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Abstract

Training Multi-Agent Reinforcement Learning (MARL) with sparse rewards is1

challenging due to complex agent interactions. We propose Linear Programming-2

based hierarchical MARL (LPMARL), which integrates constrained optimization3

into MARL for effective coordination. LPMARL operates in two stages: (1) solv-4

ing agent–task assignment via a Linear Program with state-dependent costs from5

a Graph Neural Network (GNN), and (2) solving cooperative sub-games among6

assigned agents. Both the LP generator and low-level policies are trained end-7

to-end by differentiating through the optimization layer. Experiments show that8

LPMARL achieves effective task allocation and sub-policy learning across diverse9

cooperative games.10

1 Introduction11

Multi-Agent Reinforcement Learning (MARL) is promising for controlling complex distributed sys-12

tems, but training under sparse rewards remains challenging because outcomes depend on long-term13

interactions among agents. Effective methods must capture the relation between sequential actions14

and delayed rewards to enable efficient decision-making.15

A widely studied direction is hierarchical MARL, which decomposes complex problems into sub-16

tasks through high-level and low-level policies. Some approaches rely on pre-defined high-level17

action spaces under the semi-MDP framework [Sutton et al., 1999], such as using temporally ab-18

stracted task-selection policies [Tang et al., 2018], centralized allocation strategies [Ahilan and19

Dayan, 2019], or exploration-based high-level policies to constrain the low-level action space [Liu20

et al., 2021]. While these methods promote the formation of task-dependent sub-groups, their low-21

level policies are often trained individually, limiting cooperation among agents.22

Other works attempt to remove the need for explicit high-level action spaces by learning latent roles23

or representations. For example, role-based methods [Wang et al., 2020a, Yang et al., 2022], action24

representation learning [Wang et al., 2020b], and intrinsic reward shaping [Yang et al., 2019] provide25

flexible abstractions for coordination. However, these latent strategies can be difficult to interpret,26

require careful selection of the number of roles, and often transfer poorly across environments.27

A complementary line of research formulates agent–task allocation as a constrained optimization28

problem with state-dependent parameters [Carion et al., 2019]. Such formulations offer structure29

but typically rely on rule-based low-level policies, which limits cooperation.30

Motivated by these limitations, we propose LPMARL, a hierarchical framework with two stages:31

(1) solving agent–task assignment via Linear Programming (LP) with state-dependent costs from a32

Graph Neural Network (GNN), and (2) solving local cooperative sub-games among assigned agents.33

NeurIPS 2025 Differentiable Learning of Combinatorial Algorithms Workshop (NeurIPS DiffCoALG 2025).



Both the LP generator and low-level policies are trained end-to-end through a differentiable opti-34

mization layer, enabling interpretability, generalization, and practical decentralized execution.35

The contributions of this paper are as follows:36

• Interpretability. LP acts as an algorithmic prior, embedding explicit objectives and constraints37

into the high-level policy.38

• Training. A differentiable pipeline jointly optimizes representation learning, LP solving, and39

cooperative control.40

• Practicality. GNN parameterization supports generalization to varying agents, tasks, and con-41

straints, and a decentralized variant amortizes LP assignment for scalable execution.42

2 Preliminaries43

2.1 Problem formulation44

LPMARL is designed to address cooperative MARL problems consisting of multiple tasks and joint45

constraints. Here, tasks denotes specific sub-goals that agents must accomplish for the overall suc-46

cess of the game. For example, in the cooperative navigation environment [Liu et al., 2021], agents47

must select distinct landmarks (task allocation) and reach them without collision (task completion).48

We model this setting with a hierarchical Dec-POMDP [Tang et al., 2018], defined as <49

N ,S, {Oi}Ni=1, {Ah
i }Ni=1, {Al

i}Ni=1,R, T >, where N is the set of agents, S the state space, {Oi}50

the observation space, {Ah
i } the high-level (task) action space, {Al

i} the low-level (primitive) action51

space, R the reward function, and T the transition probability.52

At each timestep, agent i receives a partial observation oi = oi(s) from the global state s ∈ S. It53

then selects a high-level action ahi through its policy πh
i : Oi → Ah

i . Conditioned on this high-level54

action, the agent chooses a low-level action ali using πl
i : Oi ×Ah

i → Al
i, which is executed in the55

environment.56

Agents receive intrinsic rewards rli(s,a
l; ahi ) for completing sub-goals, and a high-level reward57

rh(s,al) when the global task is successfully achieved. The objective is to learn high- and low-58

level policies that maximize the expected cumulative reward: Eπ

[∑T
t=0 γ

trt

]
.59

2.2 Implicit deep learning60

Implicit deep learning is a framework that incorporates implicit rules, such as ordinary differential61

equations [Chen et al., 2018], fixed-point iterations [Bai et al., 2019], and optimization [Amos62

and Kolter, 2017], into a feed-forward neural network. This framework utilizes differentiable op-63

timization layers that take problem-specific parameters as input and find optimal solutions based64

on objective functions constructed with given parameters. The output of these layers, serving as the65

optimization inductive bias, is then passed to subsequent layers to perform various tasks. The utiliza-66

tion of implicit deep learning provides a foundation for LPMARL, enabling differentiation through67

the embedding layer, LP layer, and policy network, facilitating efficient learning and coordination68

among agents.69

3 Methodology70

At each step, LPMARL proceeds in three stages: (1) constructing an agent–task score matrix via71

a GNN, (2) solving an agent–task assignment LP, and (3) solving cooperative sub-games among72

agents assigned to the same task (Fig. 1).73

3.1 Constructing agent–task score matrix74

Given global state s = {sk : k ∈ N ∪M}, we build a bipartite graph G = (V, E) with agent nodes75

N and task nodes M. Edges represent agent–agent and agent–task relations. A message-passing76
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Figure 1: Overall decision-making framework of LPMARL

GNN [Battaglia et al., 2018] updates embeddings as77

mNN
ij = f(hi, hj ; θ

NN
g ), ij ∈ ENN (1)

mNM
ij = f(hi, hj ; θ

NM
g ), ij ∈ ENM (2)

h′
i = f([

∑
mNM

ij ∥
∑

mNN
ij ∥hi]; θ

V
g ), ∀i. (3)

Using updated embeddings {hi}, we compute cost coefficients cij = f(hN
i , hM

j ; θc),, where cij78

scores the allocation of agent i to task j. The resulting matrix C forms the objective of the assign-79

ment LP.80

3.2 High-level policy: agent–task allocation81

The centralized high-level policy solves the LP:82

maximize
∑
i,j

cij · zij (4)

s.t.
∑
i

zij ≤ kj , ∀j ∈ M (5)∑
j

zij = 1, ∀i ∈ N (6)

0 ≤ zij ≤ 1. (7)

The solution Z∗ = {z∗ij} represents assignment probabilities, i.e., πh(ahi = j|s) = z∗ij . Agents are83

then grouped by assigned task.84

Decentralized policy. Centralized LP solving may be impractical at execution. We therefore intro-85

duce Dec-LPMARL, where each agent uses a GNN-based imitation policy π̂h
i (a

h
i = j|oi) = ẑ∗ij86

trained to approximate Z∗. Details of this amortized policy are given in Appendix D.87

3.3 Low-level policy88

Once agents are grouped by tasks, each agent selects low-level actions conditioned on both its ob-89

servation and assigned task:90

πl(ali|oi, ahi ) = softmax
[
f(hN

i , hM
ah
i
; θl)

]
al
i

. (8)

Here θl are the parameters of the low-level policy, shared among agents within a group.91

4 Training92

We jointly train the parameters of the high-level policy θh and low-level policy θl by optimizing a93

weighted objective94

J = w · Jl(θl) + (1− w) · Jh(θh),
where w is decayed from 0.9 to 0.1 during training to account for the higher sparsity of high-level95

rewards.96
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4.1 High-level policy97

The high-level actor–critic is trained using sparse team rewards. The critic Qh estimates long-term98

returns, while the policy gradient is computed by differentiating through the LP optimization layer.99

Since LP solutions can be piecewise constant, we follow Vlastelica et al. [2019] to approximate100

gradients using perturbed objectives (details in Appendix B).101

4.2 Low-level policy102

The low-level policy is trained to maximize the sum of sub-task rewards within each agent group.103

We adopt value function factorization Sunehag et al. [2017] to construct the critic Ql, and optimize104

πl via standard policy gradients (details in Appendix C).105

5 Experiment106

In our experimental evaluation, we address several key questions to assess the performance and107

capabilities of our approach. (1) Can LPMARL learn cooperative agent-task allocation? (2) Is LP-108

MARL transferable to different problem sizes? and (3) Can Dec-LPMARL amortize the centralized109

task allocation optimization procedure using a decentralized imitation policy?110

The primary objective of this study is to demonstrate how incorporating structural assumptions en-111

hances cooperation. To achieve this, we compare our approach with non-hierarchical MARL algo-112

rithms, such as Qmix [Rashid et al., 2018], MADDPG [Lowe et al., 2017], and MAAC [Iqbal113

and Sha, 2019], which do not explicitly incorporate task allocation. Additionally, we evaluate the114

effectiveness of our proposed hierarchical decision-making scheme by comparing it with existing115

hierarchical MARL approaches, such as HSD [Yang et al., 2019], RODE [Wang et al., 2020b], and116

LDSA [Yang et al., 2022]. Through these comparisons, we aim to highlight the advantages and117

improvements offered by our approach in addressing cooperative problem-solving scenarios.118

In addition, we consider two ablations of LPMARL: Dec-LPMARL and No-LP. Dec-LPMARL119

explores the feasibility of decentralizing LPMARL by decentralizing the task allocation process,120

allowing agents to make decisions based on local observations. No-LP serves as a comparison to121

evaluate the effectiveness of using LP as the high-level policy, where the global state is directly used122

as input for generating the high-level policy.123

5.1 Constrained cooperative navigation124

In order to investigate the high-level assignment of LPMARL, we produced a modified version of the125

cooperative navigation [Lowe et al., 2017], namely the constrained cooperative navigation. In this126

environment, N agents aim to occupy M (M < N ) landmarks, where each landmark has its own127

capacity limit to accommodate the agents. In this environment, the agents receive a success reward128

only in the case when the agents occupy the landmarks while satisfying the capacity constraint.129

Additional experimental details are described on Appendix E.2.130

Table 1: Normalized performance metric of constrained cooperative navigation. Win rate (%) corre-
sponds to the performance of the high-level policy, while minij{dij} corresponds to the performance
of the low-level policy. The reported results are the mean over all the agents over five runs. First and
second best results are represented with bold text.

Scenario Ours Non-hierarchical MARL Hierarchical MARL

LPMARL Dec
LPMARL No-LP Qmix MADDPG MAAC HSD RODE LDSA

(M,N)
= (3, 5)

Win rate (%) 85.8 75.2 34.9 37.2 20.8 27.3 48.7 43.6 51.5
minij{dij} 0.12 0.24 0.42 0.30 0.43 0.23 0.19 0.29 0.17

(M,N)
= (5, 7)

Win rate (%) 82.5 71.2 28.3 33.2 15.0 19.5 44.9 43.1 39.6
minij{dij} 0.11 0.34 0.53 0.29 0.48 0.22 0.18 0.38 0.28
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Figure 2: (a) Visualization of the learned coefficient of LPMARL. (b) Visualization of the agent-task
distance matrix. (c) Optimal solution of LP with both input coefficients.

Figure 3: Visualization of transfer policy learned from N = 5,M = 3 to a task of N = 10,M = 4.
The agent-landmark with the same color represents the result of the high-level assignment.

Table 1 shows performance of a constrained cooperative navigation when trained with M,N =131

(3, 5), (5, 7). The results indicate that none of the baseline algorithms were able to effectively di-132

vide agents into groups without violating constraints, while the LPMARL was able to learn an133

optimal allocation and navigation policy, achieving 85.8% success rate in the training environment.134

Additional experimental results can be found in the Appendix F.1.135

Note that the success of the agents in the constrained cooperative navigation task is not solely based136

on their proximity to the landmark, but also takes into account other factors. For example, even if the137

agents are able to navigate towards a landmark, they may not receive high rewards if that landmark138

is not the optimal one.139

5.1.1 Interpretation of high-level policy140

We compared LPMARL with LP-distance, which utilizes the distance matrix in solving the upper-141

level assignment problem, to interpret the learned optimization coefficient. Figure 2 visualizes the142

learned coefficient of LPMARL and the distance matrix for a specific problem instance. Comparing143

Figure 2 (a)-(b), we observe that the cost coefficient generating function Cθc(·) generates coeffi-144

cients resembling the distance matrix. While the learned coefficient function is sharper than the145

distance function, the optimal solutions of LPMARL and LP-distance are the same, as depicted in146

Figure 2 (c). This experiment showcases how LPMARL performs task assignments by considering147

the relationships between agents and tasks. Although this particular task could be solved straight-148

forwardly using distance matrices, LPMARL demonstrates its capability to handle more complex149

relationships beyond distance. Further details on ablation studies concerning the high-level policy150

can be found in Appendix F.1.3.151

5.1.2 Zero-shot policy transfer152

To assess the size transferability of LPMARL, we conducted experiments in a constrained cooper-153

ative navigation environment with varying sizes. Due to the fixed input dimension of the baseline154

algorithm discussed in Section 5.1, the trained baseline model cannot be transferred to problems155

with a different number of agents. Therefore, we compared the performance exclusively with our156

ablation model.157

The cost coefficient function and low-level policy, which are based on GNN, are designed to handle158

games with varying numbers of agents and tasks. To evaluate their transferability, we applied the pol-159

icy learned from 3 ≤ N,M ≤ 10 to a larger-scale problem. Figure 3 illustrates an example of the be-160
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Table 2: Success ratio (%) of the transferring policy learned on N,M ∈ [3, 10]. The gray and blue
shaded cell represents the in-training distribution and out-of-training distribution respectively.

LPMARL Dec-LPMARL No-LP
N →
M ↓ 3 5 10 15 20 3 5 10 15 20 3 5 10 15 20

3 98.4 96.5 85.2 72.2 66.2 93.5 88.1 82.1 62.7 52.1 51.2 30.9 9.2 0.0 0.0
5 - 98.2 82.1 70.3 62.8 - 79.5 64.2 55.0 32.2 - 35.2 5.8 0.0 0.0

10 - - 83.5 65.2 49.1 - - 54.0 38.7 26.5 - - 3.2 0.0 0.0
15 - - - 68.9 53.2 - - - 37.9 19.7 - - - 0.0 0.0
20 - - - - 48.0 - - - - 15.5 - - - - 0.0

Table 3: Win ratio (%) on SMAC. The mean and standard deviation of the evaluation episodes are
reported. First and second best results are represented with colored text.

Map name LPMARL Dec-LPMARL No-LP Qmix SEAC∗ RODE

3m (sparse) 44.2±3.7 31.6±2.0 8.4±1.3 10.4±3.0 8.3±2.8 18.6±2.1

2m 1z (sparse) 44.3±4.9 37.2±3.0 5.4±0.6 13.4±3.3 30.5±4.6 35.1±4.7

3s 5z (sparse) 0.9±0.5 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.3±0.0

8m (sparse) 9.5 ±0.5 6.1±0.5 0.0±0.0 3.1±0.3 - 2.6±0.2

* It is impossible to train SEAC on large problem instances due to the memory allocation problems.

havior of an LPMARL agent in a scenario with N = 10, M = 4, and (k1, k2, k3, k4) = (1, 2, 3, 4).161

The landmark text indicates the capacity limit of each landmark. In the leftmost subfigure, represent-162

ing the initial state of the environment, the circles represent agents, and the cross marks represent163

landmarks. In the second subfigure, the high-level policy assigns each agent to a landmark with the164

corresponding color. Subsequently, the agents navigate towards their assigned landmarks, leading165

to a successful state where all constraints are satisfied.166

Table 2 presents the performance of the policy learned from 3 ≤ N,M ≤ 10 when tested on167

3 ≤ N,M ≤ 20 without further training. LPMARL achieves a success rate of over 50% on out-of-168

training distributions, demonstrating its zero-shot transferability to larger scenarios.169

5.2 StarCraft2 Micromanagement170

The last environment we consider is the StarCraft Multi-Agent Challenge [Samvelyan et al., 2019].171

In this environment, we can verify the dynamic goal assignment of the algorithms as the number172

of agents/enemies may change within the episode. The baselines we consider for SMAC are Qmix,173

RODE, and SEAC [Christianos et al., 2020].174

Table 3 shows the final win ratio on SMAC tasks. In the sparse-reward setup, LPMARL stands out175

as the only method achieving meaningful win ratios across all scenarios. Particularly, in the 3s 5z176

and 8m environments, the win ratio of LPMARL surpasses other algorithms by at least threefold.177

Although it has a slightly lower win rate than its centralized version, Dec-LPMARL still has com-178

petitive performance compared to other baselines. More information including experimental results179

and video link can be found in Appendix F.2.180

6 Conclusion and limitation181

We proposed LPMARL, an LP-based hierarchical MARL approach, to effectively solve coopera-182

tive games with sparse rewards while optimally allocating agents to tasks. We demonstrated that183

LPMARL can decompose agents into sub-tasks across various environments.184

We assume that the target problem is explicitly decomposed into multiple tasks. Even if this as-185

sumption does not hold, there is still potential for applying the proposed technique. For example,186

in prey–predator settings, it is possible to differentiate the prey’s role into chase and distract and187

assign agents accordingly.188
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A Visualization of Extreme point of LP249

Figure 4: Visual description of extreme points

Figure 4 illustrates the extreme points of the linear programming in 3-dimensional case, where the250

decision variables are (z1, z2, z3) ∈ R3. The boundary constraints are illustrated as the surface of251

the cube, and additional constraints other than boundary constraints are illustrated as the surface252

generated by blue lines. In Figure 4 (left), extreme points corresponding only to the boundary253

constraints are marked as the black dots, and the other extreme points are marked as the blue dots.254

The objective of the optimization is to maximize f(z) = c1z1 + c2z2 + c3z3. The objective coef-255

ficients (c1, c2, c3) determine the slope of the plane of the objective function, as illustrated by the256

red arrow on Figure 4. In Figure 4, we consider two possible optimization outcomes. For case (1),257

the optimal solution z∗ = (z∗1 , z
∗
2 , z

∗
3) occurs only on the extreme points that are generated by the258

boundary points, and for case (2), z∗ occurs on the other extreme points. In case (1), the optimal259

solution z∗ is integer-valued. In our LP formulation, we have N × M boundary constraints and260

N + M additional constraints. Thus, depending on the value of the objective coefficient and con-261

straint coefficients, there may exist some integer-valued solution. In addition, the solution of the262

LP hanges discontinuously on the continuous change on the slope of the objective plane. For this263

reason, we need continuous interpolation of the gradient of the discontinuous surface ∂Jh

∂C .264

B Policy gradient approximation for LP layer265

The gradient of the high-level policy ∇θhJh(θh) can be computed as the following chain rule:266

∂Jh(θh)

∂θh
=

∂Jh

∂Z∗ · ∂Z
∗(C)

∂C
· ∂C
∂θh

(9)

We can compute the gradient ∂Z∗(C)
∂θh

= ∂Z∗(C)
∂C · ∂C

∂θh
by differentiating the equality of the KKT267

conditions. Previous works Wilder et al. [2019], Ferber et al. [2020] proposed to add additional268

quadratic regularization term γ||z|| in the objective function (Eq. 4) to make LP as smooth QP, and269

induce non-singular Jacobian matrix to differentiate through the equality of the KKT conditions as270

in Amos and Kolter [2017].271

However, although our high-level optimization problem is formulated as an LP, there exist extreme272

points generated only by the boundary constraints (Eq. 7). Thus, the optimal solution may be273

integer-valued on this extreme point as described in Appendix A. In this case, the optimal solution274

may not vary continuously with respect to the input; a small change can induce an abrupt change in275

the objective value. Thus, the ∂Z∗(C)
∂C be in the form of the piecewise constant, making it difficult276

to estimate the gradient. To solve this issue, Vlastelica et al. [2019] presented a piecewise linear277

surrogate loss surface that can approximate the original piecewise constant surface ∂Jh

∂C of the com-278

binatorial optimization layer. To obtain a meaningful differential value for this integer-solution, the279

gradient ∂Jh

∂C = ∂Jh

∂Z∗ · ∂Z∗(C)
∂C approximated by using the solution gap between the original solution280

of the optimization problem and the solution of the perturbed optimization problem, as:281

∂Jh

∂C
≈ − 1

λ
(Z∗ − Z∗

λ) (10)
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where Z∗ and C are the optimal solution and coefficient used in the forward pass, respectively. Z∗
λ282

is the approximate solution computed as:283

Z∗
λ = Z∗(C ′

λ). (11)

Here, C ′
λ is the perturbed cost coefficient computed as284

C ′
λ := C + λ · dJh

dZ
(Z∗) (12)

where λ is the hyperparemeter that scales the amount of perturbation while considering the gradient285

with respect to the solution Z∗. dJh

dZ (Z∗) is the gradient of Jh with respect to solver output Z at286

given point Z∗. The amount of solution gap between the original solution and perturbed solution287

Z∗ − Z∗
λ is the slope of the piecewise linear function that will replace ∂Jh

∂C evaluated at C. One can288

guarantee that the modified loss function is piecewise affine and similar to the original loss function289

(we refer to Vlastelica et al. [2019] for more detail).290

C Detailed Training Derivations291

C.1 High-level critic292

The high-level critic Qh(·;ϕh) is trained to minimize the loss293

L(ϕh) = E
[(
Qh(st, a

h
i,t;ϕh)− y

)2]
, (13)

y = rht +
∑
i

γτ max
ah
i,tτ

Qh(st+τ , a
h
i,t+τ ; ϕ̄h), (14)

where ϕ̄h is the target parameter. The temporal discounting accounts for high-level actions that last294

τ timesteps.295

C.2 High-level policy gradient296

The high-level policy gradient can be expressed as297

∇θhJh(θh) =
∂Jh

∂Z∗ · ∂Z
∗(C)

∂C
· ∂C
∂θh

, (15)

where Z∗ is the LP solution given coefficient matrix C. Since Z∗(C) is piecewise constant at integer298

extreme points, we follow Vlastelica et al. [2019] to approximate299

∂Jh

∂C
≈ 1

λ
(Z∗

λ − Z∗), (16)

with Z∗
λ being the solution of the perturbed LP.300

C.3 Low-level critic301

For agents grouped by high-level task j, the low-level critic Ql is trained with302

L(ϕl) = E

∑
j∈M

( ∑
i|ah

i =j

Ql(s, ali; a
h
i , ϕl)− y

)2

 , (17)

y = rlj +
∑

i|ah
i =j

γmax
al
i

Ql(s′, ali; a
h
i , ϕ̄l), (18)

where rlj is the sub-group reward and ϕ̄l is the target parameter.303

C.4 Low-level policy gradient304

The low-level policy is trained via305

∇θlJl(θl) = E

[∑
i

Ql(s, ali; a
h
i , ϕ̄l) · ∇θl log π

l(ali|s, ahi , θl)

]
. (19)
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D Details on Dec-LPMARL306

In Dec-LPMARL, the training process focuses on amortizing the high-level policy of LPMARL in307

a decentralized manner, eliminating the need for solving a centralized optimization problem dur-308

ing execution. To achieve this, Dec-LPMARL employs a decentralized high-level policy, denoted309

as π̂h
i (a

h
i |oi), which takes a local observation oi as input and outputs the probability of choosing310

tasks (Figure 1). The difference between LPMARL and Dec-LPMARL lies in two aspects: (1) the311

construction of the graph, and (2) the training of the high-level policy.312

First, in Dec-LPMARL, the graph used to generate cost coefficients is constructed in a different way.313

Dec-LPMARL constructs edge between entities within the observation scope, i.e., Gdec = (V, Edec),314

where Edec ∈ E . This enables the agents to collectively construct the graph without relying on a315

centralized entity.316

Second, the training of the high-level policy in Dec-LPMARL involves amortizing the pre-trained317

LPMARL high-level policy. This is done using a behavior cloning loss, which aims to minimize the318

negative log likelihood of the pre-trained LPMARL policy’s task selection given the local observa-319

tion. Specifically, the behavior cloning loss can be formulated as follows:320

LBC = −Eτ∼D,i,t

[
log π̂h

i (a
h∗
i |oi)

]
(20)

where π̂h
i (a

h∗
i |oi) represents the predicted probability of choosing the expert (LPMARL) action ah∗i321

at time step t given the agent’s local observation oi using π̂h
i . By training the decentralized high-level322

policy in this way, Dec-LPMARL can effectively leverage the knowledge encoded in the LPMARL323

policy while operating in a decentralized manner.324

E Hyperaparemeters and Experimental details325

The hyperparameters of LPMARL used in the experiment are summarized in Table 4. We used an326

CVXPY solver Diamond and Boyd [2016] to solve the linear programming in Section 3.

Table 4: Hyperparemeters of LPMARL

Hyperparemter Values

MLP units for GNN, f(·; θNM
g ), f(·; θMM

g ), f(·; θV
g ) [32,32]

MLP units for coefficient matrix, f(·; θc) [64,64]
MLP units for policy network, f(·; θh), f(·; θl) [64,64]
MLP units for critic network f(·;ϕh), f(·;ϕl) [64,64]

Nonlinear activation LeakyReLU, negative slope=0.01
learning rate 10−3

Discount rate, γ 0.99
λ 20

Optimizer Adam

327

For other baselines algorithms, we used a two-layer feed-forward fully-connected network with a328

64-dimensional hidden layer and ReLU activation. Batches of 32 episodes are sampled from the329

replay buffer. The optimizer, learning rate, and discounting rate γ of the other algorithms are set to330

be the same as in Table 4. Experiments are carried out on NVIDIA RTX A6000.331

In the experimental environment, the rewards are provided differently to the algorithms. For the332

hierarchical MARL algorithms and LPMARL, each level of reward described above is used to train333

the corresponding policy level. For the non-hierarchical MARL algorithms, a weighted sum of the334

high- and low-level rewards is used to train the policy.335

E.1 Cooperative navigation336

We used 50,000 episodes where the maximum timestep of the each episode is 50. For every algo-337

rithm, we set the size of the replay buffer as 5,000 with a batch size of 32 to train. For LPMARL,338

we set ki, the capacity constraint coefficient of Eq. 5, as 1 at every scenario. The initial location339
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of the agents and landmarks are randomly spawn on [−1, 1]× [−1, 1] and [−0.8, 0.8]× [−0.8, 0.8],340

respectively. The reward conditions of the experiment is specified in Table 5.341

Reward setting Hierarchical MARL, LPMARL Non-hierarchical MARL

Dense setting High-level reward +1 when all agents reaches landmark 0.5×High-level reward
+0.5×Low-level reward

Low-level reward +1 when each agent reaches landmark
distance and collision-related reward

Sparse setting High-level reward +1 when all agents reaches landmark 0.5×High-level reward
+0.5×Low-level reward

Low-level reward +1 when each agent reaches landmark

Table 5: Reward setup of cooperative navigation environment.

E.2 Constrained Cooperative navigation342

We used 50,000 episodes where the maximum timestep of the each episode is 50. For LPMARL,343

we set ki, the capacity constraint coefficient of Eq. 5, to be the same as the landmark capacity. The344

initial location of the agents and landmarks are randomly spawn on [−1, 1]×[−1, 1] and [−0.8, 0.8]×345

[−0.8, 0.8], respectively.346

We set the capacity of the landmarks as an integer partition of N into M groups, i.e.,
∑M

j=1 kj = N347

where kj is the number of agents that can be accommodated by landmark j. The capacity of the348

landmark is randomly determined at the beginning of each episode. Agents can observe the capacity349

and the position of each landmark within the observation range.350

E.3 StarCraft Multi-Agent Challenge351

We train all models over 100,000 episodes. For every algorithm, we set the size of the replay buffer352

as 5,000 with a batch size of 100 to train. For LPMARL, we set ki, the capacity constraint coefficient353

of Eq. 5, as ⌈M
2 ⌉ at every scenario.354

We consider the following SMAC scenarios:355

• 3m: 3 marines (N = 3) versus 3 marines (M = 3). The episode limit is 60 timesteps.356

• 2m 1z: 2 marines (N = 2) versus 1 zealot (M = 1). The episode limit is 150 timesteps.357

• 3s 5z: 3 stalker (N = 3) versus 5 zealots (M = 5). The episode limit is 150 timesteps.358

• 8m: 8 marines (N = 8) versus 8 marines (M = 8). The episode limit is 150 timesteps.359

Difficulty levels of the scenarios are all set to be harder (6).360

F Additional Experiment Results361

F.1 Cooperative Navigation362

F.1.1 Training curve363

Training curve on constrained cooperative navigation is shown in Figure 5. Figure 5 shows the high-364

and low-level reward curve over the episodes when the algorithm is trained when N and M = 3.365

F.1.2 Amortization accuracy366

Figure 6 illustrates the performance of the Dec-LPMARL algorithm in terms of prediction accuracy367

across various training episodes. The results demonstrate that the algorithm demonstrates high per-368

formance, with prediction accuracy exceeding 90%, when dealing with simple tasks such as dense-3.369

However, as the complexity of the optimization problem increases, the prediction accuracy of the370

Dec-LPMARL algorithm decreases to 75% (3M 5N). This outcome highlights the strong correlation371

between the performance of the Dec-LPMARL algorithm and the performance of its amortized LP372

layer. The performance of the Dec-LPMARL algorithm can potentially be improved by enhancing373

its ability to learn the optimal solution of constrained optimization.374
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Figure 5: Low-level (left) and high-level (right) reward curve. The reported reward is the mean over
all the agents over the timestep per episode.

Figure 6: Fitting accuracy of Dec-LPMARL

F.1.3 Effectiveness of LP layer375

We consider the following ablations of high-level policy to examine the effectiveness of using LP as376

a high-level policy. LP-distance assigns an agent to a goal using the distance matrix as the objective377

coefficient of LP. Therefore, agents are assigned to landmarks that minimize the sum of the distance378

of all the agents. Greedy is a greedy assignment, where each agent chooses the closest landmark379

individually. The network structure for low-level policies is identical for all the high-level ablations.380

Figure 7: Training curve of ablations of high-level policy on cooperative navigation (left) and con-
strained cooperative navigation (right)

Figure 7 shows the results of ablation studies. LP-distance uses hand-designed features to induce381

good coordination for tasks where proximity plays essential roles, such as cooperative navigation.382

However, devising a hand-defined rule for a complex task is challenging. In such cases, the proposed383

algorithm that constructs the cost matrix considering the global state can play an important role in384

deriving an effective policy.385

F.1.4 Effect of sparse reward help for training non-hierarchical MARL386

In cooperative navigation, although non-hierarchical MARL can be trained only with dense reward387

(distance and collision-related reward), we use a weighted sum of the high-level (sparse) and low-388

level reward to compare the performance fairly. If only dense reward is used for non-hierarchical389

MARL, their performance degrades. Table 6 compares the success ratio of using only dense reward390

for non-hierarchical MARL algorithms on cooperative navigation environment.391
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Qmix MADDPG MAAC

T+E E T+E E T+E E

Dense-3 82.4 87.0 85.7 82.1 89.1 85.5
Dense-5 62.0 60.9 21.3 32.8 74.5 76.2
Dense-7 49.1 43.0 5.7 12.2 65.7 52.0

Table 6: Success ratio when cooperative MARL algorithms are only trained with environment re-
ward. (T+E) indicates (T)ask-dependent reward + (E)nvironmental reward, and (E) indicates envi-
ronmental reward.

F.2 SMAC environment392

Figure 8: Visualization of high-level assignment on StarCraft environment (8m).

Figure 8 visualizes the high-level assignment of LPMARL on 8m environment. We divided the393

enemy units into two groups, with three and five units, to clearly see how LPMARL allocates agents394

to enemies. Each sub-figure of Figure 8 shows the high-level assignment result on timestep when395

the event (when M or N changes) occurs. The agent-task with the same color represents the result396

of the high-level assignment.397

In the figure, we can observe that the LPMARL agent sequentially kills all the enemies by focusing398

fire from the nearest enemy (task). Also, LPMARL does not always assign only the closest enemy399

to the ally but assigns agents to the enemy with the lowest health level (N = 5,M = 4). Further400

visualization videos can be found at the following link.401

G Codes402

The code can be found at the following link.403
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https://www.youtube.com/playlist?list=PLJC36nT1Y0NzuK8Nid9K_UhJYdz3Kwjuu
https://drive.google.com/drive/folders/1uvdt5PzSksbZNYQwpzxGwPo1nGKw85S3?usp=share_link
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