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Abstract

To create photorealistic avatars that users can embody, human modeling must
be complete (encompass the full body), driveable (able to reproduce motion
of the user from lightweight sensors), and generalizable (i.e., easily adaptable
to novel identities). Towards these goals, paired captures, that is, captures of
the same subject obtained from systems of diverse quality and availability, are
crucial. However, paired captures are rarely available to researchers outside
of dedicated industrial labs: Codec Avatar Studio is our proposal to close this
gap. Towards generalization and driveability, we introduce a dataset of 256
subjects captured in two modalities: high resolution multi-view scans of their
heads, and video from the internal cameras of a headset. Towards completeness,
we introduce a dataset of 4 subjects captured in eight modalities: high quality
relightable multi-view captures of heads and hands, full body multi-view cap-
tures with minimal and regular clothes, and corresponding head, hands and body
phone captures. Together with our data, we also provide code and pre-trained
models for different state-of-the-art human generation models. Our datasets and
code are available at https://github.com/facebookresearch/ava-256 and
https://github.com/facebookresearch/goliath.

1 Introduction

People are deeply social creatures. It is no coincidence that remote communication has frequently been
one of the first applications of new technologies. Letters, telegrams, phone calls, instant messaging,
and video conferencing are well-known examples of peer-to-peer communication technologies that
have helped users stay in touch with the people they care about, and create new social connections.
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Virtual reality (VR) and adjacent technologies promise to enable novel forms of remote social
interaction. In particular, headsets with accurate localization let users navigate 3d environments
naturally: by simply moving around. Coupled with virtual models of people (i.e., photorealistic
avatars) and a mechanism to drive them, it is possible to build systems where virtually-embodied users
interact with each other in virtual 3d spaces. We can imagine that these environments will enable
modes of communication more and more similar to in-person interactions once certain conditions are
met: reduced latency, increased realism of the models, and more accurate control of those avatars.

We argue that, for photorealistic avatars to be deployed at scale, models of human appearance must
fulfill certain conditions. They should be (1) complete, that is, not just be limited to faces and hands,
but encompass full bodies. Models also need to be (2) driveable, that is, it must be possible to
build mechanisms that track motion and appearance changes of the user with as little interference
as possible, such that these changes can be transmitted compactly and reproduced on the other end.
Finally, avatars must be (3) generalizable, as in it must be possible to build avatars for new users
quickly, without access to expensive capture setups. To achieve these goals, paired captures, that
is, captures of the same people using different devices are crucial. For example, to build or evaluate
a mechanism that drives face avatars from a headset, it is necessary to collect data of the same
people both in a high resolution scanner (to build a high quality avatar), and from the headset itself.
Similarly, towards generalizable avatars, one may want to study the creation of high quality avatars
from lower-quality but more widely available capture setups, such as phone scans. In that case, it is
necessary to capture the same person under both a high resolution scanner, and from a phone scan.
Unfortunately, paired captures are not usually available to researchers outside of specialized industrial
labs, and we believe that this limitation has overall slowed down progress in avatar generation.

In this paper, our goal is to close this gap by providing the research community with a series of
datasets of paired captures, as well as state-of-the-art implementations of avatar models. First, we
introduce Ava-256, a dataset of 256 subjects, each captured in both a high resolution dome with
dozens of views (meant for avatar creation), and while wearing a commercial headset with several
infrared cameras (meant for driving). Second, we introduce Goliath-4, a dataset of 4 subjects, each
captured under 8 modalities: A high resolution dome with relightable captures of heads and hands;
two full body captures with regular and minimal clothing, and corresponding phone scans for heads,
hands, and full body. Besides the raw data, we also provide several assets, such as 3d mesh tracking,
semantic segmentation, and 3d keypoints. Moreover, we also provide code and pre-trained models
for personalized relightable head [49], personalized relightable hand [23], and personalized full
body [4] avatars, as well as multi-person head avatars [13], and an out-of-the-box driver from headset
images [60]. Finally, the phone captures are compatible with systems for instant creation of head [13]
and hand models [36]. Given its size and scope, we refer to our joint dataset and code release as
Codec Avatar Studio. Our goal is for Codec Avatar Studio to become a toolkit that academics can use
to bootstrap their engagement with the fundamental problems of photorealistic telepresence.

2 Datasets of Paired Human Captures

In this Section we introduce our head dataset, Ava-256, and our full-body dataset, Goliath-4.

Subjects and license. For all captures, participants were at least 18 years old at the time of the
session, and provided their written informed consent for the capture and its distribution. Specifically,
the consent forms contain our contact information, the purpose of the study, a description of the
capture devices and capture procedures, and the estimated time the study will take. Additionally,
the forms state that participation is voluntary, that participants may withdraw at any time and still
get compensated for their time, that the data will be used for research purposes, and that Meta is
the licenser and owner of the collected data, which may be distributed to third parties in the future.
Note that participants keep a copy of the consent form after the study. Finally, the participants were
compensated with USD $50 per hour, rounded to the next half hour. We estimate that participants
were paid USD $14 000 in total. We release all our data and assets under the CC-by-NC 4.0 License.

2.1 Ava-256

Ava-256 is the first publicly available dataset of subjects collected in a high resolution dome as well
as from a commercially available headset. Ava-256 was collected in a span of twenty-five months,
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Figure 1: All 256 subjects in Ava-256. Notice the diversity in attributes such as hairstyle and hair
length, makeup, jewellery, tattoos, facial hair, skin tone, and age. Left: proposed training split of 240
subjects for cross-id tasks. Right: proposed validation set of 16 subjects. Best viewed zoomed-in.

Figure 2: Self-reported skin tone and age distributions by gender in the Ava-256 dataset.

between August of 2021 and September of 2023 in Pittsburgh, PA. Figure 1 shows an image of all
the subjects in Ava-256. Please refer to Figure 2 for a summary of self-reported age and skin tone
diversity in our dataset.

Dome captures. Our capture setup is identical to the one described in [61, 13]. It consists of
roughly 170 synchronized cameras placed in a dome with a 2.4m diameter. The cameras use a
Sony IMX253 sensor with a pixel size of 3.45 µm, shutter speed of 2.222 ms and 35mm lenses.
Each camera produces images of size 4 096 × 2 668 at 30 fps. A research assistant (RA) guides the
subjects through a series of prompts to elicit a diverse set of expressions. These prompts include
facial expressions, such as rolling their eyes, looking up and down, opening their mouths, and puffing
their cheeks, longer-format conversations, cues to display specific emotions, and 20 to 30 phrases
chosen to produce the span of phonemes commonly used in English. Each session lasts about half an
hour. Some prompts may be repeated at the discretion of the RA, but only the best performance of
each action, as deemed by the RA, is stored. This results in approximately 20 000 frames, or ∼20 000
× 172 ≈ 3.5M images per capture.

Headset captures. A similar script is recorded for each participant on a Quest Pro headset, which
has 5 cameras: one camera per eye, two mouth cameras placed close to the cheekbones, and one
camera looking at the glabella. The cameras capture infrared light, and their outputs are monochrome
images of resolution 400 × 400 at 72 fps. For ground truth computation (c.f., Section 3.2), we use an
augmented headset with 10 cameras in total. The extra cameras provide additional view of each eye,
an additional view of the glabella, and two additional views of the mouth from a less oblique angle.
Figure 3 shows a frame captured from one of our headsets.

Data distribution and compression. One of the key issues with distributing large-scale image
datasets is storage, which impacts both required memory and download times. For example, each
of our dome captures produces over 10 TB of data when stored at full resolution and compressed
losslessly. This configuration would produce over 3 PB in total for the dataset. Storing this amount of
data is infeasible for most academic labs, and can be a major deterrent to use new datasets.
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Figure 3: 10 frames captured by one of our augmented Quest Pro headsets. “Release” frames are
included as part of ava-256, while “Augmented” ones are only used to aid in ground truth computation.

Figure 4: Compression comparison of WEBP, JPEG, JPEGXL and AVIF formats, the latter two using
4 threads. The points are measurements, and we fit a line to make it easier to spot the trend. For
different levels of quality (qXX in the plot), AVIF is a clear winner for our data.

Following the trend from foundational models [11, 53, 55], we instead make 4 more accessible
releases of 4, 8, 16, and 32 TB, each with different trade-offs of space against quality. We target
a minimal size of 4TB since this is the current capacity of new hard and solid state drives under
USD $50 and USD $200, respectively.1 The higher quality versions may be used by researchers with
more resources, and will become more accessible over time with decreasing storage costs.

For a given storage budget, our goal is to get the highest quality images into the hands of researchers.
To determine the most suitable image format for our dataset, we selected 4 images from each capture,
sampling cameras and frames uniformly at random, and evaluated the peak signal-to-noise ratio
(PSNR), and compression and decompression times of WEBP, JPEG, JPEGXL, and AVIF formats –
the latter two chosen for their user-friendly licenses (Fig. 4). Given its superior quality-to-space ratio,
although higher yet acceptable decompression time, we have chosen to distribute our dataset in AVIF
format. We are aware that this format is less commonly used in the machine learning community, and
have thus dedicated engineering time to improve the most popular Pillow plugin for AVIF2.

Compressing images is not enough, since our target release sizes would require compression param-
eters that would result in too low PSNR for avatar creation. To fit the data into reasonably sized
packages we also downsampled the resolution of our images (2× and 4×), the number of cameras
(∼2× down to 80), and the frames per second (2× and 4×, from 30 to 15 and 7.5). We chose cameras
manually, making sure there is full 360◦ coverage of the head, and that there is always a frontal-facing
camera. A summary of our Ava-256 releases can be found in Table 1.

Table 1: Details of our different size-friendly Ava-256 releases.

Dome (80 RGB cameras) Headset (5 IR cameras)

Size FPS
Image

resolution
Frames

per subject
AVIF

quality FPS
Image

resolution
Frames

per subject
AVIF

quality

4 TB 7.5 1 024 × 667 ∼ 5 000 63 9 400 × 400 ∼ 20 000 70
8 TB 15.0 1 024 × 667 ∼ 10 000 63 18 400 × 400 ∼ 40 000 70

16 TB 7.5 2 048 × 1 334 ∼ 5 000 70 9 400 × 400 ∼ 20 000 70
32 TB 15.0 2 048 × 1 334 ∼ 10 000 70 18 400 × 400 ∼ 40 000 70

1Lower end of quotes from https://diskprices.com/, retrieved June 1, 2024.
2https://github.com/fdintino/pillow-avif-plugin/.
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2.2 Goliath-4

We complement the subject diversity and driveability of Ava-256 with Goliath-4, which focuses
on extending the scope of the scans to the full body. Towards this goal, it is not enough to simply
provide full body captures from a multiview scanner. First, since the resolution of multiview full-body
captures in critical areas like head and hands is insufficient, we also provide captures of higher pixel
density for those areas. Second, on top of the uniform illumination used in the body captures and
Ava-256, Goliath-4 head and hand captures include interleaved shots with what we call "group lights":
a variation of one-light-at-a-time (OLAT) in which we directionally illuminate the scene with a small
group of adjacent lights, to increase the brightness and reduce aliasing compared to OLAT.

In full body captures, unlike head or hand scans, most of the skin is covered by clothes. This represents
a challenge for some reconstruction methods, since body models [32] are often created from subjects
in tight-fit clothing. In order to enable research on the relation between clothed and tight-fit clothing
subjects, we additionally provide comprehensive minimally-clothed full body captures.

The data described so far can only be captured with expensive multiview scanning systems available
in dedicated research labs, and is thus inaccessible to most researchers. To bridge this gap, we include
a phone capture corresponding to each of the previously described ones—head, hands, clothed bodies
and minimally clothed bodies. These types of captures already enable the creation of head and hand
avatars for everyday users when put together with large scale high quality datasets [13, 36].

Capture day Each subject is captured in three different rooms: the relightable scanner for heads
and hands, a normal room for phone captures, and a full body scanner for bodies. The capture lasts
for around 5 hours, including lunch breaks and transportation across scanners in different buildings.

Data package The total recording time per participant is 135 minutes on average, which can be
further broken down to 25, 25, 28, and 57-minutes for head, hand, normally clothed full body, and
minimally clothed full body recordings respectively. The original sequences, compressed losslessly,
take around 762 TB of storage per participant. Similar to Section 2.1, we compressed the original
sequences with AVIF quality 63, lowered the image resolution 2x (from 4 096 × 2 668 to 2 048 ×
1 334) and subsampled in time to produce effective training set sizes of roughly 10 000 frames.

Head scans. The head scans were collected from the same system as Ava-256, following the same
set of actions. The main difference is that the lighting is time-multiplexed instead of constant. Images
are collected at 90 frames per second, while one out of every three frames is captured with all ∼ 400
lights (SmartVision SX30) being on during 120 µs, and the other two out of three frames have
either a “group” light or a random configuration of lights turned on. The group light [7] resembles
OLAT [19] where one of the lights and its four nearest neighbors are turned on for 2.2 ms. The
random configuration includes either 5 or 10 random lights turned on for 5 and 4 ms, respectively. We
divide the captures into a train and test split. The test split includes a full segment of varied extreme
face expressions, and thirty seconds of a conversation segment. The train split includes all remaining
segments as well as four minutes of conversation. The conversation frames in the train split are not
only disjoint from the test split, but also separated by a buffer of 30 seconds to avoid temporal leaking
of information between the train and test splits. To enable a reasonable size footprint, the train split is
subsampled at 10 frames per second.

Hand scans. Hand scans are collected in the same system as the head scans, also in a time-
multiplexed manner. In this case, half (instead of one third for the head captures) of the frames are
fully-lit, while the other half use either group or random illuminations. We collected data for both
right and left hand separately. The test split includes a segment with free hand motion, while the rest
of the segments are included in the train split after being subsampled at 5 frames per second.

Full-body scan. Collecting data for full-body motion requires a larger dome: This capture system
has a diameter of 5.5m with ∼ 230 cameras that acquire images at 30 frames per second under
constant illumination. Subjects were captured twice, once in minimal clothing and once wearing their
own garments, i.e., normal clothing. The script followed in the normal clothing capture is a subset of
the minimal one, where segments involving only head and hand motions have been removed. The
test set contains a sequence where the subjects play charades, describing with their body motion
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Figure 5: Goliath-4 Assets. The first two rows show full body clothed assets, minimal full body assets,
head and hand assets. Each of the blocks show two segmentations, 3D keypoints, 3D reconstruction,
and template registration. The last row shows phone assets: full body clothed and minimal (static
picture and hand-held video), head and hands (segmentation, keypoints and depth).

specific concepts. The training set contains the rest of the sequences, and it is sampled at 10 frames
per second for the clothed capture, and 5 frames per second for the minimal clothed capture.

Phone scan. Phone scans were taken in the full body scanner dome for minimal clothed full body,
and in a separate room for the head, hand, and normally clothed full body sessions. The phone was
placed on a tripod for all sequences in which it was not handheld. We collected RGB videos at 1 080
× 1 920 and RGB images at 2 316 × 3 088 resolution. The RGB videos contain also a depth video
collected from the depth sensor of an iPhone 11, at resolution 360 × 640 and 30 frames per second.

Assets. For our multi-view data, we provide foreground-background and part segmentation, 3D
keypoints, 3D reconstruction and registration (see Figure 5). Camera calibration is included, as well
as light calibration for relightable sessions. Segmentation and 2D keypoints are provided for head
and hand phone data, while no assets are provided for full body phone data in this release.

3 Code and Models

In this Section, we summarize the details of the multi-person face model as well as the the personalized
head, hands, and body models, which are trained using our datasets. We release our code and models
under the CC-by-NC 4.0 License.

3.1 Multi-identity face modelling

For high quality head avatars, we provide an implementation of the multi-person face model in Cao
et al. [13]. Faces are represented as a collection of small semi-transparent cubes, or primitives,
referred to as a Mixture of Volumetric Primitives (MVP) [31], which enable real-time rendering of
dynamic volumetric content at high resolution.

The training setup aims to disentangle the identity and expressions of each subject, and to create a
consistent expression space for multiple avatars. In particular, a 2D convolutional decoder progres-
sively upsamples a latent expression code into two branches: (1) an appearance branch that outputs
the RGB colour of each primitive, and (2) a geometry branch that outputs the vertices of a tracked
mesh, as well as the 3d pose (relative to that mesh) and transparency of each primitive. The MVP
representation enables end-to-end training of the model with a differentiable volumetric renderer.

To encourage a separation of identity and expression (see Fig. 6), the feature maps of the decoder are
initialized by learned biases extracted from geometry and UV-texture maps of the neutral expression of
the reconstructed subject. Similarly, a 2D convolutional variational encoder produces the expression
codes from geometry and UV-texture maps subtracted from a canonical neutral frame. At test time,
these codes can be replaced with ones produced by headset-mounted cameras, as described in 3.2.
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Figure 6: Two demonstrations of the consistent expression space produced by our multi-identity face
model. Each panel shows the ground truth image, the reconstruction of the same subject, the same
expression code rendered on three other subjects.

3.2 Generalizable face encoder

Figure 7: Generalizable encoder driving 3 subjects
from headset images.

The generalizable face encoder maps headset IR
images to the latent expression space learned by
the multi-identity face model. A key challenge
here is obtaining a reliable pseudo ground truth
mapping from headset images to face deforma-
tions, after which the problem can be posed as
supervised learning. We generate this pseudo
ground truth using the method of Wei et al. [60],
based on cycle consistency [70] between renders
of personalized avatar models [30] and images
from a headset. By jointly solving for the ex-
pression code and the relative head pose of each
frame, as well as for the domain-transfer be-
tween the dome and headset images, we obtain
person-specific latent expression codes for all
the frames of a headset capture.

To train a multi-person encoder, we follow a
simplified version of the method due to Bai et al.
[5], where we relate the person-specific codes to
the multi-person expression codes via pseudo-
frontal renderings of the avatars. Specifically,
for each training sample, we render the person-specific decoder with a randomly sampled frontal
camera. We then train an encoder that maps headset images to the multi-person latent expression
space. This encoder is supervised by decoding the latent expressions using the universal face decoder
from Section 3.1, and comparing it with the rendered person-specific avatar. The model is trained
for all frames of the headset captures, across all training subjects, to produce a single generalizable
encoder that can be applied to headset inputs from unseen subjects.

Our release includes person-specific codes for all Ava-256 headset captures, as well as the frontal
renderings of the person-specific decoders to facilitate explorations of new generalizable encoders.
We also provide code and assets necessary to train a generalizable encoder. Please refer to Figure 7
for a visualization of the provided driver.

3.3 Personalized relightable Gaussian heads

The relightable head avatars are based on Relightable Gaussian Codec Avatars (RGCA) [49], which
achieve state-of-the-art performance on avatar modeling and relighting. The geometric representation
is based on 3D Gaussians, which can be rendered with EWA splatting [73, 25] in real-time. This
representation is particularly suitable to model thin structures such as skin details and hair strands.
To support avatar relighting, RGCA models global light transport as learnable diffuse spherical
harmonics and specular spherical Gaussians, which enables relighting from arbitrary light sources in
real-time despite being trained on discrete point lights. Besides from controlling the environment
light, the expression of the avatars can be modified through a latent vector, as with regular avatars.
See Figure 8b for a qualitative sample of this model.
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3.4 Personalized relightable hands with MVP

We base the relightable hand avatars on RelightableHands [23]. This work generalizes across different
poses and light conditions in the presence of hand articulation by incorporating explicit shadow
features computed by Deep Shadow Maps [29]. The hand geometry is represented by an articulated
MVP [46] to support both articulation and volumetric modeling without compromising the efficiency
of rendering. Hand pose is represented by joint angles and can be easily transferred across subjects.
See Figure 8a for a qualitative sample of this model.

(a) Relightable face model of subject QZX685 (b) Personalized hand model of subject AXE977

Figure 8: Qualitative results of hand and face models based on mixtures of volumetric primitives
(left) and Gaussian splatting (right). Ground truth, model prediction, and difference image.

3.5 Personalized full-body decoders

Full-body person-specific avatars are based on driving-signal-aware codec avatars [4]. This work uses
a mesh-based neural representation. A body mesh and a view-dependent texture are decoded with
a pose and latent code conditioned convolutional neural network, which are then rendered with an
efficient differentiable renderer [43]. Generalization is achieved through a collection of disentangling
techniques – localizing pose-dependent deformations, separating non-pose-dependent deformations
into a disentengled latent space, and using an explicit physics-inspired prior for shadow modelling.
See to Figure 9 for qualitative examples of these models.

(a) Fully clothed body model of subject QVC422 (b) Minimally clothed body model of subject XKT970

Figure 9: Qualitative results of full-body models based on mesh and neural texture. Ground truth,
model prediction, and difference image.

4 Limitations and Potential Negative Impact

Codec Avatar Studio opens numerous exciting research opportunities that were previously unavailable
to academic researchers, but some challenges remain unsolved. For example, while ava-256 supports
the creation of multi-person driveable decoders and Goliath-4 supports the creation of relightable
head decoders, it will likely be hard to create multi-identity relightable head decoders with our release.
Our datasets also fail to capture the long tail of human expressivity, such as the ability to convey
sweat, tiredness, and blood flow. Goliath-4 allows experimentation with converting low-quality data
(e.g., from mobile or full-body captures) into higher-quality outputs (such as multi-view head and
hands). However, its sample size is limited to four subjects, restricting the scope of this research.
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Potential negative impact. Our releases share potential negative impact with other research related
to the modelling of human appearance. In particular, more accurate controllable models of human
appearance could be misused for impersonation or to faciliate the spread of disinformation. Potential
mitigations may include authentication protocols for verifying the origin of information, avatar
watermarking, and research into computer interfaces that clearly communicate whether media has
been produced using photorealistic avatars.

5 Related Work

In this Section, we review the various types of human datasets for avatar generation. The discussion
is divided into three parts: head, body, and hands datasets.

5.1 Datasets for Head Avatar Generation

Table 2: Summary of multi-view face datasets. Smaller scale dataset (fewer than 60 ids or 20
views) as shown first, then large-scale datasets, then ours.

Dataset name IDs Views
Sentences

+ expressions Images Resolution Size
Headset
captures

D3DFACS6 [18] 10 6 19-97 - 1 280 × 1 024 - ✗
CMU Multi-PIE [20] 337 15 6 750K 3 072 × 2 048 0.3 TB ✗

4DFAB6[16] 180 7 15 - 1 600 × 1 200 - ✗
MEAD [58] 48 7 (8) - 1 920 × 1 080 0.9 TB ✗
Interdigital Light-Field [48] 5 16 - - 2 048 × 1 088 0.1 TB ✗
Multiface [61] 13 40/150 168 15M 2 048 × 1 334 65.0 TB ✗
NerSemble [26] 222 16 25 31.7M 3 208 × 2 200 1.0 TB ✗

HUMBI Face [67] 6171 68 20 17.3M 200 × 1505 1.3 TB ✗

Facescape [63] 3592 68 20 400K 4 344 × 2 896 0.9 TB ✗

i3DMM4[65] 64 137 10 - - - ✗

RenderMe-360 [41] 5003 60 37/54 243M 2 448 × 2 048 5.8 TB ✗

Ava-256 Dome Captures (Ours) 256 80 35 217 M 2 048 × 1 334 32.0 TB ✓

1 We only found the data of 403 subjects available online. We have contacted the authors to clarify this discrepancy.
2 Out of 847 total subjects captured, only 359 subjects are available with multi-view image data.
3 500 captures are expected to be released later in 2024, but only 21 subjects were available online at time of submission. 5.8 TB is
the size of this smaller subset containing about 4.2 % of the data, so we expect the final release size to be well over 100 TB.
4 We requested access to the dataset on May 20th but have not heard back at the time of submission, and are thus unable to obtain
more data about this dataset.
5 The head images are cropped from the full-body 1 920 × 1 080 image, and are thus of low resolution.
6 Dataset was not available on the website.

The growing interest in developing high-quality human head and face models has led to the collection
of large-scale, multi-view head and face capture datasets. One notable example is HUMBI-Face [67],
which captured facial expressions using 68 HD cameras from 772 subjects at a resolution of 1 920 ×
1 080, significantly increasing the scale of human datasets. However, HUMBI-Face, while expanding
the number of views and subjects, only captured 20 expressions and excluded conversations or
speech. Similarly, Facescape [63] recorded avatar data from 847 subjects with 20 expressions at
a resolution of 4 344 × 2 896, but released multi-view image data for only 359 subjects. On the
other hand, i3DMM [65] involved fewer subjects and expressions, with 64 subjects performing 10
expressions, but featured a higher number of views with 137 camera angles. RenderMe-360 [41] is
the more recent large-scale subject for face modelling; it aimed to enhance the diversity of subject
appearance by varying hairstyles with wigs and incorporating various makeup styles among 500
subjects. The authors captured 12 expressions plus 25 to 42 sentences, using 60 camera views
recorded at a resolution of 2 448 × 2 048. We summarize these datasets, plus others which are smaller
in scale (with fewer than 60 IDs or fewer than 10 views) in Table 2.

Our Ava-256 dataset aims to provide comparable variability in the number of subjects, camera views,
and expressions, while also including headset data that no previous dataset offers. Additionally, we
provide four distribution-friendly release sizes to facilitate accessibility and long-term maintenance.
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5.2 Datasets for Body Avatar Generation

The interest in human anthropometrics drove the creation of the first large full body datasets. One of
the first large data collection efforts was CAESAR [47], composed by three colored laser scans for
thousands of subjects. Private companies like Humanetics have continued similar studies devoted to
anthromopetrics, collecting thousands of full body scans across Europe and North-America [22]. In
academia, one of the first uses of 3D full body datasets was the creation of statistical body models.
Anguelov et al. [2] created SCAPE, a single subject deformable model from 71 registered meshes
of different poses. Allen et al. [1] created a multi-subject geometry model by combining data from
44 different subjects with 80 more scans of 5 subjects in different poses. Later models increased
the amounts of data used for statistical full body models to hundreds [21], thousands [32], more
than ten thousand [39], tens of thousands [62], and a million [40] samples. Other common use of
geometry-only datasets have been modeling clothes [69, 33]. The increasing size of these datasets has
resulted in improved accuracy and generalizability of the body models. However, the data typically
lacks high quality appearance information, making these models inadequate for image generation.

Laser scans in the early 2 000s were replaced by multi-view photogrammetry scans, which capture
high quality imagery as well as geometry (based on either active or passive stereo). One of the first
uses of images in these captures was to improve the registration to a deformable template [8, 9].
However, thanks to deep neural networks, full body avatars that model not only geometry but also
appearance became more common. X-Avatar [51] created an animatable implicit human avatar
including geometry and appearance based on the X-Humans dataset, which includes more than
35 500 scans. A large number of systems and datasets have been devoted to model, replace or
remove garments. Multiple synthetic datasets have been proposed to learn garment geometry and
dynamics [6, 72, 50]. To estimate body shape under clothing, [64, 69] collected each six subjects
performing multiple motions both in minimal clothing as well as other garments. Our proposal of
collecting minimal and casual data is similar to theirs, but using more cameras of higher resolution
and complementing with other modalities (i.e. phone, relightable heads and hands). The THuman3.0
dataset [52] improved scan quality, and garment variety over its previous versions [66, 52] to
reconstruct and model garments from scans. Sizer [54] shares the same goal, for which it collected
2 000 scans from 100 subjects. 4DHumanOutfit [3] focused on large motions of more than thousand
sequences thanks to their ample color scan space. Recently, 4D-Dress [59] released 78 000 scans
focused on garment variety, including 64 different outfits and corresponding semantic vertex labels.

The closest effort to Goliath-4 is Humman [12], which collects a multimodal dataset including mobile
phone data, multiview RGBD and handheld scans for 1 000 subjects resulting in more than sixty
million frames in total. While their system focuses on subject variety, Goliath-4 provides higher
quality data for each of our four subjects, including high quality geometry and texture for each
full-body frame, as well as high quality relightable head and hand sessions.

5.3 Datasets for Hand Avatar Generation

The popularity of applications like 3D hand estimation from images have fostered the appearance
of a large number of datasets devoted to hands. However, most of these datasets are composed by
real images annotated with either joint positions [68, 57, 38, 27] or 3D model parameters [42, 71, 14,
10, 56], and dedicated almost exclusively to model the geometry of the hand. HTML [45] used 51
handheld scans to create a PCA space of the right hand texture. Handy [44] increased the variety
and quality of their models by collecting more than 1 200 scans with a 3dMD multiview scanner
which included high quality textures. The release of Interhand2.6M [34] enabled the recent creation
of multiple high quality appearance models [37, 17, 15, 24, 28]. However, this dataset has two
drawbacks: its illumination is fixed (which is improved with [35], but for synthetic data), and it does
not include the rest of the body. We fix those two shortcomings in Goliath-4, although Interhand2.6M
is still valuable given it contains hand interaction and larger subject variety than our proposed dataset.
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