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Abstract
We propose smoothed primal-dual algorithms for
solving stochastic nonconvex optimization prob-
lems with linear inequality constraints. Our algo-
rithms are single-loop and only require a single (or
two) samples of stochastic gradients at each itera-
tion. A defining feature of our algorithm is that it
is based on an inexact gradient descent framework
for the Moreau envelope, where the gradient of
the Moreau envelope is estimated using one step
of a stochastic primal-dual (linearized) augmented
Lagrangian algorithm. To handle inequality con-
straints and stochasticity, we combine the recently
established global error bounds in constrained op-
timization with a Moreau envelope-based analysis
of stochastic proximal algorithms. We establish
the optimal (in their respective cases) O(ε−4) and
O(ε−3) sample complexity guarantees for our al-
gorithms and provide extensions to stochastic lin-
ear constraints. Unlike existing methods, itera-
tions of our algorithms are free of subproblems,
large batch sizes or increasing penalty parame-
ters in their iterations and they use dual variable
updates to ensure feasibility.

1. Introduction
We focus on the problem template

min
x∈X

f(x) subject to Ax = b, (1)

where f : Rn → R is Lf -smooth, the set X ⊆ Rn is poly-
hedral, and easy to project. In particular, let X be given
as X = {x : Hx ≤ h} for some matrix H and vector h.
Taking H = I , for example, gives this template the ability
to model linear inequality constraints.
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In particular, when we have the problem

min
x∈Rn

f(x) subject to Ax ≤ b, (2)

we introduce a slack variable t = Ax−b so that Ax−t = b
and our optimization variable becomes

(
x
t

)
. Then, we can

equivalently write the problem in the template (1) by using
the constraint t ≤ 0, where the set X = {

(
x
t

)
: x ∈

Rn, t ≤ 0} is easy to project. As such, we focus on (1)
and our results directly apply to solving (2) by using this
standard slack variable reformulation.

The assumption of X being easy-to-project is without loss
of generality. Indeed, when X is not easy to project, we can
add a slack variable for Hx ≤ h similar to the above para-
graph, to have a linear equality constrained problem with
projectable constraints (cf. (1)). We refer to (Li et al., 2021,
Remark 6), for the classical conversion of an ε-stationarity
point of the problem with the slack variable to the original
inequality constrained problem. Throughout, we assume
that we have access to an unbiased oracle F (x) such that

E[F (x)] = ∇f(x), and E∥F (x)−∇f(x)∥2 ≤ σ2. (3)

A common setting is when f(x) = Eξ∼Ξ[f(x, ξ)] where Ξ
is an unknown distribution that we can draw i.i.d. samples
from. In this case, it is common to set F (x) = ∇f(x, ξ)
where E[∇f(x, ξ)] = ∇f(x). This will be our main focus.

Inclusion of the set X in (1) increases the modeling power
of (1) significantly, while causing difficulties in the analysis.
Many problems fit this template, including constrained and
distributed optimization, nonnegative matrix factorization,
sparse subspace estimation and collaborative learning, see
for example1 (Zhang et al., 2022; Hong, 2016). Moreover,
reformulations of nonconvex problems are also common by
using linear inequality constraints (Zhang et al., 2022).

Algorithm development for (1) and related templates with
global complexity guarantees, have been active in the last
couple of years (Alacaoglu & Wright, 2024; Zhang & Luo,
2020; Zhang et al., 2020; Lu et al., 2024; Li et al., 2021;
Lin et al., 2022; Yan & Xu, 2022; Li et al., 2024; Boob

1Details of some applications are given in Sec. 6 of our ex-
tended version: https://arxiv.org/abs/2504.07607
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et al., 2023; Hong, 2016), mainly due to the new applica-
tions of functionally constrained nonconvex optimization
problems in the context of neural network training (Katz-
Samuels et al., 2022; Dener et al., 2020). In these applica-
tions with problems involving nonconvex functional con-
straints, stochastic augmented Lagrangian methods (ALM)
have found widespread use, whereas their behavior for even
linearly constrained nonconvex optimization of the form (1)
remain poorly understood. Our focus is to improve our un-
derstanding of stochastic ALM in the context of nonconvex
optimization, by focusing on the fundamental template (1).

Compared to the setting of convex f , where the global com-
plexity analysis is mature for ALM and its stochastic version
(Yan & Xu, 2022), nonconvexity of f poses significant diffi-
culties in the analysis of ALM. Many works in the literature
focus on penalty based algorithms (which will be formally
introduced later in this section) that do not perform dual
updates (or perform negligible dual updates that we clarify
later) (Lu et al., 2024; Li et al., 2021; Lin et al., 2022), rather
than primal-dual algorithms such as ALM. However, in prac-
tice, dual updates are known to be essential for accelerating
convergence. Penalty methods are known to be unstable
since increasing penalty parameter causes Lipschitz constant
of the subproblems to increase and can lead to numerical
issues. These differences in behavior between penalty and
augmented Lagrangian methods are well-known, see, for
example, the classical books (Bertsekas, 2014, Sec. 2.2.5)
(Nocedal & Wright, 1999, Sec. 17.5).

For problem (1) with access to full gradients of f and the
full matrix A, optimal complexity with primal-dual methods
are obtained in the work of Zhang & Luo (2022). When one
has access to stochastic gradients of f and the matrix A, a
recent work by Alacaoglu & Wright (2024) showed optimal
complexity guarantees under expected smoothness (see As-
sumption 5.2), for the special case of (1) when X = Rn.
However, this latter restriction significantly reduces the gen-
erality of the template. For example, modeling standard
quadratic programming requires X to be a half-space, which
was not supported in the analysis of Alacaoglu & Wright
(2024). Our goal is to go beyond these results by handling
both the case when X ̸= Rn as well as the case when we
do not have access to the matrix A but only to an unbiased
estimate of A, by keeping optimal complexity guarantees.
A more detailed comparison of complexity guarantees will
be made in Section 6 and a summary is provided in Table 1.

Lagrangian, penalty and augmented Lagrangian. The
standard approach to tackle (1) is to design algorithms oper-
ating on the Lagrangian, augmented Lagrangian or penalty
functions. In particular, the Lagrangian function is given as

L(x,y) = f(x) + ⟨Ax− b,y⟩,

with the dual variables y, whereas the penalty function (or

more precisely the quadratic penalty (QP)) has the form of

Penρ(x) = f(x) +
ρ

2
∥Ax− b∥2.

It is common for algorithms based on the penalty function
to require ρ → ∞ for convergence (Bertsekas, 2014, Sec.
2.2.5). One major disadvantage of this strategy is that ρ get-
ting larger makes the subproblem of minimizing the penalty
function more and more ill-conditioned (cf. (4)).

An influential idea was the introduction of the augmented
Lagrangian (AL) function which combined the idea of the
Lagrangian and penalty formulations (Hestenes, 1969; Pow-
ell, 1969). In particular, the AL function is defined as

Lρ(x,y) = f(x) + ⟨Ax− b,y⟩+ ρ

2
∥Ax− b∥2.

Augmented Lagrangian methods in the classical literature
were favoured because they did not require ρ to grow ar-
bitrarily large. In fact, many instances of ALM converge
to the optimal solution with fixed ρ since the incorporation
of the dual variable updates aids in satisfying feasibility
(Bertsekas, 2014, Prop. 2.4, Prop. 2.6).

Primal vs primal-dual algorithms. The algorithms based
on the penalty function are generally referred to as penalty
algorithms and are easier to analyze in different settings
since they are primal-only algorithms, meaning that they
only perform updates on primal variable x where approx-
imate feasibility is ensured by ρ → ∞. In particular, a
classical penalty method iterates for k = 1, 2, . . . as

xk+1 ≈ arg min
x∈X

f(x) +
ρk
2
∥Ax− b∥2,

Select ρk+1 > ρk.
(4)

The algorithms based on the AL function are generally more
difficult to analyze due to the additional dynamics coming
from the dual updates which are critical to ensure that the
approximate feasibility is attained with constant ρ. An ALM
iteration proceeds for k = 1, 2, . . . by updating

xk+1 ≈ arg min
x∈X

f(x) + ⟨yk, Ax− b⟩+ ρ

2
∥Ax− b∥2,

yk+1 = yk + σ(Axk+1 − b).

For penalty methods and ALM, different strategies exist to
generate xk+1 that approximately minimize the penalty or
augmented Lagrangian functions by either iterating multiple
steps of gradient descent (GD), known as inexact algorithms,
or applying one step of GD, known as linearized algorithms
(Ouyang et al., 2015).

In view of the earlier discussion, when f is nonconvex,
most of the literature focuses on either analyzing penalty
methods, or analyzing ALM with negligible dual updates
and increasing penalty parameters ρ, due to the inherent
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difficulty in analyzing the dual variable and its effect in
convergence. In particular, as also highlighted in (Alacaoglu
& Wright, 2024), many of the recent analysis of ALM is of
the form of a perturbed penalty analysis, meaning that the
feasibility is driven by increasing penalty parameters, and
the dual updates are designed so that they do not deteriorate
the estimates too much. Because of this, the dual step sizes
are selected to be small to ensure boundedness of the dual
variable (or controlling the growth of the dual variable).
We refer to such updates as negligible dual updates since
the analyses do not harness the benefit of such updates in
ensuring feasibility. Feasibility is driven by large penalty
parameters. Some representative examples are (Lu et al.,
2024), (Li et al., 2021), (Lin et al., 2022), (Li et al., 2024).

This is the case even in the deterministic setting and the only
method that we are aware that can handle true ALM with
fixed penalty parameters and non-negligible dual updates are
due to (Zhang & Luo, 2022) that uses a linearized proximal
AL function with a dynamic adjustment on the proximal
center, which will be clarified in Section 2 since it will form
the basis of our algorithmic development.

1.1. Contributions

In this paper, we propose a stochastic smoothed linearized
ALM for solving (1) that only uses a single sample of
stochastic gradient at every iteration. This algorithm also
works with a constant penalty parameter and incorporates
non-negligible dual updates for feasibility where the dual
step sizes have the same order as the primal step sizes. We
show that this method has its iteration complexity and sam-
ple complexity guarantees in the order of O(ε−4). Such
a sample complexity result is optimal even in the uncon-
strained nonconvex case under our assumptions (see As-
sumption 1.1) (Arjevani et al., 2023). In contrast, the prior
results with optimal complexity required large penalty pa-
rameters, no dual updates and further assumptions (Lu et al.,
2024). We then prove that this complexity can be improved
to O(ε−3) with variance reduction when an additional ex-
pected smoothness assumption is made (see Assumption
5.2). Under this stronger assumption, this is the optimal
complexity even without constraints (Arjevani et al., 2023).

We consider extensions of this framework when we have
linear constraints that hold in expectation, that is, when the
constraints are given as Eξ[Aξx− bξ] = 0, with the same
complexity guarantees. To our knowledge, this is the first
algorithm achieving the optimal O(ε−4) benchmark sam-
ple complexity for nonconvex optimization with stochastic
constraints using one sample per iteration, going beyond the
best-known O(ε−5) complexity that is achieved for a more
general problem that does not capture the structure of linear
constraints (Li et al., 2024; Alacaoglu & Wright, 2024).

A more detailed comparison with the related works is given

in Section 6. A summary is given in Table 1.

1.2. Preliminaries

We denote the indicator function of a convex closed set
X as IX(z) = 0 if x ∈ X and IX(x) = ∞ if x ̸∈ X .
The notation ∂f for a convex, closed function denotes the
subdifferential set and ∂IX(x) is the normal cone of X at x,
by definition. For matrix A, ∥A∥ denotes its operator norm.

Given closed and convex X , projection onto X is given as

projX(x) = arg min
v∈X

∥x− v∥2.

Similarly, we define the proximal operator of f as

proxf (x) = argmin
v

f(v) +
1

2
∥v − x∥2.

We say that f is L-smooth when its gradient is L-Lipschitz:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

We say that f is ρ-weakly convex when f+ ρ
2∥·∥

2 is convex.
An L-smooth function is automatically L-weakly convex.
Moreau envelope of the weakly convex f is defined as

φλ(z) = min
v

f(v) +
1

2λ
∥v − z∥2,

which can be interpreted as a notion of smoothing. Moreau
envelope has many useful properties such as being smooth
when f is nonsmooth and weakly convex, when λ is se-
lected accordingly. Moreover, stationary points of f and the
Moreau envelope coincide (Drusvyatskiy & Paquette, 2019,
Lemma 4.3). The gradient of the Moreau envelope can be
computed as

λ−1(x− proxλφ(x)).

Stationary points. A succinct way of characterizing a
stationary point of (1) is the following: x⋆ is a stationary
point if there exists y⋆ such that the following hold:

0 ∈ ∇f(x⋆) +A⊤y⋆ + ∂IX(x⋆) and 0 = Ax⋆ − b.

One may, for example, refer to (Rockafellar, 2000). Accord-
ingly, we say that (x,y) is ε-stationary if

∥Ax− b∥ ≤ ε and

∥v∥ ≤ ε where v ∈ ∇f(x) +A⊤y + ∂IX(x)
(5)

which is a common notion used in related works, for exam-
ple (Zhang & Luo, 2022).

We also use the following related notion of near-stationarity,
as used in (Davis & Drusvyatskiy, 2019). We say that x is
ε-near stationary if it satisfies

∥∇Ψ(x)∥ ≤ ε, (6)

where Ψ(x) is the Moreau envelope of the objective function
f(x)+ IX(x)+ I{v:Av=b}(x) in (1), see also (7). We refer
to (Davis & Drusvyatskiy, 2019) for the precise notion of
near stationarity.
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Reference Constraint Oracle Complexity Loops Method

(Alacaoglu & Wright, 2024) Ax = b
Eq. (3) and
Asmp. 5.2 Õ(ε−3) 1 ALM

(Alacaoglu & Wright, 2024)
E[c(x, ζ)] = 0,
and x ∈ X†

Eq. (3) and
Asmp. 5.2 Õ(ε−5) 1 Penalty

(Lu et al., 2024)
c(x) = 0,
and x ∈ X†

Eq. (3) and
Asmp. 5.2 O(ε−3) 1 Penalty

(Li et al., 2024)
E[c(x, ζ)] = 0,
and x ∈ X†

Eq. (3) and
Asmp. 5.2 O(ε−5) 2 Penalty∗

This work
Ax = b,
and x ∈ X is a polyhedral Eq. (3) O(ε−4) 1 ALM

This work
Eζ [A(ζ)x− b(ζ)] = 0,
and x ∈ X is a polyhedral Eq. (3) O(ε−4) 1 ALM

This work
Ax = b,
and x ∈ X is a polyhedral

Eq. (3) and
Asmp. 5.2 O(ε−3) 1 ALM

Table 1. Comparison of methods. ∗This method is referred to as a penalty method because the penalty parameter is taken to infinity to
ensure feasibility and dual updates do not contribute in achieving feasibility. †The set X is assumed to have an efficient projection.

1.3. Assumptions

We next state the assumptions that will be used throughout.
These assumptions are standard and to our knowledge, the
weakest, in the literature for both deterministic and stochas-
tic nonconvex problems with linear constraints (Zhang &
Luo, 2022; Alacaoglu & Wright, 2024). A more detailed
comparison of assumptions will be made in Section 6.
Assumption 1.1. For the problem (1), the following holds:

1. The function f is Lf -smooth and lower bounded over
the feasible set: f(x) ≥ f > −∞ for any x ∈ X and
Ax = b.

2. The set X admits an efficient projection and is polyhe-
dral. That is, it has the form X = {x : Hx ≤ h} for
some H,h.

3. We have access to stochastic gradients satisfying (3).

2. Algorithm
We introduce Algorithm 1 in this section. To gain a deeper
understanding of the algorithm, we will go over two differ-
ent ways of interpreting it.

Interpretation 1: Linearized proximal ALM. Algorithm
1 incorporates a single-step SGD approximation of the prox-
imal AL function. This strategy is also known as the lin-
earized proximal ALM. In particular, the first step of the
algorithm approximates the proximal AL function2, that is,

xt+1 ≈ arg min
x∈X

Lρ(x,yt+1) +
µ

2
∥x− zt∥2,

by a single step of projected SGD, followed by a dual vari-
able update and updating the proximal center zt, which

2Note that this is also a classical function (Rockafellar, 1976).

takes average of zt and xt, resulting in the terminology
smoothed that we use for the algorithm.

Interpretation 2: Inexact GD on the Moreau envelope.3
Algorithm 1 can also be interpreted as an inexact gradient
descent step on the Moreau envelope of the function in (1).
In particular, this Moreau envelope is given as

Ψ(zt) = min
x∈X,Ax=b

{
f(x) +

µ

2
∥x− zt∥2

}
. (7)

By observing that minimizing the Moreau envelope helps on
obtaining a near-stationary point in view of (6) (cf. (Davis
& Drusvyatskiy, 2019)), inexact gradient update on this
function requires the computation of

argmin
x∈X,Ax=b

{
f(x) +

µ

2
∥x− zt∥2

}
,

which is a nontrivial optimization subproblem. However, it
is easier than (1) because the regularization provides us a
strongly convex objective in the subproblem (given that λ is
larger than Lf ). As a result, we can approximate the solution
of this problem by applying one iteration of ALM since this
problem is a strongly convex optimization problem over
linear constraints. We show that just one step of stochastic
ALM is sufficient at every iteration by using a stochastic
gradient computed with a single sample and one dual update,
followed by the update of the proximal center zt.

On the surface, this algorithm strongly resembles that of
Zhang & Luo (2022), from which we draw many ideas.
However, in addition to using stochastic gradients, there
is another subtle change, on the update of zt+1. Unlike
(Zhang & Luo, 2022), we update zt+1 by using xt to be

3Let us note that Hu et al. (2024) used a similar idea in a
different context.
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able to continue the analysis with the bounded variance
assumption on G (cf. Algorithm 1) instead of boundedness
assumption on G, since the latter would require bounded
domains. Thanks to this small change in this section, we
handle the case with unbounded primal and dual domains.

3. Convergence Analysis
In this section, we first provide the main complexity results,
then introduce the main analysis tools and a proof sketch.

3.1. Main Theorem

In view of the two stationarity notions given in Section 1.2,
we start with the result showing that Algorithm 1 outputs a
point at which the norm of the gradient of Moreau envelope
is small, in expectation.

For the result, we state the algorithmic parameters. To avoid
clutter, we write the orders of the parameters by highlighting
their dependences on the problem parameters. The explicit
forms of the parameters are given in (25), in App. A.

τ ≍ 1√
T
, η ≍ 1√

T
, β ≍ 1√

T
,

µ ≍ Lf , λ ≍ Lf + µ(∥A∥2 + 1).

(8)

We are now ready to state the first main result.

Theorem 3.1. Let Assumption 1.1 hold and run Alg. 1 with
parameters from (8). We have that E∥∇Ψ(zt∗)∥ ≤ ε where
t∗ is selected uniformly at random from {0, . . . , T −1} with
T = Ω(ε−4). The stochastic oracle complexity is O(ε−4).

In particular, the above result gives us an ε-near stationary
point in view of (Davis & Drusvyatskiy, 2019). To get an
ε-stationary point, we perform a post-processing procedure
to obtain the following output from the result of Alg. 1:

x̂ = projX(xt∗ − τĜ(xt∗ ,yt∗+1, zt∗)), (9)

with τ ≤ 1
LK

where LK is the Lipschitz constant of
Lρ(·,y, z) + λ

2 ∥ · −x∥2 (cf. (25)) and

Ĝ(xt∗ ,yt∗+1, zt∗) =
1

B

B∑
i=1

G(xt∗ ,yt∗+1, zt∗ , ξi)

for ξi i.i.d. and B = Θ(ε−2). This is the only place where
we use a large batch size and Algorithm 1 only runs with a
single sample at every iteration. This post processing step is
only done once and does not affect the overall complexity.
The details are given in Appendix A.3.

Corollary 3.2. Let Assumption 1.1 hold. From the output
of Algorithm 1, we can obtain x̂ which is an ε-stationary
point. The complexity of the whole procedure is O(ε−4).

3.2. Analysis Tools

In our analysis, Moreau envelope of two functions is crit-
ical. The first was the Moreau envelope of the composite
objective in (1), defined in (7). We next define the Moreau
envelope on the proximal AL which is the main function to
analyze projected SGD, cf. (Davis & Drusvyatskiy, 2019)

φ1/λ(x,y, z) = min
u∈X

{
Lρ(u,y) +

µ

2
∥u− z∥2

+
λ

2
∥u− x∥2

}
. (10)

Another important quantity that has a significant role in the
analysis is the proximal point

u∗(x,y, z) = argmin
u∈X

Lρ(u,y) +
µ

2
∥u− z∥2

+
λ

2
∥u− x∥2.

(11)

With this, we trivially have

φ1/λ(x,y, z) = Lρ(u
∗(x,y, z),y)

+
µ

2
∥u∗(x,y, z)− z∥2 + λ

2
∥u∗(x,y, z)− x∥2.

This is the main point of departure from (Zhang & Luo,
2022) where the proximal AL function is used in the analy-
sis, in the potential function. This is because (Zhang & Luo,
2022) used a projected full GD step on the proximal AL
function for which, a descent inequality follows directly. In
our case, because we apply a projected SGD step, to be able
to handle updates with single-sample stochastic gradients,
we need to use the Moreau envelope of the proximal AL
function in our potential. This analysis of projected SGD
was pioneered in (Davis & Drusvyatskiy, 2019).

The first result is a descent result on the Moreau envelope.
Lemma 3.3 (cf. Lemma A.5). Under Assumption 1.1, for
the xt+1 update given in Algorithm 1, we have

16E
[
φ1/λ(xt+1,yt+1, zt+1)

]
≤ 16E

[
φ1/λ(xt,yt+1, zt+1)

]
− τλ2E∥u∗(xt,yt+1, zt)− xt∥2 + 8λτ2σ2

+ 2
(
4λτµ+ 16λτ2µ2 + τλ2µ2/γ2

s

)
E∥zt − zt+1∥2,

where γs = 2µ+ ρ∥A∥.

This follows mostly from (Davis & Drusvyatskiy, 2019) and
handles the transition from xt to xt+1 in our analysis. One
additional error term we have here is ∥zt+1 − zt∥2, due to
the change in the proximal center zt, a term that was not
involved in the analysis of (Davis & Drusvyatskiy, 2019).

Next, we incorporate the dynamics of the updates on the
dual variable yt and the proximal center zt. These re-
sults use some ideas from (Zhang & Luo, 2022) with addi-
tional insights. This is because Zhang & Luo (2022) use
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Algorithm 1 Stochastic smoothed and linearized ALM
Initialize: x0 = z0 ∈ X , y0 ∈ Rm and ρ ≥ 0.
for t = 0 to T − 1 do
yt+1 = yt + η(Axt − b)
Sample ξt ∈ Ξ i.i.d. and let G(xt,yt+1, zt, ξt) = ∇f(xt, ξt) +A⊤yt+1 + ρA⊤(Axt − b) + µ(xt − zt).
xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))
zt+1 = zt + β(xt − zt)

Lρ(x,y) +
λ
2 ∥x− z∥2 in their potential, so their analysis

only characterizes the change in y and z in this function.
Our analysis however, needs to characterize this change in
the Moreau envelope of this function. This requires further
estimations using the properties of the Moreau envelope,
and the proximal point u∗(x,y, z) (see e.g. Lem. A.6).
Lemma 3.4. (cf. Lemma A.6) Under Assumption 1.1, for
the iterates of Alg. 1, we have

2E
[
φ1/λ(xt,yt+1, zt+1)

]
≤ 2E

[
φ1/λ(xt,yt, zt)

]
− 2E⟨yt+1 − yt, Au

∗(xt,yt, zt)− b⟩
− µE⟨zt − zt+1, 2u

∗(xt,yt+1, zt)− zt+1 − zt⟩.

It is easy to notice that combining the last two lemmas will
give us a bound on the change of φ1/λ from t to t+1. On the
other hand, the inner products appearing on the right-hand
side of the last bound will require an intricate analysis after
combining with the terms coming from other components
in the potential function, introduced next. One aim, is to
make sure we get enough slack to be able to cancel error
terms coming from ∥zt+1−zt∥2 in the previous lemma and
further errors that will arise as we handle the inner products.

3.3. Proof Sketch

3.3.1. ONE ITERATION INEQUALITY ON THE POTENTIAL

As alluded to earlier, we introduce the potential function
we work with, which incorporates the Moreau envelopes
defined in (10) and (7):

Vt = φ1/λ(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt),

where we used the new notation

d(y, z) = min
x∈X

Lρ(x,y) +
µ

2
∥x− z∥2. (12)

There are two main changes compared to the analysis of
(Zhang & Luo, 2022). The first is that the primal descent
portion of our analysis investigates the behavior of the
Moreau envelope of the proximal AL function (given in
(10)) whereas the analysis of (Zhang & Luo, 2022) analyzes
the proximal AL function (given in (19)) directly.

The reason for this departure is the well-known difficulty
while analyzing SGD for constrained problems with single

sample of stochastic gradients. Hence, it is not clear if it is
possible to show a useful inequality with the proximal AL
function in the constrained case. In particular, until the work
of (Davis & Drusvyatskiy, 2019), convergence analyses of
projected SGD required large batches.

In addition to combining the bounds from the previous sec-
tion on the change of φ1/λ, we have to characterize the
change in d(y, z) and Ψ(z), for which we can use the fol-
lowing estimations, which only use the definition of yt+1

and hence have the same proof as the previous work.
Lemma 3.5. (Zhang & Luo, 2020, Lemma 3.2, Lemma 3.3)
For d(y, z) and Ψ(z) defined in (7) and (12), we have

2d(yt+1, zt+1)− 2d(yt, zt)

≥ 2η⟨Axt − b, Ax∗(yt+1, zt)− b⟩
+ µ⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩,

and

Ψ(zt+1)−Ψ(zt) ≤ µ⟨zt+1 − zt, zt − x̄∗(zt)⟩

+
µ

2σ4
∥zt − zt+1∥2,

where σ4 =
µ−Lf

µ and

x∗(y, z) = argmin
x∈X

Lρ(x,y) +
µ

2
∥x− z∥2, (13)

x̄∗(z) = argmin
x∈X,Ax=b

f(x) +
µ

2
∥x− z∥2. (14)

We continue with the main inequality on the potential func-
tion with one iteration of Alg. 1. The proof of this lemma
is rather intricate and requires a careful combination of the
inner products coming from the previous lemmas, and uses
the particular update of the proximal center zt+1 as well as
parameter selections. Recall that u∗(x,y, z) and x∗(y, z)
appearing in the lemma are defined in (11) and (13).
Lemma 3.6 (cf. Lemma A.9). With Assumption 1.1 and
parameters in (8) (see (25)), we have for Alg. 1 that

EVt − EVt+1 ≥ cβE∥zt+1 − zt∥2 − λτ2σ2/2

+ cτE∥u∗(xt,yt+1, zt)− xt∥2

+ cηE∥Ax∗(yt+1, zt)− b∥2, (15)

where cτ = Θ(1/
√
T ), cη = Θ(1/

√
T ), cβ = Θ(1/

√
T )

with their precise definitions given in Lemma A.9.
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One novelty in our analysis is to show that this potential
function is still lower bounded and decreases, in expectation,
up to an error term depends on τ2 and the variance. To
integrate this change into the framework of (Zhang & Luo,
2022) under reasonable assumptions on the stochastic oracle
as mentioned earlier in Section 2, we also slightly changed
the definition of zt+1 in the algorithm, due to technical
reasons. In particular, in our case, we lose the control over
∥xt+1 −xt∥2 (since we do not assume bounded domains in
this section), whereas the deterministic analysis of (Zhang
& Luo, 2022) have a natural control over such terms.

The other change is the error coming from the variance of
stochastic gradients. This causes the complexity to deterio-
rate compared to the deterministic case, which is an effect
common with algorithms based on SGD. In particular, with
a correctly selected step size, we obtain a sample complex-
ity with the same-order as SGD, which is optimal even for
unconstrained nonconvex problems (Arjevani et al., 2023).

3.3.2. COMPLEXITY ANALYSIS

After Lemma 3.6, it is straightforward to obtain

E∥zt+1 − zt∥2 ≤ ε2,

E∥Ax∗(yt+1, zt)− b∥2 ≤ ε2,

E∥u∗(xt,yt+1, zt)− xt∥2 ≤ ε2,

when T = Θ(ε−4). Then, by tedious but straightforward
calculations, we can directly get the bound on the norm of
the gradient of the Moreau envelope, ∇Ψ(zt), obtaining
near-stationarity. The details appear in Appendix A.2.

A couple more steps let us go from this result to an ε-
stationary point. The idea is simple: since we know that
small ∥∇Ψ(zt)∥ means that we are near a stationary point,
we can perform just one more iteration of SGD with batch
size ≈ ε−2 to get an ε-stationary point, without changing
the worst-case complexity. The details are in App. A.3.

4. Extension to Random Linear Constraints
We turn to the case when constraints are sampled, that is,
we do not have access to the full matrix A, or vector b but
only unbiased samples of them. This is a suitable setting,
when, for example, we have a large matrix A. In particular,
we have A = Eζ∼P [Aζ ],b = Eζ∼P [bζ ] and use Aζ ,bζ in
the algorithm. We rewrite the template for convenience, as

min
x∈X

f(x) subject to Eζ∼P [Aζx− bζ ] = 0. (16)

In this case, to get an unbiased stochastic gradient for proxi-
mal AL, we need to sample two i.i.d. samples of ζ:

G(x,y, z, ξ) = ∇f(x, ξ)

+A⊤
ζ1y + ρA⊤

ζ1(Aζ2x− bζ2) + µ(x− z).
(17)

An immediate issue here is that the variance of stochas-
tic gradients of the proximal AL function scales linearly
with x and y. Hence, assuming bounded variance would
require assuming bounded dual variables, which is a strong
assumption that is not satisfied in practice. To go around this
difficulty, we have two adjustments, (i) we assume a con-
straint qualification (CQ) and compactness of X and (ii) we
include a safeguarding procedure in the algorithm to moni-
tor when the dual variable gets too large. Under these two
modifications, we obtain the same complexity guarantees as
our previous setting with deterministic constraints.
Assumption 4.1. For problem (16), the following holds:

1. The feasible set {x : x ∈ X,Ax = b} is bounded.

2. The origin is in the relative interior of the set {Ax −
b : x ∈ X}.

3. A has full row-rank.

In addition to the assumptions in the earlier setting, we
require a Slater’s condition as well as compact domains to
ensure boundedness of the dual variable. Slater’s condition
is a classical CQ, see e.g., (Bertsekas et al., 2003, Sec. 5.3.1).
Remark 4.2. The choice of My is given next, which
admittedly can be difficult in practice. Let MV =
maxx,z∈X{K(x, 0, z) − 2d(0, z) + 2Ψ(z)}, M =
maxx,z∈X{|f(x)|+ µ

2 ∥x−z∥2+ ρ
2∥Ax−b∥2}, where K is

defined in (19) and MΨ is a uniform lower bound of Ψ(zt),
e.g., f . According to Assumption 4.1, there exists r > 0
such that for any direction d ∈ Range(A), we can find
x ∈ X satisfying ∥Ax−b∥ = r and Ax−b has the same di-
rection as d. Then, we choose My as My > MV −MΨ+2M

r .

In this setting, we only state our theorem for near-
stationarity. The ε-stationarity would follow in the same
way as the previous section by a post-processing step.
Theorem 4.3. Let Assumptions 1.1 and 4.1 hold and run Alg.
2 with parameters from (8). We have that E∥∇Ψ(zt∗)∥ ≤ ε
where t∗ is randomly selected from {0, . . . , T − 1} with
T = Ω(ε−4). The stochastic oracle complexity is O(ε−4).

As mentioned earlier, the optimal sample complexity for
nonconvex optimization with Lipschitz ∇f is O(ε−4) (Arje-
vani et al., 2023). Our result matches this complexity while
handling linear constraints with random sampling.

5. Extension with Variance Reduction
We now integrate the STORM variance reduction technique
from (Cutkosky & Orabona, 2019) into our framework to
solve (1) (See arXiv:2504.07607 for extension to stochastic
constraints). We obtain Alg. 3, which improves the iteration
and oracle complexity from O(ε−4) to O(ε−3) under a
stronger assumption on the oracle, compared to Sec. 3. This
not only leads to an improved rate, but also to a simpler
analysis that does not rely on the Moreau envelope φ1/λ.
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Algorithm 2 Stochastic smoothed and linearized ALM for stochastic constraints with dual safeguarding

Input and Initialization: My > MV −MΨ+2M
r (check Remark 4.2), x0 = z0 ∈ X , y0 ∈ Rm, ρ ≥ 0.

for t = 0 to T − 1 do
yt+1 = yt + η(Aζtxt − bζt) where ζt ∼ P is generated i.i.d.
if ∥yt+1∥ ≥ My then
yt+1 = 0

Sample ξt ∈ Ξ i.i.d. and generate Eξt [G(xt,yt+1, zt, ξt)] = ∇xLρ(xt,yt+1) + µ(xt − zt) as in (17)
xt+1 = projX(xt − τG(xt,yt+1, zt, ξt))
zt+1 = zt + β(xt − zt)

Algorithm 3 Stochastic smoothed and linearized ALM with STORM

Initialize: x0 = z0 ∈ X,y0 ∈ Rm, ∇̂f0 = 1
N

∑N
i=1 ∇f(x0, ζi), N = T 1/3 and ρ ≥ 0

for t = 0 to T − 1 do
yt+1 = yt + η(Axt − b)

G(xt,yt+1, zt) = ∇̂ft +A⊤yt+1 + ρA⊤(Axt − b) + µ(xt − zt)
xt+1 = projX(xt − τG(xt,yt+1, zt))
zt+1 = zt + β(xt − zt)

Sample ξt+1 ∼ Ξ i.i.d. and set ∇̂ft+1 = ∇f(xt+1, ξt+1) + (1− α)(∇̂ft −∇f(xt, ξt+1))

Alg. 3 and Alg. 1 mainly differ in the update of stochastic
gradient estimate ∇̂ft. If α = 0, Alg. 3 trivially reduces to
Alg. 1. We next see that a particular choice of α gives better
complexity under Assumption 5.2 (which is stronger than
the oracle access and smoothness in Assumption 1.1).
Remark 5.1. We only use a minibatch in the initialization,
which does not affect the overall complexity. The minibatch
size is N = T 1/3, which is small compared to the total num-
ber of iterations T . Iterations of our algorithm only require
2 stochastic gradients, ∇f(xt, ξt+1) and ∇f(xt+1, ξt+1).

For the analysis of Alg. 3, we introduce Assumption 5.2,
used, e.g., in (Arjevani et al., 2023). In particular, Arjevani
et al. (2023) showed that the oracle complexity O(ε−3) is
tight under Assumption 5.2 even with no constraints.
Assumption 5.2. We have access to a stochastic gradient of
f satisfying (3). For a given ξ ∼ Ξ, we can query ∇f(x, ξ)
and ∇f(y, ξ) for different points x,y. Moreover, we have
Eξ∼Ξ∥∇f(x, ξ)−∇f(y, ξ)∥2 ≤ L2

0∥x− y∥2.

We introduce the potential V̄t differing from Sec. 3 and 4.
This is similar to (Zhang & Luo, 2022), except the last term
which controls the error from the variance. Define

V̄t = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt)

+
1

48(L2
0 + L2

f )τ
∥∇̂ft −∇f(xt)∥2,

(18)

where

K(x,y, z) = Lρ(x,y) +
µ

2
∥x− z∥2. (19)

One-step evolution of V̂t that we analyze next is a key step
in the analysis. Compared to (Zhang & Luo, 2022), we have
the extra error due to using ∇̂ft instead of the full gradient.

Lemma 5.3 (cf. Lemma C.4). Under Assumptions 1.1 and
5.2, with parameters

µ = max{2, 4Lf}, τ = T−3/2,

η = Θ(τ), β = Θ(τ), α = Θ(τ2),
(20)

(for detailed parameters, see (82)) we have

EV̄t − EV̄t+1 ≥ 2µ

β
E∥zt − zt+1∥2 +

1

2τ
E∥xt − xt+1∥2

+ 2ηE∥Ax∗(yt+1, zt)− b∥2

+ τE∥∇̂ft −∇f(xt)∥2 −O(σ2τ3). (21)

Note that, on a high level, the main difference between
Lemma 5.3 and Lemma 3.6 is that the order of τ in the
error term is different. In Lemma 5.3, the order of τ is
O(τ3), while in Lemma 3.6, the order of τ is O(τ2), which
contribute to a faster convergence rate in for Alg. 3.

Theorem 5.4. Let Assumptions 1.1 and 5.2 hold. We have
that E∥∇Ψ(zt∗)∥ ≤ ε, where t∗ is selected uniformly at
random from {0, . . . , T − 1} with T = Ω(ε−3). The com-
plexity of the whole procedure is O(ε−3).

6. Related Works
We now compare the complexity results for obtaining an
ε-stationary point, in view of Section 1.2.
Deterministic objective and deterministic constraints.
The setting when objective f in (1) is deterministic is the
most well-studied with many results in the classical litera-
ture (Bertsekas, 2014). Recent work characterized the global
oracle complexity of Lagrangian-based methods or ALM.
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With nonlinear and nonconvex constraints, many of the ex-
isting works analyzing AL-based algorithms rely on strong
CQs and boundedness assumptions and use large penalty
parameters to ensure feasibility (Li et al., 2021; Lin et al.,
2022; Kong et al., 2019; Kong & Monteiro, 2023; Kong
et al., 2023). The existing frameworks so far fail to capture
the importance of dual variable updates, which are, in fact,
the main reason behind the ability to use constant penalty
parameters while ensuring convergence, see e.g., (Bertsekas,
2014, Sec. 2.2.5). Recent works mentioned above obtained
the complexity bound O(ε−3) for general nonlinear con-
straints with no specialization for linear constraints. When
specialized to convex functional constraints, the best-known
complexity for these methods is O(ε−2.5) (Lin et al., 2022).

When the constraints are linear, such as (1) with X = Rn,
Hong (2016) analyzed ALM with constant penalty param-
eters and non-negligible dual updates to get optimal com-
plexity O(ε−2). The case of X ̸= Rn turned out to be sig-
nificantly more challenging with many works focusing on
variants of ALM with large penalty parameters (depending
on the inverse of the final accuracy) to ensure near-feasibility
and negligible dual updates that do not help with feasibility
(Kong & Monteiro, 2023; Kong et al., 2023) and obtained
the suboptimal complexity Õ(ε−2.5). The exceptions are
the works (Zhang & Luo, 2020; 2022) that showed, for the
case X polyhedral, near-optimal complexity O(ε−2) with
a constant penalty parameter and dual steps with constant
step sizes, with no constraint qualification. The key step
was the global error bound that our work also relied on.
Stochastic objective and deterministic constraints. One
important step in generalizing the template to tasks arising
in ML was to consider stochastic objectives where we ac-
cess unbiased estimates. With general nonlinear constraints
and Lipschitzness of ∇f , the optimal sample complexity is
O(ε−4), obtained with double loop algorithms (Curtis et al.,
2024; Boob et al., 2023; Ma et al., 2020). These works re-
quire strong assumptions on the boundedness of the primal
domain as well as constraint qualifications, which are often
not necessary with linear constraints.

Another set of results concerns stochastic optimization with
deterministic nonlinear constraints with penalty-based al-
gorithms. These works require large penalty parameters to
ensure near-feasibility rather than dual updates (Lu et al.,
2024; Alacaoglu & Wright, 2024). They assume expected
Lipschitzness as Assumption 5.2, which is stronger than
Lipschitzness of ∇f . Since these works focus on nonlinear
functional constraints, the analysis requires boundedness
assumptions as well as constraint qualifications, unlike our
results in Section 3 for deterministic linear constraints.

Alacaoglu & Wright (2024) considered ALM with a con-
stant penalty parameter and non-negligible dual updates
and obtained the complexity O(ε−3) for linear equality con-

straints under Assumption 5.2. This work only covered the
case X = Rn and left open the question of handling the
case of general X , see (Alacaoglu & Wright, 2024, Sec. 5).

We resolve a special case of this question when X is poly-
hedral (covering many applications), allowing our analysis
to cover linear inequality constraints. Alacaoglu & Wright
(2024) used variance reduction for ∇f , which meant that
they required Assumption 5.2, stronger than Assumption 1.1.
In Sec. 5, we get the same complexity as this paper while al-
lowing a polyhedral X to cover linear inequality constraints,
which cannot be handled by Alacaoglu & Wright (2024).

Moreover, we also get the complexity O(ε−4) under As-
sumption 1.1. This is optimal under Assumption 1.1 and
we refer to (Arjevani et al., 2023) for further details on the
lower bounds. In contrast, the work in (Alacaoglu & Wright,
2024) does not have guarantees without Assumption 5.2.

In addition, though (Lu et al., 2024) considers the more
general problem with nonconvex functional constraints, they
make strong assumptions which are not easy to verify. It
is not clear if their assumptions would hold with a general
polyhedral constraint we have (see e.g., their Assumption
1(iv) and Eq. (7)). When the constraints are deterministic,
we do not have any bounded domain assumption (our Sec.
3) whereas the assumptions of (Lu et al., 2024) are rather
difficult to be satisfied without a bounded primal domain.

Lu et al. (2024) analyzes a QP-based method, whereas we
analyze an ALM-variant. ALM is known to be more stable
and desirable in practice, but significantly more difficult to
analyze, which is because the penalty parameter is fixed in
ALM and it increases to infinity for QP. Our ALM algorithm
could be extended to stochastic constraints, while (Lu et al.,
2024) only handles deterministic constraints. Alacaoglu &
Wright (2024) highlights the importance of analyzing ALM
compared to QP methods in their Sections 1 and 6.
Stochastic objective and stochastic constraints. This is
the most general class, where the existing results come with
many assumptions that are not always easy to interpret,
similar to the case of stochastic objective and determinis-
tic constraints described above (Li et al., 2024; Alacaoglu
& Wright, 2024). The best-known complexity O(ε−5) is
obtained by using Assumption 5.2, with an inexact, double-
loop, ALM in (Li et al., 2024) and by a single-loop QP
algorithm in (Alacaoglu & Wright, 2024). These results con-
cerning ALM need to use large penalty parameters, which
renders them essentially as QP-methods since the dual up-
dates do not contribute to the analysis for ensuring the fea-
sibility. Other approaches for solving this sub-case also
require double-loop algorithms and stronger assumptions
since they focus on a generic nonconvex constraint (Boob
et al., 2023; Ma et al., 2020), obtaining O(ε−6) without
expected Lipschitzness. Hence, in this sub-case, none of
these results harness the structure of linear constraints.
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Notation.
Let us note that we define by Et the expectation conditioned on all the randomness up to and including xt.

A. Proofs for Section 3
In the proofs, let us recall

K(x,y, z) = Lρ(x,y) +
µ

2
∥x− z∥2

= f(x) + ⟨Ax− b,y⟩+ ρ

2
∥Ax− b∥2 + µ

2
∥x− z∥2.

(22)

With this notation, we have the following, equivalent to (11):

u∗(x,y, z) = argmin
u∈X

{
K(u,y, z) +

λ

2
∥u− x∥2

}
= argmin

u∈X

{
Lρ(u,y, z) +

µ

2
∥u− z∥2 + λ

2
∥u− x∥2

}
.

(23)

We also recall (10).

φ1/λ(x,y, z) = min
u∈X

{
Lρ(u,y) +

µ

2
∥u− z∥2 + λ

2
∥u− x∥2

}
= min

u∈X

{
K(u,y, z) +

λ

2
∥u− x∥2

}
.

(24)

We also introduce here some parameters that are used throughout, for convenience.

µ = max{2, 4Lf},
LK = Lf + ρ∥A∥+ µ,

λ = 2LK ,

σ4 =
µ− Lf

µ
,

τ =
1

6λ2
√
T
,

η = min

{
2µ+ ρ∥A∥
4∥A∥4

,
τ

200∥A∥2
,
τ(2µ+ ρ∥A∥2)

20∥A∥2

}
,

β = min

{
τ

100
,

1

50λ
,

η

36µσ̄2

}
,

γs = 2µ+ ρ∥A∥, γ =
(µ− Lf )λ

µ− Lf + λ
, γK = µ− Lf .

(25)

We also mention the following basic facts that are used in the sequel.
Fact A.1. For x ∈ X , we have that x 7→ K(x,y, z) is strongly convex with modulus γK := µ−Lf , and x 7→ ∇xK(x,y, z)
is LK := (Lf + ρ∥A∥2 + µ)-Lipschitz continuous.

For u ∈ X , u 7→ K(u,y, z) + λ
2 ∥x − u∥2 is strongly convex with modulus γs = µ − Lf + λ, and u∗(x,y, z) =

argminu∈X K(u,y, z) + λ
2 ∥x− u∥2.

Lemma A.2. (Planiden & Wang, 2016, Lemma 2.19) Let r > 0. The function f is r-strongly convex if and only if
f1(x) = minu f(u) + 1

2∥x− u∥2 is r
r+1 -strongly convex.

Lemma A.3. The function x 7→ φ1/λ(x,y, z) is γ =
(µ−Lf )λ
µ−Lf+λ -strongly convex.

Proof. By definition, we have

φ1/λ(x,y, z) = min
u

K(u,y, z) + IX(u) +
λ

2
∥x− u∥2 = λmin

u

K(u,y, z) + IX(u)

λ
+

1

2
∥x− u∥2.

12
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Recall that γK = µ− Lf . Then, since K(x,y, z)/λ is γK

λ -strongly convex, we have minu
K(u,y,z)+IX(u)

λ + 1
2∥x− u∥2

is γK/λ
γK/λ+1 -strongly convex, by Lemma A.2. Hence, φ1/λ(x,y, z) is strongly convex with modulus γK

γK/λ+1 = λγK

λ+γK
=

(µ−Lf )λ
µ−Lf+λ . ■

A.1. Proofs for Lemma 3.6

In the next lemma, the first part is using the idea of Davis & Drusvyatskiy (2019) to analyze the algorithm under the
bounded variance assumption instead of the restrictive bounded stochastic gradient assumption. The second part of the
lemma also follows a similar idea as this work, with the exception of the dependence on the changing center point zt. This
introduces additional issues, since the stochastic gradient in the update of xt+1 depends on zt whereas the proximal point
u∗(xt,yt+1, zt+1) (that characterizes the iteration below) depends on zt+1. Our analysis below estimates this additional
error and shows it to be in the order of ∥zt+1 − zt∥2, which will be handled later.

Lemma A.4. Suppose that Assumption 1.1 holds, for the proximal point u∗(xt,yt+1, zt+1), defined as (11) we have the
characterization

u∗(xt,yt+1, zt+1) = projX(τλxt + (1− τλ)u∗(xt,yt+1, zt+1)− τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)). (26)

Moreover, for the sequence xt+1 calculated as Algorithm 1, with λ = 2LK and τ ≤ 1
6λ , where LK = Lf + ρ∥A∥2 + µ, we

have

E∥u∗(xt,yt+1, zt+1)− xt+1∥2 ≤
(
1− τλ

4

)
E∥u∗(xt,yt+1, zt+1)− xt∥2 + (τµ+ 2τ2µ2)E∥zt − zt+1∥2 + τ2σ2.

Proof. From the definition of u∗(xt,yt+1, zt+1) in (11) (see also (23)), we have

λ(xt − u∗(xt,yt+1, zt+1)) ∈ ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1) + ∂IX(u∗(xt,yt+1, zt+1)).

Multiplying both sides by the step size τ , adding u∗(xt,yt+1, zt+1) to both sides, and rearranging give

τλxt − τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1) + (1− τλ)u∗(xt,yt+1, zt+1)

∈ u∗(xt,yt+1, zt+1) + τ∂IX(u∗(xt,yt+1, zt+1)).

Since (I + τ∂IX)−1 = proxIX = projX due to ∂IX being a cone and proximal operator of a normal cone being the
projection to the set, we have the first assertion.

We next establish the second assertion. Using the just established identity (26), the update rule of xt+1 in Algorithm 1, and
nonexpansiveness of the projection, we derive

∥u∗(xt,yt+1, zt+1)− xt+1∥2

≤ ∥τλxt + (1− τλ)u∗(xt,yt+1, zt+1)− τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)− [xt − τG(xt,yt+1, zt, ξt)]∥2.

We add and subtract ∇xK(xt,yt+1, zt) inside the squared norm on the right-hand side, expand and take conditional
expectation to obtain

Et∥u∗(xt,yt+1, zt+1)− xt+1∥2

= ∥(1− τλ)(u∗(xt,yt+1, zt+1)− xt)− τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1) + τ∇xK(xt,yt+1, zt)∥2

+ τ2Et∥G(xt,yt+1, zt, ξt)−∇xK(xt,yt+1, zt)∥2, (27)

where the cross term disappeared because

Et[G(xt,yt+1, zt, ξt)] = ∇xK(xt,yt+1, zt)

and xt,yt+1, zt+1,u
∗(xt,yt+1, zt+1) are deterministic under the conditioning since zt+1 defined in Algorithm 1 only

depends on xt (that is, zt+1 is independent of ξt).

The second term on the right-hand side of (27) is trivially bounded by the oracle assumptions, that is,

Et∥G(xt,yt+1, zt, ξt)−∇xK(xt,yt+1, zt)∥2 ≤ σ2. (28)

13
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For the first term on the right-hand side of (27), we further estimate as

∥(1− τλ)(u∗(xt,yt+1, zt+1)− xt)− τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1) + τ∇xK(xt,yt+1, zt)∥2

= (1− τλ)2∥u∗(xt,yt+1, zt+1)− xt∥2

+ 2τ(1− τλ)⟨u∗(xt,yt+1, zt+1)− xt,∇xK(xt,yt+1, zt)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)⟩
+ τ2∥∇xK(xt,yt+1, zt)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)∥2. (29)

Next, we turn to estimating

∥∇xK(xt,yt+1, zt)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)∥
≤ ∥∇xK(xt,yt+1, zt)−∇xK(xt,yt+1, zt+1)∥
+ ∥∇xK(xt,yt+1, zt+1)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)∥. (30)

Note that, by definition, we have

∇xK(xt,yt+1, zt)−∇xK(xt,yt+1, zt+1) = µ(zt+1 − zt).

Using this and the LK-Lipschitzness of ∇xK(·,yt+1, zt+1) as per Fact A.1, in (30), we obtain

∥∇xK(xt,yt+1, zt)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)∥ ≤ µ∥zt+1 − zt∥+ LK∥u∗(xt,yt+1, zt+1)− xt∥.

We plug this bound into the second term on the right-hand side of (29) after using Cauchy-Schwarz inequality, and then, we
use Young’s inequality to get

2τ(1− τλ)⟨u∗(xt,yt+1, zt+1)− xt,∇xK(xt,yt+1, zt)−∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1)⟩
≤ 2τ(1− τλ)∥u∗(xt,yt+1, zt+1)− xt∥(µ∥zt+1 − zt∥+ LK∥u∗(xt,yt+1, zt+1)− xt∥)
≤ τ(1− τλ)(2LK + µ)∥u∗(xt,yt+1, zt+1)− xt∥2 + τ(1− τλ)µ∥zt+1 − zt∥2.

Using the last two inequalities in (29), along with Young’s inequality, we obtain

∥(1− τλ)(u∗(xt,yt+1, zt+1)− xt)− τ∇xK(u∗(xt,yt+1, zt+1),yt+1, zt+1) + τ∇xK(xt,yt+1, zt)∥2

≤ [(1− τλ)2 + τ(1− τλ)(2LK + µ) + 2τ2L2
K ]∥u∗(xt,yt+1, zt+1)− xt∥2

+ (τ(1− τλ)µ+ 2τ2µ2)∥zt+1 − zt∥2. (31)

We estimate the coefficient of the first term. First, note that 1− τλ ≤ 1. As a result, we have

(1− τλ)2 + τ(1− τλ)(2LK + µ) + 2τ2L2
K ≤ 1− 2τλ+ τ2λ2 + τ(2LK + µ) + 2τ2L2

K

≤ 1− 2τλ+
1

6
τλ+ τλ+

1

2
τλ+

1

12
τλ

= 1− τλ

4
,

where in second inequality, we use τλ ≤ 1
6 ,LK = 1

2λ and τµ ≤ τLK = 1
2τλ.

Finally, since τ(1− τλ)µ+2τ2µ2 ≤ τµ+2τ2µ2, the proof is completed after taking full expectation of (27) and plugging
in (28) and (31). ■

Lemma A.5 (cf. Lemma 3.3). Let Assumption 1.1 hold. Then, if λ = 2LK and τ ≤ 1
6λ , we have for the iterates of

Algorithm 1 that

Eφ1/λ(xt+1,yt+1, zt+1) ≤ Eφ1/λ(xt,yt+1, zt+1)−
τλ2

16
E∥u∗(xt,yt+1, zt)− xt∥2

+

(
λτµ

2
+ λτ2µ2 +

τλ2µ2

8γ2
s

)
E∥zt − zt+1∥2 +

λτ2σ2

2
, (32)

where γs = 2µ+ ρ∥A∥.
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Proof. By the definition of φ1/λ from (24) and u∗(x,yt+1, zt+1) from (23), we have

Eφ1/λ(xt+1,yt+1, zt+1) ≤ EK(u∗(xt,yt+1, zt+1),yt+1, zt+1) +
λ

2
E∥u∗(xt,yt+1, zt+1)− xt+1∥2

≤ EK(u∗(xt,yt+1, zt+1),yt+1, zt+1) +

(
λ

2
− τλ2

8

)
E∥u∗(xt,yt+1, zt+1)− xt∥2

+

(
λτµ

2
+ λτ2µ2

)
E∥zt − zt+1∥2 +

λτ2σ2

2

= Eφ1/λ(xt,yt+1, zt+1)−
τλ2

8
E∥u∗(xt,yt+1, zt+1)− xt∥2

+

(
λτµ

2
+ λτ2µ2

)
E∥zt − zt+1∥2 +

λτ2σ2

2
. (33)

We next bound the second term on the right-hand side by using Young’s inequality as

∥u∗(xt,yt+1, zt+1)− xt∥2 ≥ 1

2
∥u∗(xt,yt+1, zt)− xt∥2 − ∥u∗(xt,yt+1, zt+1)− u∗(xt,yt+1, zt∥2

≥ 1

2
∥u∗(xt,yt+1, zt)− xt∥2 −

µ2

γ2
s

∥zt − zt+1∥2, (34)

where the last line used (61).

We substitute the last inequality into (33) to conclude. ■

Since the previous result only allowed us to connect φ1/λ(xt+1,yt+1, zt+1) to φ1/λ(xt,yt+1, zt+1), we now need to
analyze the effect of changing yt+1 and zt+1 in φ1/λ. The main idea of this lemma is similar to (Zhang & Luo, 2022),
where the difference lies in the fact that our potential involves the Moreau envelope of K(x,y, z) whereas the potential of
(Zhang & Luo, 2022) involves K(x,y, z). Hence this work considers the change of the arguments in the function K instead
of φ1/λ. Therefore, our proof uses the properties of the Moreau envelope which was not needed in (Zhang & Luo, 2022).

Lemma A.6. (cf. Lemma 3.4) Suppose that Assumption 1.1 holds, for φ1/λ defined in (10), we have for the iterates of
Algorithm 1 that

φ1/λ(xt,yt, zt)− φ1/λ(xt,yt+1, zt) ≥ ⟨yt − yt+1, Au
∗(xt,yt, zt)− b⟩

+
γs
2
∥u∗(xt,yt, zt)− u∗(xt,yt+1, zt)∥2,

φ1/λ(xt,yt+1, zt)− φ1/λ(xt,yt+1, zt+1) ≥
µ

2
⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− zt+1 − zt⟩

+
γs
2
∥u∗(xt,yt+1, zt+1)− u∗(xt,yt+1, zt)∥2,

where γs = 2µ+ ρ∥A∥.

Proof. We first consider the change in y argument of φ1/λ. By using the definition of φ1/λ in (24), we have

φ1/λ(xt,yt, zt)− φ1/λ(xt,yt+1, zt) = K(u∗(xt,yt, zt),yt, zt) +
λ

2
∥xt − u∗(xt,yt, zt)∥2

−K(u∗(xt,yt+1, zt),yt+1, zt)−
λ

2
∥xt − u∗(xt,yt+1, zt)∥2

= K(u∗(xt,yt, zt),yt, zt)−K(u∗(xt,yt, zt),yt+1, zt)

+K(u∗(xt,yt, zt),yt+1, zt) +
λ

2
∥xt − u∗(xt,yt, zt)∥2

−K(u∗(xt,yt+1, zt),yt+1, zt)−
λ

2
∥xt − u∗(xt,yt+1, zt)∥2, (35)

where the second equality adds and subtracts K(u∗(xt,yt, zt),yt+1, zt).
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From the definition of K in (22), it trivially follows that

K(u∗(xt,yt, zt),yt, zt)−K(u∗(xt,yt, zt),yt+1, zt) = ⟨yt − yt+1, Au
∗(xt,yt, zt)− b⟩.

Next, we use the property that K(·,yt+1, zt) +
λ
2 ∥ · −xt∥2 is γs-strongly convex with minimizer u∗(xt,yt+1, zt) (see

Fact A.1 and (23)) to obtain

K(u∗(xt,yt, zt),yt+1, zt) +
λ

2
∥xt − u∗(xt,yt, zt)∥2 −K(u∗(xt,yt+1, zt),yt+1, zt)−

λ

2
∥xt − u∗(xt,yt+1, zt)∥2

≥ γs
2
∥u∗(xt,yt, zt)− u∗(xt,yt+1, zt)∥2.

Combining the last two estimates in (35) gives the first assertion.

Next, we analyze the effect of changing the z component in φ1/λ. Similar to the proof of the first assertion, we start with the
definition of φ1/λ and then add and subtract K(u∗(xt,yt+1, zt+1) to obtain

φ1/λ(xt,yt+1, zt)− φ1/λ(xt,yt+1, zt+1)

= K(u∗(xt,yt+1, zt),yt+1, zt) +
λ

2
∥xt − u∗(xt,yt+1, zt)∥2

−K(u∗(xt,yt+1, zt+1),yt+1, zt+1)−
λ

2
∥xt − u∗(xt,yt+1, zt+1)∥2

= K(u∗(xt,yt+1, zt),yt+1, zt)−K(u∗(xt,yt+1, zt),yt+1, zt+1)

+K(u∗(xt,yt+1, zt),yt+1, zt+1) +
λ

2
∥xt − u∗(xt,yt+1, zt)∥2

−K(u∗(xt,yt+1, zt+1),yt+1, zt+1)−
λ

2
∥xt − u∗(xt,yt+1, zt+1)∥2. (36)

First, by definition, of K, it trivially follows that

K(u∗(xt,yt+1, zt),yt+1, zt)−K(u∗(xt,yt+1, zt),yt+1, zt+1) =
µ

2
∥u∗(xt,yt+1, zt)− zt∥2

− µ

2
∥u∗(xt,yt+1, zt)− zt+1∥2.

For the remaining terms on the right-hand side, we again use that K(·,yt+1, zt+1) +
λ
2 ∥ · −xt∥2 is γs-strongly convex with

minimizer u∗(xt,yt+1, zt+1) to deduce

K(u∗(xt,yt+1, zt),yt+1, zt+1) +
λ

2
∥xt − u∗(xt,yt+1, zt)∥2

−K(u∗(xt,yt+1, zt+1),yt+1, zt+1)−
λ

2
∥xt − u∗(xt,yt+1, zt+1)∥2

≥ γs
2
∥u∗(xt,yt+1, zt+1)− u∗(xt,yt+1, zt)∥2.

Plugging in the last two estimates in (36) gives the second assertion. ■

Corollary A.7. Suppose that Assumption 1.1 holds, for φ1/λ defined in (10), if λ = 2LK and τ ≤ 1
6λ , we have that

Eφ1/λ(xt,yt, zt)− Eφ1/λ(xt+1,yt+1, zt+1) ≥
τλ2

16
E∥u∗(xt,yt+1, zt)− xt∥2

−
(
λτµ

2
+ λτ2µ2 +

τλ2µ2

8γ2
s

)
E∥zt − zt+1∥2 −

λτ2σ2

2

− ηE⟨Axt − b, Au∗(xt,yt, zt)− b⟩

+
µ

2
E⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− zt+1 − zt⟩,

where γs = 2µ+ ρ∥A∥.
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Proof. We sum up the results in Lemma A.5 and Lemma A.6, plug in the definition of yt+1 and discard two nonnegative
terms on the right-hand side to get the result. ■

Next, we analyze the rest of the terms appearing in the potential function. This lemma is only using the definition of d(y, z)
and Ψ(z) and is equivalent to (Zhang & Luo, 2022) and hence we omit its proof. Notably, these bounds are agnostic to
the algorithm used to generate the sequences. Note that the only difference is that in the result below, we do not use the
definition of yt+1 whereas the proof in (Zhang & Luo, 2022) uses this definition. The rest of the estimations are precisely
the same.

Lemma A.8. (Zhang & Luo, 2020, Lemma 3.2, Lemma 3.3) For the functions d(y, z) and Ψ(z) defined in (12) and (7),we
have

d(yt+1, zt+1)− d(yt, zt) ≥ η⟨Axt − b, Ax∗(yt+1, zt)− b⟩+ µ

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩,

Ψ(zt+1)−Ψ(zt) ≤ µ⟨zt+1 − zt, zt − x̄∗(zt)⟩+
µ

2σ4
∥zt − zt+1∥2,

where σ4 is defined in (25).

In the next lemma, we will join the previous lemmas and characterize the change in the potential function.

Lemma A.9 (cf. Lemma 3.6). Let Assumption 1.1 hold. By using the parameters (25) in Algorithm 1, we obtain

EVt − EVt+1 ≥ cβE∥zt+1 − zt∥2 + cτE∥u∗(xt,yt+1, zt)− xt∥2 + cηE∥Ax∗(yt+1, zt)− b∥2 − 1

2
λτ2σ2, (37)

where cβ = µ
50β , cτ = 7τλ2

400 , cη = η
4 .

Proof. Combining Corollary A.7 and Lemma A.8, we obtain

E[Vt − Vt+1] = E
[
φ1/λ(xt,yt, zt)− φ1/λ(xt+1,yt+1, zt+1) + 2d(yt+1, zt+1)− 2d(yt, zt) + 2Ψ(zt)− 2Ψ(zt+1)

]
≥ τλ2

16
E∥u∗(xt,yt+1, zt)− xt∥2 −

(
λτµ

2
+ λτ2µ2 +

τλ2µ2

8γ2
s

)
E∥zt − zt+1∥2 −

λτ2σ2

2

− ηE⟨Axt − b, Au∗(xt,yt, zt)− b⟩+ µ

2
E⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− zt − zt+1⟩

+ 2ηE⟨Axt − b, Ax∗(yt+1, zt)− b⟩+ µE⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩

− 2µE⟨zt+1 − zt, zt − x̄∗(zt)⟩ −
µ

σ4
E∥zt − zt+1∥2. (38)

We next manipulate the terms on the right-hand side. First, by adding and subtracting Axt on the second argument of the
first inner product on the right-hand side, we get

−η⟨Axt − b, Au∗(xt,yt, zt)− b⟩ = −η∥Axt − b∥2 − η⟨Axt − b, Au∗(xt,yt, zt)−Axt⟩.

Consequently, we use this estimate and rewrite the third inner product on the right-hand side of (38) with quadratics to have

− η⟨Axt − b, Au∗(xt,yt, zt)− b⟩+ 2η⟨Axt − b, Ax∗(yt+1, zt)− b⟩
= −η∥Axt −Ax∗(yt+1, zt)∥2 + η∥Ax∗(yt+1, zt)− b∥2 − η⟨Axt − b, Au∗(xt,yt, zt)−Axt⟩.

Second, adding and subtracting 2xt in the second argument of the second inner product on the right-hand side of (38) gives

µ

2
⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− zt − zt+1⟩ =
µ

2
⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− 2xt⟩+
µ

2
⟨zt+1 − zt, 2xt − zt − zt+1⟩.

For the right-hand side of this term, note that zt+1 = zt + β(xt − zt) ⇐⇒ 2xt − 2zt =
2
β (zt+1 − zt) and hence

µ

2
⟨zt+1 − zt, 2xt − zt − zt+1⟩ =

µ

2
⟨zt+1 − zt, 2xt − 2zt⟩+

µ

2
⟨zt+1 − zt, zt − zt+1⟩

=
µ

2

(
2

β
− 1

)
∥zt − zt+1∥2 ≥ µ

2β
∥zt − zt+1∥2,
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where the last inequality is due to β ≤ 1.

Next, for the remaining inner products in (38), we have

µ⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩ − 2µ⟨zt+1 − zt, zt − x̄∗(zt)⟩
= µ∥zt+1 − zt∥2 + 2µ⟨zt+1 − zt, x̄

∗(zt)− x∗(yt+1, zt+1)⟩. (39)

We can use Cauchy-Schwarz, triangle and Young’s inequalities on the second term here to get

⟨zt+1 − zt, x̄
∗(zt)− x∗(yt+1, zt+1)⟩ ≥ −∥zt+1 − zt∥(∥x̄∗(zt)− x∗(yt+1, zt)∥+ ∥x∗(yt+1, zt)− x∗(yt+1, zt+1)∥)

≥ −
(

1

2ζ
+

1

σ4

)
∥zt+1 − zt∥2 −

ζ

2
∥x̄∗(zt)− x∗(yt+1, zt)∥2,

where the last step also used (63). Consequently, plugging in this estimate to (39), we obtain

µ⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩ − 2µ⟨zt+1 − zt, zt − x̄∗(zt)⟩

≥
(
µ− µ

ζ
− 2µ

σ4

)
∥zt+1 − zt∥2 − µζ∥x̄∗(zt)− x∗(yt+1, zt)∥2.

After combining these estimates in (38), we get

E[Vt]− E[Vt+1]

≥ τλ2

16
E∥u∗(xt,yt+1, zt)− xt∥2 −

(
1

2
λτµ+ λτ2µ2 +

τλ2µ2

8γ2
s

+
µ

ζ
+

3µ

σ4
− µ− µ

2β

)
E∥zt − zt+1∥2 −

1

2
λτ2σ2

− ηE⟨Axt − b, Au∗(xt,yt, zt)−Axt⟩ − ηE∥Axt −Ax∗(yt+1, zt)∥2 + ηE∥Ax∗(yt+1, zt)− b∥2

− µζE∥x̄∗(zt)− x∗(yt+1, zt)∥2 + µE⟨zt+1 − zt,u
∗(xt,yt+1, zt)− xt⟩. (40)

We will now operate on some of terms from the right-hand side of (40), by using Lemma A.11 and A.12. First, we have by
Cauchy-Schwarz and Young’s inequalities that

− η⟨Axt − b, Au∗(xt,yt, zt)−Axt⟩

≥ −η

4
∥Axt − b∥2 − η∥Au∗(xt,yt, zt)−Axt∥2

≥ −η

4
∥Axt − b∥2 − 2η∥Au∗(xt,yt, zt)−Au∗(xt,yt+1, zt)∥2 − 2η∥Au∗(xt,yt+1, zt)−Axt∥2.

Next, by using the Lipschitzness of u∗(xt, ·, zt) from (60), we have

∥Au∗(xt,yt, zt)−Au∗(xt,yt+1, zt)∥2 ≤ ∥A∥2∥u∗(xt,yt, zt)− u∗(xt,yt+1, zt)∥2

≤ ∥A∥4

γ2
s

∥yt − yt+1∥2

=
∥A∥4η2

γ2
s

∥Axt − b∥2,

where the last step also used the definition of yt+1. Using this estimation along with (66) gives

− η⟨Axt − b, Au∗(xt,yt, zt)−Axt⟩

≥ −
(
η

4
+

2∥A∥4η3

γ2
s

)
∥Axt − b∥2 − 2η∥A∥2∥u∗(xt,yt+1, zt)− xt∥2

≥ −
(
η∥A∥2λ2

2γ2
+

4∥A∥6η3λ2

γ2γ2
s

+ 2η∥A∥2
)
∥u∗(xt,yt+1, zt)− xt∥2

−
(
η

2
+

4∥A∥4η3

γ2
s

)
∥Ax∗(yt+1, zt)− b∥2.
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We next have by Young’s inequality that for any θ > 0:

µ⟨zt+1 − zt,u
∗(xt,yt+1, zt)− xt⟩ ≥ − µ

4θ
∥zt+1 − zt∥2 − θµ∥u∗(xt,yt+1, zt)− xt∥2.

The inequality derived in (65) directly implies

−η∥Axt −Ax∗(yt+1, zt)∥2 ≥ −η∥A∥2λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2.

The key global error bound given in Lemma A.12 originally proved in (Zhang & Luo, 2022) results in

−6µβ∥x∗(yt+1, zt)− x̄∗(zt)∥2 ≥ −6µβσ̄2∥Ax∗(yt+1, zt)− b∥2.

Combining these estimates in (40) leads to

E[Vt]− E[Vt+1] ≥ −
(
1

2
λτµ+ λτ2µ2 +

τλ2µ2

8γ2
s

+
µ

ζ
+

3µ

σ4
− µ− µ

2β
+

µ

4θ

)
E∥zt − zt+1∥2 −

1

2
λτ2σ2

+

(
τλ2

16
− 3∥A∥2λ2η

2γ2
− 4∥A∥6η3λ2

γ2
sγ

2
− 2η∥A∥2 − µθ

)
E∥u∗(xt,yt+1, zt)− xt∥2

+

(
η

2
− 4∥A∥4η3

γ2
s

− 6µβσ̄2

)
E∥Ax∗(yt+1, zt)− b∥2. (41)

We now estimate the coefficients inside the parantheses, with straightforward but tedious calculations which follow from the
parameter settings.

First, we estimate the coefficient of E∥zt − zt+1∥2 in (41): Let µ ≥ 4Lf , we have σ4 ≥ 1
2 because σ4 =

µ−Lf

µ . Then
letting ζ = 6β, β < 1

30 , we have

µ− 3µ

σ4
≥ −5µ ≥ − µ

6β
,

µ

ζ
=

µ

6β
.

Therefore, we have that
µ

2β
+ µ− 3µ

σ4
− µ

ζ
≥

(
1

2
− 1

6
− 1

6

)
µ

β
≥ µ

6β
. (42)

Hence, we estimate:

coefficient of E∥zt − zt+1∥ ≥ −1

2
λτµ− λτ2µ2 − τλ2µ2

8γ2
s

+
µ

6β
− µ

8β
.

Let η = η′

2∥A∥2 , θ = 2β, η′ ≤ 1
40 , and µ = max{2, 4Lf}, λ = 2LK = 2(Lf +ρ∥A∥+µ), τ ≤ 1

10λ2 , and γs = µ−Lf +γ

from Fact A.1. We have −λτµ ≥ − µ
10 and −2λτ2µ2 ≥ − µ

100 , then

coefficient of E∥zt − zt+1∥ ≥ µ

24β
− µ

20
− µ

100
− τλ2 µ2

(µ− Lf + λ)2
.

By β ≤ 1/30, we have 1
24β − 1

20 − 1
100 ≥ 1

30β . In addition, using τλ2 µ2

(µ−Lf+λ)2 ≤ τλ2 ≤ 1
10 , we fanally obtain:

coefficient of E∥zt − zt+1∥ ≥ µ

30β
− 1

10

µ≥2

≥ µ

50β
. (43)

Then we estimate the coefficient of E∥u∗(xt,yt+1, zt)− xt∥2 in (41).

From above assumptions, we can easily get γ =
(µ−Lf )λ
µ−Lf+λ ≥ 1

2 because λ ≥ µ ≥ 2. Moreover, we assume η′ ≤
τ
40 ,

η′

µ−Lf+λ ≤ τ
10 , β ≤ τ

40 First, by our new notations, we have

coefficient of E∥u∗(xt,yt+1, zt)− xt∥2 =
τλ2

16
− 3η′λ2

4γ2
− η′3λ2

2γ2γ2
s

− η′ − 2µβ
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By γ ≥ 1
2 and the definition of γs, we have − 3η′λ2

4γ2 ≥ −3η′λ2, − η′3λ2

2γ2γ2
s
≥ − η′3λ2

(µ−Lf+λ)2 , Then

coefficient of E∥u∗(xt,yt+1, zt)− xt∥2 ≥ τλ2

16
− 3η′λ2 − 2η′3λ2

(µ− Lf + λ)2
− η′ − 2µβ.

With 2 ≤ µ ≤ λ, η′ ≤ τ
100 ,

η′

µ−Lf+λ ≤ τ
10 , β ≤ τ

200 , we can obtain −3η′λ2 ≥ − 3τλ2

400 , − 2η′3λ2

(µ−Lf+λ)2 ≥ −λ2τ2

400 ≥ −λ2τ
400 ,

−η′ ≥ − τ
100 ≥ − τλ2

100 , −2µβ ≥ − τµ
50

µ≤λ

≥ − τλ
50 ≥ − τλ2

100 . Hence,

coefficient of E∥u∗(xt,yt+1, zt)− xt∥2 ≥ τλ2

16
− 3τλ2

100
− τλ2

400
− τλ2

400
− τλ2

100
=

7τλ2

400
. (44)

Last, we estimate the coefficient of E∥Ax∗(yt+1, zt) − b∥2 in (41). By 6µβσ̄2 ≤ η
6 and the definition η′, γs, we have

− 4∥A∥2η3

γ2
s

= − η′2η
(µ−Lf+λ)2

η′
µ−Lf+λ≤ τ

10

≥ −ητ2

100 ≥ − η
100 and −6µβσ̄2 ≥ −η

6 . Hence, we have

coefficient of E∥Ax∗(yt+1, zt)− b∥2 ≥ η

2
− η

100
− η

6
≥ η

4
. (45)

Plugging (43), (44) and (45) to (41), we finish the proof. ■

A.2. Proof of Theorem 3.1

Proof of Theorem 3.1. We start from the result in Lemma A.9. First, it follows from the definition of zt+1 that

∥zt − zt+1∥ = β∥xt − zt∥.

So, we rewrite (37), as:

EVt − EVt+1 ≥ β2cβE∥xt − zt∥2 + cτE∥u∗(xt,yt+1, zt)− xt)∥2 + cηE∥Ax∗(yt+1, zt)− b∥2 − 1

2
λτ2σ2. (46)

For t > 0, we have Vt ≥ f , which is proven in Lemma A.13. It then follows that

T−1∑
t=0

(EVt − EVt+1) = V0 − EVT ≤ V0 − f. (47)

Then, summing up (46), using (47), and the fact that cτ = Θ(τ), cη = Θ(τ), β2cβ = Θ(τ) from (25), we have

V0 − f +
1

2
Tλτ2σ2 ≥

T∑
t=1

C0τ
[
E∥xt − zt∥2 + E∥u∗(xt,yt+1, zt)− xt∥2 + E∥Ax∗(yt+1, zt)− b∥2

]
,

for some explicit constant C0.

Dividing both sides by T , rearranging and using the definition τ = 1
6λ2

√
T

gives

1

T

T−1∑
t=0

E∥xt − zt∥2 + E∥u∗(xt,yt+1, zt)− xt∥2 + E∥Ax∗(yt+1, zt)− b∥2 ≤ 1

C0

√
T

(
6λ(V0 − f) +

σ2

12

)
. (48)

Since we have
∇Ψ(zt) = µ(zt − x̄∗(zt)),
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by Danskin’s theorem, we deduce for any t

1

µ2
∥∇Ψ(zt)∥ = ∥zt − x̄∗(zt)∥

≤ ∥zt − x∗(yt+1, zt)∥+ ∥x∗(yt+1, zt)− x̄∗(zt)∥
≤ ∥zt − x∗(yt+1, zt)∥+ σ̄∥Ax∗(yt+1, zs)− b∥
≤ ∥zt − xt∥+ ∥xt − x∗(yt+1, zt)∥+ σ̄∥Ax∗(yt+1, zt)− b∥

≤ ∥zt − xt∥+
λ

γ
∥xt − u∗(xt,yt+1, zt)∥+ σ̄∥Ax∗(yt+1, zt)− b∥,

where the first inequality is by triangle inequality, the second by (A.12), the third by triangle inequality and the fourth by
(58).

Next, we take square of both sides, take expectation, use Young’s inequality, sum for all t = 0, 1, . . . , T − 1, divide by T
and use (48) to derive

1

µ2

1

T

T−1∑
t=0

E∥∇Ψ(zt)∥2 ≤ 1

T

T−1∑
t=0

E
[
3∥zt − xt∥2 +

3λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2 + 3σ̄2∥Ax∗(yt+1, zt)− b∥2

]
= O

(
1√
T

)
.

The result then follows since t∗ is selected uniformly at random from {0, 1, 2, . . . , T − 1}. ■

A.3. Proof of Corollary 3.2

Proof of Corollary 3.2. From the definition of x̂, we have

0 ∈ Ĝ(xt,yt+1, zt) +
2

τ
(x̂− xt) + ∂IX(x̂).

Let us set
v = ∇xK(x̂,yt+1, zt)− Ĝ(xt,yt+1, zt)−

2

τ
(x̂− xt)− ρAT (Ax̂− b)− µ(x̂− zt). (49)

Combining with the optimality condition, we have

v ∈ ∇xK(x̂,yt+1, zt)− ρAT (Ax̂− b)− µ(x̂− zt) + ∂IX(x̂)

= ∇f(x̂) +ATyt+1 + ∂IX(x̂).

Hence, we need to estimate E∥Ax̂− b∥ and E∥v∥.

For the mini-batch gradient in the post-processing step, we have

E∥Ĝ(x,y, z)−∇K(x,y, z)∥2 ≤ σ2

B
. (50)

which is a standard calculation, see for example, (Lan, 2020, Section 5.2.3). Since B = Θ(ε−2), this gives us

E∥Ĝ(x,y, z)−∇K(x,y, z)∥2 ≤ ε2. (51)

First, let us note that the purpose of x̂ is to estimate u∗(xt,yt+1, zt), where

u∗(xt,yt+1, zt) = arg min
u∈X

{l(u) := K(u,yt+1, zt) +
λ

2
∥xt − u∥2}.

Note that the gradient of this objective is

∇l(u) = ∇xK(x,yt+1, zt) + λ(x− xt).
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As a result, we have ∇l(xt) = ∇xK(xt,yt+1, zt).

Let us also denote
x∗
t = projX(xt − τ∇l(xt)).

That is, x∗
t is the output of doing a full-gradient step on xt. Of course, this is not tractable in our setting, but we only use

this as a theoretical tool.

Since this is a GD step on the objective l which is LK-smooth and convex with optimizer u∗(xt,yt+1, zt), the standard
analysis for GD gives

∥x∗
t − u∗(xt,yt+1, zt)∥2 ≤ ∥xt − u∗(xt,yt+1, zt)∥2, (52)

as long as τ ≤ 1
LK

.

Next, by the definitions of x∗
t and x̂, along with nonexpansiveness of the projection, we have

E∥x∗
t − x̂∥2 ≤ Eτ2∥Ĝ(xt,yt+1, zt+1)−∇xK(xt,yt+1, zt)∥2

≤ τ2ε2, (53)

where the second inequality used (51).

In view of (49), we estimate ∥v∥ as

∥v∥ ≤ ∥∇xK(xt,yt+1, zt)− Ĝ(xt,yt+1, zt)∥+ LK∥xt − x̂∥+ 2

τ
∥x̂− xt∥+ ρ∥A∥∥Ax̂− b∥+ µ∥x̂− zt∥.

On this, multiple applications of triangle inequality give

∥x̂− xt∥ ≤ ∥x̂− x∗
t ∥+ ∥x∗

t − u∗(xt,yt+1, zt)∥+ ∥u∗(xt,yt+1, zt)− xt∥
≤ ∥x̂− x∗

t ∥+ 2∥u∗(xt,yt+1,xt)− xt∥, (54)

where the second line is due to (52).

For the feasibility, we have by triangle inequality that

∥x̂− zt∥ ≤ ∥x̂− xt∥+ ∥xt − zt∥. (55)

As a result, we have that

∥v∥ = O
(
∥x̂− x∗

t ∥+ ∥xt − u∗(xt,yt+1, zt)∥+ ∥Ax̂− b∥+ ∥xt − zt∥
+ ∥∇xK(xt,yt+1, zt)− Ĝ(xt,yt+1, zt)∥

)
. (56)

For the feasibility, we have

∥Ax̂− b∥ ≤ ∥Ax̂−Axt∥+ ∥Axt − b∥
≤ ∥A∥∥x̂− xt∥+ ∥Axt − b∥.

Now, by invoking the above inequality for t = t∗, taking expectation, using Young’s inequality, (54), (53) and (48) along
with (66), we get that

E∥Ax̂− b∥2 ≤ ε2, (57)

since T = Ω(ε−4).

Finally, using t = t∗, taking square and then expectation of (56), using Young’s inequality and then combining (57), (53),
(51) and (48) gives the result since T = Ω(ε−4). ■
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A.4. Auxiliary Results

Lemma A.10. Under Assumption 1.1, for any x, z, z′ ∈ X , we have

λ

γ
∥x− u∗(x,y, z)∥ ≥ ∥x− x∗(y, z)∥, (58)

∥u∗(x,y, z)− x∥ ≤ ∥x− x∗(y, z)∥, (59)

∥u∗(x,y, z)− u∗(x,y′, z)∥ ≤ ∥A∥
γs

∥y − y′∥, (60)

∥u∗(x,y, z)− u∗(x,y, z′)∥ ≤ µ

γs
∥z− z′∥, (61)

∥z′ − z∥ ≥ µ− Lf

µ
∥x∗(y, z′)− x∗(y, z)∥, (62)

∥y′ − y∥ ≥ γK
∥A∥

∥x∗(y′, z)− x∗(y, z)∥, (63)

∥x̄∗(z)− x̄∗(z′)∥ ≤ µ

µ− Lf
∥z− z′∥, (64)

where γ =
(µ−Lf )λ
µ−Lf+λ , γs = µ− Lf + λ, γK = µ− Lf .

Proof. The proofs for (62), (63), and (64) appear in (Zhang & Luo, 2022), so we omit these proofs.

We first prove (58). Let us note that x∗(y, z) minimizes φ1/λ, see for example (Hiriart-Urruty & Lemarechal, 1993,
Theorem XV4.1.7). As a result, we have ∇xφ1/λ(x

∗(y, z),y, z) = 0. From Lemma A.3, we have that φ1/λ(·, y, z) is
γ =

(µ−Lf )λ
µ−Lf+λ -strongly convex.

Then, by strong convexity, we have

⟨∇xφ1/λ(x
∗(y, z),y, z)−∇xφ1/λ(x,y, z),x

∗(y, z)− x⟩ ≥ γ∥x− x∗(y, z)∥2

⇐⇒ ∥∇xφ1/λ(x,y, z)∥ ≥ γ∥x− x∗(y, z)∥,

where the inclusion used ∇xφ1/λ(x
∗(y, z),y, z) = 0 established in the previous paragraph as well as Cauchy-Schwarz

inequality. Then, using ∇xφ1/λ(x,y, z) = λ(x− u∗(x,y, z)), we obtain (58).

From definition of u∗(x,y, z), we have,

K(u∗(x,y, z),y, z) +
λ

2
∥x− u∗(x,y, z)∥2 ≤ K(x∗(y, z),y, z)

λ

2
∥x− x∗(y, z)∥2,

where we also remark that x∗(y, z) ∈ X . Combining with K(x ∗ (y, z),y, z) ≤ K(u∗(x,y, z),y, z), which follows from
the definition of x∗(y, z) we have (59).

The proofs of the other two assertions will use a similar idea to (Zhang & Luo, 2022), but there will be differences in the
estimations since this previous work did not use the function φ1/λ.

For (60), we proceed by using the definition of φ1/λ and adding and subtracting K(u∗(x,y′, z),y, z) to get

K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y′, z),y′, z)− λ

2
∥u∗(x,y′, z)− x∥2

=K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2

−K(u∗(x,y′, z),y, z)− λ

2
∥u∗(x,y′, z)− x∥2

+K(u∗(x,y′, z),y, z)−K(u∗(x,y′, z),y′, z)

≤ −γs
2

∥u∗(x,y, z)− u∗(x,y′, z)∥2 + ⟨y − y′, Au∗(x,y′, z)− b⟩,
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where last step uses u 7→ K(u,y, z) + λ
2 ∥u− x∥2 being γs-strongly convex (cf. Fact A.1) with minimizer u∗(x,y, z), as

well as the definition of K.

We then argue similarly, this time adding and subtracting K(u∗(x,y, z),y′, z):

K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y′, z),y′, z)− λ

2
∥u∗(x,y′, z)− x∥2

=K(u∗(x,y, z),y′, z) +
λ

2
∥u∗(x,y, z)− x∥2

−K(u∗(x,y′, z),y′, z)− λ

2
∥u∗(x,y′, z)− x∥2

−K(u∗(x,y, z),y′, z) +K(u∗(x,y, z),y, z)

≥ γs
2
∥u∗(x,y, z)− u∗(x,y′, z)∥2 + ⟨y − y′, Au∗(x,y, z)− b⟩.

where last step uses that u 7→ K(u,y′, z) + λ
2 ∥u− x∥2 is γs-strongly convex (cf. Fact A.1) with minimizer u∗(x,y′, z)

and the definition of K.

Combining the last two estimates give

⟨y − y′, Au∗(x,y′, z)−Au∗(x,y, z)⟩ ≥ γs∥u∗(x,y, z)− u∗(x,y′, z)∥2.

Using Cauchy-Schwarz inequality and the definition of operator norm gives (60).

The proof of (61) is similar to the proof of (60), just completed. In particular, by adding and subtracting K(u∗(x,y, z),y, z′),
we have

K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y, z′),y, z′) +

λ

2
∥u∗(x,y, z′)− x∥2

= K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y, z′),y, z)− λ

2
∥u∗(x,y, z′)− x∥2

−K(u∗(x,y, z′),y, z′) +K(u∗(x,y, z′),y, z)

≤ −γs
2
∥u∗(x,y, z)− u∗(x,y, z′)∥2 + µ

2
(∥u∗(x,y, z′)− z∥2 − ∥u∗(x,y, z′)− z′∥2),

where we used that u 7→ K(u,y, z) + λ
2 ∥u− x∥2 is γs-strongly convex with minimizer u∗(x,y, z) and the definition of

K.

Finally, we add and subtract K(u∗(x,y, z′),y, z) to get

K(u∗(x,y, z),y, z) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y, z′),y, z′)− λ

2
∥u∗(x,y, z′)− x∥2

= K(u∗(x,y, z),y, z′) +
λ

2
∥u∗(x,y, z)− x∥2 −K(u∗(x,y, z′),y, z)− λ

2
∥u∗(x,y, z′)− x∥2

+K(u∗(x,y, z),y, z)−K(u∗(x,y, z),y, z′)

≥ γs
2
∥u∗(x,y, z)− u∗(x,y, z′)∥2 + µ

2
(∥u∗(x,y, z)− z∥2 − ∥u∗(x,y, z)− z′∥2),

where we used that u 7→ K(u,y, z′) + λ
2 ∥u− x∥2 is γs-strongly convex with minimizer u∗(x,y, z′) and the definition of

K.

Combining the last two inequalities give

µ⟨u∗(x,y, z′)− u∗(x,y, z), z′ − z⟩ ≥ γs∥u∗(x,y, z)− u∗(x,y, z′)∥2.

Using Cauchy-Schwarz inequality concludes the proof. ■
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Lemma A.11. Under Assumption 1.1, for xt,yt+1, zt generated by Algorithm 1, we have

∥Axt −Ax∗(yt+1, zt)∥2 ≤ ∥A∥2λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2, (65)

∥Axt − b∥2 ≤ 2∥A∥2λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2 + 2∥Ax∗(yt+1, zt)− b∥2, (66)

∥Au∗(xt,yt, zt)−Axt∥2 ≤ 2∥A∥4

γ2
s

∥yt − yt+1∥2 + 2∥A∥2∥u∗(xt,yt+1, zt)− xt∥2, (67)

where γ, γs are defined in (25).

Proof. The assertion in (65) follows directly from (58) since

∥Axt −Ax∗(yt+1, zt)∥2 ≤ ∥A∥2∥xt − x∗(yt+1, zt)∥2 ≤ ∥A∥2λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2.

Combining the first assertion with Young’s inequality gives the second assertion, since

∥Axt − b∥2 ≤ 2∥Axt −Ax∗(yt+1, zt)∥2 + 2∥Ax∗(yt+1, zt)− b∥2

≤ 2∥A∥2λ2

γ2
∥xt − u∗(xt,yt+1, zt)∥2 + 2∥Ax∗(yt+1, zt)− b∥2.

Young’s inequality and (60) gives the third assertion

∥Au∗(xt,yt, zt)−Axt∥2 ≤ 2∥Au∗(xt,yt, zt)−Au∗(xt,yt+1, zt)∥2 + 2∥Au∗(xt,yt+1, zt)−Axt∥2

≤ 2∥A∥4

γ2
s

∥yt − yt+1∥2 + 2∥A∥2∥u∗(xt,yt+1, zt)− xt∥2.

The proof is completed. ■

The following important lemma is known as the global error bound in (Zhang & Luo, 2022). This global result holds in its
entirety in our case, so we only state it here and refer to where it appeared originally for the precise definition of the constant
σ̄ which depends on Hoffman constant of certain linear systems.

Lemma A.12. (Zhang & Luo, 2022, Lemma 3.2) If µ > Lf , then we have

∥x∗(y, z)− x̄∗(z)∥ ≤ σ̄∥Ax∗(y, z)− b∥ for any y, z,

where σ̄ > 0 depends only on the constants C1 = (Lf + ρ∥A∥2 +µ), C2 = −Lf +µ, and the matrices A,H and is always
finite.

Lemma A.13. If (x, z) ∈ X ×X , we have φ1/λ(x,y, z)− 2d(y, z) + 2Ψ(z) ≥ f .

Proof. Because x∗(y, z) minimizes φ1/λ(·,y, z) (see for example (Hiriart-Urruty & Lemarechal, 1993, Theorem XV4.1.7)),
we have

φ1/λ(x,y, z) ≥ φ1/λ(x
∗(y, z),y, z) = K(x∗(y, z),y, z).

We can then deduce

φ1/λ(x,y, z)− 2d(y, z) + 2Ψ(z) ≥ K(x∗(y, z),y, z)− 2d(y, z) + 2Ψ(z)

= d(y, z)− 2d(y, z) + 2Ψ(z)

= Ψ(z) + Ψ(z)− d(y, z)

≥ Ψ(z)

≥ f
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The second inequality in the above chain comes from definition, that is, denoting x∗
µ = argminx∈X,Ax=b{f(x) +

µ
2 ∥x−

z∥2} in view of (7), we have

d(y, z) = min
x∈X

K(x,y, z) ≤ K(x∗
µ,y, z) = f(x∗

µ) +
µ

2
∥x∗

µ − z∥2 = Ψ(z),

where the first inequality also uses x∗
µ ∈ X , which is by definition. ■

B. Proofs for Section 4
Notation. In this section, we have ∥∇f(x, ξt) − ∇f(xt)∥2 ≤ σ2 and E∥Aζtxt − bζt∥2 ≤ L, then we denote the
boundedness of variance as E∥G(xt,yt, zt, ξt)−∇xK(xt,yt, zt)∥2 ≤ σ2

2 , where the boundedness is proved in B.2.

We start with some helper lemmas before proving Theorem 4.3.

Lemma B.1. Let Assumption 4.1 hold. With the update rule of yt+1 = yt + η(Aζtxt − bζt), where Eζt [Aζtxt − bζt ] =
Axt − b, we have

Ed(yt+1, zt+1)− Ed(yt.zt) ≥ ηE⟨(Axt − b), Ax∗(yt+1, zt)− b⟩ − η2

32
E∥Axt − b∥2 −

(
1

2
+

17∥A∥4

2γK

)
η2L2

+
µ

2
E⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩,

EΨ(zt+1)− EΨ(zt) ≤ µE⟨zt+1 − zt, zt − x̄∗(zt)⟩+
µ

2σ4
E∥zt − zt+1∥2,

(68)

where γK , σ4 are introduceed in A.10, and by Assumption 4.1, we have E∥Aζtxt − bζt∥2 ≤ L for some finite L.

Proof. It is easy to derive, for example as (Zhang & Luo, 2020, Lemma 3.2), that

d(yt+1, zt+1)− d(yt, zt) ≥ ⟨yt+1 − yt, Ax
∗(yt+1, zt)− b⟩+ µ

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩.

Hence, by using the update rule of yt+1, we get

d(yt+1, zt+1)− d(yt, zt) ≥ ⟨yt+1 − yt, Ax
∗(yt, zt)− b⟩+ ⟨yt+1 − yt, Ax

∗(yt+1, zt)−Ax∗(yt, zt)⟩

+
µ

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩

≥ ⟨yt+1 − yt, Ax
∗(yt, zt)− b⟩ − 1

2
∥yt+1 − yt∥2 −

1

2
∥Ax∗(yt+1, zt)−Ax∗(yt, zt)∥2

+
µ

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩

≥ ⟨η(Aζtxt − bζt), Ax
∗(yt, zt)− b⟩ − 1

2
η2L2 − ∥A∥4

2γ2
K

∥yt+1 − yt∥2

+
µ

2
⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩,

where we use Cauchy-Schwarz inequality in the second step, and the last inequality comes from the bound of E∥Aζtxt −
bζt∥2 also (63).

After taking expectation and using tower property along with yt, zt being deterministic under the conditioning, we have

Ed(yt+1, zt+1)− Ed(yt, zt) ≥ E⟨η(Axt − b), Ax∗(yt, zt)− b⟩ − 1

2
η2L2 − ∥A∥4

2γ2
K

E∥yt+1 − yt∥2

+
µ

2
E⟨zt+1 − zt, zt+1 + zt − 2x(yt+1, zt+1)⟩.
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Then we estimate as

E⟨η(Axt − b), Ax∗(yt, zt)− b⟩ − 1

2
η2L2 − ∥A∥4

2γ2
K

E∥yt+1 − yt∥2

≥ηE⟨(Axt − b), Ax∗(yt, zt)− b⟩ −
(
1

2
+

∥A∥4

2γ2
K

)
η2L2

=ηE[⟨(Axt − b), Ax∗(yt+1, zt)− b⟩+ η⟨(Axt − b),−Ax∗(yt+1, zt) +Ax∗(yt, zt)⟩]−
(
1

2
+

∥A∥4

2γ2
K

)
η2L2

≥ηE[⟨(Axt − b), Ax∗(yt+1, zt)− b⟩ − 8∥Ax∗(yt+1, zt)−Ax∗(yt, zt)∥2]−
η2

32
∥Axt − b∥2 −

(
1

2
+

∥A∥4

2γ2
K

)
η2L2

≥ηE⟨(Axt − b), Ax∗(yt+1, zt)− b⟩ − η2

32
E∥Axt − b∥2 − 1

2
η2L2 − 17∥A∥4

2γ2
K

η2L2,

where the first inequality comes from E[∥Aζtxt − bζt∥2] ≤ L and the second inequality comes from ⟨a, b⟩ ≤ 1
32∥a∥

2 +
8∥b∥2(∀a, b). And in last inequality we use (63) again.

The estimation of EΨ(zt+1) − EΨ(zt) is the same as Lemma A.8. Because the randomness of ζt in the stochastic dual
update does not change the recursion in EΨ(zt+1) − EΨ(zt), where zt, zt+1 only depend on the randomness before ζt.
Hence we omit the proof here.

This completes the proof. ■

Lemma B.2. Let Assumption 1.1 and 4.1 hold. By using the parameters (25) in Algorithm 2, then in the iteration t+ 1, if
the dual update runs as yt+1 = yt + η(Aζtxt − bζt), we obtain

EVt − EVt+1 ≥ c̃βE∥zt+1 − zt∥2 + c̃τE∥u∗(xt,yt+1, zt)− xt∥2 + c̃ηE∥Ax∗(yt+1, zt)− b∥2

− λτ2σ2
2 −

(
1 +

17∥A∥4

γ2
K

)
η2L2,

(69)

where c̃β = µ
50β , c̃τ = 6τλ2

400 , c̃η = η
8 and E∥G(xt,yt, zt, ξt)−∇xK(xt,yt, zt)∥2 ≤ σ2

2 .

Proof. First, we show E∥G(xt,yt, zt, ξt)−∇xK(xt,yt, zt)∥2 is bounded.

Recall that in Equation (17) we have

G(x,y, z, ξ) = ∇f(x, ξ) +A⊤
ζ1y + ρA⊤

ζ1(Aζ2x− bζ2) + µ(x− z). (70)

We estimate by using Young’s inequalities

E∥G(xt,yt, zt, ξt)−∇xK(xt,yt, zt)∥2

≤ 2E∥G(xt,yt, zt, ξt)−G(xt, 0, zt, ξt)∥2 + 2E∥G(xt, 0, zt, ξt)−∇xK(xt,yt, zt)∥2

≤ 2ELG∥yt∥2 + 2E∥G(xt, 0, zt, ξt)−∇xK(xt,yt, zt)∥2

≤ 2ELG∥yt∥2 + 4E∥G(xt, 0, zt, ξt)−∇xK(xt, 0, zt)∥2 + 4E∥∇xK(xt, 0, zt)−∇xK(xt,yt, zt)∥2

≤ 2LGM
2
y + 4E∥G(xt, 0, zt, ξt)−∇xK(xt, 0, zt)∥2 + 4∥A∥2∥yt∥2,

where in second inequality we use LG is the Lipschitz constant of G with respect to variable y, then in third inequality we
use My as the upper bound of ∥yt∥.

Because xt,yt, zt are all bounded, E∥G(xt,yt, zt, ξt)−∇xK(xt,yt, zt)∥2 is bounded, we denote the upper bound as σ2
2 .

Note that Corollary A.7 still holds for xt,yt, zt,xt+1,yt+1, zt+1, but the variance σ is changed to σ2 (since this corollary
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and the lemmas used in its proof do not use the particular form of yt+1). Then combining with Lemma B.1, we have

E[Vt − Vt+1] = E
[
φ1/λ(xt,yt, zt)− φ1/λ(xt+1,yt+1, zt+1) + 2d(yt+1, zt+1)− 2d(yt, zt) + 2Ψ(zt)− 2Ψ(zt+1)

]
≥ τλ2

16
E∥u∗(xt,yt+1, zt)− xt∥2 −

(
λτµ

2
+ λτ2µ2 +

τλ2µ2

8γ2
s

)
E∥zt − zt+1∥2 −

λτ2σ2
2

2

− ηE⟨Axt − b, Au∗(xt,yt, zt)− b⟩+ µ

2
E⟨zt+1 − zt, 2u

∗(xt,yt+1, zt)− zt − zt+1⟩

+ 2ηE⟨Axt − b, Ax∗(yt+1, zt)− b⟩+ µE⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩

− 2µE⟨zt+1 − zt, zt − x̄∗(zt)⟩ −
µ

σ4
E∥zt − zt+1∥2 −

η2

32
E∥Axt − b∥2 −

(
1

2
+

17∥A∥4

2γ2
K

)
η2L2,

where −η2

32E∥Axt − b∥2 −
(

1
2 + 17∥A∥4

2γ2
K

)
η2L2 is the difference comparing to the deterministic linear constraints result in

Lemma A.9. We then estimate like Lemma A.9 to have

EVt − EVt+1 ≥ cβE∥zt+1 − zt∥2 + cτE∥u∗(xt,yt+1, zt)− xt∥2 + cηE∥Ax∗(yt+1, zt)− b∥2 − 1

2
λτ2σ2

2

− η2

16
E∥Axt − b∥2 −

(
1 +

17∥A∥4

γ2
K

)
η2L2, (71)

where cβ = µ
50β , cτ = 7τλ2

400 , cη = η
4 .

We also have by Young’s inequality and Lemma A.11 that

−η2

16
E∥Axt − b∥2 ≥ −∥A∥2λ2η2

8γ2
E∥xt − u∗(xt,yt+1, zt)∥2 −

η2

8
E∥Ax(yt+1, zt)− b∥2.

By the parameter choices, we have 7τλ2

400 − ∥A∥2λ2η2

8γ2 ≥ 6τλ2

400 and η
4 − η2

8 ≥ η
8 . Using these estimations in (71) gives the

proof. ■

Proposition B.3. Under Assumption 4.1, ∥yt∥ ≤ Ψ(zt)−d(yt,zt)+2M
r , where M = maxx,z∈X{|f(x)| + µ

2 ∥x − z∥2 +
ρ
2∥Ax− b∥2} and r > 0 is defined as ∥Ax̂− b∥ = r where x̂ is in the relative interior of the constraints. The existence of
this is guaranteed by our assumption.

Proof. Given x̃ ∈ X , we have

Ψ(zt)− d(yt, zt) ≥ f(x̄∗(zt)) +
µ

2
∥x̄∗(zt)− zt∥2 −K(x̃,yt, zt)

≥ f(x̄∗(zt)) +
µ

2
∥x̄∗(zt)− zt∥2 − [f(x̃) + ⟨yt, Ax̃⟩+

ρ

2
∥Ax̃− b∥2 + µ

2
∥x̃− zt∥2]

=
[
f(x̄∗(zt)) +

µ

2
∥x̄∗(zt)− zt∥2 − f(x̃)− µ

2
∥x̃− zt∥2

]
− ⟨yt, Ax̃− b⟩ − ρ

2
∥Ax̃− b∥2

=
[
f(x̄∗(zt)) +

µ

2
∥x̄∗(zt)− zt∥2 − f(x̃)− µ

2
∥x̃− zt∥2 −

ρ

2
∥Ax̃− b∥2

]
− ⟨yt, Ax̃− b⟩

≥ −2M − ⟨yt, Ax̃− b⟩,

where the first inequality comes from the definition of Ψ(zt) and

d(yt, zt) = min
x∈X

K(x,y, z).

Finally, in the last inequality, we let

M = max
(x,z)∈X×X

{|f(x)|+ µ

2
∥x− z∥2 + ρ

2
∥Ax− b∥2}.

As a result, we have the last inequality.
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According to Assumption 4.1(2), there exists a positive r > 0 such that for any direction d ∈ Range(A), we can find a
x ∈ X satisfying ∥Ax− b∥ = r and Ax− b has the same direction as d. Because yt ∈ Range(A) (by assumption 4.1(3),
Range(A) = Rm) we can choose x̃ such that Ax̃− b is of the same direction as −yt and ∥Ax̃− b∥ = r. Then we obtain

Ψ(zt)− d(yt, zt) ≥ −2M + r∥yt∥ =⇒ ∥yt∥ ≤ Ψ(zt)− d(yt, zt) + 2M

r
,∀t ∈ {0, 1, ..., T}.

This concludes the proof. ■

Proof of Theorem 4.3
Proof of Theorem 4.3. First, let MV = maxx,z∈X{K(x, 0, z) − 2d(0, z) + 2Ψ(z)} and My > MV −MΨ+2M

r where MΨ

is a uniform lower bound of Ψ(zt), for example, f .

Here, We denote the x,y, z generated by Algorithm 2 at iteration t as xt,yt, zt and the output of iteration t + 1 as
xt+1,yt+1, zt+1.

If ∥yt + η(Aζtxt − bζt)∥ ≤ My , then

E [V (xt,yt, zt)− V (xt+1,yt+1, zt+1)]

≥ c̃βE∥zt+1 − zt∥2 + c̃τE∥u∗(xt,yt+1, zt)− xt∥2 + c̃ηE∥Ax∗(yt+1, zt)− b∥2

− 1

2
λτ2σ2

2 −
(
1 +

17∥A∥4

γ2
K

)
η2L2

= c̃βE∥zt+1 − zt∥2 + c̃τE∥u∗(xt,yt + η(Aζtxt − bζt), zt)− xt∥2

+ c̃ηE∥Ax∗(yt + η(Aζtxt − bζt), zt)− b∥2 − 1

2
λτ2σ2

2 −
(
1 +

17∥A∥4

γ2
K

)
η2L2,

(72)

where the first inequality use Lemma B.2 and the equality comes from the update of yt+1 when ∥yt+η(Aζtxt−bζt)∥ ≤ My .

If ∥yt + η(Aζtxt − bζt)∥ > My, we have yt+1 = 0. Let us use ŷt+1, x̂t+1, ẑt+1 denote the iteration generated with
ŷt+1 = yt + η(Aζtxt − bζt). Then

K(x̂t+1, ŷt+1, ẑt+1)− 2d(ŷt+1, ẑt+1) + 2Ψ(ẑt+1) ≥ Ψ(ẑt+1)− d(ŷt+1, ẑt+1) + Ψ(ẑt+1)

≥ r∥ŷt+1∥ − 2M +MΨ

≥ rMy − 2M +MΨ

≥ MV

= max
x,z∈X

{K(x, 0, z)− 2d(0, z) + 2Ψ(z)}

≥ K(xt+1, 0, zt+1)− 2d(0, zt+1) + 2Ψ(zt+1)

= K(xt+1,yt+1, zt+1)− 2d(yt+1, zt+1) + 2Ψ(zt+1),

where the first step used d(ŷt+1, ẑt+1) ≤ K(x̂t+1, ŷt+1, ẑt+1) and the second line uses Prop. B.3 and Ψ(ẑt+1) ≥ MΨ.

Hence we have

EV (xt,yt, zt)− EV (xt+1,yt+1, zt+1)

= E [K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt)]− E [K(xt+1,yt+1, zt+1)− 2d(yt+1, zt+1) + 2Ψ(zt+1)]

≥ E [K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt)]− E [K(x̂t+1, ŷt+1, ẑt+1)− 2d(ŷt+1, ẑt+1) + 2Ψ(ẑt+1)]

≥ c̃βE∥ẑt+1 − zt∥2 + c̃τE∥u∗(xt, ŷt+1, zt)− xt∥2 + c̃ηE∥Ax∗(ŷt+1, zt)− b∥2

− 1

2
λτ2σ2

2 −
(
1 +

17∥A∥4

γ2
K

)
η2L2

= c̃βE∥zt+1 − zt∥2 + c̃τE∥u∗(xt,yt + η(Aζtxt − bζt), zt)− xt∥2 + c̃ηE∥Ax∗(yt + η(Aζtxt − bζt), zt)− b∥2

− 1

2
λτ2σ2

2 −
(
1 +

17∥A∥4

γ2
K

)
η2L2, (73)
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where in last inequality, we use Lemma B.2, and in the last equality we use the fact that ẑt+1 = zt + β(xt − zt) = zt+1,
ŷt+1 = yt + η(Aζtxt − bζt).

Combining (72) and (73), we have that

E [Vt − Vt+1]

≥ c̃βE∥zt+1 − zt∥2 + c̃τE∥u∗(xt,yt + η(Aζtxt − bζt), zt)− xt∥2 + c̃ηE∥Ax∗(yt + η(Aζtxt − bζt), zt)− b∥2

− 1

2
λτ2σ2

2 −
(
1 +

17∥A∥4

γ2
K

)
η2L2,

holds for both ∥yt + η(Aζtxt −bζt)∥ ≤ My and ∥yt + η(Aζtxt −bζt)∥ > My , which means it holds for xt+1,yt+1, zt+1

generated by Algorithm 2. Then we can telescope as before and the convergence result follows.

We also now sketch the argument for the complexity. We have for the gradient of the Moreau envelope that

1

µ2
∥∇Ψ(zt)∥ = ∥zt − x̄∗(zt)∥

≤ ∥zt − x∗(yt + η(Aζtxt − bζt), zt)∥+ ∥x∗(yt + η(Aζtxt − bζt), zt)− x̄∗(zt)∥
≤ ∥zt − x∗(yt + η(Aζtxt − bζt), zt)∥+ σ̄∥Ax∗(yt + η(Aζtxt − bζt), zs)− b∥
≤ ∥zt − xt∥+ ∥xt − x∗(yt + η(Aζtxt − bζt), zt)∥+ σ̄∥Ax∗(yt + η(Aζtxt − bζt), zt)− b∥

≤ ∥zt − xt∥+
λ

γ
∥xt − u∗(xt,yt + η(Aζtxt − bζt), zt)∥+ σ̄∥Ax∗(yt + η(Aζtxt − bζt), zt)− b∥,

where the second line is by triangle inequality, the second inequality is by Lemma A.12, and the fourth line is by triangle
inequality and the last estimation is by (58).

The rest of the proof for the complexity result proceeds the same as Appendix A.2 up to simple changes in the constants,
and hence is omitted. ■

C. Proofs for Section 5
Notation. Let us note that we define by Eξt the expectation conditioned on all the randomness before ξt.

C.1. Proofs for Theorem 5.3

First, with the idea of the STORM estimator of Cutkosky & Orabona (2019), we have the following lemma to control the
variance of the stochastic gradient.
Lemma C.1. (from (Cutkosky & Orabona, 2019)) Let Assumption 5.2 hold. We have the estimation of the variance as:

E∥∇̂ft+1 −∇f(xt+1)∥2 ≤ (1− α)2E∥∇̂ft −∇f(xt)∥2 + 3(L2
0 + L2

f )E∥xt+1 − xt∥2 + 3α2σ2.

Proof. By the definition of ∇̂ft+1 in Alg. 3, we have

∇̂ft+1 −∇f(xt+1)

= ∇f(xt+1, ξt+1) + (1− α)(∇̂ft −∇f(xt, ξt+1))−∇f(xt+1)

= ∇f(xt+1, ξt+1) + (1− α)(∇̂ft −∇f(xt)) + (1− α)(∇f(xt)−∇f(xt, ξt+1))−∇f(xt+1)

= (1− α)(∇̂ft −∇f(xt)) + (1− α)(∇f(xt)−∇f(xt, ξt+1)) +∇f(xt+1, ξt+1)−∇f(xt+1), (74)

where in the second equality, we added and subtracted (1− α)∇f(xt).

Then, we compute the squared norm of (74) and expand to get

∥∇̂ft+1 −∇f(xt+1)∥2

= (1− α)2∥∇̂ft −∇f(xt)∥2 + ∥(1− α)(∇f(xt)−∇f(xt, ξt+1)) +∇f(xt+1, ξt+1)−∇f(xt+1)∥2

+ 2(1− α)⟨∇̂ft −∇f(xt), (1− α)(∇f(xt)−∇f(xt, ξt+1)) +∇f(xt+1, ξt+1)−∇f(xt+1)⟩.
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Next, we take expectation with respect to the randomness of ξt+1 to obtain

Eξt+1
∥∇̂ft+1 −∇f(xt+1)∥2 = (1− α)2Eξt+1

∥∇̂ft −∇f(xt)∥2

+ Eξt+1∥(1− α)(∇f(xt)−∇f(xt, ξt+1)) +∇f(xt+1, ξt+1)−∇f(xt+1)∥2, (75)

which is due to ∇̂ft −∇f(xt) being independent of ξt+1, as well as

Eξt+1
[∇f(xt)−∇f(xt, ξt+1)] = 0, Eξt+1

[∇f(xt+1, ξt+1)−∇f(xt+1)] = 0.

Finally, we estimate the last term on the right-hand side of (75):

Eξt+1
∥(1− α)(∇f(xt)−∇f(xt, ξt+1)) +∇f(xt+1, ξt+1)−∇f(xt+1)∥2

= Eξt+1∥∇f(xt+1, ξt+1)−∇f(xt, ξt+1) +∇f(xt)−∇f(xt+1) + α(f(xt, ξt+1)−∇f(xt))∥2

≤ 3Eξt+1

[
∥∇f(xt+1, ξt+1)−∇f(xt, ξt+1)∥2 + ∥∇f(xt)−∇f(xt+1)∥2 + ∥α(∇f(xt, ξt+1)−∇f(xt))∥2

]
≤ 3L2

0∥xt+1 − xt∥2 + 3L2
f∥xt − xt+1∥2 + 3α2σ2,

where in the first equality, we rearrange the terms, and in the first inequality, we use Young’s inequality. In the second
inequality, we use Assumption 5.2, Lf -smoothness of f(x) and Eξ∥∇f(x, ξ)−∇f(x)∥2 ≤ σ2. We use this estimation in
(75) and take total expectation to get the result. ■

Let us recall from (18) that

V̄t = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt) +
1

48(L2
0 + L2

f )τ
∥∇̂ft −∇f(xt)∥2, (76)

where (as (22))
K(x,y, z) = Lρ(x,y) +

µ

2
∥x− z∥2 (77)

and x 7→ ∇K(x,y, z) is LK-Lipschitz with LK = Lf + ρ∥A∥+ µ (see also Fact A.1).

We already have the descent-type lemma of d(yt, zt) and Ψ(zt) in Lemma A.8, and only need to show the descent-type
lemma of K(xt,yt, zt). We write K(xt,yt, zt)−K(xt+1,yt+1, zt+1) as:

[K(xt,yt+1, zt)−K(xt+1,yt+1, zt)] + [K(xt,yt, zt)−K(xt,yt+1, zt)] + [K(xt+1,yt+1, zt)−K(xt+1,yt+1, zt+1)]

and lower bound each term separately in the following lemmas.

Lemma C.2. Let Assumption 1.1 hold. For the iterates generated by Algorithm 3, we have

K(xt+1,yt+1, zt)−K(xt,yt+1, zt) ≤
τ

2
∥∇f(xt)− ∇̂ft∥2 −

(
1

2τ
− LK

2

)
∥xt+1 − xt∥2.

Proof. We have, by smoothness of K(·,yt+1, zt):

K(xt+1,yt+1, zt) ≤ K(xt,yt+1, zt) + ⟨∇xK(xt,yt+1, zt),xt+1 − xt⟩+
LK

2
∥xt+1 − xt∥2. (78)

We estimate the inner product here as

⟨∇xK(xt,yt+1, zt),xt+1 − xt⟩ = ⟨G(xt,yt+1, zt),xt+1 − xt⟩
+ ⟨∇xK(xt,yt+1, zt)−G(xt,yt+1, zt),xt+1 − xt⟩. (79)

We first have, in view of Alg. 3 that

∇xK(xt,yt+1, zt)−G(xt,yt+1, zt) = ∇f(xt)− ∇̂ft.

The definition of xt+1 in Alg. 3 gives

⟨xt+1 − xt + τG(xt,yt+1, zt),xt − xt+1⟩ ≥ 0 ⇐⇒ ⟨G(xt,yt+1, zt),xt+1 − xt⟩ ≤ −1

τ
∥xt+1 − xt∥2. (80)
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Using ⟨∇xK(xt,yt+1, zt) − G(xt,yt+1, zt),xt+1 − xt⟩ ≤ τ
2∥∇f(xt) − ∇̂ft∥2 + 1

2τ ∥xt+1 − xt∥2 along with (80) in
(79), we have

⟨∇xK(xt,yt+1, zt),xt+1 − xt⟩ ≤
τ

2
∥∇f(xt)− ∇̂ft∥2 −

1

2τ
∥xt+1 − xt∥2.

Then the result follows after substituting the last estimate in (78). ■

Lemma C.3. Let Assumption 1.1 hold. For the iterates generated by Algorithm 3, we have

K(xt,yt, zt)−K(xt+1,yt+1, zt+1) ≥ −η∥Axt − b∥2 +
(
µ

β
− 3µ

4

)
∥zt+1 − zt∥2

− τ

2
∥∇f(xt)− ∇̂ft∥2 +

(
1

2τ
− LK

2
− µ

)
∥xt+1 − xt∥2.

(81)

Proof. First, from the definition of K in (22), we have

K(xt,yt, zt)−K(xt,yt+1, zt) = −η∥Axt − b∥2.

Moreover, it follows that

K(xt+1,yt+1, zt)−K(xt+1,yt+1, zt+1)

=
µ

2
(∥xt+1 − zt∥2 − ∥xt+1 − zt+1∥2)

=
µ

2
⟨zt+1 − zt, 2xt+1 − zt − zt+1⟩

=
µ

2
⟨zt+1 − zt, 2xt+1 − 2xt + 2xt − 2zt + zt − zt+1⟩

=
µ

2
⟨zt+1 − zt, 2xt+1 − 2xt⟩+

µ

2
⟨zt+1 − zt, 2xt − 2zt⟩ −

µ

2
∥zt+1 − zt∥2

≥ −µ

4
∥zt+1 − zt∥2 − µ∥xt+1 − xt∥2 +

µ

β
∥zt − zt+1∥2 −

µ

2
∥zt+1 − zt∥2,

where the first equality comes from the definition of K. In the last inequality, we use ⟨a,b⟩ ≥ − 1
4∥a∥

2 − ∥b∥2 and
xt − zt =

zt+1−zt

β by the definition of zt+1 in Algorithm 3.

Fanally combining the above two results with Lemma C.2 and combining like-terms yields the claim. ■

We next follow with a detailed restatement of Lemma 5.3 and its proof.

Lemma C.4 (cf. Lemma 5.3). Under Assumption 1.1 and Assumption 5.2, with the parameters chosen as:

µ = max{2, 4Lf}, τ ≤ min

 1

8LK + 16µ
,

1√
48(L2

0 + L2
f )


η = min

{
(µ− Lf )

2τ

8∥A∥2
,
2µ+ ρ∥A∥
4∥A∥4

,
τ

200∥A∥2
,
τ(2µ+ ρ∥A∥2)

20∥A∥2

}
,

β = min

{
τ

100
,
1

50
,

η

36µσ̄2

}
,

α = 48(L2
0 + L2

f )τ
2,

(82)

where LK = Lf + ρ∥A∥+ µ, σ̄ is defined in Lemma A.12, we have

EV̄t − EV̄t+1 ≥ µ

2β
E∥zt − zt+1∥2 +

1

8τ
E∥xt − xt+1∥2 +

η

2
E∥Ax∗(yt+1, zt)− b∥2 + τ

4
E∥∇̂ft −∇f(xt)∥2

− 144(L2
0 + L2

f )σ
2τ3.

(83)
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Proof. We denote
Vt = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt). (84)

Joining (81) with Lemma A.8 (since this lemma only uses the update rules of yt+1, zt+1 that is common in Alg. 1 and Alg.
3), we have

EVt − EVt+1 ≥ −ηE∥Axt − b∥2 +
(
µ

β
− 3µ

4

)
E∥zt+1 − zt∥2

− τ

2
E∥∇f(xt)− ∇̂ft∥2 +

(
1

2τ
− LK

2
− µ

)
E∥xt+1 − xt∥2

+ 2ηE⟨Axt − b, Ax∗(yt+1, zt)− b⟩+ µE⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩

− 2µE⟨zt+1 − zt, zt − x̄∗(zt)⟩ −
µ

σ4
E∥zt − zt+1∥2. (85)

First, let us combine the first and fifth terms on the right-hand side to obtain

−η∥Axt − b∥2 + 2η⟨Axt − b, Ax∗(yt+1, zt)− b⟩ = −η∥Axt −Ax∗(yt+1, zt)∥2 + η∥Ax∗(yt+1, zt)− b∥2. (86)

Next, we combine the sixth and seventh terms on the right-hand side of (85) to get

µ⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩ − 2µ⟨zt+1 − zt, zt − x̄∗(zt)⟩
= µ⟨zt+1 − zt, zt+1 − zt − 2x∗(yt+1, zt+1) + 2x̄∗(zt)⟩
= µ∥zt+1 − zt∥2 + 2µ⟨zt+1 − zt,−x∗(yt+1, zt+1) + x̄∗(zt)⟩. (87)

We now single out the inner product in the last equality and estimate it by adding and subtracting x∗(yt+1, zt) in the second
argument of the inner product:

2µ⟨zt+1 − zt,−x∗(yt+1, zt+1) + x̄∗(zt)⟩
= 2µ⟨zt+1 − zt,−x∗(yt+1, zt+1) + x∗(yt+1, zt)⟩+ 2µ⟨zt+1 − zt,−x∗(yt+1, zt) + x̄∗(zt)⟩

≥ −µ∥zt+1 − zt∥2 − µ∥x∗(yt+1, zt)− x∗(yt+1, zt+1)∥2 −
µ

ζ
∥zt+1 − zt∥2 − µζ∥x̄∗(zt)− x∗(yt+1, zt)∥, (88)

for any ζ, where we used Young’s inequality twice. Then, we plug this into (87) to obtain

µ⟨zt+1 − zt, zt+1 + zt − 2x∗(yt+1, zt+1)⟩ − 2µ⟨zt+1 − zt, zt − x̄∗(zt)⟩

≥ − µ

σ2
4

∥zt+1 − zt∥2 −
µ

ζ
∥zt+1 − zt∥2 − µζ∥x̄∗(zt)− x∗(yt+1, zt)∥2, (89)

where we use (62) to bound the second term on the right-hand side of (88), with σ4 being as (25).

Then we use (86) and (89) in (85) to obtain

EVt − EVt+1 ≥
(
µ

β
− 3µ

4

)
E∥zt+1 − zt∥2 −

τ

2
E∥∇f(xt)− ∇̂ft∥2 +

(
1

2τ
− LK

2
− µ

)
E∥xt+1 − xt∥2

− ηE∥Axt −Ax∗(yt+1, zt)∥2 + ηE∥Ax∗(yt+1, zt)− b∥2

− µ

σ2
4

E∥zt+1 − zt∥2 −
µ

ζ
E∥zt+1 − zt∥2 − µζ∥x̄∗(zt)− x∗(yt+1, zt)∥2 −

µ

σ4
E∥zt+1 − zt∥2

≥
(
µ

β
− 3µ

4
− µ

σ2
4

− µ

ζ
− µ

σ4

)
E∥zt+1 − zt∥2

− τ

2
E∥∇f(xt)− ∇̂ft∥2 −

2η∥A∥2

(µ− Lf )2
E∥∇f(xt)− ∇̂ft∥2

+

(
1

2τ
− LK

2
− µ− η∥A∥2 2

τ2(µ− Lf )2

)
E∥xt+1 − xt∥2

+
(
η − µζσ̄2

)
E∥Ax∗(yt+1, zt)− b∥2, (90)
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where in the last inequality, we use Lem. C.6 and Lem. A.12, then combine the like-terms.

Then we need to estimate the coefficients of each terms in the above inequality. Let us recall from (25) that σ4 =
µ−Lf

µ > 1
2

and let ζ = 6β.

We now estimate the coefficient of E∥zt − zt+1∥2 in (90). First, by σ4 > 1
2 , we have µ

σ2
4
≤ 4µ and µ

σ4
≤ 2µ. By also using

ζ = 6β, we have:

The coefficient of E∥zt − zt+1∥2 ≥ µ

β
− 3µ

4
− 4µ− µ

6β
− 2µ.

Using β ≤ 1/50, we obtain ( 34 + 4 + 2)µ ≤ µ
5β , then we estimate:

The coefficient of E∥zt − zt+1∥2 ≥ µ

β
− µ

5β
− µ

6β
≥ µ

2β
.

We move on to estimating the coefficient of E∥xt − xt+1∥2 in (90). With η ≤ (µ−Lf )
2τ

8∥A∥2 , we have 2η∥A∥2 1
τ2(µ−Lf )2

≤ 1
4τ ,

we have:
The coefficient of E∥xt − xt+1∥2 ≥ 1

4τ
− LK

2
− µ.

Last, we work on the coefficient of E∥Ax∗(yt+1, zt)−b∥2 in (90). Because ζ = 6β, it follows that η−µζσ̄2 = η−6µβσ̄2.

With β ≤ η
36µσ̄2 , we have 6µβσ̄2 ≤ η

6 , then we estimate:

the coefficient of E∥Ax∗(yt+1, zt)− b∥2 ≥ η − η

6
≥ η

2
.

Next, we estimate the coefficient of E∥∇f(xt)− ∇̂ft∥2. With η ≤ (µ−Lf )
2τ

8∥A∥2 , we have − τ
2 − 2η∥A∥2

(µ−Lf )2
≥ − 3

4τ . Finally, we
have

EVt − EVt+1

≥ µ

2β
E∥zt − zt+1∥2 +

(
1

4τ
− LK

2
− µ

)
E∥xt − xt+1∥2 +

η

2
E∥Ax∗(yt+1, zt)− b∥2 − 3τ

4
E∥∇f(xt)− ∇̂ft∥2

=
µ

2β
E∥zt − zt+1∥2 +

(
1

4τ
− LK

2
− µ

)
E∥xt − xt+1∥2 +

η

2
E∥Ax∗(yt+1, zt)− b∥2

+
τ

4
E∥∇f(xt)− ∇̂ft∥2 − τE∥∇f(xt)− ∇̂ft∥2.

Then recalling Lemma C.1 and assuming 0 < α ≤ 1, we have

E∥∇̂ft+1 −∇f(xt+1)∥2 ≤ (1− α)E∥∇̂ft −∇f(xt)∥2 + 3(L2
0 + L2

f )E∥xt+1 − xt∥2 + 3α2σ2. (91)

We multiply (91) by τ
α , rearrange, and plug into (91), to get

EVt − EVt+1 ≥ µ

2β
E∥zt − zt+1∥2 +

(
1

4τ
− LK

2
− µ

)
E∥xt − xt+1∥2

+
η

2
E∥Ax∗(yt+1, zt)− b∥2 + τ

4
E∥∇f(xt)− ∇̂ft∥2

+
τ

α
E∥∇̂ft+1 −∇f(xt+1)∥2 −

τ

α
E∥∇̂ft −∇f(xt)∥2

−
3(L2

0 + L2
f )τ

α
E∥xt − xt+1∥2 − 3ασ2τ. (92)

Because α = 48(L2
0 + L2

f )τ
2 and τ ≤ min

{
1

8LK+16µ ,
1√

48(L2
0+L2

f )

}
, we obtain

LK

2
+ µ ≤ 1

16τ
,

3(L2
0 + L2

f )τ

α
=

1

16τ
.
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Hence, we have

EVt − EVt+1 ≥ µ

2β
E∥zt − zt+1∥2 +

1

8τ
E∥xt − xt+1∥2 +

η

2
E∥Ax∗(yt+1, zt)− b∥2 + τ

4
E∥∇f(xt)− ∇̂ft∥2

+
1

48(L2
0 + L2

f )τ
E∥∇̂ft+1 −∇f(xt+1)∥2 −

1

48(L2
0 + L2

f )τ
E∥∇̂ft −∇f(xt)∥2 − 144(L2

0 + L2
f )σ

2τ3.

Finally, we move 1
48(L2

0+L2
f )τ

E∥∇̂ft+1 −∇f(xt+1)∥2 − 1
48(L2

0+L2
f )τ

E∥∇̂ft −∇f(xt)∥2 to the left-hand side of the above

inequality and use the definition of V̄t in (18) to get the desired result. ■

C.2. Proofs for Theorem 5.4

First, we need two lemmas for the error bound that helps us analyze the sample complexity that we include for being
self-contained.

Lemma C.5. (Zhang & Luo, 2020, Lemma 3.10) Under Assumption 1.1, we have

∥x− projX(x− τ∇K(x,y, z))∥ ≥ τ(µ− Lf )

2
∥x− x∗(y, z)∥ ,

where K(x,y, z) = Lρ(x,y) +
µ
2 ∥x− z∥2, and x∗(y, z) = argminx∈X K(x,y, z).

Proof. First, we denote that x̂ = x− projX(x− τ∇K(x,y, z)), then by the definition of x∗(y, z), we have

⟨x− x̂− x∗(y, z), τ∇K(x∗(y, z),y, z)⟩ ≥ 0,

where we use the fact that x− x̂ ∈ X .

Then by the definition of projection (that is, z̄ = projX(z) ⇐⇒ ⟨z̄ − z, t − z̄⟩ ≥ 0 ∀t ∈ X), the definition of x̂, and
x∗(y, z) ∈ X , we have

⟨x∗(y, z)− projX(x− τ∇K(x,y, z)),x− τ∇K(x,y, z)− projX(x− τ∇K(x,y, z))⟩
=⟨x∗(y, z)− (x− x̂),−τ∇K(x,y, z) + x̂⟩ ≤ 0.

Combining above two inequalities and rearranging terms, we have

⟨x− x∗(y, z), τ∇K(x,y, z)− τ∇K(x∗(y, z),y, z)⟩
≤ ⟨x̂, τ∇K(x,y, z)− τ∇K(x∗(y, z),y, z) + x− x∗(y, z)⟩ − ∥x̂∥2

≤ ∥x̂∥∥τ∇K(x,y, z)− τ∇K(x∗(y, z),y, z) + x− x∗(y, z)∥
≤ ∥x̂∥(τLK + 1)∥x− x∗(y, z)∥
≤ 2∥x̂∥∥x− x∗(y, z)∥,

where in the second inequality we use the Cauchy-Schwarz inequality and in the last inequality we use the Lipschitz
continuity of ∇K with respect to x.

By K(x,y, z) being (µ− Lf )-strongly convex with respect to x (see Fact A.1), we have

⟨x− x∗(y, z), τ∇K(x,y, z)− τ∇K(x∗(y, z),y, z)⟩ ≥ τ(µ− Lf )∥x− x∗(y, z)∥2.

Then, the desired result follows by combining the above two inequalities and using the definition of x̂ = x− projX(x−
τ∇K(x,y, z)). ■

With the next lemma, we proceed to prove that ∥xt − x∗(yt+1, zt)∥ is bounded by a combination of ∥xt − xt+1∥ and
∥∇̂ft −∇f(xt)∥.

Lemma C.6. Under Assumption 1.1, for the iterates generated by Algorithm 3 we have

∥xt − x∗(yt+1, zt)∥ ≤ 2

τ(µ− Lf )
∥xt − xt+1∥+

2

(µ− Lf )
∥∇̂ft −∇f(xt)∥.
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Proof. Taking x,y, z as xt,yt+1, zt in Lemma C.5, we have

∥xt − x∗(yt+1, zt)∥ ≤ 2

τ(µ− Lf )
∥xt − projX(xt − τ∇K(x,yt+1, zt))∥

≤ 2

τ(µ− Lf )
∥xt − projX(xt − τG(xt,yt+1, zt))∥

+
2

τ(µ− Lf )
∥ projX(xt − τ∇K(xt,yt+1, zt))− projX(xt − τG(xt,yt+1, zt))∥

≤ 2

τ(µ− Lf )
∥xt − xt+1∥+

2

(µ− Lf )
∥∇̂ft −∇f(xt)∥,

where the second inequality comes form triangle inequality and the last inequality comes from the fact that projX is
nonexpansive and ∇K(xt,yt+1, zt)−G(xt,yt+1, zt) = ∇f(xt)− ∇̂ft. ■

We now continue with the proof of Theorem 5.4.

Proof of Theorem 5.4. Because zt+1 − zt = β(xt − zt), µβ
2 = Θ(τ) and η

2 = Θ(τ) in view of Lemma C.4, hence there
exists a constant C such that we get from (83):

EV̄t − EV̄t+1 ≥ Cτ{E∥xt − zt∥2 + E∥τ−1(xt − xt+1)∥2 + E∥Ax∗(yt+1, zt)− b∥2 + E∥∇f(xt)− ∇̂ft∥2}
− 144

(
L2
0 + L2

f

)
σ2τ3. (93)

Then, summing up (93) over t = 0, 1, . . . , T − 1, we have

V̄0 − EV̄T ≥
T−1∑
t=0

Cτ{E∥xt − zt∥2 + E∥τ−1(xt − xt+1)∥2 + E∥Ax∗(yt+1, zt)− b∥2 + E∥∇f(xt)− ∇̂ft∥2}

− 144
(
L2
0 + L2

f

)
σ2τ3T. (94)

From the definition, we have K(x,y, z) ≥ d(y, z) (since d(y, z) = minx∈X K(x,y, z)) and Ψ(z) ≥ d(y, z) (see also
Lemma A.13), then

Vt = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt) ≥ Ψ(zt) ≥ f.

Consequently, we have

V̄t = K(xt,yt, zt)− 2d(yt, zt) + 2Ψ(zt) +
1

48(L2
0 + L2

f )τ
E∥∇̂ft −∇f(xt)∥2 ≥ f. (95)

Let τ = T−1/3 and use mini-batch in the initial step where we will have E∥∇̂f0 −∇f(x0)∥2 ≤ T−1/3σ2 (by the definition
of ∇̂f0 and a standard computation), then

V̄0 = K(x0,y0, z0)− 2d(y0, z0) + 2Ψ(z0) +
1

48(L2
0 + L2

f )τ
E∥∇̂f0 −∇f(x0)∥2

≤ K(x0,y0, z0)− 2d(y0, z0) + 2Ψ(z0) +
σ2

48(L2
0 + L2

f )
,

(96)

where the right-hand is proportional to a constant independent of T , we denote it as C0.

Combining (94) with (95) and (96), we have

1

T

T−1∑
t=0

C{E∥xt − zt∥2 + E∥τ−1(xt − xt+1)∥2 + E∥Ax∗(yt+1, zt)− b∥2 + E∥∇f(xt)− ∇̂ft∥2}

≤ T−2/3
(
C0 − f + 144(L2

0 + L2
f )σ

2
)
.

(97)
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Then, for index s selected uniformly at random from {0, 1, ..., T − 1}, we have

E∥xs − zs∥2 = O(T−2/3), E∥τ−1(xs − xs+1)∥2 = O(T−2/3),

E∥Ax∗(ys+1, zs)− b∥2 = O(T−2/3), E∥∇f(xt)− ∇̂ft∥2 = O(T−2/3).
(98)

According to Algorithm 3, we have

xs+1 = argmin
x

{
⟨G(xs,ys+1, zs),x− xs⟩+ 1

τ
∥x− xs∥2 + ∂IX(x)

}
.

By the definition of xs+1, we have

0 ∈ G(xs,ys+1, zs) +
2

τ
(xs+1 − xs) + ∂IX(xs+1). (99)

We now set

v = ∇xK(xs+1,ys+1, zs)−G(xs,ys+1, zs)−
2

τ
(xs+1 − xs)− ρA⊤(Axs+1 − b)− µ(xs+1 − zs).

Now, by using the definition of K(x,y, z) from (19) and (99), we obtain (cf. (5))

v ∈ ∇f(xs+1) +A⊤ys+1 + ∂IX(xs+1)

We now derive the guarantees on the feasibility and the norm of v. First, by triangle inequality, we have

∥Axs+1 − b∥ ≤ ∥Ax∗(ys+1, zs)− b∥+ ∥Axs+1 −Axs∥+ ∥A(xs − x∗(ys+1, zs))∥

≤ ∥Ax∗(ys+1, zs)− b∥+ ∥A∥∥xs+1 − xs∥+
2∥A∥

τ(µ− Lf )
∥xs − xs+1∥+

2∥A∥
µ− Lf

∥∇̂fs −∇f(xs)∥

= O(T−1/3), (100)

where in the second inequality, we use Lemma C.6 and the last estimate uses (98).

Then, we have by triangle inequality that

∥v∥ ≤ ∥∇xK(xs+1,ys+1, zs)−∇xK(xs,ys+1, zs)∥+ ∥∇xK(xs,ys+1, zs)−G(xs,ys+1, zs)∥

+
2

τ
∥xs+1 − xs∥+ ρ∥A∥∥Axs+1 − b∥+ µ∥xs+1 − zs∥

≤
(
LK +

2

τ

)
∥xs+1 − xs∥+ ∥∇f(xs)− ∇̂fs∥+ ρ∥A∥∥Axs+1 − b∥+ µ (∥xs − zs∥+ ∥xs+1 − xs∥)

= O(T−1/3),

where in first inequality, we introduce a term ∇xK(xs,ys+1, zs) and then use triangle inequality. The second inequality
used Lipschitzness of K, the definition of G, and the triangle inequality. The last step uses (98) and (100) and ρ = O(1)
since it is chosen arbitrarily in Alg. 3. ■
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