of a; and all existing groups is a subset of A(x),
the second inequality holds due to (A.5), and the last inequality holds due to the assumption of
M > 4C*(x) — 1. We have thus arrived at a contradiction, and we conclude that M < 4C*(z).

For each group, we apply the Chernoff bound:

< \/ 17 (y) > 3/(4C" (x ))])
yeG;
< P(R(G;) > 3/(4C*(x)))
(3/(4C* (x)) — met(Gi]2))?
< exp ( N 3/(4C*(x)) + mret(Gi|2) )
< e~ N/20C" (@), (A.6)

where the first inequality holds because if the frequency of one response in G is larger than
3/(4C*(x)), then the total frequency of group G; should be larger than 3/(4C*(x)); the second
inequality holds due to the Chernoff bound; the last inequality holds due to (A4). Applying the
union bound to all groups,

P@s/(w*(w)) 7 A juc @) (@) = P( \/ 1[7(y) > 3/(40*(33))]>

YEV\V1/(4c* ()

< ZP( V 117) > 3/40" @)

yeG;
< Me—N/(0C% (@)

15
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< AC* (z)e N/ (3267 () (A7)
where the first inequality holds due to the union bound, the second inequality holds due to (A.6), and
the last inequality holds because M < 4C*(z) and e~ N/(20C7(=)) < e~ N/(32C7(@)) - Combining
(A.2) and (A.7), using the union bound, we have
P(E) > 1 — 5Ce~ N/ 3207 (@),
Thus, we have completed the proof of Lemma[A-T] O
Using this lemma, we then proceed with the proof of Theorem 5.1}

Proof of Theorem[5.1] Suppose that € holds. If y* is included in the submitted responses, then the
regret is 0. We now consider the case where y* is not submitted. According to the definition of the
coverage coefficient, we have

Tet(y”|2) = 7 (y*|2) /O (2) = 1/C" (),

$0 y* € Yi/c+(a)(x). Furthermore, since Vi o+ () (z) C 51\3/(40*(,%)) when £ holds, we have
y* e )73 /(4C+(z))- Since y* is not selected as the output, we know that (i) at least k responses are
submitted because otherwise all responses in 373 /(4C+(z)) Would be submitted, and (ii) 7(z, y**) <
7(z, ;) for any i € [k]. We thus have

(. i) 2 (@Y%) 2 r (2, y") — €op(2), (A.8)
where the second inequality holds due to Assumption[3.2] Therefore, the regret conditioned on event
Eis
min{r* (2.") = 1" (2.5)} < con(@) + min (7. ) — 7. (2. 50))

i€[k]
1 k
< 60pt(x)+ EZ x,Y;) — re(z,5:) 2
k
< 6opt(fﬂ) + ref yzlx |T x :%) - (3j yz)‘
40*
< 6opt(fﬂ) + Zﬂ'ref y‘CL’ |7‘ T y) -r (x y)‘
€y
4C'* 2
— Eopt(ﬂf) 4 M (A.9)

k ?

where the first inequality holds due to (A:8), the second inequality holds because the minimum is
no larger than the average, the third inequality holds because mf(y|z) > 1/(4C*(x)) for any y €
V3/(ac(z)) When Vs ac+(z)) C V1/(ac(a)) (), the fourth inequality holds because {91, ..., }
is a subset of ), and the last equality holds due to the definition of the estimation error e%,,(z).
Combining (A.9) with the case where y* € {y1, ..., Jx} and the regret is 0, we conclude that under
condition &,

ACH (z) e (@ )

* * i) < A.10
r(#,y7) — max (2, i) < éop(w) + A (A.10)
Finally, we take the complete expectation of the regret:
Regret(z) = E[r*(x, y*) — mz[ag]( r*(z,7;) 5} P(E) + E[r*(z, y*) — mz[z]g]( r*(z,7;) ﬁé'} -P(=E)
S S

< (Eopt(x) + W) . P((‘:) +1- P(ﬁg)

4C* (x i
< €opi(x) + % + 50*($)6_N/(320 @)

16
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where the first inequality holds due to (A.10) and Regret(z)
because P(£) < 1 and due to Lemma Finally, when N >
have

< 1, and the second inequality holds
160 (z) log (kC*(z)/ €k (2)), we

Regret(z) < (@) + O(1/C* @)k (2)/k)
We complete the proof of Theorem

B PROOF OF LOWER BOUNDS

In this section, we will prove the lower bounds used in the main text of this paper. Specifically, we
establish the results for majority voting (Theore, Best-of-N (Theorem [4.2)), and the general
case of Pass@F inference algorithms (Theorem [6.1)). Before proceeding, we first establish an inde-
pendent lower bound regarding eqp (). This result is general and can be applied to any subsequent
lower bound, introducing an additional e () term.

B.1 LOWER BOUND REGARDING €npr(2)

We first study the following hard case where any algorithm for the Pass @k inference problem suffers
from the regret of Q(eqp(x)). Combining this lower bound with any algorithm-dependent lower
bound b (obtained from the analysis of a hard instance), we can show that the lower bound of the
algorithm is

Q(max{eop(z),b}) = Qeopt(x) + b).

Lemma B.1. Assume that eqy(z) < \/C*(2)egy(x) and C*(z) > 2k. Then there exists an
instance 7 = (X Y, 7, 1", Ter, ) such that the coverage coefficient is C*(z), and (r*,7) satisfy
Assumptions [3.1] and [3.2] - Furthermore for any prompt x € X, the regret of any algorithm for the
Pass@Fk inference problem satisfies

Regret(z) = Q(eope()).

Proof. For simplicity, we omit the prompt z in our proof. We apply the idea of averaging hammer,
and consider a total of M hard instances such that no algorithm can perform well on all instances.
The responses set is {yo, Y1, - - .,ya } for all M hard instances. The reference policy and the ap-
proximate reward model are also shared by all instances:

Tret(Yo) =1 — M/C™,  Trer(y1) = -+ Meet(ynr) = 1/C7;
(o) =0, 7(y1) = =T(ynm) =1 — éopt-
The hard instances are different only in the ground-truth reward model and 7*. For instance Z; =
(X, Y, 7%, 75,7, Ter) Where j € [M], we set
0 1 =05
i (Yi) = 6ijy Tj(yi) =1 t=7;
1 —e€ope otherwise.
For all hard cases, the total estimation error is €2, /C* < €%,,;. Among these M hard instances, any

algorithm that outputs up to k responses will fail to output the optimal response in at least M — k
instances, inducing the regret of €,,. Therefore, the average regret of these M instances is at least

e
Setting M = 2k, we have Regret = Q(eop). O

Regret >

B.2 LOWER BOUND OF MAJORITY VOTING (THEOREM i

Proof of Theorem{.1] For simplicity, we omit the prompt z in our proof. Consider the following
hard instance. The size of the response set is 2 + k, with Y = {yo, ¥*,y1,¥2, ..., yx}. The ground
truth reward satisfies:

™(yo) =0;  r(y")=1; ™ (yi) =1/2, V1<i<k.

17
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Therefore, the optimal policy 7* satisfies:
7 (yo) = 0; T™(y") =1; T (yi) =0,

In this instance, we assume that the estimated reward function 7 is accurate. Letn = 2w(1)/w(1/2).
We further define the reference policy as:

Tref(yY0) = 1 — (1 4+ nk)/C™; Tet(y™) = 1/C*; met(yi) = n/C*, V1 <i<k.

The reference polity is well defined as long as C* > 1 + 2kw(1)/w(1/2). Now we consider the
sampled responses 41, 42, - - . , Y. Define

N N
=S 1@ =y N=Y 1 =w), Vie [k
P

Jj=1

Then the expectations of N* and N; are

N niN .
E[N*| = —; E[N;| = , V1<i<k
[N7] o [Vi] ol <i
Using the Chernoff bounds, we have
N* 3 -N N; 3n —Nn
> < — < < . .
P{N —20*}—6’@(90*)’ P{N —40*}—6’“3(40*) (B.1)
Denote £ as the event such that
N* 3 N; 3n .
< — — > Y k
Ssen Nz Viel

Taking the union bound with (B.T]), we have

P(E) > 1—exp<gc{v) kexp<4gn>>1—(k’+1)exp(gcj,\i)

where the last inequality holds because > 1. Under event £, we have
w(l/2)N;  N;/N w(1/2) - 3n/(4C*) 2

w(l)N* ~ N*/N w(l) = 3/(2C*) n

where the inequality holds due to the definition of the event £ and the definition of 7. Therefore,
conditioned on event &, the (weighted) majority voting (Algorithm will output {y1,...,yr} and
suffer from a 1/2 regret. To summarize, the regret satisfies

1 N
Regret > P(€) - E[Regret|E] > B (1 —(k+1)exp (90*))
When N > 9C*(z) log(2k + 2),

1—(k+1)exp{9év} >1/2.

B.3 LOWER BOUND OF BON (THEOREM 4.2))

To prove Theorem @], we construct two hard instances to accommodate two cases: (i) When N
is small, then it is very likely that y* does not even appear in {4, ..., yn }; (i) When N is large,
then it is very likely that a number of responses that are suboptimal in 7* but better than y* in 7 are
sampled. The two hard instances share the same structure but are different in parameters.

Proof of Theorem[{.2] For simplicity, we omit the prompt 2. We consider two hard instances, one
for N < C* and the other for N > C*.

Case 1: N < C*. We consider a hard instance with ) = {yg, y*}, and

™ (yo) = 0, 7T*(y*)zl' r(yo) =0, r(y*) =1
Tref(yo) =1 = 1/C*,  mer(y™) =1/C; r(yo) =0, 7(y*)=1.

18
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For this instance, the estimation errors are o, = gy = 0. If no sample in 41, .. ., Y is ™, then
the regret is 1. The probability that y* & {71, ..., 7w} is (1 — 1/C*)"N. Therefore, we have

Regret > (1 —1/C*)N > (1 -1/C*)" > 1/4,

v

where the second inequality holds because N < C*, and the second inequality holds because C"*
2. Therefore, the BoN algorithm incurs constant regret in this hard instance when N < C'*.

Case 2: N > (C*. We consider the following hard instance: The response set is J =
{v*,v0,Y1,-..,ynm}- Let p > 0 be a parameter to be determined. The reward models are

* [ % * * €ERM
r(y") =1, r(y) =0, r (yi)=1—2\/ﬁ;

ry")=1-6, T(y)=0, 7(y:)=1

where 0 < eqp is a sufficiently small positive number to ensure that the reward of y1,...,ya is
slightly better than y* in 7, but y* is still the optimal response in r*. In this way, 7*(y*) = 1 and
7*(y;) = 0fori=0,1,..., M. The reference model satisfies

Tret(y") = 1/C*, Teet(yo) =1 —1/C" —p,  Teet(yi) = p/M.

For this instance, the coverage is C*, and the estimation error is less than €%, when 4 is sufficiently
small.

Simple analysis. We first consider a simple setting where M = k. When %, ...,y covers ev-
ery response in {y1,...,yx}, then {y1,...,yx} will be the output of BoN, causing the regret of
erm/2,/p. The probability of any y; not being covered is

(1 —p/k)N.

Using the union bound, the probability that there exists y; not being coverer is upper bounded by

P[3i,y; & {01, .-, un}] < k(1 —p/k)".

Thus, the regret of making the wrong decisions in y1, . . . , Y is lower bounded by

1— k(1 —p/k)N.

Then the regret satisfies

€RM
Regret > (1 — k(1 —p/k)N) - —=.
2\/p

In this instance, when /N2, /[klog(2k)]/2 < 1, we select p = (k/N) - log(2k). Then we have

1—k(1—p/k)N >1/2,

and thus the regret can be lower bounded by Q(y/Nex,,/(klogk)). Otherwise, let p = ef,/4.
And the regret can be lower bounded by Q(1). Therefore, we have

Regret > Q(min {1, \/Né&y/(klog k)})

This analysis will lead to an additional logarithmic term on k, which is unnecessary. To avoid this
term, we consider the following improved analysis.

Improved analysis. We consider the instance where M = 2k. Consider the event where at least k
responses among y1, . . ., Y are covered by g1, ..., yn. Since #(y;) > 7(y*) fori = 1,..., M, the
optimal responses * is not included in 71, . . ., Jx, which also incurs the regret of erni/(2,/p). We
now consider the probability of this event. Define the following random variables:

* Define S as the number of samples within y1, . .., yas, i.e.,
N M
S=Y "> 1[5 =yl
i=1 j=1
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* Define O; as the occupancy of y;, i.e.,

-

0; = \/ 1[gi = y;].

=1

* Define D as the total occupancy of {y1,...,yn}, i.e.,
M

D=>"0;.
j=1

Our goal is to lower bound P(D > k). Fix sp > k. Using the total expectation formula, we have

P(D > k)= P(D>k|S =s)P(S = s)

s>k
> > P(D > kK|S =s)P(S = s)
SZS()
> P(D > k[S = s0)P(S > so), (B.2)

where the first inequality holds because so > k, and the second inequality holds because P(D >
k|S = s) > P(D > k|S = sp) when s > sg. We then calculate the two probabilities separately.
We first use the Chernoff bound to characterize P(S > sg). The expectation of S is

N
E[S] =Y P € {v1,...,ym}) = Np.
i=1
Then by the Chernoff bound, we have

e)2
M) (B.3)

P(S > s9) > 1 —exp ( — 5Np

We then calculate the conditional probability P(D > k|S = sg), and we assume without loss of
generality that 41, . . ., Us, fall within {y1,...,yas}. Conditioned on this event £, we have P(y; =
yj) =1/Mfor1 <i < sgpand 1 < j < M. Although we cannot use the vanilla Chernoff bound
to bound P(D > k|S = s), we can use the Chernoff bound for negatively-correlated random
variables to bound the probability. We first calculate the expectation of D, which is

E[D[S = so] = ME[O;] = M(1 —P[y; # y;,Vi € [so]]) = M(1 — (1 —1/M)*>).
We then verify that Oq,...,Oj; are negatively correlated, which is to show that for any subset
J C [M], we have E[[[;. ; O;] < ], E[O;]. ie., P(O; = 1,Vj € J) < [[;c,P(O; = 1).
We prove by induction with respect to the cardinality of 7. The inequality is trivial When |J| = 1.

Suppose that the inequality holds for all 7 such that | 7| < n. It then suffices to show the inequality
holds for 7 = [n + 1]. Note that

P(O;=1,...,0,41 =1)
=PO;=1,...,0,=1)—P(O; =1,...,0, = 1|0p;1 = 0) - P(O,, 11 = 0)
=P(O;=1,...,0, =1)-P(Opy1 = 1)

+ [P(O,=1,...,0,=1)=P(O; =1,...,0, = 1{Op41 = 0)] - P(Op41 = 0),

Using the induction hypothesis, we have

It then suffices to show that
PO,=1,...,0, =1) <P(O; =1,...,0, = 1|Opn41 = 0),

which is trivial because the event y; = y;(j € [n]) becomes more likely conditioned of the event
that §; # yn+1. Therefore, the inequality holds for | 7| = n + 1, and we complete the verification
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of O; being negatively correlated. Therefore, using the Chernoff bound for negatively-correlated
random variables, we have

P(D2k|5’:80)21—exp(

Substituting (B.3)) and (B.4) into (B.2)), we have

(B.4)

_{Mﬂ—(L—UMYﬂ—kV)
OM[L— (1— 1/M)] )

€RM
Regret > P(D > k) -
gret > P(D > k) 2p
_ _ so] _ 2 _ 2
> €ERM ) 1—exp _ {M[l (1 1/M) ] k} ) 1—exp _ (Np So) .
2./p 9MIL — (1 — 1/M)%] 2Np
Let M = 2k, so = 3k. If \/Negy,/k/4 < 1, we set p = 4k/N. In this case, we have
1\3k . 3
_ _ S0 — _ _ > _ —1.5 > —.
1—(1—1/M)* =1 @, Qk) >1-e0 > ]

We thus have

(ML~ (1 1/M)%] — k)2
1“"( 2ML— (1 1/M)%)] )
(2k-3/4——k)2>
2.2k -3/4
S22

Zl—exp(—

where the second inequality holds because £ > 1. We also have Np = 4k, so

Np — 50)? 4k — 3k)?
1_eXP(_(ZN;O)>:1_eXP<_(2.4k)>=1—€k/SZl—eg,

where the last inequality holds because £ > 1. Combining all the above, we have

N 2
Regret > RM_ (1—e Y12y (1 —e /%) > 0.004 ~°RM
VA4k/N k

Otherwise, the regret is lower bounded by €2(1). Therefore, we have

Regret > Q(min {1, \/NG%{M/]C}>.

B.4 GENERAL LOWER BOUND (THEOREM 6. 1))

We first provide a more general version of Theorem 6.1}

Theorem B.2. Assume that C*(z) > max{k,2}. Then for any positive integer M € [k, C*(x)]
and any algorithm A that outputs k responses, there exists a hard instance Z = (X, Y, 7, 1%, Ter, )
such that the coverage is C, the estimation error is €%, and the regret of algorithm A satisfies

M—k [C*(z)ehn
> .
Regret(z) > i U1

When C' > 2k, we can set M = 2k and obtain the regret lower bound of Q(+/C'e%,,/k) in Theorem
[6.1] We now present the proof of Theorem[B.2]

Proof of Theorem|[B.2] We consider the case of X = {x}, and omit the prompt z in A(z), Tref(+|x),
r(x,-), etc.

To prove Theorem [6.1] we apply the idea of averaging hammer, and consider a total of M hard
instances such that no algorithm can perform well on all instances. All of these hard instances have
a total of M + 1 possible responses YV = {yo,...,yn }, and we aim to make y1, ..., ya hard to
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distinguish from each other. In detail, all hard instances also share the same reference model and the
same 7

Teet(yo) =1 — M/C,  mer(y1) = -+ = Teet(ymr) = 1/C;
m(yo) =0, 7(y) = =7(ynm) = 1.
For hard instance Z;(j € [M]), we make y; the optimal response with ground truth reward be-
ing 1 and 7*(y;) = 1, and make all other responses suboptimal with a gap of ¢, ie., Z; =
(X, Y, 75,77, Teet, T), where
0 =0
T () =65, 1i(w) =41 l=7;

1 -6 otherwise.

In this hard instance, the coverage is C, and in order to make the estimation error equal to €%,;, we
require

(M —1)-6%-1/C = ek,

which indicates that § = \/Ceg,;/(M — 1). Since any algorithm can only output a maximum of
k different responses, it cannot output the optimal response in at least M — k out of the M hard

instances, suffering from the regret of at least §. Therefore, the averaged regret of the M instances
is at least

M
1 . o e 1 M—k [Cée?
M;E'y‘mmw (75 (yy) = max {r5 (@), -+ @)} 2 37 - (M = k) -6 = =7 \ et

Therefore, there exists an instance Z;- within the M hard instances such that

X .o . - M-k | Céy
Eg,,....5x~A [Tj*(yj*) — mnax {Tj*(yl)ﬂ T 77”j*(ykr)}] > i M1

C ADDITIONAL EXPERIMENTS
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Figure 3: The results of different k£ with N = 500 on Qwen2.5-1.5B.
In this section, we conduct experiments on an additional model, Qwen2.5-Math-1.5B-Instruct
(Qwen2.5-1.5B) for more results. The other experiment setups follows the experiments on Qwen3
unless specified. The results on Qwen2.5-1.5B are compiled in Figure[3] In particular, BoM matches
the performance of BoN on GSM8k and outperforms BoN on MATH-500 and AIME24. The per-
formance of BoM also surpasses majority voting on GSM8k and MATH-500 with k£ < 5. These
results shows that BoM demonstrates a better overall performance over baselines when k is small.

4 6 4 6 8
Number of Candidates (k) Number of Candidates (k)

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs as a tool to refine our writing and correct grammatical errors.
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