

000 001 002 003 004 005 006 007 008 009 BEST-OF-MAJORITY: MINIMAX-OPTIMAL STRATEGY FOR PASS@ k INFERENCE SCALING

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
LLM inference often generates a batch of candidates for a prompt and selects one via strategies like majority voting or Best-of- N (BoN). For difficult tasks, this single-shot selection often underperforms. Consequently, evaluations commonly report Pass@ k : the agent may submit up to k responses, and only the best of them is used when computing regret. Motivated by this, we study inference scaling in the more general Pass@ k inference setting, and prove that neither majority voting nor BoN exhibits the desirable scaling with k and the sampling budget N . Combining the advantages of majority voting and BoN, we propose a new inference strategy called Best-of-Majority (BoM), with a pivotal step that restricts the candidates to the responses with high frequency in the N samples before selecting the top- k rewards. We prove that when the sampling budget is $N = \tilde{\Omega}(C^*)$, the regret of BoM is $O(\epsilon_{\text{opt}} + \sqrt{\epsilon_{\text{RM}}^2 C^* / k})$, where C^* is the coverage coefficient, ϵ_{RM} is the estimation error of the reward model, and ϵ_{opt} is the estimation error of reward at the optimal response. We further establish a matching lower bound, certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a key advantage: unlike majority voting and BoN, its performance does not degrade when increasing N . Experimental results of inference on math problems show BoM outperforming both majority voting and BoN.

1 INTRODUCTION

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Scaling law serves as a powerful tool for guiding the *training* of large language models (LLMs), providing insight into how increased training compute, data, and model size contribute to performance improvements. Originating in the early days of deep neural networks (Hestness et al., 2017; Rosenfeld et al., 2019), the concept has since demonstrated remarkable predictive power across a variety of domains, including strategic board games (Jones, 2021), image generation (Henighan et al., 2020; Yu et al., 2022; Peebles & Xie, 2023), video modeling (Brooks et al., 2024), language generation (Kaplan et al., 2020; Hoffmann et al., 2022; Achiam et al., 2023), retrieval systems (Fang et al., 2024; Cai et al., 2025), and reward modeling (Gao et al., 2023; Rafailov et al., 2024). While training-time scaling has proven effective, it is also highly resource-intensive. As a result, increasing attention has been directed toward a complementary paradigm: *inference*, which examines how model performance can be improved after training. This relationship between additional compute at inference time and performance improvement is known as the inference scaling law (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024b; Guo et al., 2025).

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Compared to training-time scaling, inference scaling allows for increasing computational cost in several distinct ways, including expanding the generation input via chain-of-thought prompting (Wei et al., 2022; Li et al., 2024), incorporating iterative self-improvement, (Zheng et al., 2023; Wu et al., 2024a), and applying search-based algorithms (Yao et al., 2023; Feng et al., 2023; Gao et al., 2024; Zhang et al., 2024). It can also be realized through repeated sampling, using strategies such as majority voting (Wang et al., 2022; Lewkowycz et al., 2022; Li et al., 2023) or Best-of- N (BoN) (Lightman et al., 2023). In parallel, a growing line of works has sought to establish theoretical guarantees for inference strategies. Wu et al. (2024b) provided convergence bounds and rates for the scaling of majority voting algorithms. Huang et al. (2024) showed that BoN can achieve self-improvement via a special mechanism called sharpening. Huang et al. (2025) analyzed the sample complexity of BoN and proposed a pessimistic inference algorithm with provable benefits.

010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
While most existing analyses focus on inference algorithms that output a single response, there are tasks that allow for multiple candidate outputs, where it is considered solved if any one of them is correct. This setting is captured by the Pass@ k metric (Li et al., 2022). Building on this metric,

054
 055 Table 1: Comparison of Pass@ k inference strategies. Our algorithm BoM is the first minimax-
 056 optimal Pass@ k inference strategy. Compared with majority voting and BoN, BoM is scaling-
 057 monotonic, indicating that the optimal performance can be achieved with large sampling budget
 058 N , making it preferable when scaling up N to achieve better performance. Additionally, the term
 059 $O(\sqrt{\epsilon_{\text{RM}}^2 C^* / k})$ in the regret of BoM scales optimally with k , while majority voting suffers from
 constant regret. BoN lacks the regret upper bound in the Pass@ k inference problem.

Algorithm	Worst-case regret	Scaling-monotonic	Optimal k -scaling
Majority voting	$\Omega(1)$ (Theorem 4.1)	No	No
Best-of- N	$\Omega(\min\{1, \sqrt{\epsilon_{\text{RM}}^2 N / k}\})$ (Theorem 4.2)	No	Unknown
Best-of-Majority (Ours)	$O(\epsilon_{\text{opt}} + \sqrt{\epsilon_{\text{RM}}^2 C^* / k})$ (Theorem 5.1)	Yes	Yes
Lower Bound	$\Omega(\epsilon_{\text{opt}} + \sqrt{\epsilon_{\text{RM}}^2 C^* / k})$ (Theorem 6.1)	-	-

070
 071 we propose a novel **Pass@ k** inference framework, in which the inference algorithm is allowed to
 072 generate N responses and return up to k of them. Since $N > k$, the performance depends not only
 073 on generating a diverse set of candidates but also on the algorithm’s ability to effectively select the
 074 k outputs that are most likely to be correct. Brown et al. (2024) conducted empirical studies on this
 075 inference framework and observed the relationship between the coverage and the performance of
 076 the algorithm. However, this work is restricted to the majority voting and BoN inference strategies,
 077 and failed to theoretically justify the inference scaling law.

078 As there have been few works on understanding the scaling of the Pass@ k inference problem, we
 079 are motivated to investigate the following fundamental question:

080 *Q1: What is the optimal scaling of the Pass@ k inference problem?*

081 To answer this question, we derive a minimax lower bound as a function of k that characterizes the
 082 fundamental limits of any Pass@ k inference strategy, establishing the theoretical scaling behavior
 083 for Pass@ k inference problems.

084 Going one step further, we also aim to evaluate existing inference strategies for the Pass@ k inference
 085 problem and find a strategy that achieves the optimal scaling. Beyond standard metrics like regret
 086 and sample complexity, we further introduce a formal definition of *scaling-monotonicity* (Huang
 087 et al., 2025), which captures whether an inference algorithm maintains (or improves) its performance
 088 as the number of samples N increases. This leads to our second question:

089 *Q2: What inference strategies are scaling-monotonic and optimal in the Pass@ k inference setting?*

090 Unfortunately, our analysis reveals that majority voting and BoN are not scaling-monotonic. Fur-
 091 thermore, these methods face fundamental limitations that make it difficult, if not impossible, to
 092 attain the optimal regret scaling with respect to k . To address this issue, we propose a new infer-
 093 ence strategy, Best-of-Majority (BoM), which integrates the core ideas of both majority voting and
 094 BoN. We establish a regret upper bound for BoM that matches the minimax lower bound, thereby
 095 demonstrating that our algorithm is minimax optimal. Please refer to Table 1 for detailed results.

096 We summarize our main contributions as follows:

- 097 • **Inference scaling laws for Pass@ k .** We show that the minimax lower bound of the regret is
 098 $\Omega(\epsilon_{\text{opt}} + \sqrt{\epsilon_{\text{RM}}^2 C^* / k})$ for any Pass@ k inference strategy, where ϵ_{opt} is the error of the reward
 099 model at the optimal response, ϵ_{RM} is the expected error of the reward model, and C^* is the
 100 coverage of the reference LLM.
- 101 • **Optimal algorithm for Pass@ k .** We propose a new Pass@ k inference strategy called Best-of-
 102 Majority (BoM). At the core of BoM is a step similar to majority voting that restricts the candidates
 103 to the responses with high frequencies in the generated samples, before selecting responses with
 104 top- k rewards. We prove that the regret of BoM is $O(\epsilon_{\text{opt}} + \sqrt{\epsilon_{\text{RM}}^2 C^* / k})$ with sample complexity
 105 $N = \tilde{\Theta}(C^*)$, thus matching the minimax lower bound without increasing the computation over-
 106 head. With a formal definition of scaling monotonicity, we show that BoM is scaling monotonic,
 107 while majority voting and BoN are not.

108 • **Experiments.** We compare our algorithm BoM against majority voting and BoN. Our results
 109 empirically demonstrate the superiority of BoM against majority voting and BoN and verify the
 110 scaling monotonic properties of three algorithms, which corroborates our theoretical results.

111 **Notations.** We use $[M]$ to denote the set of integers $\{1, 2, \dots, M\}$. We use $\mathbf{1}[\cdot]$ to denote the
 112 indicator function. We use δ_{ij} to denote the Kronecker delta, i.e., $\delta_{ij} = 1$ if $i = j$, and $\delta_{ij} = 0$
 113 otherwise. We use y, y_i to denote the elements in the set of response \mathcal{Y} , \hat{y}, \hat{y}_i to denote the generated
 114 responses, and \tilde{y}, \tilde{y}_i to denote the final outputs. We use standard asymptotic notations $O(\cdot)$, $\Omega(\cdot)$,
 115 and $\Theta(\cdot)$, and use $\tilde{O}(\cdot)$, $\tilde{\Omega}(\cdot)$ and $\tilde{\Theta}(\cdot)$ to further hide the logarithmic factors.

116 2 RELATED WORK

117 **Inference-time scaling.** Compared to training-time scaling laws, the study of inference-time scaling
 118 laws has emerged much more recently. Sardana et al. (2024) extended the Chinchilla scaling
 119 law (Hoffmann et al., 2022) to incorporate inference costs. Wu et al. (2024b) conducted a sys-
 120 tematic study of inference scaling laws, analyzing a range of inference strategies including greedy
 121 search, majority voting, best-of- N , weighted voting, and two variants of tree-based search algo-
 122 rithms. Concurrently, Snell et al. (2024) analyzed the inference scaling problem by searching against
 123 process-based verifier reward models. In contrast, Brown et al. (2024) explored repeated sampling
 124 as a simple scaling method to improve performance. Chen et al. (2024) studied the performance
 125 of majority voting and a variant that incorporates a filtering mechanism. They observed that as the
 126 number of generated samples N increases, performance initially improves but eventually declines.
 127 They also proposed a predictive scaling model to characterize the performance trend. Muennighoff
 128 et al. (2025) developed simple methods to construct a sample-efficient test-time scaling dataset.

129 **Inference strategies.** One of the most straightforward inference strategies is best-of- N , which has
 130 been widely adopted in the inference of language models (Stiennon et al., 2020; Nakano et al., 2021;
 131 Touvron et al., 2023; Gao et al., 2023). For its theoretical guarantees, Yang et al. (2024a) established
 132 a connection between the asymptotic behavior of BoN and KL-constrained reinforcement learning
 133 methods, characterizing this relationship through information-theoretic quantities. Beirami et al.
 134 (2024) provided a tighter upper bound for the KL divergence between the BoN policy and the ref-
 135 erence policy. Mroueh (2024) proved guarantees for BoN algorithm from a information theoretic
 136 view. Huang et al. (2025) further provided guarantees on performance when the estimated reward
 137 model and true reward are mismatched. Aminian et al. (2025) extended the analysis to a smoothed
 138 variant of BoN called SBoN. **They proved that BoN can suffer from reward overoptimization, and**
 139 **SBoN can serve as a mitigation.** Another common inference strategy is majority voting (Lewkowycz
 140 et al., 2022; Wang et al., 2022; Li et al., 2023). Wu et al. (2024b) established convergence bounds
 141 and rates characterizing how the performance of majority voting algorithms scales with the number
 142 of samples. Other inference strategies include variants of BoN (Jinnai et al., 2024; Qiu et al., 2024),
 143 rejection sampling (Liu et al., 2023; Xu et al., 2024), and search-based algorithms (Yao et al., 2023;
 144 Feng et al., 2023; Gao et al., 2024; Zhang et al., 2024).

145 **Pass@ k alignment.** To the best of our knowledge, the theoretical Pass@ k inference framework is
 146 novel and remains unexplored in the existing literature. **Moreover, aligning the training process with**
 147 **different inference algorithms has also emerged as a promising direction (Balashankar et al., 2024).**
 148 **In this direction,** Pass@ k has also been proved useful in the training of large language models. Tang
 149 et al. (2025) demonstrated that training language models using a Pass@ k -based objective can lead to
 150 improved overall model performance. More recently, Chen et al. (2025) used Pass@ k as the reward
 151 to train the language model and observe improvements on its exploration ability. Liang et al. (2025)
 152 proposed training methods to mitigate entropy collapse, which in turn lead to improved performance
 153 on the Pass@ k metric.

154 3 PASS@ k INFERENCE SCALING PROBLEM

155 Let \mathcal{X} be the set of prompts and \mathcal{Y} the set of responses. We represent an LLM as a conditional policy
 156 $\pi(\cdot | x)$ that maps each prompt $x \in \mathcal{X}$ to a distribution over \mathcal{Y} . We have access to a reference policy
 157 π_{ref} , which, for instance, can be trained using the supervised finetuning (SFT) method. For each pair
 158 $(x, y) \in \mathcal{X} \times \mathcal{Y}$, we assume the existence of a ground-truth reward model $r^* : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$,
 159 which evaluates the quality of response y given prompt x .

160 During inference time, we can use the reference policy π_{ref} to generate multiple responses. To
 161 evaluate the quality of these responses, we utilize an imperfect reward model $\hat{r} : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$,

which provides approximate assessments of response quality. For a given prompt x , we make the following assumptions regarding the accuracy of the reward model.

Assumption 3.1 (Reward Estimation Error). The expected squared error between r^* and \hat{r} is upper bounded by $\epsilon_{\text{RM}}^2(x)$, i.e,

$$\mathbb{E}_{y \sim \pi_{\text{ref}}(\cdot|x)} \left[(r^*(x, y) - \hat{r}(x, y))^2 \right] \leq \epsilon_{\text{RM}}^2(x).$$

This assumption is the standard squared loss of the reward model, with respect to the reference policy π_{ref} . The same assumption has been made in prior work like Huang et al. (2025).

We further assume that the optimal answer is unique, which is a natural condition in many domains where the correctness of the final solution is verifiable, such as in mathematical problems.

Assumption 3.2. There exists a unique $y^* = \text{argmax}_{y \in \mathcal{Y}} r^*(x, y)$, with $r^*(x, y^*) = 1$. Moreover, the estimated reward at y^* is close to optimal, satisfying

$$|r^*(x, y^*) - \hat{r}(x, y^*)| = \epsilon_{\text{opt}}(x).$$

Combining Assumption 3.1 with Assumption 3.2, we directly know $\pi_{\text{ref}}(y^*|x) \cdot \epsilon_{\text{opt}}^2(x) \leq \epsilon_{\text{RM}}^2(x)$.

In practice, an accurate reward model is crucial for the post-training and inference of large language models. A common approach is to align the model with human preference data through supervised learning or reinforcement learning from human feedback (RLHF) (Ouyang et al., 2022; Casper et al., 2023; Zhu et al., 2024; Yang et al., 2024b). Since the training of the reward model extensively studied and is not the focus of this work, we directly assume access to a pre-training reward model that satisfies Assumptions 3.1 and 3.2.

In this work, we study a novel setting called the **Pass@ k** inference scaling problem. Different from the settings where the model is allowed to generate and submit k candidate responses, our goal is to maximize the highest ground-truth reward of the k samples. Specifically, for a given prompt x , the model is allowed to generate up to N candidate responses and select a subset y_1, y_2, \dots, y_k for submission. Increasing N improves the likelihood of obtaining high-quality outputs, but also incurs greater computational cost, a trade-off between accuracy and efficiency. We consider the following regret metric:

$$\text{Regret}(x) = \mathbb{E}_{\pi^*} [r^*(x, \cdot)] - \mathbb{E}_{y_1, y_2, \dots, y_k} \left[\max_{1 \leq i \leq k} \{r^*(x, y_i)\} \right], \quad (3.1)$$

where $\pi^* = \pi^*(\cdot|x)$ is the maximizer of r^* .

In tasks with a unique correct answer, such as mathematical problem solving, the ground-truth reward model r^* functions as a binary verifier, returning values in $\{0, 1\}$. In this case, the regret (3.1) naturally aligns with the Pass@ k metric (Li et al., 2022), since minimizing (3.1) is equivalent to maximizing the probability that at least one of the k selected responses is correct.

Remark 3.3. Compared with the sample-and-evaluate framework (Huang et al., 2025), our framework goes one step further by explicitly characterizing the dependence on k . This dependence constitutes a novel focus of our analysis, as it has not been examined in prior works on inference-time algorithms (Huang et al., 2024; 2025; Verdun et al., 2025).

In the setting of test-time (inference) scaling, responses are generated by π_{ref} . Sampling from a good reference model can lead to performance improvement. Motivated by this, we need a metric to evaluate the performance of the reference model. Following Huang et al. (2025), we introduce the reference policy's L_1 -coverage coefficient as follows:

$$C^*(x) := \mathbb{E}_{y \sim \pi^*(\cdot|x)} [\pi^*(y|x) / \pi_{\text{ref}}(y|x)]. \quad (3.2)$$

Moreover, the uniform coverage coefficient is defined as

$$C_\infty^*(x) := \sup_y [\pi^*(y|x) / \pi_{\text{ref}}(y|x)]. \quad (3.3)$$

Since Assumption 3.2 ensures that the optimal policy π^* is deterministic and uniquely defined as $\pi^*(y|x) = \mathbb{1}(y = y^*)$, the L_1 and uniform coverage coefficients coincide. Consequently, we have $C^*(x) = C_\infty^*(x) = 1 / \pi_{\text{ref}}(y^*|x)$.

Besides the regret, we are also concerned with the following important property of the algorithm, named as *scaling-monotonicity* (Huang et al., 2025). We provide the formal definition as follows:

216 **Definition 3.4.** Assume that k , prompt x and the coverage coefficient $C^*(x)$ are fixed. An algorithm
 217 is *scaling-monotonic* if for any $\delta > 0$, there exists $\epsilon_0 > 0$ and $N_0 \in \mathbb{N}_+$ such that for any $N \geq N_0$
 218 and any instance that satisfies Assumption 3.1 with $\epsilon_{\text{RM}}(x) \leq \epsilon_0$, the regret satisfies
 219

$$220 \quad \text{Regret}(x) \leq \delta.$$

221 Intuitively, a scaling-monotonic algorithm should achieve arbitrarily small regret if the reward model
 222 \hat{r} is accurate and sufficiently many samples of responses from π_{ref} are observed. Furthermore,
 223 scaling monotonicity also guarantees that the performance of the algorithm does not degrade when
 224 increasing N . Therefore, it is a crucial property in practice because the sampling budget N can be
 225 easily scaled up in hard instances instead of requiring accurate tuning. While this concept is not
 226 completely new, as far as we know, we are the first to formally define this property.

227 4 SUBOPTIMALITY OF EXISTING INFERENCE STRATEGIES

229 In this section, we first introduce two commonly used strategies for LLM inference, namely
 230 (weighted) majority voting (Section 4.1) and Best-of- N (BoN, Section 4.2). We will show that
 231 neither strategy is scaling-monotonic by constructing hard instances where the inference strategies
 232 suffer from constant regret even when $N \rightarrow \infty$. Additionally, the Pass@ k inference problem is less
 233 stringent than Pass@1, since it only requires success in any of the k sampled attempts rather than
 234 a single one. Consequently, the regret is expected to decrease as k increases, suggesting a negative
 235 association between regret and the sampling budget k .

236 4.1 (WEIGHTED) MAJORITY VOTING

237 Majority voting is a simple ensemble method for LLM inference:
 238 Multiple responses to the same prompt are sampled using the reference policy $\pi_{\text{ref}}(\cdot|x)$ to make the
 239 responses diverse enough, and the answer occurring most often is selected as the final output.

240 Specifically, let $\hat{y}_1, \dots, \hat{y}_N$ denote the N generated responses for a given query. After calculating the
 241 frequency of each response $\hat{\pi}(y) = \frac{1}{N} \sum_{i=1}^N \mathbf{1}(\hat{y}_i = y)$, the final prediction is then chosen as the answer
 242 that appears most frequently among these samples, i.e.,

$$243 \quad \tilde{y}_1, \dots, \tilde{y}_k = \text{Top-}k\{y \in \hat{\mathcal{Y}} : \hat{\pi}(y)\}.$$

244 Majority voting has demonstrated strong empirical performance (Wang et al., 2022; Lewkowycz
 245 et al., 2022; Li et al., 2023). With a reliable reward model \hat{r} , it can be further enhanced by
 246 weighting candidate frequencies with reward scores. Using an increasing weighting function $w(\cdot)$,
 247 the selection rule becomes:

$$248 \quad \tilde{y}_1, \dots, \tilde{y}_k = \text{Top-}k\{y \in \hat{\mathcal{Y}} : w(\hat{r}(y)) \cdot \hat{\pi}(y)\}.$$

249 While the reward weighting introduces extra computation for reward evaluation, weighted majority
 250 voting has been shown to achieve better performance than the unweighted version (Wu et al., 2024b).
 251 Despite its empirical success, we show that (weighted) majority voting is suboptimal in the worst
 252 case, even when the exact reward function is available, i.e., $\epsilon_{\text{RM}}^2(x) = 0$.

253 **Theorem 4.1.** For the (weighted) majority voting Algorithm 1 with weight function $w(\cdot)$, assume
 254 that $C^*(x) \geq 1 + 2kw(1)/w(1/2)$. Then, there exists an instance $\mathcal{I} = (\mathcal{X}, \mathcal{Y}, \pi^*, r^*, \pi_{\text{ref}}, \hat{r})$
 255 such that the coverage coefficient is $C^*(x)$, and $\hat{r} = r^*$ satisfies Assumptions 3.1 and 3.2 with
 256 $\epsilon_{\text{RM}}(x) = \epsilon_{\text{opt}}(x) = 0$. If $N \geq 9C^*(x) \log(2k + 2)$, the algorithm suffers from a constant regret:

$$257 \quad \text{Regret}(x) = \Omega(1).$$

270 Majority voting relies on exploiting the reference model’s distribution. Consequently, the hard case
 271 can be constructed by designing multiple distinct “bad” answers, each receiving higher probability
 272 under π_{ref} [than the probability of the optimal answer \$\pi_{\text{ref}}\(y^*\)\$](#) . Theorem 4.1 demonstrates that
 273 increasing the sampling budget N or the number of submitted responses k does not guarantee con-
 274 sistent improvement for (weighted) majority voting. In fact, when N is sufficiently large, (weighted)
 275 majority voting incurs constant regret even if the reward model is accurate.

276 **4.2 BEST-OF-N**

277 Best-of- N is another effective LLM inference strategy. Instead of aggregating
 278 answers by frequency, the model generates multiple candidate responses for the
 279 same query and then selects the single best response according to a reward model
 280 \hat{r} . Formally, given N sampled responses
 281 $\hat{y}_1, \dots, \hat{y}_N$, the Best-of- N strategy selects
 282 the outputs that maximize the reward signal
 283 \hat{r} , i.e.,

$$284 \hat{y}_1, \dots, \hat{y}_k = \text{Top-}k\{y \in \hat{\mathcal{Y}} : \hat{r}(y)\}.$$

285 For the BoN algorithm, we have the follow-
 286 ing theorem on the lower bound of the regret.

287 **Theorem 4.2.** For BoN (Algorithm 2), assume that $C^*(x) \geq 2k$. Then, there exists an instance
 288 $\mathcal{I} = (\mathcal{X}, \mathcal{Y}, \pi^*, r^*, \pi_{\text{ref}}, \hat{r})$ such that the coverage coefficient is $C^*(x)$, and (\hat{r}, r^*) satisfies Assump-
 289 tions 3.1 and 3.2 with $\epsilon_{\text{RM}}(x)$ and $\epsilon_{\text{opt}}(x)$. If $N \leq C^*(x)$, Algorithm 2 suffer from a constant regret,
 290 i.e.,

$$291 \text{Regret}(x) = \Omega(1).$$

292 Otherwise, the regret satisfies

$$293 \text{Regret}(x) = \Omega\left(\min\left\{1, \sqrt{N\epsilon_{\text{RM}}^2(x)/k}\right\}\right).$$

300 BoN leverages the reward model’s signal, but this makes it vulnerable to reward overoptimization
 301 (Gao et al., 2023; Stroebel et al., 2024) when the reward model is inaccurate. Thus, we construct the
 302 hard case by introducing multiple distinct “bad” answers that are assigned higher estimated rewards.
 303 With a carefully chosen, problem-dependent sampling budget $N = \tilde{\Theta}(C^*(x))$, the lower bound will
 304 become $\tilde{\Omega}(\sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)/k})$, which aligns with the general lower bound for inference algorithms
 305 (as will be discussed in Section 6). However, this lower bound implies that BoN is not scaling-
 306 monotonic, as for fixed k and $\epsilon_{\text{RM}}(x)$, the regret converges to a non-zero constant when N becomes
 307 sufficiently large. Thus, increasing N for BoN not only causes higher computational overhead, but
 308 can also degrade performance when the reward model is inaccurate.

309 **Remark 4.3.** For the case where $k = 1$, we establish a lower bound of $\Omega(\min\{1, \sqrt{N\epsilon_{\text{RM}}^2(x)}\})$,
 310 which recovers Theorem 3.2 in Huang et al. (2025). Notably, Huang et al. (2025) also provided a
 311 matching upper bound when $k = 1$. However, for $k > 1$, our analysis reveals an additional factor
 312 of $1/\sqrt{k}$ in the lower bound, which has not been considered in prior works. A direct application of
 313 the upper bound analysis from Huang et al. (2025) fails to capture this dependence on k , leaving a
 314 theoretical gap of $1/\sqrt{k}$. It remains unclear whether this suboptimality is due to limitations in the
 315 analysis or is an inherent weakness of BoN. We conjecture that obtaining a regret upper bound for
 316 BoN with the optimal $1/\sqrt{k}$ scaling under the Pass@ k setting may be fundamentally infeasible. We
 317 leave this to future work.

318 **5 OPTIMAL ALGORITHM FOR PASS@K INFERENCE**

319 In Section 4, we have proved that neither (weighted) majority voting nor BoN is scaling monotonic,
 320 and neither demonstrates the desirable scaling with k for the Pass@ k inference scaling problem. [We](#)
 321 [also explicitly describe how the corresponding hard instance is constructed. By contrast, instances](#)
 322 [that do not satisfy the properties of these hard cases are precisely those on which the algorithms](#)
 323 [perform well. Thus](#), our earlier analysis also reveals complementary strengths of these methods:

majority voting performs well when the reference policy assigns a higher probability to the ground-truth answer than to incorrect ones, while Best-of- N can be highly effective when the reward model \hat{r} is accurate. However, each method also exhibits weaknesses, as they fail to fully exploit the available information from either the policy or the reward model. To address these limitations, we introduce a new algorithm, Best-of-Majority (BoM), which integrates the advantages of both approaches.

Algorithm 3 Best-of-Majority (BoM)

Require: Estimated reward model \hat{r} , reference policy π_{ref} , frequency threshold α , sampling budget N , number of candidates k .

- 1: Observe context x .
- 2: Independently generate N responses $\hat{\mathcal{Y}} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N\}$ from $\pi_{\text{ref}}(\cdot|x)$.
- 3: Calculate frequency of each response $y \in \mathcal{Y}$:

$$\hat{\pi}(y) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}(\hat{y}_i = y).$$
- 4: Eliminate responses with frequency less than α :

$$\hat{\mathcal{Y}}_\alpha = \{y \in \hat{\mathcal{Y}} : \hat{\pi}(y) \geq \alpha\}.$$
- 5: Query reward labels $(\hat{r}(x, \hat{y}_1), \dots, \hat{r}(x, \hat{y}_N))$.
- 6: **if** $|\hat{\mathcal{Y}}_\alpha| \leq k$ **then**
- 7: **return** $\hat{\mathcal{Y}}_\alpha$.
- 8: **else**
- 9: Select $\tilde{y}_1, \dots, \tilde{y}_k = \text{Top-}k\{y \in \hat{\mathcal{Y}}_\alpha : \hat{r}(y)\}$.
- 10: **return** $\{\tilde{y}_1, \dots, \tilde{y}_k\}$.
- 11: **end if**

Guided by the pessimism principle, we discard responses whose frequency falls below a threshold α , retaining only the subset

$$\hat{\pi}(y) = \frac{1}{N} \sum_{i=1}^N \mathbb{1}(\hat{y}_i = y).$$

Then we query the reward model on the surviving candidates and select the top k responses according to their predicted rewards, $\tilde{y}_1, \dots, \tilde{y}_k = \text{Top-}k\{y \in \hat{\mathcal{Y}}_\alpha : \hat{r}(y)\}$. The following theorem demonstrates the upper bound of BoM.

Theorem 5.1. Assume that the threshold is $\alpha = 3/(4C^*(x))$. Then the regret of BoM (Algorithm 3) satisfies

$$\text{Regret}(x) \leq \epsilon_{\text{opt}}(x) + O\left(\sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)/k}\right) + O(C^*(x)e^{-N/(32C^*(x))}).$$

Moreover, when the sampling budget satisfies $N \geq 16C^*(x) \log(kC^*(x)/\epsilon_{\text{RM}}^2(x))$, we have

$$\text{Regret}(x) \leq \epsilon_{\text{opt}}(x) + \tilde{O}\left(\sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)/k}\right).$$

Here, we let $N \geq 16C^*(x) \log(kC^*(x)/\epsilon_{\text{RM}}^2(x))$ with a term dependent on $\epsilon_{\text{RM}}(x)$ to simplify the results. In general, we can replace the $\epsilon_{\text{RM}}(x)$ with any accuracy ϵ that we wish to achieve. Thus, Our selection of N do not require the knowledge of $\epsilon_{\text{RM}}(x)$, and our results will continue to work when $\epsilon_{\text{RM}}(x) = 0$. When $\epsilon_{\text{opt}}(x) \ll \sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)}$, the second term dominates, and consequently the overall regret scales as $1/\sqrt{k}$, consistent with the intuition that increasing k enlarges the candidate set and thereby makes the problem easier. Moreover, for fixed x, k , and $C^*(x)$, the regret bound converges to 0 as $N \rightarrow \infty$ and $\epsilon_{\text{RM}}(x) \rightarrow 0$. This yields the following corollary.

Corollary 5.2. BoM (Algorithm 3) is scaling-monotonic.

Computational Complexity. According to Theorem 5.1, the BoM algorithm requires approximately $\tilde{\Omega}(C^*(x))$ samples to achieve low regret. In comparison, Theorem 3.4 in Huang et al. (2025)

378 shows that when $k = 1$, the Best-of- N (BoN) algorithm also requires $\tilde{\Theta}(C^*(x))$ samples. This
 379 means for Pass@ k inference, BoM achieves a better regret bound with a $1/\sqrt{k}$ improvement with-
 380 out incurring additional generation cost. Moreover, BoM only queries the reward model for a filtered
 381 subset of candidates (see Algorithm 3, Line 5), which can reduce the number of reward evaluations.
 382

383 *Proof Sketch of Theorem 5.1.* The crucial step of BoM involves the construction of $\hat{\mathcal{Y}}_\alpha$ to approxi-
 384 mate the set of all responses y with $\pi_{\text{ref}}(y|x) \geq \alpha$, denoted by \mathcal{Y}_α . The following two properties of
 385 \mathcal{Y}_α makes it preferable as the set of candidates: Firstly, if $\tilde{y}_i \in \mathcal{Y}_\alpha(x)$ for all $i \in [k]$, we have an
 386 upper bound of the minimum estimation error $\min_{i \in [k]} \Delta_i$, where $\Delta_i = |\hat{r}(x, \tilde{y}_i) - r^*(x, \tilde{y}_i)|$:
 387

$$388 \min_{i \in [k]} \Delta_i \leq \sqrt{\sum_{i=1}^k \Delta_i^2 / k} \leq \sqrt{\sum_{i=1}^k \pi_{\text{ref}}(\tilde{y}_i|x) \Delta_i^2 / (\alpha k)} \leq \sqrt{\epsilon_{\text{RM}}^2(x) / (\alpha k)}, \quad (5.1)$$

389 where we used the property $\pi_{\text{ref}}(\tilde{y}_i|x) \geq \alpha$ in the second inequality. Secondly, since $\pi_{\text{ref}}(y^*|x) \geq$
 390 $1/C^*(x)$, we have $y^* \in \mathcal{Y}_{1/C^*(x)}$. Therefore, if $\hat{\mathcal{Y}}_\alpha(x) = \mathcal{Y}_{1/C^*(x)}(x)$, the algorithm either outputs
 391 y^* among the k submitted responses, incurring zero regret, or outputs k responses with $\hat{r}(x, \tilde{y}_i) \geq$
 392 $\hat{r}(x, y^*)$, where the regret can be decomposed as
 393

$$395 r^*(x, y^*) - r^*(x, \tilde{y}_i) \leq \underbrace{|r^*(x, y^*) - \hat{r}(x, y^*)|}_{\epsilon_{\text{opt}}(x)} + \underbrace{[\hat{r}(x, y^*) - \hat{r}(x, \tilde{y}_i)]}_{\leq 0} + \underbrace{|\hat{r}(x, \tilde{y}_i) - r^*(x, \tilde{y}_i)|}_{\Delta_i}.$$

396 We take the minimum, plug in (5.1), and obtain
 397

$$400 r^*(x, y^*) - \max_{i \in [k]} r^*(x, \tilde{y}_i) \leq \epsilon_{\text{opt}}(x) + \min_{i \in [k]} \Delta_{\tilde{y}_i} \leq \epsilon_{\text{opt}}(x) + \sqrt{4C^*(x)\epsilon_{\text{RM}}^2(x)/k}.$$

402 However, without direct access to π_{ref} , we use the empirical frequency $\hat{\pi}$ instead of π_{ref} in the
 403 construction of $\hat{\mathcal{Y}}_\alpha$, making $\hat{\mathcal{Y}}_\alpha$ an *approximation* of \mathcal{Y}_α . To extend the two properties of \mathcal{Y}_α to $\hat{\mathcal{Y}}_\alpha$, we
 404 require the following event that sandwiches $\hat{\mathcal{Y}}_{3/(4C^*(x))}(x)$ with $\mathcal{Y}_{1/C^*(x)}(x)$ and $\mathcal{Y}_{1/(4C^*(x))}(x)$:
 405

$$406 \mathcal{E} : \mathcal{Y}_{1/C^*(x)}(x) \subset \hat{\mathcal{Y}}_{3/(4C^*(x))}(x) \subset \mathcal{Y}_{1/(4C^*(x))}(x).$$

408 Under event \mathcal{E} , α can be set as $1/(4C^*(x))$ in (5.1). The complete expectation formula gives
 409

$$410 \text{Regret}(x) = \mathbb{E} \left[r^*(x, y^*) - \max_{i \in [k]} r^*(x, \tilde{y}_i) \middle| \mathcal{E} \right] \cdot \mathbb{P}(\mathcal{E}) + \mathbb{E} \left[r^*(x, y^*) - \max_{i \in [k]} r^*(x, \tilde{y}_i) \middle| \neg \mathcal{E} \right] \cdot \mathbb{P}(\neg \mathcal{E}) \\ 411 \leq \epsilon_{\text{opt}}(x) + \sqrt{4C^*(x)\epsilon_{\text{RM}}^2(x)/k} + \mathbb{P}(\neg \mathcal{E}),$$

414 so it remains to characterize the probability of \mathcal{E} .
 415

416 The probability of $\mathcal{Y}_{1/C^*(x)}(x) \not\subset \hat{\mathcal{Y}}_{3/(4C^*(x))}(x)$ can be characterized by first bounding
 417 $\mathbb{P}(y \notin \hat{\mathcal{Y}}_{3/(4C^*(x))}(x))$ for any $y \in \mathcal{Y}_{1/C^*(x)}(x)$ using the Chernoff bound, and then apply-
 418 ing the union bound with the crucial observation of $|\mathcal{Y}_{1/C^*(x)}(x)| \leq C^*(x)$. When char-
 419 acterizing $\mathbb{P}(\hat{\mathcal{Y}}_{3/(4C^*(x))}(x) \not\subset \mathcal{Y}_{1/(4C^*(x))}(x))$, we can similarly use the Chernoff bound in
 420 $\mathbb{P}(y \in \hat{\mathcal{Y}}_{3/(4C^*(x))}(x))$ for any $y \in \mathcal{Y}(x) \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$, but the union bound does not hold
 421 because the cardinality of the set $\mathcal{Y}(x) \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$ is unknown. To resolve this issue, we
 422 assign elements of $\mathcal{Y}(x) \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$ into “bins” $\{G_j\}$, each with capacity $1/(2C^*(x))$, i.e.,
 423 $\pi_{\text{ref}}(G_j|x) \leq 1/(2C^*(x))$. The smallest number of bins is no more than $4C^*(x)$ because any
 424 two bins with $\pi_{\text{ref}}(G_j|x) \leq 1/(4C^*(x))$ can be merged. With this assignment, we can bound
 425 $\mathbb{P}(G_j \cap \hat{\mathcal{Y}}_{3/(4C^*(x))}(x) \neq \emptyset)$ with the Chernoff bound, and then use the union bound with the bins,
 426 which resolves the problem because the number of bins is bounded. \square
 427

6 GENERAL LOWER BOUNDS

429 In this section, we establish a lower bound that highlights the fundamental factors influencing the
 430 Pass@ k inference problem. Specifically, the bound depends on the coverage coefficient $C^*(x)$, the
 431 reward model estimation error $\epsilon_{\text{RM}}^2(x)$ and $\epsilon_{\text{opt}}(x)$, and the number of candidates k . It matches the
 432 upper bound in Theorem 5.1, which indicates that the algorithm BoM is minimax optimal.

432 **Theorem 6.1.** For a given prompt x , assume that $C^*(x) \geq 2k$. Then for any algorithm \mathcal{A} for
 433 the Pass@ k inference problem, there exists an instance $\mathcal{I} = (\mathcal{X}, \mathcal{Y}, \pi^*, r^*, \pi_{\text{ref}}, \hat{r})$ such that the
 434 coverage coefficient is $C^*(x)$, and (r^*, \hat{r}) satisfies Assumptions 3.1 and 3.2. Moreover, and regret
 435 can be lower bounded by

$$436 \quad 437 \quad \text{Regret}(x) = \Omega\left(\epsilon_{\text{opt}}(x) + \sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)/k}\right). \\ 438$$

439 Theorem 6.1 shows that the term $\epsilon_{\text{opt}}(x)$ is unavoidable in the Pass@ k inference problem and does
 440 not diminish as the number of candidates k increases. In contrast, the component associated with the
 441 expected squared loss, $\epsilon_{\text{RM}}(x)$, decreases at a rate of $1/\sqrt{k}$. This bound matches the upper bound
 442 for BoM (Theorem 5.1), demonstrating that BoM is minimax optimal.

443 7 EXPERIMENTS

445 In this section, we empirically verify the effectiveness of our proposed BoM algorithm on mathe-
 446 matical reasoning tasks.

447 7.1 EXPERIMENT SETUP

448 **Models and Datasets.** We use Qwen3-4B-Instruct-2507 (Team, 2025) (Qwen3-4B) as the reference
 449 policy π_{ref}^1 . We adopt AceMath-7B-RM (Liu et al., 2024) as the reward model \hat{r} , a mathematical
 450 reward model trained on a large corpus generated by different language models which is selected
 451 due to its strong performance and moderate size. We adopt the widely used GSM8K (Cobbe et al.,
 452 2021), MATH-500 (Hendrycks et al., 2021), and AIME24² dataset as our testing corpus. We first
 453 sample N trajectories and call the reward model to evaluate each trajectory. The answers are then
 454 extracted from the trajectories and clustered by mathematical equivalence³. For each answer group,
 455 we use the average of the rewards of all the corresponding trajectories as the reward of this group.
 456 We also calculate the frequency of each answer group as an estimation of $\pi_{\text{ref}}(\cdot)$.

457 **Method and Baselines.** Given a specific k , we consider our method BoM, and two baselines,
 458 majority voting and BoN. In BoM, we set a threshold α and select the k answers (up to mathematical
 459 equivalence) with highest reward score and frequency greater than α . In BoN, we directly select
 460 the k answers (up to mathematical equivalence) with highest rewards. As for majority voting, we
 461 directly select k answers (up to mathematical equivalence) with highest frequency. Additionally,
 462 we consider the SBoN algorithm studied in Aminian et al. (2025); Verdun et al. (2025). Given N
 463 generated answers $\{y_i\}_{i=1}^N$, we select k answers in a sequence, without replacement according to a
 464 softmax distribution $p(y_i|x) \propto \exp(\beta\hat{r}(x, y_i))$, where β is a tunable parameter. We examine two
 465 variants: with and without reward calibration, where the calibration is implemented in the same way
 466 as in (Balashankar et al., 2024). In the calibrated case, rewards are normalized using the win rate
 467 over the reference policy π_{ref} . We denote these versions SBoN(C) and SBoN, respectively.

468 7.2 RESULTS

469 **Results with varying k .** We first plot the results for $k \in \{1, 2, 3, 5, 10\}$ in Figure 1(a) for GSM8K,
 470 Figure 1(b) for MATH-500, and Figure 1(c) for AIME24. We sample $N = 2000$ for GSM8K, and
 471 $N = 500$ for MATH-500 and AIME24. On MATH-500, the performance of BoM consistently
 472 outperforms the baselines. On GSK8K and AIME24, BoM also shows a large improvement over
 473 majority voting and outperforms BoN for small k . These results empirically verify the effectiveness
 474 of the BoM algorithm.

475 **Results with varying N .** We also study the performance of the three methods under different sample
 476 sizes. We conduct the experiments on the AIME24 dataset and vary N between 100 and 2000, with
 477 $k = 1, 3, 5$. Except for the case of $N = 100$ where the threshold of BoM is set to $\alpha = 0.015$, we
 478 use $\alpha = 0.005$ in all other settings. We compile the results in Figure 2. the performance of majority
 479 voting remains consistently low, which aligns with Theorem 4.1, demonstrating that majority voting
 480 incurs constant regret and does not benefit from increased sample size. The performance of BoN
 481 tends to degrade as N increases. In contrast, when $N \geq 200$, BoM consistently outperforms both

482 ¹Please see Appendix F for results on additional models.

483 ²https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024

484 ³The equivalence is determined through the standard implementation in Qwen2.5-Math repository and
 485 refers the readers to their public implementation for more details. <https://github.com/QwenLM/Qwen2.5-Math/blob/a45202bd16f1ec06f433442dc1152d0074773465/evaluation/grader.py#L73>

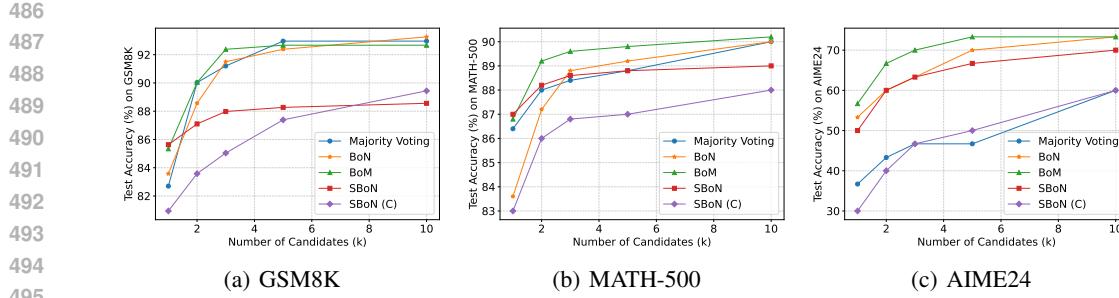


Figure 1: The results with different k . BoM consistently outperforms the baselines on MATH-500 for all k and on AIME24, GSM8K when k is small, and matches the performance of baselines in other settings.

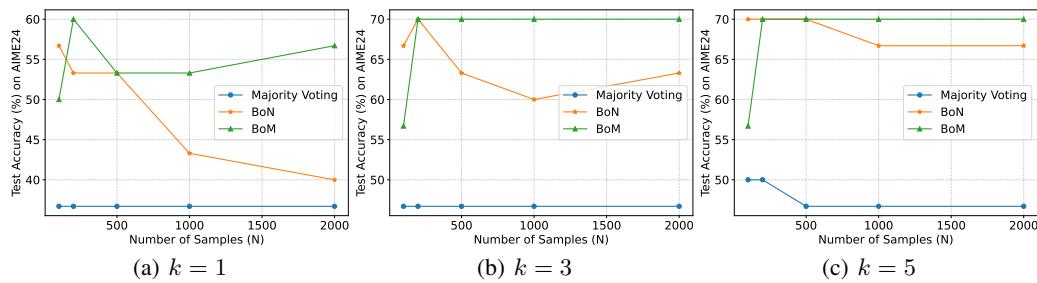


Figure 2: The results with fixed k and different N . When N increases, the performance of BoN is likely to decrease over all the k . The performance of Majority voting remains at a low level. Among them, BoM has a more consistent performance and outperforms baselines with larger N .

baselines and does not decrease significantly with the increase of N . This observation is consistent with our theoretical results, as BoM is scaling-monotonic.

7.3 ABLATION STUDY OF α

In this section, we present an ablation study of the hyperparameter α in our BoM algorithm. When $\alpha = 0$, BoM will degrade to BoN, meaning that as α approaches 0, BoM behaves similarly to BoN. We further observe that selecting a larger α can potentially improve the performance when k is small, although this comes at the cost of deteriorated performance for larger k . More experimental results are included in Appendix D.

Table 2: Ablation study of α of BoM in MATH500, Qwen3-4B

Pass@ k	1	2	3	5	10
$\alpha = 0$ (BoN)	83.6	87.2	88.8	89.2	90
$\alpha = 0.003$	86	88.8	89	89.2	90
$\alpha = 0.005$	86.8	89.2	89.6	89.8	90.2
$\alpha = 0.007$	86.6	89	89.6	89.8	90.2
$\alpha = 0.011$	86.6	88.8	89.4	89.4	89.6
$\alpha = 0.015$	87.4	88.8	89.4	89.4	89.8
Majority voting	86.4	88	88.4	88.8	90

8 CONCLUSION

In this work, we demonstrate the scaling laws of the Pass@ k inference problem by displaying the minimax lower bound of the regret and proposing the algorithm BoM with regret matching the lower bound. We also show that BoM has the advantage of scaling monotonicity compared with majority voting and BoN, which makes BoM preferable when scaling up the generation budget. For future work, it would be interesting to explore instance-dependent lower bounds, instead of the minimax lower bound as Theorems 4.1, 4.2 and 6.1. In addition, our current analysis assumes the uniqueness of the optimal response, such that the coverage coefficient will not depend on the choice of optimal policy π^* . How to define generalized coverage coefficients under the multiple optimum setting remains to be explored.

540 ETHICS STATEMENT

541
 542 Our work investigates a novel Pass@ k inference problem, focusing on the theoretical analysis of
 543 different inference strategies. In addition, we propose a new algorithm, Best-of-Majority (BoM),
 544 which achieves optimal theoretical guarantees, and we further provide empirical validation to sup-
 545 port its effectiveness. Importantly, our experiments focus on solving mathematical problems with
 546 LLMs, and the language models do not generate or promote harmful content, nor does it raise issues
 547 related to discrimination, bias, or fairness.

548 REPRODUCIBILITY STATEMENT

549 In this paper, we conduct experiments with open-source LLMs on widely used mathematical
 550 datasets. A detailed description of the models and datasets is provided in Section 7.1, while the key
 551 experimental parameters are discussed in Section 7.2. On the theoretical side, we present a proof
 552 sketch of the upper bound of the BoM algorithm in Section 5, with the complete proof deferred to
 553 Appendix B. Appendix C contains several lower-bound results, corresponding to the theorems in
 554 Sections 4.1, 4.2, and 6.

555 REFERENCES

556
 557 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
 558 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 559 report. *arXiv preprint arXiv:2303.08774*, 2023.

560 Gholamali Aminian, Idan Shenfeld, Amir R Asadi, Ahmad Beirami, and Youssef Mroueh. Best-of-n
 561 through the smoothing lens: K1 divergence and regret analysis. *arXiv preprint arXiv:2507.05913*,
 562 2025.

563 Ananth Balashankar, Ziteng Sun, Jonathan Berant, Jacob Eisenstein, Michael Collins, Adrian Hutt-
 564 er, Jong Lee, Chirag Nagpal, Flavien Prost, Aradhana Sinha, et al. Infalign: Inference-aware
 565 language model alignment. *arXiv preprint arXiv:2412.19792*, 2024.

566
 567 Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander D’Amour, Jacob Eisenstein, Chirag
 568 Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment policy.
 569 *arXiv preprint arXiv:2401.01879*, 2024.

570 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 571 Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. *OpenAI*
 572 *Blog*, 1(8):1, 2024.

573 Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
 574 Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
 575 *arXiv preprint arXiv:2407.21787*, 2024.

576 Jacob Buckman, Carles Gelada, and Marc G Bellemare. The importance of pessimism in fixed-
 577 dataset policy optimization. *arXiv preprint arXiv:2009.06799*, 2020.

578
 579 Hongru Cai, Yongqi Li, RuiFeng Yuan, Wenjie Wang, Zhen Zhang, Wenjie Li, and Tat-Seng Chua.
 580 Exploring training and inference scaling laws in generative retrieval. In *Proceedings of the 48th*
 581 *International ACM SIGIR Conference on Research and Development in Information Retrieval*,
 582 pp. 1339–1349, 2025.

583 Zheng Cai, Maosong Cao, Haojong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
 584 Chen, Zhi Chen, Pei Chu, et al. Internlm2 technical report. *arXiv preprint arXiv:2403.17297*,
 585 2024.

586 Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémie Scheurer, Javier
 587 Rando, Rachel Freedman, Tomek Korbak, David Lindner, Pedro Freire, et al. Open problems
 588 and fundamental limitations of reinforcement learning from human feedback. *Transactions on*
 589 *Machine Learning Research*, 2023.

590 Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Ion Stoica, Matei A Zaharia, and
 591 James Y Zou. Are more ilm calls all you need? towards the scaling properties of compound ai
 592 systems. *Advances in Neural Information Processing Systems*, 37:45767–45790, 2024.

594 Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
 595 Pass@ k training for adaptively balancing exploration and exploitation of large reasoning models.
 596 *arXiv preprint arXiv:2508.10751*, 2025.

597

598 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 599 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 600 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

601 D Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of randomised
 602 algorithms. *Draft Manuscript, http://www. brics. dk/ale/papers. html*, 1998.

603

604 Devdatt P Dubhashi and Desh Ranjan. Balls and bins: A study in negative dependence. *BRICS
 605 Report Series*, 3(25), 1996.

606

607 Yan Fang, Jingtao Zhan, Qingyao Ai, Jiaxin Mao, Weihang Su, Jia Chen, and Yiqun Liu. Scaling
 608 laws for dense retrieval. In *Proceedings of the 47th International ACM SIGIR Conference on
 609 Research and Development in Information Retrieval*, pp. 1339–1349, 2024.

610

611 Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus McAleer, Ying Wen, Weinan Zhang, and
 612 Jun Wang. Alphazero-like tree-search can guide large language model decoding and training.
arXiv preprint arXiv:2309.17179, 2023.

613

614 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

615

616 Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu,
 617 and Lijie Wen. Interpretable contrastive monte carlo tree search reasoning. *arXiv preprint
 618 arXiv:2410.01707*, 2024.

619

620 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 621 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 622 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

623

624 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 625 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv
 preprint arXiv:2103.03874*, 2021.

626

627 Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
 628 Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
 629 modeling. *arXiv preprint arXiv:2010.14701*, 2020.

630

631 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 632 Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 633 empirically. *arXiv preprint arXiv:1712.00409*, 2017.

634

635 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 636 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training
 637 compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

638

639 Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jordan
 640 T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
 641 mechanism. *arXiv preprint arXiv:2412.01951*, 2024.

642

643 Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
 644 Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. *arXiv
 645 preprint arXiv:2503.21878*, 2025.

646

647 Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International conference on machine learning, pp. 5084–5096. PMLR, 2021.

648

649 Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi Abe. Regularized best-of-n sampling to
 650 mitigate reward hacking for language model alignment. In *ICML 2024 Workshop on Models of
 651 Human Feedback for AI Alignment*, 2024.

648 Andy L Jones. Scaling scaling laws with board games. *arXiv preprint arXiv:2104.03113*, 2021.
649

650 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
651 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
652 models. *arXiv preprint arXiv:2001.08361*, 2020.

653 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.
654

655 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
656 masesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
657 reasoning problems with language models. *Advances in neural information processing systems*,
658 35:3843–3857, 2022.

659 Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
660 language models better reasoners with step-aware verifier. In *Proceedings of the 61st Annual*
661 *Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 5315–
662 5333, 2023.

663

664 Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittweis, Rémi Leblond, Tom
665 Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
666 with alphacode. *Science*, 378(6624):1092–1097, 2022.

667 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
668 solve inherently serial problems. *arXiv preprint arXiv:2402.12875*, 1, 2024.

669

670 Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
671 Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. *arXiv preprint*
672 *arXiv:2508.14029*, 2025.

673

674 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
675 Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In *The Twelfth*
676 *International Conference on Learning Representations*, 2023.

677 Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and
678 Jialu Liu. Statistical rejection sampling improves preference optimization. *arXiv preprint*
679 *arXiv:2309.06657*, 2023.

680

681 Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. Acemath: Advancing
682 frontier math reasoning with post-training and reward modeling. *arXiv preprint*, 2024.

683

684 Youssef Mroueh. Information theoretic guarantees for policy alignment in large language models.
685 *arXiv preprint arXiv:2406.05883*, 2024.

686

687 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
688 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
689 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

690

691 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
692 pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
693 question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

694

695 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
696 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
697 low instructions with human feedback. *Advances in neural information processing systems*, 35:
698 27730–27744, 2022.

699

700 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
701 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

702

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
703 Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
704 search and best-of-n sampling. *arXiv preprint arXiv:2410.16033*, 2024.

702 Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sushil Sikchi, Joey Hejna, Brad Knox,
 703 Chelsea Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct align-
 704 ment algorithms. *Advances in Neural Information Processing Systems*, 37:126207–126242, 2024.
 705

706 Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Belinkov, and Nir Shavit. A constructive prediction
 707 of the generalization error across scales. *arXiv preprint arXiv:1909.12673*, 2019.

708 Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal: Ac-
 709 counting for inference in language model scaling laws. In *International Conference on Machine
 710 Learning*, pp. 43445–43460. PMLR, 2024.

711 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 712 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

713

714 Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 715 Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. *Advances
 716 in neural information processing systems*, 33:3008–3021, 2020.

717 Benedikt Stroebel, Sayash Kapoor, and Arvind Narayanan. Inference scaling flaws: The limits of llm
 718 resampling with imperfect verifiers. *arXiv preprint arXiv:2411.17501*, 2024.

719

720 Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
 721 inference time objectives using reinforcement learning. *arXiv preprint arXiv:2503.19595*, 2025.

722

723 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

724

725 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 726 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 727 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

728

729 Claudio Mayrink Verdun, Alex Oesterling, Himabindu Lakkaraju, and Flavio P Calmon. Soft best-
 730 of-n sampling for model alignment. *arXiv preprint arXiv:2505.03156*, 2025.

731

732 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 733 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 734 *arXiv preprint arXiv:2203.11171*, 2022.

735

736 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 737 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 738 neural information processing systems*, 35:24824–24837, 2022.

739

740 Tianhao Wu, Weizhe Yuan, Olga Golovneva, Jing Xu, Yuandong Tian, Jiantao Jiao, Jason Weston,
 741 and Sainbayar Sukhbaatar. Meta-rewarding language models: Self-improving alignment with
 742 llm-as-a-meta-judge. *arXiv preprint arXiv:2407.19594*, 2024a.

743

744 Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. Inference scaling laws:
 745 An empirical analysis of compute-optimal inference for problem-solving with language models.
 746 *arXiv preprint arXiv:2408.00724*, 2024b.

747

748 Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
 749 and Sumitra Ganesh. Genarm: Reward guided generation with autoregressive reward model for
 750 test-time alignment. *arXiv preprint arXiv:2410.08193*, 2024.

751

752 Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad Beirami.
 753 Asymptotics of language model alignment. In *2024 IEEE International Symposium on Informa-
 754 tion Theory (ISIT)*, pp. 2027–2032. IEEE, 2024a.

755

756 Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and Tong Zhang. Regularizing hidden states
 757 enables learning generalizable reward model for llms. *Advances in Neural Information Processing
 758 Systems*, 37:62279–62309, 2024b.

759

760 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 761 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 762 vances in neural information processing systems*, 36:11809–11822, 2023.

756 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
 757 Alexander Ku, Yafei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
 758 rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.

760 Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
 761 self-training via process reward guided tree search. *Advances in Neural Information Processing
 762 Systems*, 37:64735–64772, 2024.

764 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 765 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 766 chatbot arena. *Advances in neural information processing systems*, 36:46595–46623, 2023.

767 Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, Karthik Ganesan, Wei-Lin Chiang, Jian Zhang,
 768 and Jiantao Jiao. Starling-7b: Improving helpfulness and harmlessness with rlaif. In *First Con-
 769 ference on Language Modeling*, 2024.

772 A COMPARISON WITH AMINIAN ET AL. (2025)

773 In Aminian et al. (2025), the theoretical guarantees of BoN are studied under a different setting, and
 774 a variant called SBoN (Soft BoN) is also analyzed. In this section, we provide a comprehensive
 775 comparison of the assumptions and theoretical regimes considered in both works. Aminian et al.
 776 (2025) made three main assumptions.

- 777 • The reward function is bounded, i.e., $0 \leq r^*(\cdot) \leq R_{\max}$, $0 \leq \hat{r}(\cdot) \leq R_{\max}$.
- 778 • The reward estimation error $\epsilon_{\beta,r}(x) := \frac{1}{\beta} \log(\mathbb{E}_{\pi_{\text{ref}}}[\exp(\beta(r^*(x, y) - \hat{r}(x, y))^2)])$.
- 779 • Maximal reward can be achieved for the estimated reward \hat{r} .

780 In comparison, the first assumption aligns with our setting with $R_{\max} = 1$. The second assumption
 781 aligns with our Assumption 3.1 only when $\beta = 0$. For the third assumption, we assume the maximal
 782 value can be achieved only for the true reward model r^* , with a unique optimizer. And the error at
 783 the optimal point is specially considered.

784 **Results of BoN:** Aminian et al. (2025) proved a regret of

$$787 \text{Regret}(x) = \sqrt{\epsilon_{\infty,r}(x)} \left(\sqrt{C_{\infty,\hat{r},\text{ref}}(x)} + \sqrt{C_{\infty,r^*,\text{ref}}(x)} \right) + c \sqrt{\log \left(1 + \frac{C_{\infty,\hat{r},\text{ref}}(x) - 1}{N} \right)},$$

789 for some constant $c > 0$. In this result, it considers two coverage definitions dependent on \hat{r} and r^* .
 790 Moreover, the reward estimation error is $\beta = \infty$, which corresponds to the case of supreme norm,
 791 instead of the squared norm. When $N \rightarrow \infty$, the convergence rate is $\sqrt{1/N}$.

792 *Comparison with our results:* One central distinction lies in our different focuses. Our work focuses
 793 on analyzing algorithmic performance within the Pass@ k framework, and therefore our theoreti-
 794 cal results explicitly account for the ability to submit k different answers, which is not studied in
 795 Aminian et al. (2025). In particular, for the theory of BoN, Theorem 4.2 establishes a **lower bound**
 796 that depends explicitly on k , which serves as a parallel result to Aminian et al. (2025).

797 As for upper bound of BoM, we prove that it has an exponential decay dependence of N , together
 798 with a term of $O(\sqrt{C\epsilon_{\text{RM}}^2/k})$, which directly has k dependence. Although the definition of reward
 799 error differs, thus the results can not be directly compared, we have shown a faster convergence rate
 800 of N than Aminian et al. (2025).

801 **Results of SBoN:** For SBoN, Aminian et al. (2025) proved a regret of

$$802 \text{Regret}(x) = \sqrt{\epsilon_{\beta,r}(x)} \left(\sqrt{C_{\infty,\hat{r},\text{ref}}(x)} + \sqrt{C_{\infty,r^*,\text{ref}}(x)} \right) \\ 803 + c \sqrt{\log \left(1 + \frac{C_{\infty,\hat{r},\text{ref}}(x) - 1}{N} \right)} + \log(C_{\infty,r^*,\text{ref}}(x))/\beta.$$

807 Note that $\beta \neq 0$, as the last term will explode. Thus, the setting of Aminian et al. (2025) is never
 808 same as ours. Again, when $N \rightarrow \infty$, the convergence rate of SBoN is $\sqrt{1/N}$, compared with our
 809 exponential decay. Finally, our focus is on the Pass@ k setting, which has never been analyzed in
 Aminian et al. (2025).

810 B THEORETICAL GUARANTEE OF BOM (ALGORITHM 3)

811
812 In this section, we will prove Theorem 5.1, which provides the theoretical upper bound of Algorithm
813 3. To start with, for any $\alpha > 0$, we denote

$$814 \mathcal{Y}_\alpha(x) = \{y \in \mathcal{A}(x) : \pi_{\text{ref}}(y|x) \geq \alpha\},$$

815 indicating the set of responses with relatively high probability for π_{ref} . Using the definition of the
816 coverage coefficient (3.2), we have $y^* \in \mathcal{Y}_\alpha(x)$ as long as $\alpha \geq 1/C^*(x)$. Next, we will build the
817 relationship between the empirical set $\widehat{\mathcal{Y}}_\alpha(x)$ and $\mathcal{Y}_\alpha(x)$. Denote \mathcal{E} as the event such that
818

$$819 \mathcal{Y}_{1/C^*(x)}(x) \subset \widehat{\mathcal{Y}}_{3/(4C^*(x))} \subset \mathcal{Y}_{1/(4C^*(x))}(x).$$

820 Our proof consists of two parts:

821 **Step 1:** We first show that \mathcal{E} holds with high probability.

822 **Step 2:** Provided that \mathcal{E} holds, since $y^* \in \mathcal{Y}_{1/C^*(x)}(x)$, we have $y^* \in \widehat{\mathcal{Y}}_{3/(4C^*(x))}$; furthermore,
823 since $\tilde{y}_i \in \widehat{\mathcal{Y}}_{3/(4C^*(x))}$, we have $\tilde{y}_i \in \mathcal{Y}_{1/(4C^*(x))}(x)$, so $\pi_{\text{ref}}(\tilde{y}_i|x) \geq 1/(4C^*(x))$ for every sub-
824 mitted response \tilde{y}_i . We can then characterize $\Delta_i = |r^*(x, \tilde{y}_i) - \widehat{r}(x, \tilde{y}_i)|$ using the definition of the
825 estimation error ϵ_{RM}^2 . If $y^* \in \{\tilde{y}_1, \dots, \tilde{y}_k\}$, then the regret is zero; if $y^* \notin \{\tilde{y}_1, \dots, \tilde{y}_k\}$, then using
826 Assumption 3.2, we have

$$827 r^*(x, y^*) - r^*(x, \tilde{y}_i) \leq \underbrace{|r^*(x, y^*) - \widehat{r}(x, y^*)|}_{\epsilon_{\text{opt}}(x)} + \underbrace{|\widehat{r}(x, y^*) - \widehat{r}(x, \tilde{y}_i)|}_{\leq 0} + \underbrace{|\widehat{r}(x, \tilde{y}_i) - r^*(x, \tilde{y}_i)|}_{\Delta_i}.$$

828 Combining these parts together, we complete the proof of Theorem 5.1.

829 We now get into the details of the proof. The following lemma states that the event of \mathcal{E} will occur
830 with high probability:

831 **Lemma B.1.** \mathcal{E} holds with probability at least $1 - 5C^*(x)e^{-N/(32C^*(x))}$.

832 *Proof.* The proof consists of two parts that characterize the probabilities of $\mathcal{Y}_{1/C^*(x)}(x) \not\subset$
833 $\widehat{\mathcal{Y}}_{3/(4C^*(x))}$ and $\widehat{\mathcal{Y}}_{3/(4C^*(x))} \not\subset \mathcal{A}_{1/(4C^*(x))}(x)$, respectively:

834 **Part I: Probability of $\mathcal{Y}_{1/C^*(x)}(x) \not\subset \widehat{\mathcal{Y}}_{3/(4C^*(x))}$.** We first fix any $y \in \mathcal{Y}_{1/C^*(x)}(x)$. By Chernoff
835 bound, we have

$$836 \mathbb{P}(\widehat{\pi}(y) < 3/(4C^*(x))) \leq \exp\left(-\frac{N\pi_{\text{ref}}(y|x)}{2}\left(1 - \frac{3}{4C^*(x)\pi_{\text{ref}}(y|x)}\right)^2\right) \leq e^{-N/(32C^*(x))}, \quad (\text{B.1})$$

837 where the first inequality holds due to the Chernoff bound, and the second inequality holds because
838 $\pi_{\text{ref}}(y|x) \geq 1/C^*(x)$. Applying the union bound to all $y \in \mathcal{Y}_{1/C^*(x)}(x)$, we have

$$839 \mathbb{P}(\mathcal{Y}_{1/C^*(x)}(x) \not\subset \widehat{\mathcal{Y}}_{3/(4C^*(x))}) = \mathbb{P}\left(\bigvee_{y \in \mathcal{Y}_{1/C^*(x)}(x)} \mathbb{1}[\widehat{\pi}(y) \leq 3/(4C^*(x))]\right) \\ 840 \leq \sum_{y \in \mathcal{Y}_{1/C^*(x)}(x)} \mathbb{P}(\widehat{\pi}(y) < 3/(4C^*(x))) \\ 841 \leq 1 - |\mathcal{Y}_{1/C^*(x)}(x)| \cdot e^{-N/(32C^*(x))} \\ 842 \leq 1 - C^*(x)e^{-N/(32C^*(x))}, \quad (\text{B.2})$$

843 where the first inequality holds due to the union bound, the second inequality holds due to (B.1),
844 and the last inequality holds because $|\mathcal{Y}_{1/C^*(x)}(x)| \leq C^*(x)$.

845 **Part II: Probability of $\widehat{\mathcal{Y}}_{3/(4C^*(x))} \not\subset \mathcal{A}_{1/(4C^*(x))}(x)$.** We cannot use the same union bound as
846 (B.2) because the cardinality of the set to take union bound $\mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$ is unknown. To
847 resolve this issue, we first partition $\mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$ into groups, then apply Chernoff bound to
848 each group, and finally apply the union bound to the groups. This technique resolves the problem
849 because the number of groups is in the order of $\mathcal{O}(C^*(x))$, and the union bound goes through
850 without incurring the cardinality of $\mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$.

In detail, suppose that $\mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}(x) = \{y_i\}_{i \geq 1}$. We start with a single group $G_1 = \emptyset$, and add y_i to one of the groups sequentially. For each response $y_i \in \mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}(x)$, if there exists group G_j such that

$$\pi_{\text{ref}}(y_i|x) + \sum_{y \in G_j} \pi_{\text{ref}}(y|x) \leq \frac{1}{2C^*(x)}, \quad (\text{B.3})$$

then we update G_j with $G_j \cup \{a_i\}$ where j is the smallest index that satisfies (B.3). Otherwise, we create a new group $\{a_i\}$. From the construction of the groups, we can easily see that the probability of any group G_j under the reference model satisfies

$$\pi_{\text{ref}}(G_i|x) = \sum_{a \in G_j} \pi_{\text{ref}}(a|x) \leq \frac{1}{2C^*(x)}. \quad (\text{B.4})$$

Furthermore, the total number of groups M should be no larger than $4C^*(x)$ because otherwise, suppose that (B.3) does not holds for y_i and any existing group $G_j (j \in [M])$ where $M > 4C^*(x) - 1$, i.e.,

$$\sum_{y \in G_j} \pi_{\text{ref}}(y|x) > \frac{1}{2C^*(x)} - \pi_{\text{ref}}(y_i|x) > \frac{1}{4C^*(x)}, \quad (\text{B.5})$$

where the last inequality holds because $\pi_{\text{ref}}(a) < 1/(4C^*(x))$. We then have

$$\begin{aligned} 1 &= \sum_{y \in \mathcal{Y}} \pi_{\text{ref}}(y|x) \\ &\geq \left[\pi_{\text{ref}}(y_i|x) + \sum_{y \in G_1} \pi_{\text{ref}}(y|x) \right] + \sum_{j=2}^M \left[\sum_{y \in G_j} \pi_{\text{ref}}(y|x) \right] \\ &\geq \frac{1}{2C^*(x)} + (M-1) \cdot \frac{1}{4C^*(x)} \\ &> \frac{1}{2C^*(x)} + (4C^*(x) - 1 - 1) \cdot \frac{1}{4C^*(x)} = 1, \end{aligned}$$

where the first inequality holds because the union of a_i and all existing groups is a subset of $\mathcal{A}(x)$, the second inequality holds due to (B.5), and the last inequality holds due to the assumption of $M > 4C^*(x) - 1$. We have thus arrived at a contradiction, and we conclude that $M \leq 4C^*(x)$.

For each group, we apply the Chernoff bound:

$$\begin{aligned} &\mathbb{P}\left(\bigvee_{y \in G_j} \mathbb{1}[\hat{\pi}(y) \geq 3/(4C^*(x))]\right) \\ &\leq \mathbb{P}(\hat{\pi}(G_j) \geq 3/(4C^*(x))) \\ &\leq \exp\left(-N \frac{(3/(4C^*(x)) - \pi_{\text{ref}}(G_i|x))^2}{3/(4C^*(x)) + \pi_{\text{ref}}(G_i|x)}\right) \\ &\leq e^{-N/(20C^*(x))}, \end{aligned} \quad (\text{B.6})$$

where the first inequality holds because if the frequency of one response in G_j is larger than $3/(4C^*(x))$, then the total frequency of group G_j should be larger than $3/(4C^*(x))$; the second inequality holds due to the Chernoff bound; the last inequality holds due to (B.4). Applying the union bound to all groups,

$$\begin{aligned} \mathbb{P}(\hat{\mathcal{Y}}_{3/(4C^*(x))} \not\subset \mathcal{A}_{1/(4C^*(x))}(x)) &= \mathbb{P}\left(\bigvee_{y \in \mathcal{Y} \setminus \mathcal{Y}_{1/(4C^*(x))}} \mathbb{1}[\hat{\pi}(y) \geq 3/(4C^*(x))]\right) \\ &\leq \sum_{j=1}^M \mathbb{P}\left(\bigvee_{y \in G_j} \mathbb{1}[\hat{\pi}(y) \geq 3/(4C^*(x))]\right) \\ &\leq M e^{-N/(20C^*(x))} \end{aligned}$$

$$918 \leq 4C^*(x)e^{-N/(32C^*(x))}, \quad (B.7)$$

920 where the first inequality holds due to the union bound, the second inequality holds due to (B.6), and
 921 the last inequality holds because $M \leq 4C^*(x)$ and $e^{-N/(20C^*(x))} \leq e^{-N/(32C^*(x))}$. Combining
 922 (B.2) and (B.7), using the union bound, we have

$$923 \mathbb{P}(\mathcal{E}) \geq 1 - 5Ce^{-N/(32C^*(x))}.$$

924 Thus, we have completed the proof of Lemma B.1. \square

926 Using this lemma, we then proceed with the proof of Theorem 5.1:

928 *Proof of Theorem 5.1.* Suppose that \mathcal{E} holds. If y^* is included in the submitted responses, then the
 929 regret is 0. We now consider the case where y^* is not submitted. According to the definition of the
 930 coverage coefficient, we have

$$931 \pi_{\text{ref}}(y^*|x) \geq \pi^*(y^*|x)/C^*(x) \geq 1/C^*(x),$$

932 so $y^* \in \mathcal{Y}_{1/C^*(x)}(x)$. Furthermore, since $\mathcal{Y}_{1/C^*(x)}(x) \subset \widehat{\mathcal{Y}}_{3/(4C^*(x))}$ when \mathcal{E} holds, we have
 933 $y^* \in \widehat{\mathcal{Y}}_{3/(4C^*(x))}$. Since y^* is not selected as the output, we know that (i) at least k responses are
 934 submitted because otherwise all responses in $\widehat{\mathcal{Y}}_{3/(4C^*(x))}$ would be submitted, and (ii) $\widehat{r}(x, y^*) \leq$
 935 $\widehat{r}(x, \widetilde{y}_i)$ for any $i \in [k]$. We thus have

$$937 \widehat{r}(x, \widetilde{y}_i) \geq \widehat{r}(x, y^*) \geq r^*(x, y^*) - \epsilon_{\text{opt}}(x), \quad (B.8)$$

939 where the second inequality holds due to Assumption 3.2. Therefore, the regret conditioned on event
 940 \mathcal{E} is

$$941 \min_{i \in [k]} \{r^*(x, y^*) - r^*(x, \widetilde{y}_i)\} \leq \epsilon_{\text{opt}}(x) + \min_{i \in [k]} \{\widehat{r}(x, \widetilde{y}_i) - r^*(x, \widetilde{y}_i)\}$$

$$942 \leq \epsilon_{\text{opt}}(x) + \sqrt{\frac{1}{k} \sum_{i=1}^k |\widehat{r}(x, \widetilde{y}_i) - r^*(x, \widetilde{y}_i)|^2}$$

$$943 \leq \epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)}{k} \sum_{i=1}^k \pi_{\text{ref}}(\widetilde{y}_i|x) |\widehat{r}(x, \widetilde{y}_i) - r^*(x, \widetilde{y}_i)|^2}$$

$$944 \leq \epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)}{k} \sum_{y \in \mathcal{Y}} \pi_{\text{ref}}(y|x) |\widehat{r}(x, y) - r^*(x, y)|^2}$$

$$945 = \epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)\epsilon_{\text{RM}}^2(x)}{k}}, \quad (B.9)$$

955 where the first inequality holds due to (B.8), the second inequality holds because the minimum is
 956 no larger than the average, the third inequality holds because $\pi_{\text{ref}}(y|x) \geq 1/(4C^*(x))$ for any $y \in$
 957 $\widehat{\mathcal{Y}}_{3/(4C^*(x))}$ when $\widehat{\mathcal{Y}}_{3/(4C^*(x))} \subset \mathcal{Y}_{1/(4C^*(x))}(x)$, the fourth inequality holds because $\{\widetilde{y}_1, \dots, \widetilde{y}_k\}$
 958 is a subset of \mathcal{Y} , and the last equality holds due to the definition of the estimation error $\epsilon_{\text{RM}}^2(x)$.
 959 Combining (B.9) with the case where $y^* \in \{\widetilde{y}_1, \dots, \widetilde{y}_k\}$ and the regret is 0, we conclude that under
 960 condition \mathcal{E} ,

$$962 r^*(x, y^*) - \max_{i \in [k]} r^*(x, \widetilde{y}_i) \leq \epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)\epsilon_{\text{RM}}^2(x)}{k}}. \quad (B.10)$$

964 Finally, we take the complete expectation of the regret:

$$966 \text{Regret}(x) = \mathbb{E} \left[r^*(x, y^*) - \max_{i \in [k]} r^*(x, \widetilde{y}_i) \middle| \mathcal{E} \right] \cdot \mathbb{P}(\mathcal{E}) + \mathbb{E} \left[r^*(x, y^*) - \max_{i \in [k]} r^*(x, \widetilde{y}_i) \middle| \neg \mathcal{E} \right] \cdot \mathbb{P}(\neg \mathcal{E})$$

$$967 \leq \left(\epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)\epsilon_{\text{RM}}^2(x)}{k}} \right) \cdot \mathbb{P}(\mathcal{E}) + 1 \cdot \mathbb{P}(\neg \mathcal{E})$$

$$968 \leq \epsilon_{\text{opt}}(x) + \sqrt{\frac{4C^*(x)\epsilon_{\text{RM}}^2(x)}{k}} + 5C^*(x)e^{-N/(32C^*(x))},$$

972 where the first inequality holds due to (B.10) and $\text{Regret}(x) \leq 1$, and the second inequality holds
 973 because $\mathbb{P}(\mathcal{E}) \leq 1$ and due to Lemma B.1. Finally, when $N \geq 16C^*(x) \log(kC^*(x)/\epsilon_{\text{RM}}^2(x))$, we
 974 have

$$976 \quad \text{Regret}(x) \leq \epsilon_{\text{opt}}(x) + O\left(\sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)/k}\right).$$

977 We complete the proof of Theorem 5.1. □

980 C PROOF OF LOWER BOUNDS

982 In this section, we will prove the lower bounds used in the main text of this paper. Specifically, we
 983 establish the results for majority voting (Theorem 4.1), Best-of- N (Theorem 4.2), and the general
 984 case of Pass@ k inference algorithms (Theorem 6.1). Before proceeding, we first establish an inde-
 985 pendent lower bound regarding $\epsilon_{\text{opt}}(x)$. This result is general and can be applied to any subsequent
 986 lower bound, introducing an additional $\epsilon_{\text{opt}}(x)$ term.

987 C.1 LOWER BOUND REGARDING $\epsilon_{\text{OPT}}(x)$

988 We first study the following hard case where any algorithm for the Pass@ k inference problem suffers
 989 from the regret of $\Omega(\epsilon_{\text{opt}}(x))$. Combining this lower bound with any algorithm-dependent lower
 990 bound b (obtained from the analysis of a hard instance), we can show that the lower bound of the
 991 algorithm is

$$992 \quad \Omega(\max\{\epsilon_{\text{opt}}(x), b\}) = \Omega(\epsilon_{\text{opt}}(x) + b).$$

994 **Lemma C.1.** Assume that $\epsilon_{\text{opt}}(x) \leq \sqrt{C^*(x)\epsilon_{\text{RM}}^2(x)}$ and $C^*(x) \geq 2k$. Then there exists an
 995 instance $\mathcal{I} = (\mathcal{X}, \mathcal{Y}, \pi^*, r^*, \pi_{\text{ref}}, \hat{r})$ such that the coverage coefficient is $C^*(x)$, and (r^*, \hat{r}) satisfy
 996 Assumptions 3.1 and 3.2. Furthermore, for any prompt $x \in \mathcal{X}$, the regret of any algorithm for the
 997 Pass@ k inference problem satisfies

$$998 \quad \text{Regret}(x) = \Omega(\epsilon_{\text{opt}}(x)).$$

1000 *Proof.* For simplicity, we omit the prompt x in our proof. We apply the idea of the averaging
 1001 hammer, which considers a total of M hard instances such that no algorithm can perform well on
 1002 all instances. [It is a technique commonly used in the proof of lower bounds \(see e.g., Theorem 24.1
 1003 in Lattimore & Szepesvári \(2020\)\)](#). The responses set is $\{y_0, y_1, \dots, y_M\}$ for all M hard instances.
 1004 The reference policy and the approximate reward model are also shared by all instances:

$$1005 \quad \pi_{\text{ref}}(y_0) = 1 - M/C^*, \quad \pi_{\text{ref}}(y_1) = \dots = \pi_{\text{ref}}(y_M) = 1/C^*;$$

$$1006 \quad \hat{r}(y_0) = 0, \quad \hat{r}(y_1) = \dots = \hat{r}(y_M) = 1 - \epsilon_{\text{opt}}.$$

1007 The hard instances are different only in the ground-truth reward model and π^* . For instance $\mathcal{I}_j =$
 1008 $(\mathcal{X}, \mathcal{Y}, \pi_j^*, r_j^*, \hat{r}, \pi_{\text{ref}})$ where $j \in [M]$, we set

$$1010 \quad \pi_j^*(y_i) = \delta_{ij}, \quad r_j^*(y_i) = \begin{cases} 0 & i = 0; \\ 1 & i = j; \\ 1 - \epsilon_{\text{opt}} & \text{otherwise.} \end{cases}$$

1014 For all hard cases, the total estimation error is $\epsilon_{\text{opt}}^2/C^* \leq \epsilon_{\text{RM}}^2$. Among these M hard instances, any
 1015 algorithm that outputs up to k responses will fail to output the optimal response in at least $M - k$
 1016 instances, inducing the regret of ϵ_{opt} . Therefore, the average regret of these M instances is at least

$$1017 \quad \text{Regret} \geq \frac{M - k}{M} \epsilon_{\text{opt}}.$$

1019 Setting $M = 2k$, we have $\text{Regret} = \Omega(\epsilon_{\text{opt}})$. □

1021 C.2 LOWER BOUND OF MAJORITY VOTING (THEOREM 4.1)

1022 *Proof of Theorem 4.1.* For simplicity, we omit the prompt x in our proof. Consider the following
 1023 hard instance. The size of the response set is $2 + k$, with $\mathcal{Y} = \{y_0, y^*, y_1, y_2, \dots, y_k\}$. The ground
 1024 truth reward satisfies:

$$1025 \quad r^*(y_0) = 0; \quad r^*(y^*) = 1; \quad r^*(y_i) = 1/2, \quad \forall 1 \leq i \leq k.$$

1026 Therefore, the optimal policy π^* satisfies:
 1027

$$\pi^*(y_0) = 0; \quad \pi^*(y^*) = 1; \quad \pi^*(y_i) = 0, \quad .$$

1029 In this instance, we assume that the estimated reward function \hat{r} is accurate. Let $\eta = 2w(1)/w(1/2)$.
 1030 We further define the reference policy as:
 1031

$$\pi_{\text{ref}}(y_0) = 1 - (1 + \eta k)/C^*; \quad \pi_{\text{ref}}(y^*) = 1/C^*; \quad \pi_{\text{ref}}(y_i) = \eta/C^*, \quad \forall 1 \leq i \leq k.$$

1033 The reference policy is well defined as long as $C^* \geq 1 + 2kw(1)/w(1/2)$. Now we consider the
 1034 sampled responses $\hat{y}_1, \hat{y}_2, \dots, \hat{y}_N$. Define
 1035

$$N^* = \sum_{j=1}^N \mathbb{1}(\hat{y}_j = y^*); \quad N_i = \sum_{j=1}^N \mathbb{1}(\hat{y}_j = y_i), \quad \forall i \in [k].$$

1036 Then the expectations of N^* and N_i are
 1037

$$\mathbb{E}[N^*] = \frac{N}{C^*}; \quad \mathbb{E}[N_i] = \frac{\eta N}{C^*}, \quad \forall 1 \leq i \leq k.$$

1038 Using the Chernoff bounds, we have
 1039

$$\mathbb{P}\left[\frac{N^*}{N} \geq \frac{3}{2C^*}\right] \leq \exp\left(\frac{-N}{9C^*}\right), \quad \mathbb{P}\left[\frac{N_i}{N} \leq \frac{3\eta}{4C^*}\right] \leq \exp\left(\frac{-N\eta}{4C^*}\right). \quad (\text{C.1})$$

1040 Denote \mathcal{E} as the event such that
 1041

$$\frac{N^*}{N} \leq \frac{3}{2C^*}; \quad \frac{N_i}{N} \geq \frac{3\eta}{4C^*}, \quad \forall i \in [k].$$

1042 Taking the union bound with (C.1), we have
 1043

$$\mathbb{P}(\mathcal{E}) \geq 1 - \exp\left(\frac{-N}{9C^*}\right) - k \exp\left(\frac{-N\eta}{4C^*}\right) \geq 1 - (k+1) \exp\left(\frac{-N}{9C^*}\right),$$

1044 where the last inequality holds because $\eta > 1$. Under event \mathcal{E} , we have
 1045

$$\frac{w(1/2)N_i}{w(1)N^*} = \frac{N_i/N}{N^*/N} \cdot \frac{w(1/2)}{w(1)} \geq \frac{3\eta/(4C^*)}{3/(2C^*)} \cdot \frac{2}{\eta} = 1,$$

1046 where the inequality holds due to the definition of the event \mathcal{E} and the definition of η . Therefore,
 1047 conditioned on event \mathcal{E} , the (weighted) majority voting (Algorithm 1) will output $\{y_1, \dots, y_k\}$ and
 1048 suffer from a $1/2$ regret. To summarize, the regret satisfies
 1049

$$\text{Regret} \geq \mathbb{P}(\mathcal{E}) \cdot \mathbb{E}[\text{Regret} | \mathcal{E}] \geq \frac{1}{2} \left(1 - (k+1) \exp\left(\frac{-N}{9C^*}\right)\right).$$

1050 When $N \geq 9C^*(x) \log(2k+2)$,
 1051

$$1 - (k+1) \exp\left[\frac{-N}{9C^*}\right] \geq 1/2.$$

1052 \square

1053 C.3 LOWER BOUND OF BON (THEOREM 4.2)

1054 To prove Theorem 4.2, we construct two hard instances to accommodate two cases: (i) When N
 1055 is small, then it is very likely that y^* does not even appear in $\{\hat{y}_1, \dots, \hat{y}_N\}$; (ii) When N is large,
 1056 then it is very likely that a number of responses that are suboptimal in r^* but better than y^* in \hat{r} are
 1057 sampled. The two hard instances share the same structure but are different in parameters.
 1058

1059 *Proof of Theorem 4.2.* For simplicity, we omit the prompt x . We consider two hard instances, one
 1060 for $N \leq C^*$ and the other for $N \geq C^*$.
 1061

1062 **Case 1:** $N \leq C^*$. We consider a hard instance with $\mathcal{Y} = \{y_0, y^*\}$, and
 1063

$$\begin{aligned} \pi^*(y_0) &= 0, & \pi^*(y^*) &= 1; & r^*(y_0) &= 0, & r^*(y^*) &= 1; \\ \pi_{\text{ref}}(y_0) &= 1 - 1/C^*, & \pi_{\text{ref}}(y^*) &= 1/C^*; & \hat{r}(y_0) &= 0, & \hat{r}(y^*) &= 1. \end{aligned}$$

1080 For this instance, the estimation errors are $\epsilon_{\text{opt}} = \epsilon_{\text{RM}} = 0$. If no sample in $\hat{y}_1, \dots, \hat{y}_N$ is y^* , then
 1081 the regret is 1. The probability that $y^* \notin \{\hat{y}_1, \dots, \hat{y}_N\}$ is $(1 - 1/C^*)^N$. Therefore, we have
 1082

$$1083 \text{Regret} \geq (1 - 1/C^*)^N \geq (1 - 1/C^*)^{C^*} \geq 1/4,$$

1084 where the second inequality holds because $N \leq C^*$, and the second inequality holds because $C^* \geq$
 1085 2. Therefore, the BoN algorithm incurs constant regret in this hard instance when $N \leq C^*$.

1086 **Case 2:** $N \geq C^*$. We consider the following hard instance: The response set is $\mathcal{Y} =$
 1087 $\{y^*, y_0, y_1, \dots, y_M\}$. Let $p > 0$ be a parameter to be determined. The reward models are
 1088

$$1089 r^*(y^*) = 1, \quad r^*(y_0) = 0, \quad r^*(y_i) = 1 - \frac{\epsilon_{\text{RM}}}{2\sqrt{p}}; \\ 1090 \hat{r}(y^*) = 1 - \delta, \quad \hat{r}(y_0) = 0, \quad \hat{r}(y_i) = 1.$$

1091 where $\delta < \epsilon_{\text{opt}}$ is a sufficiently small positive number to ensure that the reward of y_1, \dots, y_M is
 1092 slightly better than y^* in \hat{r} , but y^* is still the optimal response in r^* . In this way, $\pi^*(y^*) = 1$ and
 1093 $\pi^*(y_i) = 0$ for $i = 0, 1, \dots, M$. The reference model satisfies
 1094

$$1095 \pi_{\text{ref}}(y^*) = 1/C^*, \quad \pi_{\text{ref}}(y_0) = 1 - 1/C^* - p, \quad \pi_{\text{ref}}(y_i) = p/M.$$

1096 For this instance, the coverage is C^* , and the estimation error is less than ϵ_{RM}^2 when δ is sufficiently
 1097 small.

1098 **Simple analysis.** We first consider a simple setting where $M = k$. When $\hat{y}_1, \dots, \hat{y}_N$ covers ev-
 1099 ery response in $\{y_1, \dots, y_k\}$, then $\{y_1, \dots, y_k\}$ will be the output of BoN, causing the regret of
 1100 $\epsilon_{\text{RM}}/2\sqrt{p}$. The probability of any y_i not being covered is
 1101

$$1102 (1 - p/k)^N.$$

1103 Using the union bound, the probability that there exists y_i not being coverer is upper bounded by
 1104

$$1105 \mathbb{P}[\exists i, y_i \notin \{\hat{y}_1, \dots, \hat{y}_N\}] \leq k(1 - p/k)^N.$$

1106 Thus, the regret of making the wrong decisions in y_1, \dots, y_k is lower bounded by
 1107

$$1108 1 - k(1 - p/k)^N.$$

1109 Then the regret satisfies
 1110

$$1111 \text{Regret} \geq (1 - k(1 - p/k)^N) \cdot \frac{\epsilon_{\text{RM}}}{2\sqrt{p}}. \quad (\text{C.2})$$

1112 In this instance, when $\sqrt{N\epsilon_{\text{RM}}^2/[k \log(2k)]}/2 < 1$, we select $p = (k/N) \cdot \log(2k)$. Then,
 1113 $\epsilon_{\text{RM}}/(2\sqrt{p}) = \sqrt{N\epsilon_{\text{RM}}^2/[k \log(2k)]}/2 < 1$. Thus, the constructed r^* satisfies $0 \leq r^*(\cdot) \leq 1$.
 1114 Then we have

$$1115 1 - k(1 - p/k)^N = 1 - k \left(1 - \frac{\log(2k)}{N}\right)^N \\ 1116 \geq 1 - k \left[\exp\left(-\frac{\log(2k)}{N}\right)\right]^N \\ 1117 = 1 - k \exp(-\log(2k)) \\ 1118 = 1/2,$$

1119 where the first inequality holds due to the basic inequality $1 - x \leq \exp(-x)$, $\forall x \in \mathbb{R}$. Substituting
 1120 this into (C.2), we have proved that the regret can be lower bounded by $\Omega(\sqrt{N\epsilon_{\text{RM}}^2/(k \log k)})$.

1121 Otherwise, when $\sqrt{N\epsilon_{\text{RM}}^2/[k \log(2k)]}/2 \geq 1$, let $p = \epsilon_{\text{RM}}^2/4k$. Then, the regret in (C.2) can be
 1122 lower bounded by
 1123

$$1124 \text{Regret} \geq \left(1 - k \left(1 - \frac{\epsilon_{\text{RM}}^2}{4k}\right)^N\right) \\ 1125 \geq \left(1 - k \left(1 - \frac{\epsilon_{\text{RM}}^2}{4k}\right)^{4k \log(2k)/\epsilon_{\text{RM}}^2}\right)$$

$$\begin{aligned}
&\geq \left(1 - k \left[\exp \left(- \frac{\epsilon_{\text{RM}}^2}{4k} \right) \right]^{4k \log(2k) / \epsilon_{\text{RM}}^2} \right) \\
&= 1 - k \exp(-\log(2k)) \\
&= 1/2,
\end{aligned}$$

where the third inequality holds due to the basic inequality $1 - x \leq \exp(-x), \forall x \in \mathbb{R}$. Therefore, we have

$$\text{Regret} \geq \Omega \left(\min \left\{ 1, \sqrt{N \epsilon_{\text{RM}}^2 / (k \log k)} \right\} \right).$$

This analysis will lead to an additional logarithmic term on k , which is unnecessary. To avoid this term, we consider the following improved analysis.

Improved analysis. We consider the instance where $M = 2k$. Consider the event where at least k responses among y_1, \dots, y_M are covered by $\hat{y}_1, \dots, \hat{y}_N$. Since $\hat{r}(y_i) > \hat{r}(y^*)$ for $i = 1, \dots, M$, the optimal responses y^* is not included in $\hat{y}_1, \dots, \hat{y}_k$, which also incurs the regret of $\epsilon_{\text{RM}} / (2\sqrt{p})$. We now consider the probability of this event. Define the following random variables:

- Define S as the number of samples within y_1, \dots, y_M , i.e.,

$$S = \sum_{i=1}^N \sum_{j=1}^M \mathbb{1}[\hat{y}_i = y_j].$$

- Define O_j as the occupancy of y_j , i.e.,

$$O_j = \sum_{i=1}^N \mathbb{1}[\hat{y}_i = y_j].$$

- Define D as the total occupancy of $\{y_1, \dots, y_M\}$, i.e.,

$$D = \sum_{j=1}^M O_j.$$

Our goal is to lower bound $\mathbb{P}(D \geq k)$. Fix $s_0 > k$. Using the total expectation formula, we have

$$\begin{aligned}
\mathbb{P}(D \geq k) &= \sum_{s \geq k} \mathbb{P}(D \geq k | S = s) \mathbb{P}(S = s) \\
&\geq \sum_{s \geq s_0} \mathbb{P}(D \geq k | S = s) \mathbb{P}(S = s) \\
&\geq \mathbb{P}(D \geq k | S = s_0) \mathbb{P}(S \geq s_0),
\end{aligned} \tag{C.3}$$

where the first inequality holds because $s_0 \geq k$, and the second inequality holds because $\mathbb{P}(D \geq k | S = s) \geq \mathbb{P}(D \geq k | S = s_0)$ when $s \geq s_0$. We then calculate the two probabilities separately. We first use the Chernoff bound to characterize $\mathbb{P}(S \geq s_0)$. The expectation of S is

$$\mathbb{E}[S] = \sum_{i=1}^N \mathbb{P}(\hat{y}_i \in \{y_1, \dots, y_M\}) = Np.$$

Then by the Chernoff bound, we have

$$\mathbb{P}(S \geq s_0) \geq 1 - \exp \left(- \frac{(Np - s_0)^2}{2Np} \right). \tag{C.4}$$

We then calculate the conditional probability $\mathbb{P}(D \geq k | S = s_0)$, and we assume without loss of generality that $\hat{y}_1, \dots, \hat{y}_{s_0}$ fall within $\{y_1, \dots, y_M\}$. Conditioned on this event \mathcal{E} , we have $\mathbb{P}(\hat{y}_i = y_j) = 1/M$ for $1 \leq i \leq s_0$ and $1 \leq j \leq M$. Although we cannot use the vanilla Chernoff bound to bound $\mathbb{P}(D \geq k | S = s)$, we can use the Chernoff bound for **negatively-correlated** random variables (Dubhashi & Ranjan, 1996) (or See Theorem 4.3 in Dubhashi & Panconesi (1998)) to bound the probability. We first calculate the expectation of D , which is

$$\mathbb{E}[D | S = s_0] = M \mathbb{E}[O_j] = M(1 - \mathbb{P}[\hat{y}_i \neq y_j, \forall i \in [s_0]]) = M(1 - (1 - 1/M)^{s_0}).$$

We then verify that O_1, \dots, O_M are negatively correlated, which is to show that for any subset $\mathcal{J} \subset [M]$, we have $\mathbb{E}[\prod_{j \in \mathcal{J}} O_j] \leq \prod_{j \in \mathcal{J}} \mathbb{E}[O_j]$, i.e., $\mathbb{P}(O_j = 1, \forall j \in \mathcal{J}) \leq \prod_{j \in \mathcal{J}} \mathbb{P}(O_j = 1)$. We prove by induction with respect to the cardinality of \mathcal{J} . The inequality is trivial when $|\mathcal{J}| = 1$. Suppose that the inequality holds for all \mathcal{J} such that $|\mathcal{J}| \leq n$. It then suffices to show the inequality holds for $\mathcal{J} = [n+1]$. Note that

$$\begin{aligned} & \mathbb{P}(O_1 = 1, \dots, O_{n+1} = 1) \\ &= \mathbb{P}(O_1 = 1, \dots, O_n = 1) - \mathbb{P}(O_1 = 1, \dots, O_n = 1 | O_{n+1} = 0) \cdot \mathbb{P}(O_{n+1} = 0) \\ &= \mathbb{P}(O_1 = 1, \dots, O_n = 1) \cdot \mathbb{P}(O_{n+1} = 1) \\ &\quad + [\mathbb{P}(O_n = 1, \dots, O_n = 1) - \mathbb{P}(O_1 = 1, \dots, O_n = 1 | O_{n+1} = 0)] \cdot \mathbb{P}(O_{n+1} = 0), \end{aligned}$$

Using the induction hypothesis, we have

$$\mathbb{P}(O_1 = 1, \dots, O_n = 1) \cdot \mathbb{P}(O_{n+1} = 1) \leq \prod_{j=1}^{n+1} \mathbb{P}(O_j = 1).$$

It then suffices to show that

$$\mathbb{P}(O_n = 1, \dots, O_n = 1) \leq \mathbb{P}(O_1 = 1, \dots, O_n = 1 | O_{n+1} = 0),$$

which is trivial because the event $\hat{y}_i = y_j (j \in [n])$ becomes more likely conditioned of the event that $\hat{y}_i \neq y_{n+1}$. Therefore, the inequality holds for $|\mathcal{J}| = n+1$, and we complete the verification of O_j being negatively correlated. Therefore, using the Chernoff bound for negatively-correlated random variables, we have

$$\mathbb{P}(D \geq k | S = s_0) \geq 1 - \exp\left(-\frac{\{M[1 - (1 - 1/M)^{s_0}] - k\}^2}{2M[1 - (1 - 1/M)^{s_0}]}\right). \quad (\text{C.5})$$

Substituting (C.4) and (C.5) into (C.3), we have

$$\begin{aligned} \text{Regret} &\geq \mathbb{P}(D \geq k) \cdot \frac{\epsilon_{\text{RM}}}{2\sqrt{p}} \\ &\geq \frac{\epsilon_{\text{RM}}}{2\sqrt{p}} \cdot \left[1 - \exp\left(-\frac{\{M[1 - (1 - 1/M)^{s_0}] - k\}^2}{2M[1 - (1 - 1/M)^{s_0}]}\right)\right] \cdot \left[1 - \exp\left(-\frac{(Np - s_0)^2}{2Np}\right)\right]. \quad (\text{C.6}) \end{aligned}$$

Let $M = 2k, s_0 = 3k$. If $\sqrt{N\epsilon_{\text{RM}}^2/k}/4 \leq 1$, we set $p = 4k/N$. Then, $\epsilon_{\text{RM}}/(2\sqrt{p}) = \sqrt{N\epsilon_{\text{RM}}^2/k}/4 < 1$. Thus, the constructed r^* satisfies $0 \leq r^*(\cdot) \leq 1$. In this case, we have

$$1 - (1 - 1/M)^{s_0} = 1 - \left(1 - \frac{1}{2k}\right)^{3k} \geq 1 - e^{-1.5} \geq \frac{3}{4}.$$

We thus have

$$\begin{aligned} & 1 - \exp\left(-\frac{\{M[1 - (1 - 1/M)^{s_0}] - k\}^2}{2M[1 - (1 - 1/M)^{s_0}]}\right) \\ & \geq 1 - \exp\left(-\frac{(2k \cdot 3/4 - k)^2}{2 \cdot 2k \cdot 3/4}\right) \\ & = 1 - e^{-k/12} \geq 1 - e^{-1/12}, \end{aligned}$$

where the second inequality holds because $k \geq 1$. We also have $Np = 4k$, so

$$1 - \exp\left(-\frac{(Np - s_0)^2}{2Np}\right) = 1 - \exp\left(-\frac{(4k - 3k)^2}{2 \cdot 4k}\right) = 1 - e^{-k/8} \geq 1 - e^8,$$

where the last inequality holds because $k \geq 1$. Combining all the above, we have

$$\text{Regret} \geq \frac{\epsilon_{\text{RM}}}{\sqrt{4k/N}} \cdot (1 - e^{-1/12}) \cdot (1 - e^{-1/8}) \geq 0.004 \sqrt{\frac{N\epsilon_{\text{RM}}^2}{k}}.$$

Otherwise, if $\sqrt{N\epsilon_{\text{RM}}^2/k}/4 \geq 1$ let $p = \epsilon_{\text{RM}}^2/4$. Then, with the same argument as that in the Simple analysis part, the regret is lower bounded by $\Omega(1)$. Therefore, we have

$$\text{Regret} \geq \Omega\left(\min\left\{1, \sqrt{N\epsilon_{\text{RM}}^2/k}\right\}\right).$$

□

1242 C.4 GENERAL LOWER BOUND (THEOREM 6.1)
12431244 We first provide a more general version of Theorem 6.1:
12451246 **Theorem C.2.** Assume that $C^*(x) \geq \max\{k, 2\}$. Then for any positive integer $M \in [k, C^*(x)]$
1247 and any algorithm A that outputs k responses, there exists a hard instance $\mathcal{I} = (\mathcal{X}, \mathcal{Y}, \pi^*, r^*, \pi_{\text{ref}}, \hat{r})$
1248 such that the coverage is C , the estimation error is ϵ_{RM}^2 , and the regret of algorithm A satisfies
1249

1250
$$\text{Regret}(x) \geq \frac{M-k}{M} \sqrt{\frac{C^*(x)\epsilon_{\text{RM}}^2}{M-1}}.$$

1251

1252 When $C \geq 2k$, we can set $M = 2k$ and obtain the regret lower bound of $\Omega(\sqrt{C\epsilon_{\text{RM}}^2/k})$ in Theorem
1253 6.1. We now present the proof of Theorem C.2.
12541255 *Proof of Theorem C.2.* We consider the case of $\mathcal{X} = \{x\}$, and omit the prompt x in $A(x), \pi_{\text{ref}}(\cdot|x)$,
1256 $\hat{r}(x, \cdot)$, etc.
12571258 To prove Theorem 6.1, we again apply the idea of the averaging hammer, and consider a total of M
1259 hard instances such that no algorithm can perform well on all instances. All of these hard instances
1260 have a total of $M+1$ possible responses $\mathcal{Y} = \{y_0, \dots, y_M\}$, and we aim to make y_1, \dots, y_M hard
1261 to distinguish from each other. In detail, all hard instances also share the same reference model and
1262 the same \hat{r} :
1263

1264
$$\pi_{\text{ref}}(y_0) = 1 - M/C, \quad \pi_{\text{ref}}(y_1) = \dots = \pi_{\text{ref}}(y_M) = 1/C;$$

1265
$$\hat{r}(y_0) = 0, \quad \hat{r}(y_1) = \dots = \hat{r}(y_M) = 1.$$

1266 For hard instance $\mathcal{I}_j (j \in [M])$, we make y_j the optimal response with ground truth reward being
1267 1 and $\pi^*(y_j) = 1$, and make all other responses suboptimal with a gap of δ , i.e., $\mathcal{I}_j =$
1268 $(\mathcal{X}, \mathcal{Y}, \pi_j^*, r_j^*, \pi_{\text{ref}}, \hat{r})$, where
1269

1270
$$\pi_j^*(y_l) = \delta_{jl}, \quad r_j^*(y_l) = \begin{cases} 0 & l = 0; \\ 1 & l = j; \\ 1 - \delta & \text{otherwise.} \end{cases}$$

1271

1272 In this hard instance, the coverage is C , and in order to make the estimation error equal to ϵ_{RM}^2 , we
1273 require
1274

1275
$$(M-1) \cdot \delta^2 \cdot 1/C = \epsilon_{\text{RM}}^2,$$

1276 which indicates that $\delta = \sqrt{C\epsilon_{\text{RM}}^2/(M-1)}$. Since any algorithm can only output a maximum of
1277 k different responses, it cannot output the optimal response in at least $M-k$ out of the M hard
1278 instances, suffering from the regret of at least δ . Therefore, the averaged regret of the M instances
1279 is at least
1280

1281
$$\frac{1}{M} \sum_{j=1}^M \mathbb{E}_{\tilde{y}_1, \dots, \tilde{y}_k \sim A} [r_j^*(y_j) - \max \{r_j^*(\tilde{y}_1), \dots, r_j^*(\tilde{y}_k)\}] \geq \frac{1}{M} \cdot (M-k) \cdot \delta = \frac{M-k}{M} \sqrt{\frac{C\epsilon_{\text{RM}}^2}{M-1}}.$$

1282

1283 Therefore, there exists an instance \mathcal{I}_{j^*} within the M hard instances such that
1284

1285
$$\mathbb{E}_{\tilde{y}_1, \dots, \tilde{y}_k \sim A} [r_{j^*}^*(y_{j^*}) - \max \{r_{j^*}^*(\tilde{y}_1), \dots, r_{j^*}^*(\tilde{y}_k)\}] \geq \frac{M-k}{M} \sqrt{\frac{C\epsilon_{\text{RM}}^2}{M-1}}.$$

1286

□

1287 D FURTHER ABLATION STUDIES

1288 In this section, we present additional ablation studies on the choice of α , using the AIME24 and
1289 GSM8K datasets.
1290

1291 E ABLATION STUDY OF REWARD MODEL

1292 To further demonstrate that our findings are not tied to any particular reward model, we additionally
1293 evaluate using InternLM2-reward (Cai et al., 2024). This model is not specifically trained for
1294 mathematical reasoning and shows weaker performance in the evaluation of Liu et al. (2024). Even
1295 under this weaker reward model, our algorithm behaves consistently and leads to the same overall
1296 conclusion.
1297

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

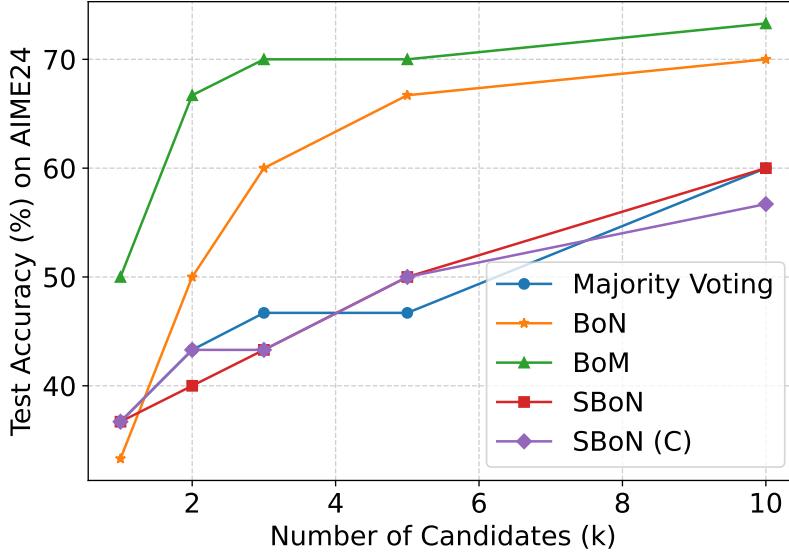
1339

Table 3: Ablation study of α of BoM in AIME24, Qwen3-4B

Pass@ k	1	2	3	5	10
$\alpha = 0$ (BoN)	53.3	60	63.3	70	73.3
$\alpha = 0.003$	56.7	66.7	70	73.3	73.3
$\alpha = 0.005$	53.3	66.7	70	70	70
$\alpha = 0.007$	56.7	70	70	70	70
$\alpha = 0.011$	50	63.3	63.3	63.3	63.3
$\alpha = 0.015$	50	60	60	60	60
Majority voting	36.7	43.3	46.7	46.7	60

Table 4: Ablation study of α of BoM in GSM8k, Qwen3-4B

Pass@ k	1	2	3	5	10
$\alpha = 0$ (BoN)	83.58	88.56	91.50	92.38	93.26
$\alpha = 0.003$	85.34	90.32	92.38	92.67	92.67
$\alpha = 0.005$	85.34	90.03	92.08	92.38	92.38
$\alpha = 0.007$	85.92	90.62	92.08	92.08	92.08
$\alpha = 0.011$	86.22	90.32	91.50	91.50	91.50
$\alpha = 0.015$	86.22	90.32	91.20	91.20	91.20
Majority voting	82.70	90.03	91.20	92.96	92.96



(a) AIME24

Figure 3: The results of different k with $N = 500$ using InternLM2-reward, Qwen3-4B-Instruct .

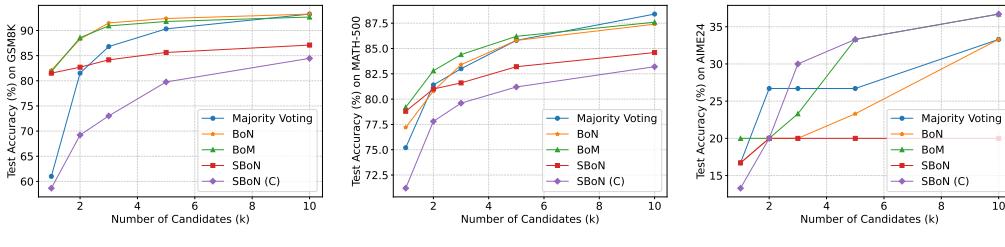
F ADDITIONAL EXPERIMENTS

In this section, we conduct experiments on an additional model, Qwen2.5-Math-1.5B-Instruct (Qwen2.5-1.5B) for more results. The other experiment setups follows the experiments on Qwen3 unless specified. The results on Qwen2.5-1.5B are compiled in Figure 4. In particular, BoM matches the performance of BoN on GSM8k and outperforms BoN on MATH-500 and AIME24. The performance of BoM also surpasses majority voting on GSM8k and MATH-500 with $k \leq 5$. These results shows that BoM demonstrates a better overall performance over baselines when k is small.

THE USE OF LARGE LANGUAGE MODELS (LLMs)

We use LLMs as a tool to refine our writing and correct grammatical errors.

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372



(a) GSM8K

(b) MATH-500

(c) AIME24

Figure 4: The results of different k with $N = 500$ on Qwen2.5-1.5B.

1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403