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Abstract

Training Multi-Agent Reinforcement Learning (MARL) with sparse rewards is
challenging due to complex agent interactions. We propose Linear Programming-
based hierarchical MARL (LPMARL), which integrates constrained optimization
into MARL for effective coordination. LPMARL operates in two stages: (1) solv-
ing agent—task assignment via a Linear Program with state-dependent costs from
a Graph Neural Network (GNN), and (2) solving cooperative sub-games among
assigned agents. Both the LP generator and low-level policies are trained end-
to-end by differentiating through the optimization layer. Experiments show that
LPMARL achieves effective task allocation and sub-policy learning across diverse
cooperative games.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) is promising for controlling complex distributed sys-
tems, but training under sparse rewards remains challenging because outcomes depend on long-term
interactions among agents. Effective methods must capture the relation between sequential actions
and delayed rewards to enable efficient decision-making.

A widely studied direction is hierarchical MARL, which decomposes complex problems into sub-
tasks through high-level and low-level policies. Some approaches rely on pre-defined high-level
action spaces under the semi-MDP framework [Sutton et al.l [1999], such as using temporally ab-
stracted task-selection policies [Tang et al., 2018]|, centralized allocation strategies [Ahilan and
Dayan, 2019], or exploration-based high-level policies to constrain the low-level action space [Liu
et al., 2021]. While these methods promote the formation of task-dependent sub-groups, their low-
level policies are often trained individually, limiting cooperation among agents.

Other works attempt to remove the need for explicit high-level action spaces by learning latent roles
or representations. For example, role-based methods [Wang et al., 2020a, |Yang et al.| 2022], action
representation learning [Wang et al.,|2020b]], and intrinsic reward shaping [ Yang et al., 2019] provide
flexible abstractions for coordination. However, these latent strategies can be difficult to interpret,
require careful selection of the number of roles, and often transfer poorly across environments.

A complementary line of research formulates agent—task allocation as a constrained optimization
problem with state-dependent parameters [Carion et al.l |2019]. Such formulations offer structure
but typically rely on rule-based low-level policies, which limits cooperation.

Motivated by these limitations, we propose LPMARL, a hierarchical framework with two stages:
(1) solving agent—task assignment via Linear Programming (LP) with state-dependent costs from a
Graph Neural Network (GNN), and (2) solving local cooperative sub-games among assigned agents.
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Both the LP generator and low-level policies are trained end-to-end through a differentiable opti-
mization layer, enabling interpretability, generalization, and practical decentralized execution.

The contributions of this paper are as follows:

* Interpretability. LP acts as an algorithmic prior, embedding explicit objectives and constraints
into the high-level policy.

* Training. A differentiable pipeline jointly optimizes representation learning, LP solving, and
cooperative control.

¢ Practicality. GNN parameterization supports generalization to varying agents, tasks, and con-
straints, and a decentralized variant amortizes LP assignment for scalable execution.

2 Preliminaries

2.1 Problem formulation

LPMARL is designed to address cooperative MARL problems consisting of multiple tasks and joint
constraints. Here, tasks denotes specific sub-goals that agents must accomplish for the overall suc-
cess of the game. For example, in the cooperative navigation environment [Liu et al.,2021]], agents
must select distinct landmarks (task allocation) and reach them without collision (task completion).

We model this setting with a hierarchical Dec-POMDP [Tang et al. 2018]], defined as <
N, S {OFN | {ANY  {ADN | R, T >, where A\ is the set of agents, S the state space, {O;}
the observation space, {.A"} the high-level (task) action space, {.A!} the low-level (primitive) action
space, R the reward function, and 7 the transition probability.

At each timestep, agent i receives a partial observation o; = 0;(s) from the global state s € S. It
then selects a high-level action a? through its policy 7/ : O; — A”. Conditioned on this high-level
action, the agent chooses a low-level action a! using 7! : O; x A — Al which is executed in the
environment.

Agents receive intrinsic rewards rl(s,a’;al’) for completing sub-goals, and a high-level reward

r"(s,a') when the global task is successfully achieved. The objective is to learn high- and low-

level policies that maximize the expected cumulative reward: E [EtT:o ytrt} .

2.2 Implicit deep learning

Implicit deep learning is a framework that incorporates implicit rules, such as ordinary differential
equations [Chen et al.l [2018]], fixed-point iterations [Bai et al., [2019], and optimization [Amos
and Kolter] [2017], into a feed-forward neural network. This framework utilizes differentiable op-
timization layers that take problem-specific parameters as input and find optimal solutions based
on objective functions constructed with given parameters. The output of these layers, serving as the
optimization inductive bias, is then passed to subsequent layers to perform various tasks. The utiliza-
tion of implicit deep learning provides a foundation for LPMARL, enabling differentiation through
the embedding layer, LP layer, and policy network, facilitating efficient learning and coordination
among agents.

3 Methodology

At each step, LPMARL proceeds in three stages: (1) constructing an agent—task score matrix via
a GNN, (2) solving an agent—task assignment LP, and (3) solving cooperative sub-games among
agents assigned to the same task (Fig.[I).

3.1 Constructing agent—task score matrix

Given global state s = {s, : k € N'U M}, we build a bipartite graph G = (V, £) with agent nodes
N and task nodes M. Edges represent agent—agent and agent-task relations. A message-passing



77

78
79
80

81

82

83
84

85
86
87

88

89
90

91

92

93
94

95
96

4.1. Constructing agent-task score 4.2. Solving agent-task assignment 4.3. Selecting low-level action

si ) e, - o O 100
. e 75’ Graph o o7 o ~ O o n O ngnsen .
= embedding o fme) Nl max 3 7ijci solve éf, '~ = N " a
g — 0 o ——0 O st Yzg=1  vi [—> o —— O r0lnG0) ey
S ® O Yizij < ki V) ( /7\1/‘ >l (1 12 6
— o
. J < —>at (i, hl";6Y)
State s agent  task Coefficient, Cyyy  Assignment problem Solution, Zjy
= 5 Obscwalim{l{w ‘ M O - Emmp"m af O = al(h', m"36")
< embedding bl ah O —»a(nY,m5;6") al
_Smpecame, o 17
E 5 ) > al(hY, 156"
—
:
o o ) gl R gt
@ P S (CrD)
e . I ? b ) —>al(nd, bt 0Y)
Observation {0;}i=1.x agent  task High-level policy, & Lgc Low-level cooperation

Figure 1: Overall decision-making framework of LPMARL

GNN [Battaglia et al., [2018]] updates embeddings as
N o= f(hishys 037), i € Enn (1)
= flhi hj; 09°M), ij € Expa 2)

hp= FQ miM Y mi i 6y), vi. 3)

Using updated embeddings {h }, we compute cost coefficients c;; = f(h, hM 6.),, where c;;
scores the allocation of agent i to task j. The resulting matrix C' forms the ObJeCtIVC of the assign-
ment LP.

3.2 High-level policy: agent—task allocation

The centralized high-level policy solves the LP:

maximize Z Cij * Zij “)
i,J

st Yz <k, VieM (5)

izz‘j =1, VieN (6)

0<z; <1 (N

The solution Z* = {z};} represents assignment probabilities, i.e., mh(al = jls) = z};. Agents are
then grouped by assigned task.

Decentralized policy. Centralized LP solving may be impractical at execution. We therefore intro-
duce Dec-LPMARL, where each agent uses a GNN-based imitation policy 77 (a? = jlo;) = 2
trained to approximate Z*. Details of this amortized policy are given in Appendlx

3.3 Low-level policy
Once agents are grouped by tasks, each agent selects low-level actions conditioned on both its ob-
servation and assigned task:

7l (at|os, al') = softmax [f(hﬁv, hfl\;‘; 01)] .- (8)

Here 0; are the parameters of the low-level policy, shared among agents within a group.

4 Training

We jointly train the parameters of the high-level policy 8, and low-level policy 6; by optimizing a
weighted objective

J =w-J1(0) + (L —w) - Tn(h),
where w is decayed from 0.9 to 0.1 during training to account for the higher sparsity of high-level
rewards.



97 4.1 High-level policy

98 The high-level actor—critic is trained using sparse team rewards. The critic Q" estimates long-term
99 returns, while the policy gradient is computed by differentiating through the LP optimization layer.
100 Since LP solutions can be piecewise constant, we follow |Vlastelica et al.| [2019] to approximate
101 gradients using perturbed objectives (details in Appendix [B).

102 4.2 Low-level policy

103 The low-level policy is trained to maximize the sum of sub-task rewards within each agent group.
104 We adopt value function factorization |Sunehag et al. g017] to construct the critic ', and optimize
C).

105 7! via standard policy gradients (details in Appendix

16 5 Experiment

107 In our experimental evaluation, we address several key questions to assess the performance and
108 capabilities of our approach. (1) Can LPMARL learn cooperative agent-task allocation? (2) Is LP-
109 MARL transferable to different problem sizes? and (3) Can Dec-LPMARL amortize the centralized
110 task allocation optimization procedure using a decentralized imitation policy?

111 The primary objective of this study is to demonstrate how incorporating structural assumptions en-
112 hances cooperation. To achieve this, we compare our approach with non-hierarchical MARL algo-
113 rithms, such as Qmix [Rashid et al.| 2018, MADDPG [Lowe et al.| 2017]], and MAAC [Igbal
114 |and Sha, [2019]], which do not explicitly incorporate task allocation. Additionally, we evaluate the
115 effectiveness of our proposed hierarchical decision-making scheme by comparing it with existing
116 hierarchical MARL approaches, such as HSD [Yang et al.,.|2019], RODE [Wang et al.,|2020b]], and
117 LDSA [Yang et al) 2022]. Through these comparisons, we aim to highlight the advantages and
118 improvements offered by our approach in addressing cooperative problem-solving scenarios.

119 In addition, we consider two ablations of LPMARL: Dec-LPMARL and No-LP. Dec-LPMARL
120 explores the feasibility of decentralizing LPMARL by decentralizing the task allocation process,
121 allowing agents to make decisions based on local observations. No-LP serves as a comparison to
122 evaluate the effectiveness of using LP as the high-level policy, where the global state is directly used
123 as input for generating the high-level policy.

124 5.1 Constrained cooperative navigation

125 In order to investigate the high-level assignment of LPMARL, we produced a modified version of the
126 cooperative navigation [Lowe et al.l|2017]], namely the constrained cooperative navigation. In this
127 environment, N agents aim to occupy M (M < N) landmarks, where each landmark has its own
128 capacity limit to accommodate the agents. In this environment, the agents receive a success reward
120 only in the case when the agents occupy the landmarks while satisfying the capacity constraint.
130 Additional experimental details are described on Appendix [E.2]

Table 1: Normalized performance metric of constrained cooperative navigation. Win rate (%) corre-
sponds to the performance of the high-level policy, while min; ;{d;; } corresponds to the performance
of the low-level policy. The reported results are the mean over all the agents over five runs. First and
second best results are represented with bold text.

Scenario Ours Non-hierarchical MARL Hierarchical MARL
LPMARL LPI\BIT:RL No-LP Qmix MADDPG MAAC HSD RODE LDSA

M,N) Winrate (%) 85.8 75.2 349 372 20.8 273 487 436 515

= (3,5) min;;{d;; } 0.12 0.24 042 0.30 0.43 0.23 0.19 0.29 0.17

M,N) Winrate (%) 82.5 71.2 283 332 15.0 195 449 431 39.6

=(5,7) min;;{d;; } 0.11 0.34 053 0.29 0.48 0.22 0.18 0.38 0.28
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Figure 2: (a) Visualization of the learned coefficient of LPMARL. (b) Visualization of the agent-task
distance matrix. (c) Optimal solution of LP with both input coefficients.
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Figure 3: Visualization of transfer policy learned from N =5, M = 3toataskof N = 10, M = 4.
The agent-landmark with the same color represents the result of the high-level assignment.

Table [T] shows performance of a constrained cooperative navigation when trained with M, N =
(3,5),(5,7). The results indicate that none of the baseline algorithms were able to effectively di-
vide agents into groups without violating constraints, while the LPMARL was able to learn an
optimal allocation and navigation policy, achieving 85.8% success rate in the training environment.
Additional experimental results can be found in the Appendix [F1}

Note that the success of the agents in the constrained cooperative navigation task is not solely based
on their proximity to the landmark, but also takes into account other factors. For example, even if the
agents are able to navigate towards a landmark, they may not receive high rewards if that landmark
is not the optimal one.

5.1.1 Interpretation of high-level policy

We compared LPMARL with LP-distance, which utilizes the distance matrix in solving the upper-
level assignment problem, to interpret the learned optimization coefficient. Figure 2] visualizes the
learned coefficient of LPMARL and the distance matrix for a specific problem instance. Comparing
Figure 2| (a)-(b), we observe that the cost coefficient generating function Cy,(-) generates coeffi-
cients resembling the distance matrix. While the learned coefficient function is sharper than the
distance function, the optimal solutions of LPMARL and LP-distance are the same, as depicted in
Figure 2] (c). This experiment showcases how LPMARL performs task assignments by considering
the relationships between agents and tasks. Although this particular task could be solved straight-
forwardly using distance matrices, LPMARL demonstrates its capability to handle more complex
relationships beyond distance. Further details on ablation studies concerning the high-level policy
can be found in Appendix [F1.3]

5.1.2 Zero-shot policy transfer

To assess the size transferability of LPMARL, we conducted experiments in a constrained cooper-
ative navigation environment with varying sizes. Due to the fixed input dimension of the baseline
algorithm discussed in Section [5.1] the trained baseline model cannot be transferred to problems
with a different number of agents. Therefore, we compared the performance exclusively with our
ablation model.

The cost coefficient function and low-level policy, which are based on GNN, are designed to handle
games with varying numbers of agents and tasks. To evaluate their transferability, we applied the pol-
icy learned from 3 < N, M < 10 to a larger-scale problem. Figure[3illustrates an example of the be-
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Table 2: Success ratio (%) of the transferring policy learned on N, M € [3,10]. The gray and blue
shaded cell represents the in-training distribution and out-of-training distribution respectively.

LPMARL Dec-LPMARL NoLP
J]\(/‘,j 35 10 15 20 3 5 10 15 20 3 5 10 15 20
3 984 965 852 722 662 935 88.1 821 627 52.1 512 309 92 0.0 00
5 - 982 821 703 628 - 795 642 550 322 - 352 58 00 0.0
10 - - 835 652 491 - - 540 387 265 - - 32 00 00
15 - - - 689 532 - - - 379 197 - - - 00 00
20 - - - - 480 - - - - 155 - - - - 00

Table 3: Win ratio (%) on SMAC. The mean and standard deviation of the evaluation episodes are
reported. First and second best results are represented with colored text.

Map name LPMARL Dec-LPMARL No-LP Qmix SEAC* RODE

3m (sparse) 44.2437 31.6+20 84+13 104430 8.3+28 18.6+2.1
2m_1z (sparse) 44.3+49 37.2+30 54+06 134433  30.54+46 35.1+47
3s_5z (sparse) 0.9+05 0.0+0.0 0.0400  0.0+0.0 0.0+0.0 0.3+00
8m (sparse) 9.5 +os 6.1+05 0.0+00  3.1x03 - 2.6+02

* It is impossible to train SEAC on large problem instances due to the memory allocation problems.

havior of an LPMARL agent in a scenario with N = 10, M = 4, and (kq, k2, k3, k4) = (1,2,3,4).
The landmark text indicates the capacity limit of each landmark. In the leftmost subfigure, represent-
ing the initial state of the environment, the circles represent agents, and the cross marks represent
landmarks. In the second subfigure, the high-level policy assigns each agent to a landmark with the
corresponding color. Subsequently, the agents navigate towards their assigned landmarks, leading
to a successful state where all constraints are satisfied.

Table [2] presents the performance of the policy learned from 3 < N, M < 10 when tested on
3 < N, M < 20 without further training. LPMARL achieves a success rate of over 50% on out-of-
training distributions, demonstrating its zero-shot transferability to larger scenarios.

5.2 StarCraft2 Micromanagement

The last environment we consider is the StarCraft Multi-Agent Challenge [Samvelyan et al.,2019].
In this environment, we can verify the dynamic goal assignment of the algorithms as the number
of agents/enemies may change within the episode. The baselines we consider for SMAC are Qmix,
RODE, and SEAC [Christianos et al., [2020].

Table [3| shows the final win ratio on SMAC tasks. In the sparse-reward setup, LPMARL stands out
as the only method achieving meaningful win ratios across all scenarios. Particularly, in the 3s_5z
and 8m environments, the win ratio of LPMARL surpasses other algorithms by at least threefold.
Although it has a slightly lower win rate than its centralized version, Dec-LPMARL still has com-
petitive performance compared to other baselines. More information including experimental results
and video link can be found in Appendix [F2]

6 Conclusion and limitation

We proposed LPMARL, an LP-based hierarchical MARL approach, to effectively solve coopera-
tive games with sparse rewards while optimally allocating agents to tasks. We demonstrated that
LPMARL can decompose agents into sub-tasks across various environments.

We assume that the target problem is explicitly decomposed into multiple tasks. Even if this as-
sumption does not hold, there is still potential for applying the proposed technique. For example,
in prey—predator settings, it is possible to differentiate the prey’s role into chase and distract and
assign agents accordingly.
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A Visualization of Extreme point of LP

z Slope of the plane of
objective function, (¢, ¢z, €3)
» Other extreme points

7 \_, Extreme point generated only by
boundary conditions (eq.7)

Figure 4: Visual description of extreme points

Figure []illustrates the extreme points of the linear programming in 3-dimensional case, where the
decision variables are (z1, 22, 23) € R3. The boundary constraints are illustrated as the surface of
the cube, and additional constraints other than boundary constraints are illustrated as the surface
generated by blue lines. In Figure [ (left), extreme points corresponding only to the boundary
constraints are marked as the black dots, and the other extreme points are marked as the blue dots.

The objective of the optimization is to maximize f(z) = ¢121 + ¢222 + c323. The objective coef-
ficients (cq, co, c3) determine the slope of the plane of the objective function, as illustrated by the
red arrow on Figure 4] In Figure 4| we consider two possible optimization outcomes. For case (1),
the optimal solution z* = (2§, 24, z%) occurs only on the extreme points that are generated by the
boundary points, and for case (2), z* occurs on the other extreme points. In case (1), the optimal
solution z* is integer-valued. In our LP formulation, we have N x M boundary constraints and
N + M additional constraints. Thus, depending on the value of the objective coefficient and con-
straint coefficients, there may exist some integer-valued solution. In addition, the solution of the
LP hanges discontinuously on the continuous change on the slope of the objective plane. For this
reason, we need continuous interpolation of the gradient of the discontinuous surface %%.

B Policy gradient approximation for LP layer

The gradient of the high-level policy Vg, J5,(0r) can be computed as the following chain rule:
OTIn(0n) 0T ' 0Z*(C) . e
a0,  0z* oC 00

We can compute the gradient aza*e(ho) = 8Za*éc) : % by differentiating the equality of the KKT

conditions. Previous works [Wilder et al.| [2019], [Ferber et al.| [2020]] proposed to add additional
quadratic regularization term ||| in the objective function (Eq. ) to make LP as smooth QP, and
induce non-singular Jacobian matrix to differentiate through the equality of the KKT conditions as
in/Amos and Kolter| [2017].

However, although our high-level optimization problem is formulated as an LP, there exist extreme
points generated only by the boundary constraints (Eq. [7). Thus, the optimal solution may be
integer-valued on this extreme point as described in Appendix |Al In this case, the optimal solution
may not vary continuously with respect to the input; a small change can induce an abrupt change in
the objective value. Thus, the % be in the form of the piecewise constant, making it difficult
to estimate the gradient. To solve this issue, |Vlastelica et al.|[2019] presented a piecewise linear
surrogate loss surface that can approximate the original piecewise constant surface 97n of the com-

binatorial optimization layer. To obtain a meaningful differential value for this integer-solution, the

gradient %%h = 27, 9Z2°(C)

©))

approximated by using the solution gap between the original solution

YA ]
of the optimization problem and the solution of the perturbed optimization problem, as:
o, 1
—~——(Z" -7} 10
Blel h ( N (10)
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where Z* and C' are the optimal solution and coefficient used in the forward pass, respectively. Z3
is the approximate solution computed as:

Z3 = Z7(C)) (11
Here, '}, is the perturbed cost coefficient computed as
dJn
CL=C+\- 12
A=C A (2 (12)

where ) is the hyperparemeter that scales the amount of perturbation while considering the gradient
with respect to the solution Z*. %(Z *) is the gradient of 7, with respect to solver output Z at
given point Z*. The amount of solution gap between the original solution and perturbed solution

Z* — Z3 is the slope of the piecewise linear function that will replace %‘Zﬁ evaluated at C. One can

guarantee that the modified loss function is piecewise affine and similar to the original loss function
(we refer to|Vlastelica et al. [2019] for more detail).

C Detailed Training Derivations

C.1 High-level critic
The high-level critic Q" (-; ¢3,) is trained to minimize the loss
2
£on) =E[(Q" (st.alion) —v)°] . (13)

y=r} +Zv max Q" ($1r, 1113 n), (14)

zt,—

where ¢y, is the target parameter. The temporal discounting accounts for high-level actions that last
T timesteps.

C.2 High-level policy gradient

The high-level policy gradient can be expressed as

oJn, 0Z*(C) oC
az=  oC  ogy’
where Z* is the LP solution given coefficient matrix C'. Since Z*(C) is piecewise constant at integer
extreme points, we follow |Vlastelica et al.|[2019] to approximate

OTn __ l(
aC A
with Z7 being the solution of the perturbed LP.

Vo, Tn(0n) = (15)

Z5—=7"), (16)

C.3 Low-level critic
For agents grouped by high-level task j, the low-level critic Q' is trained with

o)=Y (3 Qsakalo)—v) . (17)

JEM zla ‘=3

y=ri+ Y vmaxQ(s atsal, ¢y), (18)

ilal=j

where ré is the sub-group reward and ¢; is the target parameter.

C.4 Low-level policy gradient

The low-level policy is trained via

v91~7l 91 ZQ saazaaza¢l) Val IOg’]T( 1‘87 a;, ) . (19)
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D Details on Dec-LPMARL

In Dec-LPMARL, the training process focuses on amortizing the high-level policy of LPMARL in
a decentralized manner, eliminating the need for solving a centralized optimization problem dur-
ing execution. To achieve this, Dec-LPMARL employs a decentralized high-level policy, denoted
as 71 (al*|o;), which takes a local observation o; as input and outputs the probability of choosing
tasks (Figure[I). The difference between LPMARL and Dec-LPMARL lies in two aspects: (1) the
construction of the graph, and (2) the training of the high-level policy.

First, in Dec-LPMARL, the graph used to generate cost coefficients is constructed in a different way.
Dec-LPMARL constructs edge between entities within the observation scope, i.e., Ggee = (V, Edec)s
where ;.. € £. This enables the agents to collectively construct the graph without relying on a
centralized entity.

Second, the training of the high-level policy in Dec-LPMARL involves amortizing the pre-trained
LPMARL high-level policy. This is done using a behavior cloning loss, which aims to minimize the
negative log likelihood of the pre-trained LPMARL policy’s task selection given the local observa-
tion. Specifically, the behavior cloning loss can be formulated as follows:

Lsc = —Erup,iy [log#l(al*|o;)] (20

where 7/ (al**|o;) represents the predicted probability of choosing the expert (LPMARL) action a/**
at time step ¢ given the agent’s local observation o; using 7. By training the decentralized high-level
policy in this way, Dec-LPMARL can effectively leverage the knowledge encoded in the LPMARL
policy while operating in a decentralized manner.

E Hyperaparemeters and Experimental details

The hyperparameters of LPMARL used in the experiment are summarized in Table [d] We used an
CVXPY solver|Diamond and Boyd| [2016] to solve the linear programming in Section

Table 4: Hyperparemeters of LPMARL

Hyperparemter ‘ Values
MLP units for GNN, f(+; QQ[M), f(s GZ;AM), fs 0;/) [32,32]
MLP units for coefficient matrix, f(+;0.) [64,64]
MLP units for policy network, f(-;80y), f(+;61) [64,64]
MLP units for critic network f(+; ¢n), f(+; ¢1) [64,64]
Nonlinear activation LeakyReLU, negative slope=0.01
learning rate 1073
Discount rate, y 0.99
A 20

Optimizer Adam

For other baselines algorithms, we used a two-layer feed-forward fully-connected network with a
64-dimensional hidden layer and ReL.U activation. Batches of 32 episodes are sampled from the
replay buffer. The optimizer, learning rate, and discounting rate -y of the other algorithms are set to
be the same as in Table[d] Experiments are carried out on NVIDIA RTX A6000.

In the experimental environment, the rewards are provided differently to the algorithms. For the
hierarchical MARL algorithms and LPMARL, each level of reward described above is used to train
the corresponding policy level. For the non-hierarchical MARL algorithms, a weighted sum of the
high- and low-level rewards is used to train the policy.

E.1 Cooperative navigation

We used 50,000 episodes where the maximum timestep of the each episode is 50. For every algo-
rithm, we set the size of the replay buffer as 5,000 with a batch size of 32 to train. For LPMARL,
we set k;, the capacity constraint coefficient of Eq. [] as 1 at every scenario. The initial location
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of the agents and landmarks are randomly spawn on [—1, 1] x [—1, 1] and [-0.8,0.8] x [—0.8,0.8],
respectively. The reward conditions of the experiment is specified in Table 3]

Reward setting Hierarchical MARL, LPMARL Non-hierarchical MARL

High-level reward +1 when all agents reaches landmark 0.5 x High-level reward

Dense setting +0.5x Low-level reward

+1 when each agent reaches landmark

Low-level reward distance and collision-related reward

High-level reward +1 when all agents reaches landmark 0.5 x High-level reward

Sparse setting ~+0.5x Low-level reward

Low-level reward +1 when each agent reaches landmark

Table 5: Reward setup of cooperative navigation environment.

E.2 Constrained Cooperative navigation

We used 50,000 episodes where the maximum timestep of the each episode is 50. For LPMARL,
we set k;, the capacity constraint coefficient of Eq. [5] to be the same as the landmark capacity. The
initial location of the agents and landmarks are randomly spawn on [—1, 1]x[—1, 1] and [—0.8, 0.8] x
[—0.8, 0.8], respectively.

We set the capacity of the landmarks as an integer partition of NV into M groups, i.e., Zj]vil kj =N
where k; is the number of agents that can be accommodated by landmark j. The capacity of the
landmark is randomly determined at the beginning of each episode. Agents can observe the capacity
and the position of each landmark within the observation range.

E.3 StarCraft Multi-Agent Challenge

We train all models over 100,000 episodes. For every algorithm, we set the size of the replay buffer
as 5,000 with a batch size of 100 to train. For LPMARL, we set k;, the capacity constraint coefficient
of Eq. [3| as [£!] at every scenario.

We consider the following SMAC scenarios:

e 3m: 3 marines (N = 3) versus 3 marines (M = 3). The episode limit is 60 timesteps.
* 2m_Iz: 2 marines (N = 2) versus 1 zealot (M = 1). The episode limit is 150 timesteps.
e 3s_5z: 3 stalker (N = 3) versus 5 zealots (M = 5). The episode limit is 150 timesteps.

e 8m: 8 marines (N = 8) versus 8 marines (M = 8). The episode limit is 150 timesteps.

Difficulty levels of the scenarios are all set to be harder (6).

F Additional Experiment Results

F.1 Cooperative Navigation

F.1.1 Training curve

Training curve on constrained cooperative navigation is shown in Figure[5] Figure[5|shows the high-
and low-level reward curve over the episodes when the algorithm is trained when N and M = 3.

F.1.2 Amortization accuracy

Figure[6]illustrates the performance of the Dec-LPMARL algorithm in terms of prediction accuracy
across various training episodes. The results demonstrate that the algorithm demonstrates high per-
formance, with prediction accuracy exceeding 90%, when dealing with simple tasks such as dense-3.
However, as the complexity of the optimization problem increases, the prediction accuracy of the
Dec-LPMARL algorithm decreases to 75% (3M_5N). This outcome highlights the strong correlation
between the performance of the Dec-LPMARL algorithm and the performance of its amortized LP
layer. The performance of the Dec-LPMARL algorithm can potentially be improved by enhancing
its ability to learn the optimal solution of constrained optimization.

12
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Figure 5: Low-level (left) and high-level (right) reward curve. The reported reward is the mean over
all the agents over the timestep per episode.
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Figure 6: Fitting accuracy of Dec-LPMARL

F.1.3 Effectiveness of LP layer

We consider the following ablations of high-level policy to examine the effectiveness of using LP as
a high-level policy. LP-distance assigns an agent to a goal using the distance matrix as the objective
coefficient of LP. Therefore, agents are assigned to landmarks that minimize the sum of the distance
of all the agents. Greedy is a greedy assignment, where each agent chooses the closest landmark
individually. The network structure for low-level policies is identical for all the high-level ablations.

10 Cooperative Navigation 10 Constarined Cooperative Navigation

o
©
o
©

o
o
o
o

I
IS

—&— LPMARL 0.4
~@— Dec-LPMARL
—&— No-LP
—o— LP (distance)
—8— Greedy

0.0 0.0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Training timestep (x1e5) Training timestep (x1e5)

Success ratio

=3
)
=3
N

Figure 7: Training curve of ablations of high-level policy on cooperative navigation (left) and con-
strained cooperative navigation (right)

Figure [7] shows the results of ablation studies. LP-distance uses hand-designed features to induce
good coordination for tasks where proximity plays essential roles, such as cooperative navigation.
However, devising a hand-defined rule for a complex task is challenging. In such cases, the proposed
algorithm that constructs the cost matrix considering the global state can play an important role in
deriving an effective policy.

F.1.4 Effect of sparse reward help for training non-hierarchical MARL

In cooperative navigation, although non-hierarchical MARL can be trained only with dense reward
(distance and collision-related reward), we use a weighted sum of the high-level (sparse) and low-
level reward to compare the performance fairly. If only dense reward is used for non-hierarchical
MARL, their performance degrades. Table 6] compares the success ratio of using only dense reward
for non-hierarchical MARL algorithms on cooperative navigation environment.
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Qmix MADDPG MAAC
T+E E T+E E T+E E

Dense-3 824 87.0 857 821 89.1 85.5
Dense-5 62.0 609 213 328 745 762
Dense-7  49.1 43.0 5.7 122 657 520

Table 6: Success ratio when cooperative MARL algorithms are only trained with environment re-
ward. (T+E) indicates (T)ask-dependent reward + (E)nvironmental reward, and (E) indicates envi-
ronmental reward.

F.2 SMAC environment

N=5, M=4 N=4, M=4 N=4, M=3 N=4, M=2 N=3, M=2 N=2, M=2 N=2, M=1

Figure 8: Visualization of high-level assignment on StarCraft environment (8m).

Figure [§] visualizes the high-level assignment of LPMARL on 8m environment. We divided the
enemy units into two groups, with three and five units, to clearly see how LPMARL allocates agents
to enemies. Each sub-figure of Figure [§] shows the high-level assignment result on timestep when
the event (when M or N changes) occurs. The agent-task with the same color represents the result
of the high-level assignment.

In the figure, we can observe that the LPMARL agent sequentially kills all the enemies by focusing
fire from the nearest enemy (task). Also, LPMARL does not always assign only the closest enemy
to the ally but assigns agents to the enemy with the lowest health level (N = 5, M = 4). Further
visualization videos can be found at the following link.

G Codes

The code can be found at the following link|
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https://www.youtube.com/playlist?list=PLJC36nT1Y0NzuK8Nid9K_UhJYdz3Kwjuu
https://drive.google.com/drive/folders/1uvdt5PzSksbZNYQwpzxGwPo1nGKw85S3?usp=share_link
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