Under review as a conference paper at ICLR 2023

DYNAMIC ENSEMBLE FOR PROBABILISTIC TIME-
SERIES FORECASTING VIA DEEP REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

It is well known that ensemble improve the accuracy of forecasting tasks. However,
most of ensembling strategies designed for probabilistic time series forecasting are
static methods, in the sense that they either assume the time-invariant ensemble
strategies over the prediction horizon, or are non-adaptive to the forecast start point.
In addition, the static methods naively rely on the predictions of the base forecasters
but fail to utilize base learners themselves efficiently. In this paper, we propose
a novel dynamic ensemble policy to overcome three major limitations mentioned
above via deep Reinforcement Learning (RL) framework. To learn such a policy,
we design a Markov Decision Process (MDP), together with our environment
(TS-GYM) that supports the interaction between the agent or ensembler, offline
datasets and base learners. In doing so, we effectively leverage the power of the
ensemble to improve each of the base learners by reducing the error accumulation
of each base learner via consecutively feeding a better ensembled sample to each
base learner. The proposed ensembling method has several desirable properties
such as uncertainty quantification and the ability to generate sample path, on top
of significant performance gain. The effectiveness of the proposed framework is
demonstrated on multiple synthetic and real-world experiments.

1 INTRODUCTION

Time series data occur naturally in countless domains including supply chain optimization (Larson,
2001; Wen et al., 2017), medical analysis (Keogh et al., 2001; Matsubara et al., 2014b), financial
analysis (Zhu & Shasha, 2002; Hallac et al., 2017), sensor network monitoring (Papadimitriou & Yu,
2006; Letchner et al., 2009), cloud computing (Park et al., 2019; 2021), optimal control of vehecle
(Kim et al., 2020) and social activity mining (Mathioudakis et al., 2010; Matsubara et al., 2012;
2014a). Among the applications of ML-based time series analysis, forecasting is arguably one of the
most sought-after, due to its importance in industrial, social, and scientific applications. For example,
forecasting plays a key role in automating and optimizing operational processes in most businesses
and enables data driven decision making. Forecasts of product supply and demand are used for
optimal inventory management, staff scheduling and topology planning, and are more generally a
crucial technology for most aspects of supply chain optimization. In order to make optimal decisions,
predictive uncertainties need to be taken into account, making probabilistic forecast a desirable
property of time series models (Benidis et al., 2022).

In practice, one often encounters complex time series, making it difficult to find a single best model
that excels at short-term, mid-term, and long-term forecasting scenarios. In such cases, different
forecasting models usually perform well on different data regimes at different time steps. As a
motivating example, Figure 1a shows the relative ranking of the performances of 5 popular forecasting
models on the dataset Solar. In this example, Transformer excels at shorter and longer-term forecasts
while DeepAR and TFT shine in the mid-term scenario. It is thus desirable to have an ensembling
strategy that has different weights at each time step. Therefore, the traditional ensembling strategy
in time series forecast, which assumes that ensemble weights do not vary along the forecasting
horizon is not sufficient to capture the non-stationary patterns of base learners’ performance profile.
Furthermore, popular auto-regression based models are known to have increasing prediction errors
as the prediction horizon stretches further, and the performance degrades dramatically when the

Under review as a conference paper at ICLR 2023

prediction horizon is sufficiently large (Salinas et al., 2020). As shown in the blue curve of Figure 1b,
the prediction error increases for “DeepAR-G original’(“G” means using the Gaussian distribution as
the output distribution and “original” means using the original implementation of DeepAR) over the
prediction horizon on exchange rate dataset. On the other hand, if we can provide base learners such
as DeepAR with more accurate estimations of the future as the auto-regressive input, the prediction
error can be significantly decreased for the long horizon predictions (see the orange curve in Figure
1b). The huge difference in the prediction error between these two cases show the huge potential
to improve the auto-regression based models if we can provide more accurate estimations during
the prediction horizon. However, none of the traditional ensemble methods utilize the ensemble
predictions as the feedback to boost the performance of the auto-regression based models. Motivated
by the above examples, the natural question arises whether we can develop a general dynamic
ensembling approach that overcomes all the major limitations of the traditional static ensemble
methods and further improve the prediction accuracy for the probabilistic time-series forecasting?

n —— DeepAR = DeepAR-G original
[Transformer 8 3 DeepAR-G w/ target
© ~—— MQCNN @S
i — TFT Zq
§ = NBEATS % g
" g § Potential of
3 5° improvement
o o
9] 23
g" 5S
2 23 v
- o
3 I o 5 > 0 5 10 15 20 25 30
Prediction horizon Prediction horizon
(a) The ranks of 5 base learners along the pre- (b) The gap between the “DeepAR original"
diction horizon on Solar dataset. The ranks and “DeepAR w/ target” shows the potential
are based on the mean weighted quantile loss improvement we can gain if the accuracy of
over the quantiles [0.1,0.5,0.9] and aver- the auto-regressive input to DeepAR can be
aged over all items in each dataset. improved.

Figure 1: Two motivations on the need of dynamic ensembles, beyond static ensembles.

To address the above mentioned challenges, in this work, we develop a general dynamic ensem-
ble framework for probabilistic multi-horizon time series forecasting. Our contributions can be
summarized as follows:

* This work is the first one that proposes a dynamic ensemble policy suitable for probabilistic
time series forecasting with the properties of sequential weighting, being adaptive, and
quantile ensemble.

* We formulate this as a Markov Decision Process (MDP) with a careful design of the rewards,
transition dynamics, and ensemble action policy. In particular, the state evolution in our
formulation depends on the ensemble strategy through our novel transition dynamics design.

To solve this MDP problem, we design a time series gym (TS-GYM) environment which
implements the interaction between the time series off-line dataset, base learners and
ensemble agent. Through this interaction, actor-critic based deep RL method with our
“random extreme point” exploration strategy can learn optimal ensemble policy.

* The extensive experiments show the advantages of our ensemble dynamic framework. In
particular, we demonstrate that our general dynamic ensemble framework can (1) learn the
optimal time-varying ensemble weights along the multi-horizon prediction, (2) be adaptive
to any forecast start time, (3) boost the performance of the auto-regressive base learners, and
(4) result in better performance than other potential variants on real-world datasets.

2 RELATED WORK

Probabilistic time series forecasting In recent years there has been an increasing interest in
“probabilistic forecasting”, namely forecasting models that account for the data’s uncertainty by
modeling the distribution of target values, rather than predicting a single point estimate. Probablistic

Under review as a conference paper at ICLR 2023

forecasting is useful for business purposes such as supply and demand, inventory management, staff
scheduling and topology planning (Larson, 2001). Modern open source packages such as Kats
(facebookresearch, 2021), Merlion (Bhatnagar et al., 2021) and GluonTS (Alexandrov et al., 2020a)
offer probabilistic forecasting, and include some popular probabilistic forecasters such as Prophet
(Taylor & Letham, 2018), and deep learning probabilistic forecasters such as DeepAR (Salinas et al.,
2020), MQ-CNN (Wen et al., 2017; Park et al., 2022), MQF2 (Kan et al., 2022), NBEATS (Oreshkin
et al., 2019), TFT (Lim et al., 2021) and Transformer (Vaswani et al., 2017). There are several
advances in improving those models in adversarial robustness (Yoon et al., 2022; Liu et al., 2022)
and few-shot learning (Jin et al., 2022).

Time series ensemble The literature on ensembling methods for time series predictions have
focused solely on static ensembling strategies, namely ones that have access to the predictions of
the base learners but not to the base learners themselves. In that situation, a debate on the theory of
ensembling for time series was sparked by an empirical observation that a simple average of the base
learners is often superior to more sophisticated ensemble methods (a problem called the “forecast
combination puzzle”, see Stock & Watson (2004) and Bates & Granger (1969)). See Smith & Wallis
(2009), Claeskens et al. (2016), and Elliott (2011)). While theory lags, however, sophisticated static
ensembling methods have often been observed to work well. (See Donaldson & Kamstra (1996),
Moon et al. (2020), and Massaoudi et al. (2021). Particularly interesting is Gastinger et al. (2021),
with a large empirical study.)

Contrary to the situation considered in these papers, literature on ensembling methods that have
direct access to the base learners, rather than only to their predictions, is limited. Recently, RL based
approaches are proposed in Saadallah & Morik (2021) and Fu et al. (2022). Saadallah & Morik
(2021) consider action dependent state (window of ensemble predictions) transition. Their work
focus on online policy learning with update timing determined by a concept-drift detection algorithm.
In Fu et al. (2022) the state (time series for a given context window and base learners performance at
the next window) transition is action independent with action taken for H steps at a time. In addition,
their methods are only designed for the point based forecasting problem and do not demonstrate the
capability of capturing the non-stationary ensemble weights.

3 PRELIMINARIES

3.1 PROBABILISTIC TIME-SERIES FORECASTING

Suppose we have a panel of n time series, where the ¢-th time series consists of observations z; ; € R
with (optional) input covariates x; ; € RY, as t varies over time at fixed discrete intervals. For an i-th
time series (often called ¢-th item), we wish to make predictions for the next H timestamps, namely
of z; 7417+ g from the forecast start time 7" + 1, given the history of that item’s observations z; 1.7
and (optional) the associated historical and future covariates x; 1.7+ 5. In this paper we will focus on
global forecasters, namely a single univariate model trained on all of the items together, and accepting
only a single item at inference. For notational simplicity we will drop the item index ¢ and covariates
2, unless explicitly stated. We now formally define a forecasting model as a set of random variable
valued functions { f, }/ such that, for b = 1,..., H

Zrin = fo(zrr, Erin-1), (D

where &7,5,-1 is the hidden state variable passed from the previous (or older) step. The evolution
of f, and &p,p_1 depend on the type of the base model. For the auto-regressive model which
uses the recursive prediction strategy, the hidden state £7,5,-1 is generated by passing a sample
Z7+h-1 ~ Zr+h—1 from previous time step to the forecaster decoder for the next prediction in a

recursive manner. Often the decoder is homogeneous, i.e., f, = f for h = 1,..., H. On the other
hand, Seq2Seq model which uses the direct prediction strategy, directly forecast the future time series
without involving the evoluation of the hidden state, i.e., {741 =& forall h=1,..., H. Refer to

Alexandrov et al. (2020b) for the detailed modeling. In Section 4, we will explore a different choice
for the auto-regressive step, using the entire ensemble.

Then, the associated T-quantile predictions can be followed as 7., = ¢ (Zr.5) where, for a random
variable Z € R with its culmulative distribution Fz and a quantile level 7 € (0, 1), g, is denoted as
the quantile function, i.e., ¢, (Z) = F;'(7) =inf{z e R: 7 < Fz(2)} .

Under review as a conference paper at ICLR 2023

3.2 FORECASTING ENSEMBLE

For each m-th base learner, we denote 27, as the 7-quantile prediction at time step 7'+ h on a

. 2 K,M . . _
quantile level where 7, € {7} }kK: 1- Then, {z;’i;“ } 4-1.m<1 18 denoted as a pool of quantile predictions
at time step 7'+ h over M base learners and K quantile levels. A general ensemble predictions can be

formally expressed as a (linear) weighted combination of predictions of the individual base models,
at each prediction step h=1,..., H,

M

AT,es _ m aT,m

Arvh = Zl Wh Zpips @
m=

where w!™ > 0 with ¥ ™ = 1 are the ensemble weights.

3.3 REINFORCEMENT LEARNING

Reinforcement learning (RL) is usually formulated as a Markov Decision Process (MDP), which
can be defined as a tuple (S,A,P,r,v, H) where S is the state space, A is the action space,
P :Sx A — §Sis the transition function, r» : § x A — R is the reward function, v € (0,1)
is the discount factor and H > 0 is the horizon length of each episode. At each state s € S,
the RL agent takes an action a € A, transits to the next state s’ € S under the dynamics P and
receives a reward (s, a). The goal of an MDP is to learn a policy 7 : S — A that maximizes the

total obtained rewards max, J(7) = E. | St " r(sn, an)

77], where the expectation is over the

trajectory 7 = {(s0, a0, 7(80,@0))- - -, (s, am,7(sg,am))} where ap, = w(sp).

4 DYNAMIC ENSEMBLE FRAMEWORK

In this section, we mainly focus on how to select a sequence of ensemble weights (wy,ws, ..., wg)
with wy, € RM over M base learners by learning a ensemble policy 7. Especially in the presence of
auto-regressive base learners, ensemble weights chosen at the step h may affect the forecasting of
auto-regressive base learners and also ensemble weights chosen at the next step h + 1 (see Section
4.1.1 for more details). With this intuition, we will take a reinforcement learning approach to learn an
optimal policy function 7 that provides the optimal ensemble weights sequentially.

In Section 4.1, we give a high-level overview of the MDP formulation for the multi-horizon probabilis-
tic time series forecasting problems. In particular, the classes of ensembled sampling strategies and
predictions which determine the state transformation and state transition are discussed in Section 4.1.1
and the careful design of reward computation is explained in Section 4.1.2. Based on the formulated
MDP, we then design our simulated environment, TS-GYM (in Section 4.2) which provides the
interaction among the time series datasets, base learners and the dynamic ensemble agent. Finally, we
describe how to employ deep reinforcement learning with our “random extreme point” exploration
strategy to learn the optimal ensemble policy in Section 4.3.

4.1 MDP FORMULATION

We describe the high-level formulation of the MDP for our dynamic time-series ensemble framework.
Once each episode starts with i = 1, the environment fixes an arbitrary forecasting start point 7',
and then starts to provide a time series pair of both historical input z;.7 and corresponding future
(backtest) output z7,1 as well as corresponding quantile predictions {£7.}"} } from alll M base models
for the next step 7' + 1. (We defer the details implementation of the environment to Section 4.2).
The agent will then decide the ensemble weights to compute the ensembled predictions, and update
the ensemble policy based on the accuracy of the ensembled predictions. Depending on the type of
ensemble dynamics, the ensembled predictions may also affect the base learners’ future predictions.
Then, in the next step h = 2, the environment provides next time series output z7.o and associated

predictions {27, } and go on. See Figure 2a for a high level schema.

Under review as a conference paper at ICLR 2023

More formally, for each step h = 1,..., H of an episode, given the information provided by the
environment (e.g., historical observation z1.7, and future (backtest) observation zr,p, a pool of all

quantile predictions {275} f:f/l m=1» and step h) , we define MDP as follows:

: _ 2Tk, K,M
the fixed-size state s, = {zlzT, {2 kel =1 h},

» the action ay, = {w"}M_, = w(s},), M-ensemble weights w]" from a policy function 7 ,
o the state transition P(sp+1 | sp,an) governed by ensemble dynamics in Section 4.1.1,

» the reward R(sp,an; zr.n) | which evaluates ensemble prediction against ground-truth
zr4p in Section 4.1.2 .

4.1.1 ENSEMBLE DYNAMICS P AND ENSEMBLED QUANTILES

Defining state transition P, which we call ensemble dynamics, narrows down how to construct

. . . K,M :
quantile predictions over M base learners {z;’:;” ko1.me1 € Sh- Here, we proposed three strategies:

direct dynamic, auto-regressive dynamic and their composition. The idea of direct ensemble is similar
to Seq2Seq models which employs the direct prediction strategy. The idea of auto-regressive dynamic
is based on auto-regressive models where you recursively feed a new ensembled sample to each base
learner for the next prediction. The ensemble dynamics appear at the step represented by the red
arrow line in Figure 2a.

Direct dynamic. As a direct ensembling over base learner, we first compute quantiles by base
learner itself over H horizon, i.e., we compute 2;:;: =qr (Z}”Jrh) forall h =1,..., H, based on
Equation 1. Then the final quantile ensemble becomes 277 = yM wp 7. in Equation 2. Note
that the base learner’s predictions are not affected by the ensembling. In other words, the transition

dynamic P(Sp+1 | Sh,an) = P(Sk+1 | sn) is actually irrelevant to the ensembling weights.

Auto-regressive dynamic. In this dynamic, we generate an (intermediate) ensembled sample pr.p,,
which is fed into each autoregressive base leaner in a recursive manner. This ends up forming a
sample path through which we can compute the final ensembled (empirical) quantile prediction 277 .
To begin with, we generate a sample path (27, ..., 27, ;) for each base learner as follows: First,
for each step h, we sample pp,p, from mixture of base learners’ distributions P(ZJ, ,) proportional

to ensemble weights w}", i.e.,

+

M
pran~ Y, wiP(Z1). (3)
m=1

Second, we feed pr.5 to each autoregressive base learner, i.e.,
271 = [(21, €74 (4a)
&r'n = 9" (P1+ns E7n1)- (4b)
where g™ represents the m-base model’s evolution dynamics for the hidden state &7, ;,. Lastly, we
get a sample for each base learner 27, ~ Z7',,, which can be operated in a recursive manner to

generate a sample path (27, , ..., 27, ;) for all base learners.
After collecting a set of sample paths { (27, ..., 2T+H)l}zL=’1A,4m=1 where (272, ,..., 2%, ;)1 is I-th

sample path above for the m-base learner, we construct the empirical marginal distribution]IA”(ZA%+ n)
based on the samples {(#7%,,);}£, forall h = 1,..., H. Then, the final (ensemble-dependent)
quantile prediction of each base learner is obtained as 277 (w) = g, (I@’(Z?ﬁrh)) forallm=1,..., M
with the final ensemble 2777 = Z%zl wy27); . Note that, like pp,;, was sampled, the final ensemble
model is ultimately a (single) auto-regressive one that supports sample path and quantiles.

Under auto-regressive dynamic strategy, the ensembled sample pr., based on ensemble weight
from policy affects the performance of individual base learner consecutively and thus final quantile
ensemble. In other words, action in the previous step affects state in the current step, meaning, unlike
the direct dynamic, the transition dynamics P(sp+1 | Sh,an) # P(Sn+1 | $n).

"R(sn,an; zr+1) can be regarded as a random reward sampled from 7(s5, ar) = E.opy.,, [R(8h,an; 2)]
where D1, represents the conditional distribution of z7. given z1.7 in the given time series dataset.

Under review as a conference paper at ICLR 2023

Hybrid dynamic. Note that the auto-regressive dynamic strategy is not applicable for Seq2seq base
learners. Still, under the hybrid dynamic strategy, Seq2seq base learners can contribute to generate

ensembled samples together, i.e., ensembled sample pr.pr ~ Zi\,{:l whmP(Zq’fﬁrh) sampled from both
Seq2seq and autoregressive ones, which would be fed into (only) auto-regressive base learners.
The behaviours of Seq2seq base learner is the exactly same in sampling and constructing quantile
prediction without any feedback loop like ensembled sample, which means any auto-regressive base
learners does not affect Seq2seq one’s prediction.The final ensemble under hybrid dynamic is capable

of auto-regressive model, supporting desirable sample path through recursive feedings.

4.1.2 REWARD FUNCTION

To minimize the total quantile losses and encourage the agent to learn a uniform distribution over
the nearly-optimal base learners, we design the reward function as R(s,a;z) = Ri(s,a;z) +
A(s)R2(s,a) for some A(s) > 0. Here, the first term 7, measures the performance of the cur-
rent quantile ensemble predictions 2%/ ;* compared with the best quantile predictions among the base

learners. and takes the form
K
Ry(sn,an; zr4n) = min { S (LG 2ren; i) = LS 2rin; Tk))} (5)
k=1

where L(-,-;7) can be any measurement of the forecasting accuracy at the quantile level 7. By
designing the R; term as a regret w.r.t. the best base learner, we normalize the reward around zero: if
the R; term is less than 0, then it means that the ensemble prediction is worse than the single best
base learner and the corresponding should be punished, and vise versa. Furthermore, R takes the
form

RQ(Sh,ah) = DKL(ah | Ul’lif(M*(Sh))) (6)

where Dy denotes the Kullback—Leibler divergence, M*(S) = {m e M : L(m) — L(m™) < ¢} for
a threshold € > 0. denotes the set of nearly-optimal base learners at the state s, and Unif(M*(s))
denotes a distribution with probability mass \M*il(S)I on the indices corresponding to the base learners
in M*(s) and 0 otherwise. We introduce the term R to encourage the ensemble policy to be
uniformly distributed among the nearly optimal base learners which could potentially further reduce
the estimation error and the variance. Finally, A(s) is a state-dependent hyper-parameter controlling
the weights between I?; and Ry. When there is only a single nearly-optimal base learner, i.e.,
|M*(s)| = 1, we set A(s) = 0 which means that we only incorporate R2 when there are at least two
nearly-optimal base learners.

4.2 SIMULATED ENVIRONMENT: TS-GYM

Before attempting to train the policy 7, we first design a novel simulated environment for the
time series ensemble, namely TS-GYM, that follows state transition (in Section 4.1.1) properly, by
extending the OpenAI’s gym interface. As illustrated in Figure 2a, it is composed of pre-trained base
learners in the ensemble, time series (off-line) dataset, time series samplers, ensemble dynamics and
dynamic ensemble agent. During the initialization stage of the environment i = 1, it first decides
forecast start time 7" which is uniformly sampled among time horizon in off-line datasets, and then
starts to provide following information: (1) sample a time series of (historical) observation zy.7, (2)
the quantile predictions {275} f:f ;[m=1 for the next timestamp 1" + h, (3) the step number h, and (4)
ground-truth (future) observation z7 .. The first three information is used to construct the state and
the last information is used to construct the reward defined in Section 4.1.

Note here that generating all quantile predictions {£7%,}" } f:f/l m1 at each timestamp T"+h is governed

by the choice of ensemble dynamics in Section 4.1.1 where the ensembled quantile predictions
themselves may be used for the base learners’ prediction in the next timestamp. This will affect the
optimal choice of ensemble actions in the end. This process is repeated until we reach the end of the
prediction horizon 7"+ H, completing one episode. In practice, this whole of procedure can be done
with batch sampling in parallel.

Under review as a conference paper at ICLR 2023

time 1

Action Ensembled
A quantile predictions

I Ensemble
dynamics

alat

an = {wp' tmem

Sampled
TS input

Base learners

Individual a2 = {w5 tmem
quantile predictions Sampled

State, reward TS target
O«

TS-GYM a1 = {w"}mem

Time series (TS)
dataset

Dynamic
Ensemble Agent

(a) Nlustration of TS-GYM and ensemble dynamic inside. (b) Sequential weights.

Figure 2: Dynamic ensemble framework.

4.3 LEARNING DYNAMIC ENSEMBLE POLICY WITH EXPLORATION

To learn an optimal ensemble policy 7, we employ the deep actor-critic approach DDPG (Lillicrap
et al., 2015) in a continuous action space to maximize culmulative reward. To accelerate the
exploration of the base learners’ performance, we deploy the “random extreme point” exploration.

Random extreme point exploration. For the exploration of actions, for each step h, we assign
the action aj, = e,, € R where e,, is an one-hot vector> with randomly chosen m from M base
learners. This exploration policy encourages the agent to take different individual base learners,
efficiently collecting the observations on not only the sampled base learner performance but also
various dynamic ensemble patterns. In addition this requires no prior knowledge on the base learners.

5 EXPERIMENTS

The extensive experiments are conducted to demonstrate the effectiveness of the proposed dynamic
ensemble approach in adapting the ensemble strategy to the time series item and prediction timestamp
in Section 5.1. Then, we spend to investigate properties of our ensemble methods from dynamic
weights to the phenomena of boosting the performance of the auto-regressive base learner by feeding
the better ensemble sample in Section 5.2.

5.1 BENCHMARK EXPERIMENTS ON DYNAMIC ENSEMBLE

5.1.1 EXPERIMENT SETUP

Datasets and base learners. We perform experiments on four real benchmark datasets that are
widely used in forecasting literature: exchange rate, elec, traf and solar from (Salinas et al., 2019).
For more dataset details, see appendix A.1. We consider the global deep learning based probabilistic
forecasters from GluonTS (Alexandrov et al., 2020b): DeepAR (Salinas et al., 2020), MQ—CNN
(Wen et al., 2017; Park et al., 2022), NBEATS(Oreshkin et al., 2019), TFT (Lim et al., 2021)
and Transformer (Vaswani et al., 2017). Since the performance of DeepAR can be heavily
dependent on the distribution outputs, we trained DeepAR with three different distribution outputs:
Gaussian, Student’s t and Poisson distribution referred as DeepAR-G, DeepAR-T and DeepAR-P,
respectively. All base learners are trained using the default configurations in GluonTS (Alexandrov
et al., 2020b) .

MDP formulation and RL training To evaluate the performance of our general dynamic ensemble
framework, we take the most general ensemble dynamics, which is the hybrid quantile ensemble
dynamics. In particular, we will apply the auto-regressive ensemble dynamics to the DeepAR models
with different distribution outputs and apply the direct ensemble dynamics to the rest of the base
learners. The samples from the DeepAR models from the previous timestamps will then recursively

Zonly m-th element equals one and zeros otherwise.

Under review as a conference paper at ICLR 2023

feed as the input to DeepAR models at the next timestamps. In defining the reward function, we
adopt the mean weighted quantile loss (see Equation 7 in Appendix) as the accuracy measurement of
our predictions. RL algorithm (DDPG) is implemented in PyTorch (Paszke et al., 2019) and trained
on AWS Sagemaker (Liberty et al., 2020) with m1 .p3.2x1large instances. Train and test are done
with TS-GYM specific to the given dataset.

Ensemble baselines We compare our RL-based dynamic ensemble approach with the following
static ensemble baselines:

* Mean/Median: for each item and timestamp, take a simple mean/median of all base learners.

* Global optimal ensemble: of all of the possible weights of base learners which are shared
across items and timestamps, choose the weight for which the associated convex combina-
tions of base learners lead to the best performance in the backtest validation set.

* Winner—-takes—all(WTA): choose the single base learner which leads to the best
performance in the backtest validation set.

5.1.2 BENCHMARK RESULTS

Message 1: Our hybrid dynamic ensembles is the best or at least on par against other 4
baselines. We evaluate the time series forecasting results by the mean weighted quantile loss
defined in Equation Equation 7 in the appendix. The results of all dynamic ensemble approaches
including our hybrid quantile ensemble dynamics are summarized in Table 1. From the results in Table
1, we can further report three metrics, winning rate, average ranking, and averaged stability score
(amount of % degradation compared with winining method). For winning rate, our RL-hybrid
ensemble is 50% (wins in two out of four datasets) against other 4 baselines whereas Median and
Winner-takes—-all ensemble won 25% respectively. In the average ranking, Median and our
RL-hybrid method is 1.75 and 2 respectively whereas Mean and WTA method is 3.75 and 3.5
respectively. In terms of stability score, our RL—hybrid and Median ensemble is -10% and -15%
respectively whereas Mean and WTA method is at least -100% and -70%. Please see more detailed
analysis dataset by dataset in Appendix B.

Message 2: Overfitting and distribution shift hinders coherent ensembles over all en-
semble methods. We also observe the over-fitting of some base learners from the results of
Winner-takes-all. In exchange rate, elec and solar datasets, the best base learner in the
backtest validation set is not the best base learner in the prediction testing window. It would be
challenging to learn a good ensemble strategy in this situation. However, our approach can overcome
this over-fitting issue to some extend and still be able to learn good ensemble policy for exchange
rate and solar datasets. This is partially because the ensemble policy is trained using the entire time
series dataset instead of just the backtest window. In addition, although Winner-takes-all
gives the best forecasting accuracy for traf, the severe over-fitting of MO—CNN (see accuracies inside
parenthesis of Table 1) slightly degrades the performance of our approach since the uniform weights
are encouraged for the nearly-optimal base learners in our ensemble framework.

Base learner/

E exchange rate elec traf solar
nsemble strategy
DeepAR-T 0.0075 0.0548 0.0879(0.113) 0.3252
DeepAR-G 0.0067 0.0618 0.1140 0.3117
DeepAR-P 0.2261 0.0910 0.9828 0.3137
Transformer 0.0298 0.0266 0.0908 0.3584
MQ-CNN 0.0544 1.8793 (0.166)
TFT 0.0060 0.0844 0.1144 0.3253
NBEATS 0.0106 0.0480 0.2270 0.9983
Mean 0.0359 0.0490 0.2029 0.3790
Median 0.0090 0.0489 0.0905 0.3256
Global optimal 0.0124 0.0790 0.1991 0.3913
Winner-takes—all [0.0133] [0.0548] [0.0879] [0.7735]
RL-hybrid (Ours) 0.0060 0.0544 0.1141 0.3058

Table 1: Performance comparison on real-world benchmark datasets. The winning method among
ensemble methods are made bold. The retangular is the one selected in Winner-takes-all
ensemble method. The values in the parenthesis are the accuracy evaluated in the backtesting window.

Under review as a conference paper at ICLR 2023

5.2 INVESTIGATING PROPERTIES OF DYNAMIC ENSEMBLES

Property 1: Capturing time-varying ensemble weights. We first demonstrate the capability of
our dynamic ensemble framework to learn the time-varying ensemble weights when the optimal base
learners vary along the prediction horizon. We examine policy trained on the motivating example
on the dataset Solar in Section 1 more closely. Our dynamic ensemble approach is able to learn
ensemble weights which are consistent with the time-varying pattern of the optimal base learners.
In particular, we can see from Figure 3a that (1) only Transformer, TFT and DeepAR are
given positive ensemble weights during the prediction, (2) the ensemble weights of transformer
remain relatively high in prediction timestamps [0,6] U [16,29] while dropping below 0.1 during
prediction timestamps [7, 15], (3) the ensemble weights of TET remain 0 in prediction timestamps
[0,5] u[16,29] but dominate the ensemble weights of transformer in prediction timestamps [7,15],
(4) the ensemble weights of DeepAR remain high during the entire prediction horizon because its
relatively good performance during the entire prediction horizon.

. g | —— DeepAR —— DeepAR-G original
@ w
£~ Transformer o 37 DeepAR-G w/ target
E < = MQCNN 23| — DeepAR-G w/ ensemble

© o
2s — TFT =g
8. —— NBEATS 53
5 3°
w < 1 T © 1
T M =)
ER D o |
T =38
o © c o
e g5
gs =5
<, S

0 5 10 15 20 0 5 10 15 20 25 30
Prediction horizon Prediction horizon

(a) Learning time-varying ensemble weights. (b) Boost performance of AR model.

Figure 3: The learned ensemble weights are consistent with the performances of the base learners.
over the prediction horizon. QL and rank are averaged over all items in the dataset.

Property 2: Boosting the performance of auto-regressive (AR) forecasters. Improving the base
learners’ performance is important for the improving the accuracy of the final ensembled predictions,
and for allowing a broader set of admissible ensemble polices (in the extreme case, if all base learners
perform equally well, then any ensemble strategy is optimal). We demonstrate the capability of
auto-regressive ensemble (as shown in Figure 3b) on boosting the performance of AR forecasters. In
particular, we focus on the DeepAR models with different distribution outputs: Gaussian , Student’s
t and Poisson distribution and train the ensemble policy using our dynamic ensemble approach with
auto-regressive ensemble dynamics on exchange rate dataset. Figure 3b shows the mean weighted
quantile losses of the DeepAR-G over the prediction horizon for 3 different strategies:

* using DeepAR with Gaussian distribution (denoted as DeepAR-G original);

* using DeepAR with Gaussian distribution, but feed the true target value as the auto-
regressive input in Equation 4b (denoted as DeepAR-G w/ target);

* using the DeepAR with Gaussian distribution, but feed the samples from the mixture
of distributions in Equation 3 as the auto-regressive input in Equation 4b (denoted as
DeepAR-G w/ ensemble);

We can observe that by feeding a more accurate input to the auto-regressive forecaster, DeepAR-G
w/ ensemble improves DeepAR-G original consistently over the entire prediction horizon.
The mean weighted quantile loss for DeepAR-G original and DeepAR-G w/ ensemble
are 0.01466 and 0.00988, respectively, which demonstrates a 32.6% performance boost.

Property 3: Auto-regressive dynamic ensemble is more powerful than direct dynamic through
ablation study. We conduct the ablation on AR dynamics that is explicitly considered in our
algorithm in comparison to the methods where the AR feedback is not explicit. We term these
ablations as RL—auto and RL—-naive. We consider the solar dataset with base learners DeepAR-T,
DeepAR-G and DeepAR-P.

Under review as a conference paper at ICLR 2023

Base learner . .
/Ensemble strategy DeepAR-T DeepAR-G DeepAR-P | Mean Global Optimal | RL-naive RL-auto

solar 0.3252 0.3117 0.3137 0.3088 0.3302 0.3148 0.2840

Table 2: Ablation study to compare auto-regressive vs direct dynamic.

Table 2 highlights the significance of AR dynamics that is explicit in our MDP formulation. With
same set of base learners the AR dynamics is able to achieve 11% better result than the naive
dynamics. Further, the RL-auto is better (8%) than all models/ensemble strategy considered, thus
showing the significance of base learner boosting via AR feedback.

REFERENCES

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C. Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Tiirkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural
Time Series Modeling in Python. Journal of Machine Learning Research, 21(116):1-6, 2020a.
URL http://jmlr.org/papers/v21/19-820.html.

Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider, Valentin Flunkert, Jan
Gasthaus, Tim Januschowski, Danielle C Maddix, Syama Sundar Rangapuram, David Salinas,
Jasper Schulz, et al. GluonTS: Probabilistic and neural time series modeling in Python. Journal of
Machine Learning Research, 21(116):1-6, 2020b.

John M Bates and Clive WJ Granger. The combination of forecasts. Journal of the Operational
Research Society, 20(4):451-468, 1969.

Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Yuyang Wang, Danielle
Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas, Lorenzo Stella,
et al. Deep learning for time series forecasting: Tutorial and literature survey. ACM Computing
Surveys (CSUR), 2022.

Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cassius,
Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, Amrita Saha, Arun Kumar Jagota,
Gokulakrishnan Gopalakrishnan, Manpreet Singh, K C Krithika, Sukumar Maddineni, Daeki Cho,
Bo Zong, Yingbo Zhou, Caiming Xiong, Silvio Savarese, Steven Hoi, and Huan Wang. Merlion:
A machine learning library for time series. 2021.

Gerda Claeskens, Jan R Magnus, Andrey L Vasnev, and Wendun Wang. The forecast combination
puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3):754-762,
2016.

R Glen Donaldson and Mark Kamstra. Forecast combining with neural networks. Journal of
Forecasting, 15(1):49-61, 1996.

Graham Elliott. Averaging and the optimal combination of forecasts. University of California, San
Diego, 2011.

facebookresearch. Kats. https://github.com/facebookresearch/Kats, 2021.

Yuwei Fu, Di Wu, and Benoit Boulet. Reinforcement learning based dynamic model combination
for time series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 6639-6647, 2022.

Julia Gastinger, Sébastien Nicolas, DuSica Stepi¢, Mischa Schmidt, and Anett Schiilke. A study on
ensemble learning for time series forecasting and the need for meta-learning. In 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2021.

David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via the time-

varying graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 205-213, 2017.

10

http://jmlr.org/papers/v21/19-820.html
https://github.com/facebookresearch/Kats

Under review as a conference paper at ICLR 2023

Xiaoyong Jin, Youngsuk Park, Danielle C. Maddix, Hao Wang, and Yuyang Wang. Domain adaptation
for time series forecasting via attention sharing, 2022.

Kelvin Kan, Frangois-Xavier Aubet, Tim Januschowski, Youngsuk Park, Konstantinos Benidis, Lars
Ruthotto, and Jan Gasthaus. Multivariate quantile function forecaster. In International Conference
on Artificial Intelligence and Statistics, pp. 10603—10621. PMLR, 2022.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for segmenting
time series. In Proceedings 2001 IEEE international conference on data mining, pp. 289-296.
IEEE, 2001.

Jongho Kim, Youngsuk Park, John D Fox, Stephen P Boyd, and William Dally. Optimal operation of
a plug-in hybrid vehicle with battery thermal and degradation model. In 2020 American Control
Conference (ACC), pp. 3083-3090. IEEE, 2020.

Paul D Larson. Designing and managing the supply chain: concepts, strategies, and case studies.
Journal of Business Logistics, 22(1):259, 2001.

Julie Letchner, Christopher Ré, Magdalena Balazinska, and Matthai Philipose. Access methods
for markovian streams. In 2009 IEEE 25th International Conference on Data Engineering, pp.
246-257. IEEE, 2009.

Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh Nallapati, Julio
Delgado, Amir Sadoughi, Yury Astashonok, Piali Das, et al. Elastic machine learning algorithms
in amazon sagemaker. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pp. 731-737, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Bryan Lim, Sercan O Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4):
1748-1764, 2021.

Linbo Liu, Youngsuk Park, Trong Nghia Hoang, Hilaf Hasson, and Jun Huan. Towards robust
multivariate time-series forecasting: Adversarial attacks and defense mechanisms. arXiv preprint
arXiv:2207.09572, 2022.

Mohamed Massaoudi, Shady S Refaat, Ines Chihi, Mohamed Trabelsi, Fakhreddine S Oueslati, and
Haitham Abu-Rub. A novel stacked generalization ensemble-based hybrid Igbm-xgb-mlp model
for short-term load forecasting. Energy, 214:118874, 2021.

Michael Mathioudakis, Nick Koudas, and Peter Marbach. Early online identification of attention
gathering items in social media. In Proceedings of the third ACM international conference on Web
search and data mining, pp. 301-310, 2010.

Yasuko Matsubara, Yasushi Sakurai, B Aditya Prakash, Lei Li, and Christos Faloutsos. Rise and
fall patterns of information diffusion: model and implications. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 614, 2012.

Yasuko Matsubara, Yasushi Sakurai, Naonori Ueda, and Masatoshi Yoshikawa. Fast and exact
monitoring of co-evolving data streams. In 2014 IEEE International Conference on Data Mining,
pp- 390-399. IEEE, 2014a.

Yasuko Matsubara, Yasushi Sakurai, Willem G van Panhuis, and Christos Faloutsos. Funnel:
automatic mining of spatially coevolving epidemics. In KDD, pp. 105-114. ACM, 2014b.

Jihoon Moon, Seungwon Jung, Jehyeok Rew, Seungmin Rho, and Eenjun Hwang. Combination of
short-term load forecasting models based on a stacking ensemble approach. Energy and Buildings,
216:109921, 2020.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis
expansion analysis for interpretable time series forecasting. arXiv:1905.10437,2019.

11

Under review as a conference paper at ICLR 2023

Spiros Papadimitriou and Philip Yu. Optimal multi-scale patterns in time series streams. In Proceed-
ings of the 2006 ACM SIGMOD international conference on Management of data, pp. 647—658,
2006.

Youngsuk Park, Kanak Mahadik, Ryan A Rossi, Gang Wu, and Handong Zhao. Linear quadratic
regulator for resource-efficient cloud services. In Proceedings of the ACM Symposium on Cloud
Computing, pp. 488-489, 2019.

Youngsuk Park, Danielle Maddix, Francois-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and Yuyang
Wang. Learning quantile functions without quantile crossing for distribution-free time series
forecasting. arXiv:2111.06581,2021.

Youngsuk Park, Danielle Maddix, Frangois-Xavier Aubet, Kelvin Kan, Jan Gasthaus, and Yuyang
Wang. Learning quantile functions without quantile crossing for distribution-free time series
forecasting. In International Conference on Artificial Intelligence and Statistics, pp. 8127-8150.
PMLR, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Amal Saadallah and Katharina Morik. Online ensemble aggregation using deep reinforcement
learning for time series forecasting. In 2021 IEEE 8th International Conference on Data Science
and Advanced Analytics (DSAA), pp. 1-8. IEEE, 2021.

David Salinas, Michael Bohlke-Schneider, Laurent Callot, Roberto Medico, and Jan Gasthaus. High-
dimensional multivariate forecasting with low-rank gaussian copula processes. Advances in Neural
Information Processing Systems, 32:6827-6837, 2019.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. DeepAR: Probabilistic
forecasting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):
1181-1191, 2020.

Jeremy Smith and Kenneth F Wallis. A simple explanation of the forecast combination puzzle. Oxford
Bulletin of Economics and Statistics, 71(3):331-355, 2009.

James H Stock and Mark W Watson. Combination forecasts of output growth in a seven-country data
set. Journal of forecasting, 23(6):405-430, 2004.

Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37-45,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Ruofeng Wen, Kari Torkkola, Balakrishnan Narayanaswamy, and Dhruv Madeka. A multi-horizon
quantile recurrent forecaster. arXiv preprint arXiv:1711.11053,2017.

TaeHo Yoon, Youngsuk Park, Ernest K Ryu, and Yuyang Wang. Robust probabilistic time series
forecasting. In International Conference on Artificial Intelligence and Statistics, pp. 1336—1358.
PMLR, 2022.

Yunyue Zhu and Dennis Shasha. Statstream: Statistical monitoring of thousands of data streams in
real time. In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases,
pp- 358-369. Elsevier, 2002.

12

Under review as a conference paper at ICLR 2023

A EXPERIMENT SETUP

A.1 REAL-WORLD DATASET

Table 3 summarizes the four benchmark real-world datasets that we use to evaluate our dynamic
ensemble approach.

Dataset Freq | Domain | # Time series | Prediction length
exchange rate | daily R* 40 30
elec hourly R* 2950 24
traf hourly | [0,1] 6741 24
solar hourly R* 959 24

Table 3: Benchmark dataset descriptions

A.2 IMPLEMENTATION OF DDPG

We use the DDPG implementation from OpenAl spinning up baselines. The last layer of policy
network is a softmax layer with output dimensions as the number of base learners considered. For
hyper-parameter tuning we consider the hyper-parameters in Lillicrap et al. (2015) and some specific
to dynamic AR ensemble. The final hyper-parameters used for different datasets for the experiment
in Section 5.1 is given in Tables 4 and 5. The default weights among AR model parameter is used to
set the weights among the AR model if all the AR models in the hybrid dynamics gets zero weight
at certain step in the RL; A controls the trade-off as explained in the reward function section. The
reward scale is the scaling applied to mean-wQL to be comparable with the secondary reward 5.
Round threshold is the number of decimal digits for rounding the mean-wQL to get ranking for base
learners.

A.2.1 EXPERIMENTS IN TABLE |

Hyperparamters exchange rate elec traf solar
episodes per epoch 5 5 5)
start episodes 40 50 50 50
update after episodes 5 5 5 5
update steps per prediction length 4 4 4 4
update every episodes 0.5 0.25 0.25 0.5
discount factor 0.99 0.99 0.99 0.99
epochs 40 60 60 70
polyak 0.99 0.99 0.99 0.99
learning rate for policy 0.0005 0.0005 | 0.0005 | 0.0005
learning rate for Q value 0.0005 0.0005 | 0.0005 | 0.0005
noise level for action 0.05 0.05 0.05 0.1

Table 4: Hyperparameters of DDPG algorithm in various real-world datasets.

A.3 IMPLEMENTAIONS OF TS-GYM

Error metric We evaluate the forecasting error in terms of the mean weighted quantile loss. See
the precise definition in the appendix.

S I ey max {7 (2 = Zo k) (1= 70) (Bijk — 2i)}
> N, T+h N
q 2zt j=T+1 .4
N,T+h N,T+h,q

where {2;;};_} ;_r,, are the true values of future time series and {Z; jx};.} ;o7\, 4o are the
estimated quantile predictions.

13

Under review as a conference paper at ICLR 2023

auto-regressive models

Hyperparameters exchange rate elec traf solar
train batch size 40 200 100 200
reward scale 100 0.0001 10 0.01
round threshold 2 2 2 2
A 0.5 0.5 0.5 0.5
default weights among [1,0,0] [1,0,0] | [1,0,0] | [1,0,0]

Table 5: Hyperparameters of TS-GYM in various real-world datasets.

B BENCHMARK RESULT DISCUSSION

For the more detailed discussion, we can observe that the proposed RL-hybr id method outperforms
all base models and baselines on all exchange rate and solar datasets. For exchange rate, which
is a regular dataset with clear daily patterns, a single base learner usually performs very well. Our
RL-hybrid method is able to identify the single best base learner (TFT). On the other hand,
exchange rate is less regular and more challenging. Our RL—hybrid method is better (2%) than all
base models and baselines considered. This is because our dynamic ensemble method are able to
capture the time-varying patterns of the base learners’ performance profile and boost the performance

of the auto-regressive base learners (see Section 5.2 for more discussions).

14

	Introduction
	related work
	Preliminaries
	Probabilistic time-series forecasting
	Forecasting ensemble
	Reinforcement learning

	Dynamic ensemble framework
	MDP formulation
	Ensemble dynamics P and ensembled quantiles
	Reward function

	Simulated environment: TS-GYM
	Learning dynamic ensemble policy with exploration

	Experiments
	Benchmark experiments on dynamic ensemble
	Experiment setup
	Benchmark results

	Investigating properties of Dynamic Ensembles

	Experiment setup
	Real-world dataset
	Implementation of DDPG
	Experiments in Table 1

	Implementaions of TS-GYM

	Benchmark result discussion

