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Abstract
We study a synthetic corpus based approach for
language models (LMs) to acquire logical deduc-
tive reasoning ability. The previous studies gen-
erated deduction examples using specific sets of
deduction rules. However, these rules were lim-
ited or otherwise arbitrary. This can limit the
generalizability of acquired deductive reasoning
ability. We rethink this and adopt a well-grounded
set of deduction rules based on formal logic the-
ory, which can derive any other deduction rules
when combined in a multistep way. We empir-
ically verify that LMs trained on the proposed
corpora, which we name FLD (Formal Logic
Deduction), acquire more generalizable deductive
reasoning ability. Furthermore, we identify the
aspects of deductive reasoning ability on which
deduction corpora can enhance LMs and those
on which they cannot. Finally, on the basis of
these results, we discuss the future directions for
applying deduction corpora or other approaches
for each aspect. We release the code, data, and
models 1.

1. Introduction
Building a machine that logically reasons step by step has
been the Holy Grail since the early era of artificial intelli-
gence (McCarthy, 1959). Such a machine will solve com-
plex real-world problems in a very explainable and transpar-
ent way. Toward this goal, various benchmarks for measur-
ing logical reasoning ability have recently been proposed
(Weston et al., 2015; Habernal et al., 2018; Niven & Kao,
2019; Richardson et al., 2020). Usually, researchers tackle
these benchmarks using state-of-the-art language models
(LMs) expecting their remarkable linguistic understanging
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ability. Yet still, even such powerful LMs struggle with
these benchmarks, showing their limited logical reasoning
ability (Askell, 2020; Rae et al., 2021; Yang et al., 2022).

LMs have acquired their linguistic understanding ability
inductively from a lot of high-quality examples in human-
written texts (Devlin et al., 2019). Conversely, their poor
logical reasoning ability suggests the lack of high-quality ex-
amples of logical reasoning. This is not a surprise given that
humans usually think reflexively rather than logically step
by step (Kahneman, 2011). The consideration here suggests
a straightforward strategy to equip LMs with logical reason-
ing ability: create corpora that include many examples of
valid logical reasoning and train LMs on them.

For this purpose, we can use the recently proposed Rule-
Taker (Clark et al., 2021). RuleTaker is a benchmark com-
posed of many synthetically generated multistep deductive
proofs written in natural languages. Each deductive proof
(dis-)proves a hypothesis by applying deduction rules multi-
ple times to a given set of facts (the same as “Deduction In-
stance” in Figure 1). RuleTaker adopted the deduction rules
of the implication kind, such as ∀xF (x) → G(x), F (a) ⊢
G(a) (here, ⊢ means “derives”). Artificial Argument Corpus
(AACorpus) (Betz et al., 2021) is another corpus composed
of synthetically generated single-step deductive proofs. AA-
Corpus adopted hand-selected deduction rules useful for crit-
ical thinking, such as contraposition F → G ⊢ ¬G → ¬F
(¬ is negation). All these corpora could offer LMs opportu-
nities to acquire logical deductive reasoning ability, one of
the most important and universally used logical reasoning
abilities.

However, it is still an open question whether this research
direction will genuinely lead to the improvement of deduc-
tive reasoning ability. First, the deduction rules used in
the previous corpora were limited or otherwise arbitrary.
This can limit the generalizability of the acquired deductive
reasoning ability since complex real-world reasoning can
require various deduction rules. Second, it has not yet been
studied on what aspect of deductive reasoning ability deduc-
tion corpora can enhance LMs. Such aspects will include,
in addition to the mastery of deduction rules, the ability to
solve complex deductive proofs, understanding of diverse
linguistic expressions of logical statements, robustness to
distractive facts, and understanding of complex formulas.
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Arguments

(deduction rules)

◆ tree depth = 3

◆ # of branches = 5

◆ formula complexity

➢ up to 2 propositions

with ∧ ,∨, ¬

NL templates

◆ Vocab=100000

Facts:

1. The Earth revolves around the sun and 

the Earth’s axis is tilted.

2. (...)

3. If the Earth revolves around the sun and 

the Earth’s axis is tilted, then the Earth has 

seasons.

4. (…)

5. That the Earth has seasons results in that 

climate changes throughout a year, and 

crops grow in abundance.

6. (…)

Hypothesis:   Climate changes

throughout a year.

Proof:

fact1 & fact3  → int1: the Earth has seasons.

fact5               → int2: that the Earth has

seasons results in that climate changes 

throughout a year.

Int1 & int2      → climate changes

throughout a year.

Answer: proved

…

→ introduction

…

∧ elimination

Proof

Tree

Generator

Modus ponens

𝓕 𝓕 → 𝓖

𝓖

Natural

Language

Assigner

Factual

Distractor

Generator

(𝐴 ∧ 𝐶) → 𝐵
𝐶 → (𝐷 ∨ 𝐸)

(…) 

Factual Distractors

NL assignments

𝑨: The Earth revolves around the sun.
𝑩: The Earth's axis is tilted.
𝑪: The Earth has seasons.
𝑫: Crops grow in abundance.
𝑬: Climate changes throughout a year.
𝑨 ∧ 𝑩 : The Earth revolves around the sun

and the Earth’s axis is tilted. 
𝑨 ∧ 𝑩 → 𝑪: If the Earth revolves around 

the sun and the Earth’s axis is tilted,
then the Earth has seasons.

𝑪 → 𝑬 ∧ 𝑫:  That the Earth has seasons
results in that climate changes throughout
a year, and crops grow in abundance.

Deduction

Instance

Converter
◆ {𝐴} → {𝐵}: 

➢ “if {𝐴}, then {B}”

➢ “{A} results in {B}”

◆ ∀𝑥 {𝐴} 𝑥 → {𝐵}(𝑥):

➢ “if something is {𝐴},
then it is also {𝐵}”

➢ “{𝐴} things are {𝐵}”

Deduction Instance
◆ # of distractors: 20

◆ type: logical distractor

◆ hardness: hard

(default) the axioms of

first-order predicate logic

◆ proof label = proved

◆ world assumption = OWA

𝓕 → 𝓖

𝓖 → 𝓗

𝓕

𝓖

𝓗

Compound Formula Constructions

Proof Tree

Modus ponens

𝓕 = 𝐴 ∧ 𝐵 𝓖 = 𝐶
𝓙 = 𝐷 𝓗 = 𝐸

forward

𝓖 → 𝓗 ∧ 𝓙

backward

∧-elimination

Figure 1: An overview of the proposed framework FLD, which aims to generate logical deduction instances constructed
from the axioms of first-order predicate logic. FLD is modular, and the modules are made as flexible as possible by options
or external template files. This enables us to generate various patterns of corpora for analysis.

This investigation is essential to discuss the future directions
on deductive reasoning: for the aspects for which deduc-
tion corpora are beneficial, we can advance by inventing
better deduction corpora. However, for the other aspects,
we should take other approaches.

This paper aims to answer these questions. First, we rethink
the choice of deduction rules. To this end, we leverage the
formal logic theory (Section 2). According to formal logic,
there are infinite valid deduction rules, including but not
limited to the ones used in the previous corpora. However,
among them, there is a set of atomic deduction rules called
the axioms, and any other valid deduction rules can be de-
rived by multistep deductions constructed from the axioms
(completeness). As a consequence, multistep deductions
constructed from the axioms can express multistep deduc-
tions constructed from any other deduction rules. The sets
of deduction rules used in the previous corpora do not have
this property and thus cannot express other various deduc-
tion rules. To revise this point, we propose a deduction
corpus generation framework named FLD (Formal Logic
Deduction), which adopts the axioms. Using the corpora
generated by FLD, we aim to teach LMs how to construct
multistep deductions by using the axioms.

To show that the training on FLD is indeed effective, we
measured the performance of LMs trained on FLD corpora
on two types of deductive reasoning benchmarks (Section 6).
One benchmark is deduction corpora themselves, which
requires rigid logical reasoning, and the other is human-
authored EntailmentBank (EB) (Dalvi et al., 2021), which
requires more complex real-world reasoning. We obtained
promising results: LMs trained on FLD outperform base-
lines on both benchmarks, showing their better generalizabil-
ity. Nevertheless, LMs still fail to fully utilize the potential

of the axioms as it struggles to construct many-step proofs.

Next, we identify the aspects of deductive reasoning abil-
ity on which deduction corpora are beneficial (Section 7).
To analyze each aspect separately, we employed various
options of FLD and generated a comprehensive set of “ab-
lation corpora”, where one corpus emphasizes a specific
aspect different from those emphasized by the other corpora.
Then, for each corpus (aspect), we investigated whether the
LM trained on that corpus outperformed the LM without this
training. If it did, we concluded that the supervision from
deduction corpus on that aspect is beneficial for LMs. The
results suggest that deduction corpora are beneficial on all-
most all the aspects. However, for some aspects, deduction
corpora alone are not enough, and thus other approaches,
such as advanced models and learning methods, could be
required. Finally, on the basis of the results, we discuss the
future directions for applying deduction corpora or other
approaches for each aspect (Section 8).

We summarize our contributions as follows:
• To teach LMs deductive reasoning, we propose a deduc-

tion corpus generation framework FLD (Section 3).

– FLD is the first to leverage formal logic theory:
it adopts a well-grounded set of deduction rules
that can derive any other deduction rules when
combined in multistep deductions.

– FLD highly flexibly generates various patterns of
corpora for analysis (Table 1).

– Accordingly, we release challenging FLD corpora,
the code, and the fine-tuned models1.

• We empirically verify that LMs trained on FLD corpora
acquire more generalizable deductive reasoning ability
than the baselines without such training (Section 6).

• We analyze each aspect of deductive reasoning and
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provide the future directions for applying deduction
corpora or other approaches for them (Sections 7 and 8).

2. Preliminaries: Formal Logic
Let us consider the following single-step deductive reason-
ing:

The Earth revolves
around the sun

If the Earth revolves around the sun,
the Earth has seasons.

The Earth has seasons.
(1)

This deduction step derives the conclusion, written under
the bar, from the two premises. Next, consider another step:

The Earth revolves
around the sun

If the Earth revolves around the sun,
the Earth does not have seasons.

The Earth does not have seasons.
(2)

In this step, one of the premises (i.e., “If the Earth revolves
around the sun, the Earth does not have seasons”) is false.
However, if the premise had been true, we can still derive
the conclusion. Thus, in formal logic, this step is still valid
the same as (1). We can abstract (1) and (2) using symbols
as: F F → G modus ponens

G (3)

The deduction step of this form is called modus ponens.

While modus ponens is the most intuitive deduction step,
many others exist. For example, a famous syllogism is:

(F → G)∧(G → H) syllogism
F→ H

(4)

The other example below defines the meaning of ∧ formally:
(F∧G)

F
(F∧G) ∧-elimination

G
(5)

Of course, we can consider invalid 2 steps such as:

F (F ∨ G)
G

(6)

Now, from these examples, we obtain some important points
of deductive reasoning. First, deductive reasoning can be
defined as a form of thought in which a conclusion is derived
from a set of premises following specific rules. In formal
logic, such deduction rules are called arguments. Thus, (1)
to (6) all are formal logic arguments. Second, whether an
argument is valid or not does not depend on contents of
symbols but only on the superficial form of the symbolic
sequence composed of the premises to the conclusion. For
example, as stated above, (3) is valid regardless of the actual
content of G, such as G=“(. . . ), the Earth has seasons.” in
(1) and G=“(. . . ), the Earth does not have seasons.” in (2).
This enables us to regard all arguments simply as symbolic
rules such as (3) to (6). Third and as one conclusion of

2A deduction step (an argument) is invalid when for some
truth value assignments, the conclusion is false (=0) even if all the
premises are true (=1). See Table B.10b.

Syllogism𝓖𝓖

𝓗𝓗

Modus ponens

𝓕𝓕 → 𝓖𝓖 ∧ (𝓖𝓖 → 𝓗𝓗)
∧ elimination

𝓕𝓕 → 𝓖𝓖 (𝓖𝓖 → 𝓗𝓗)𝓕𝓕

(𝓖𝓖 → 𝓗𝓗)

(𝓕𝓕 → 𝓗𝓗)

→ introduction

Modus ponens

𝓕𝓕 → 𝓖𝓖 ∧ (𝓖𝓖 → 𝓗𝓗)

(𝓕𝓕 → 𝓗𝓗) ….

….

….

….

….

…. ….

….

Figure 2: An example of multistep deduction constructed
from the axioms. (Left) shows the derivation of a syllogism.
(Right) illustrates that deduction with more steps can ex-
press deductions that use a syllogism as a given rule.

the second point, the symbols such as F and G can be
arbitrary compounds of other formulas such as F=(A ∧B)
and F=∀x,A(x) → B(x). Finally, since we can consider
infinite patterns of formulas as premises and a conclusion,
we have infinite patterns of arguments (including both valid
and invalid arguments).

Next, we consider multistep deductions. Figure 2 shows
that syllogism argument can be derived by the multistep
deduction constructed from other “atomic” arguments. (For
other examples, Figure B.4 shows the derivations of the
arguments used in the previous corpora.) Indeed, in formal
logic, there is a set of atomic arguments called the axioms
(listed in Figure B.3a), and the following is known 3 :

Theorem 2.1 (Completeness of first-order predicate logic
(Gödel, 1930)). Any valid 4 argument is derivable by multi-
step deduction constructed from the axioms. Furthermore,
any argument derivable by multistep deduction constructed
from the axioms is valid.

Here we have come to the core of formal logic: multistep
deduction constructed from the axioms. Thanks to the com-
pleteness, all valid arguments can be derived in this way,
and all (infinite) arguments derived in this way are valid. As
a consequence, multistep deduction constructed from the
axioms can express multistep deduction constructed from
any other arguments, as illustrated in Figure 2 (right).

3. Generating Formal Logic Deduction Corpus
The previous deduction corpora (Clark et al., 2021; Betz
et al., 2021) used limited or arbitrary sets of deduction
rules. However, as we saw in Section 2, the axioms
should be the most generalizable to various deduction rules.
Thus, we propose a framework named FLD (Formal Logic
Deduction), which generates examples of multistep deduc-
tion constructed from the axioms. We designed FLD to
be highly flexible, i.e., configurable and/or extensible by
options or external template files as in Table 1, so that we
can generate and analyze various patterns of corpora.

3We limit our focus to first-order predicate logic in this paper.
4An argument is valid when for all truth value assignments, the

conclusion is true (=1) if all the premises are true. See Table B.10a.
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Table 1: A comparison of FLD with the previous studies. FLD is flexible to generate various patterns of corpora for
analysis. ✓ means controllable and extensible by an external template file. ✓ means controllable by an option.

Deduction
Rules

Proof Tree
Depth (upto)

Proof Tree
Branches

Formula
Complexity

# of
Distractors (up to)

Linguistic
Diversity

Proof
Labels

RuleTaker
(Clark et al., 2021) implication 5 A few complex ∼20 less (RuleTaker) /

more (ParaRules)

provable /
disprovable /

unknown

AACorpus
(Betz et al., 2021)

✓
(default = critical thinking) 1 1 ✓

(simple / complex) 0 ✓
(default = less)

provable /
disprovable

FLD ✓
(default = the axioms)

✓
(can be any)

✓
(can be any)

✓
(simple / complex)

✓
(can be any)

✓
(default = more)

✓
(can choose any)

We show examples of generated instances in Figure C.5. Be-
low, we overview each module. For intuitive understanding,
refer to the corresponding part of Figure 1. For the detailed
implementations, refer to Appendix E.

3.1. Proof Tree Generation via Random
Forward-/Backward- Deduction

RuleTaker (Clark et al., 2021) generates deductive proof
trees by first randomly generating various formulas and
second running a logical solver library on them to find oc-
casionally emerged deductive relationships among them.
However, since we rely on an external solver, we cannot
specify the set of arguments used in proof trees (and thus we
cannot specify the axioms, especially.). Further, since we
rely on the randomness, we cannot control the complexity
of a proof tree, i.e., the depth and the number of leaves.

Thus, we decided to take another approach. We invented a
module (“Proof Tree Generator” in Figure 1) that generates
a proof tree through a random deduction process by using
a set of arguments specified by a user. A user can specify
the arguments in a template rule file, as exemplified in Fig-
ure E.6. At each forward- or backward- deduction step, the
module randomly chooses one argument and joints it to the
current proof tree (“forward” and “backward” in the figure).
The numbers of forward- and backward- steps control the
tree’s depth and number of leaves, respectively.

Once the structure of the proof tree is constructed, we con-
struct the compound formulas at the tree nodes, such as F ,G.
Since these formulas are arbitrary (Section 2), we randomly
combine atomic formulas such as A and B using logical
operators ∧,∨,¬. To avoid over complications, we limit the
number of atomic formulas in each compound formula up
to three. The resulting formulas are like F = (¬A ∧B).

3.2. Factual Distractor Generation

In a realistic scenario of logical reasoning, since the facts
are collected by possibly incomplete retrieval systems rather
than given, LMs have to correctly choose only the relevant
facts under the existence of many irrelevant facts. To imi-
tate this scenario, we add distractor facts to each deduction
instance (“Factual Distractor Generator” in Figure 1). The

distractor facts are formulas that are similar to the gold
facts in their logical form. For example, for the gold fact
(A ∧ B) → C, formulas such as (A ∧ C) → B can be
distractors. We also implemented several other types of
distractors and use the mixture of them.

3.3. Natural Language Assignment

We assign one natural language sequence to each formula of
tree nodes and of distractors (“Natural Language Assigner”
in Figure 1). Inspired by Betz et al. (2021), we take a
template based approach. For each formula, we prepare
several templates via an external template file (exemplified
in Figure E.7) such as follows:

A → B : “If A, then B.”, “A leads to B.”
F (a) → G(b) : “If a F, then b G.”, “When a F, b G.”

Then, we randomly choose one from them. Note that since
the templates can be nested, the number of resulting patterns
are combinatorially diverse.

Next, we assign natural language statements to atomic com-
ponents such as A,B, F,G, a, b. Here, we come back to
the important point in deductive reasoning discussed in Sec-
tion 2: that the validity of deduction does not depend on
contents of formulas, or in other words, the same deduction
can be conducted on the same formulas regardless of their
contents. To reflect this point, we assign a random statement
constructed (under a certain grammatical constraint) from a
full vocabulary to each atomic component; for example:

A : “an Earthquake occurs” B : “the year ends”
F : “run” G : “answer” a : “the hamburger” b : “Peter”

These random and diverse statements constructed from a
large vocabulary (about 20k words) are another major dif-
ference from the previous studies (Tafjord et al., 2021; Betz
et al., 2021), which used limited statements constructed
from a limited vocabulary (a few dozen of words).

3.4. Deduction Instance Conversion

We finally make a deductive reasoning instance from the
outputs of the previous modules (“Deduction Instance Con-
verter” in Figure 1). A deduction instance is composed of
a set of facts, a hypothesis, a proof sequence, and an an-
swer (“proved”, “disproved”, or “unknown”). This module
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can make an instance of any answer label as follows. For
answer label “proved”, (i) we use the root node as the hy-
pothesis, (ii) we use the leaf nodes of the proof tree and the
distractors as the fact set, and (iii) we use the internal nodes
of the proof tree as the proof sequence. For answer label
“disproved”, we use the negated statement of the root node
as the hypothesis so that the hypothesis is disproved by the
proof sequence. For answer label “unknown”, we randomly
drop some of the leaf nodes so that the hypothesis cannot
be proved or disproved by the proof sequence.

4. Experiments
We conducted experiments to verify the effectiveness of
FLD, and to identify the aspects of deductive reasoning
ability on which deduction corpora can enhance LMs. To
this end, we examined various deduction corpora shown
in Table 2. We trained LMs on the deduction corpora and
measured their performance on relevant benchmarks. For
reference, we also measured the performance of a LM (T5)
without training on the deduction corpora. We used two
types of benchmarks: deduction corpora themselves and
human-authored EntailmentBank (Dalvi et al., 2021). We
briefly explain the setup. See Appendix F for the details.

4.1. Prover Model

All the experiments involve generating a proof sequence to
(dis-)prove a given hypothesis from a given set of facts. To
tackle the task of this type, we adopt the stepwise prover
model from Yang et al. (2022). This prover is a generative
model based on T5 (Raffel et al., 2020), which generates
one proof step at a time. A proof step represents the chosen
premises and the derived (generated) conclusion, such as
“fact1 & fact3 -> The Earth has seasons”. The prover contin-
ues the generation until the given hypothesis is (dis-)proved.

4.2. Few-shot Transfer to Synthetic Deduction Corpora

The first benchmark is the deduction corpora, which mea-
sure rigid logical reasoning ability. We trained prover LM on
a corpus and measured its performance on another corpus.
If LMs have acquired robust deductive reasoning ability,
they should transfer well with a small number of examples.
To see this, we used few-shot setting 5.

We trained prover LM (T5-base) on the training split of
each source corpus for 20k steps with a batch size of 64 and
learning rate of 1e-4. Then we fine-tuned the prover LM on

5Zero-shot is not appropriate for transfer among corpora that
differ in the sets of arguments used in proofs as follows. Since a
proof step is made by an argument, the nature (granularity) of proof
steps in one corpus differs much from those in another corpus. To
adjust this artificial difference, LMs need examples of the target
corpus.

1% subset (300 instances) of the training split of the target
corpus. Finally, we measure the performance of the prover
on the test split of the target corpus by using proof accuracy
(Saha et al., 2020), which measures whether the generated
proofs match the gold proofs. 6.

4.3. Transfer to EntailmentBank

EntailmentBank (EB) (Dalvi et al., 2021) is a recently pro-
posed challenging benchmark. The proof trees in the EB
dataset are human-authored rather than synthetically gen-
erated. Further, each proof step can be rough entailment
instead of a rigid logical step. Thus, EB measures logical
reasoning ability in a more real-world scenario.

We used all the three tasks of EB, which differ in the prop-
erty of a given fact set: Task1 does not include distractors,
Task2 includes distractors, and Task3 includes sentences
retrieved from worldTree V2 (Xie et al., 2020).

As stated above, the nature of proof steps in EB differs much
from the nature of those in deduction corpora. Thus, it is
difficult for prover LMs trained on deduction corpora to
transfer to EB with a small number of examples. Thus, we
fine-tuned the provers using all the EB instances.

We trained a prover LM (T5-large) on a source deduction
corpus for 10k steps and fine-tuned it on each EB corpus for
10k steps. For all the training, the batch size was 64 and the
learning rate was 5e-5, except EB-task2 where the learning
rate of 2.5e-5 was used. For EB-task3, we used the prover
trained on task2, following Dalvi et al. (2021). Given the
challengingness of EB, we used the additional RoBERTa
(Liu et al., 2019) based proof step verifier proposed in Yang
et al. (2022). We measured the performance of the provers
on the test split of EB by the official metric of “AllCorrect”
proof accuracy (Dalvi et al., 2021).

5. How Well do LMs Solve Logic?
Table 3: Proof accuracy of a prover fully fine-tuned using all the
dataset instances on each corpus.

RuleTaker FLD

RT RT.PR FLD FLD⋆

92.4 93.9 66.4 37.7

First, we show how well LMs solve logic of each deduc-
tion corpus (Table 3). As shown, while the fully fine-
tuned provers performed well on RuleTaker, they performed
poorer on FLD. One possible reason is as follows. First,
since a proof tree is constructed from the combination of

6We also show the results of answer accuracy in Appendix G.1.
However, due to biases in fact sets, answers can be guessed without
considering proofs to some extent, as found in Tafjord et al. (2021)
where answer accuracy exceeds proof accuracy. Thus, the answer
accuracy is not appropriate for measuring the logical deductive
reasoning ability explicitly.
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Table 2: The corpora examined in this paper. For RuleTaker (“RT”), we used the OWA version introduced by Tafjord et al.
(2021). To align conditions as closely as possible across the corpora being compared, we (i) generated multiple FLD corpora
using the options and template files and (ii) added several preprocessings to RuleTaker. See Appendix F.1 for details.

name arguments
(deduction rules)

distractors
(up to)

linguistic
diversity

formula
complexity tree depth tree depth

distribution
# train
examples

RT (“D0-D3”) implication ∼ 20 less complex 1–3

skewed
(biased toward
lower depths)

30k
RT.PR (“ParaRules”) implication ∼ 20 more complex 1–5 30k
RT.BE (“Birds-Electricity”) implication ∼ 20 more complex 1–3 - (test only)

sFLD-impl implication ∼ 20 less complex 1–3 30k
sFLD-crit critical thinking ∼ 20 less complex 1–1 30k
sFLD-axiom (SFLD) the axioms ∼ 20 less complex 1–3 30k

RT.D5 (“D0-D5”) implication ∼ 20 less complex 1–5

uniform

30k
FLD.D5 the axioms ∼ 20 less complex 1–5 30k

FLD-impl.0 implication ∼ 20 less complex 1–3 30k
FLD-impl.1 implication ∼ 20 less complex 1–8 30k

FLD.0 the axioms 0 less complex 1–3 30k
FLD.1 the axioms ∼ 20 less simple 1–3 30k
FLD.2 the axioms ∼ 20 less complex 1–3 30k
FLD.3 (FLD) the axioms ∼ 20 more complex 1–3 30k
FLD.4 (FLD⋆) the axioms ∼ 20 more complex 1–8 30k

argument chosen at each level of the tree, the number of
possible proof tree patterns can be estimated (very roughly)
as O(Ad), where A is the number of argument choices and
d is the proof tree depth. Next, while RuleTaker uses only
a few arguments (A = 2) of implication type shown in
Figure B.3b, FLD uses various arguments (A ∼ 10) of the
axioms shown in Figure B.3a. Thus, FLD includes expo-
nentially more diverse patterns of proof trees, which makes
FLD more challenging. Indeed, when we enlarge the max-
imum tree depth from d=3 to d=8 (FLD to FLD⋆), the
corpus became extremely more challenging due to the expo-
nentially more diverse proof tree patterns. See Appendix G
for further detailed analysis.

6. How Effective is Formal Logic Deduction?
6.1. Benchmarking by Deduction Corpora
Table 4: Few-shot proof accuracies of provers transferred
among SFLD and baseline corpora. For fair comparison, all
the corpora have the same depth distribution (except sFLD-
crit that cannot form multistep easily, see Appendix F.1)

Source corpus

T5 RT RT.PR sFLD-impl sFLD-crit sFLD

Target
corpus

RT 70.1 92.4 91.3 76.2 74.4 76.7
RT.PR 64.3 91.3 93.9 73.4 67.5 72.9
RT.BE 56.1 88.3 88.2 75.2 79.4 85.0
sFLD-impl 58.4 66.7 65.9 82.2 67.3 80.7
sFLD-crit 71.9 77.7 77.2 87.8 94.0 93.6
sFLD 54.7 54.5 54.5 67.9 63.7 79.1

avg. 62.6 78.5 78.5 77.1 74.4 81.3

We trained a prover on a deduction corpus (“source corpus”)
and measured its performance on other corpora (“target cor-
pus”) (Table 4). The prover trained on SFLD performed
the best on average, and as seen from the corpus-wise re-
sults, the prover transferred the most robustly to the other

corpora while the provers trained on the other corpora did
not exhibit this level of robustness. Since the corpora used
in Table 4 differ in the set of arguments (deduction rules)
used in proofs, this result suggests that the prover trained
SFLD generalized the most to other arguments.

The reason for this strongest generalizability should be the
following. (S)FLD corpora teach LMs how to construct
multistep deductions using the axioms. Thanks to the com-
pleteness, the axioms can express multistep deductions con-
structed from any other arguments (including the ones used
in the other corpora, as exemplified in Figure B.4). Thus,
mastering the axioms leads to mastering various other argu-
ments. On the other hand, the sets of arguments used in the
other corpora do not have such a property and thus cannot
generalize to other arguments.

Since mastering various arguments is the most important
in deductive reasoning, this generalizability to arguments
obtained from FLD corpora is vital.

6.2. Benchmarking by EntailmentBank
Table 5: The proof accuracy of provers on EntailmentBank.
See Appendix G.2 for the results of other metrics.

EntailmentBank

Task1 Task2 Task3

Source
corpus

T5 36.8±0.9 31.2±0.7 6.2±0.9

RT.D5 39.4±0.9 32.0±0.8 8.2±0.8

FLD.D5 39.2±1.2 32.6±1.0 8.3±0.7

Table 5 shows the results on EntailmentBank (EB). Since
EB trees have high-depth (majority up to five), we used the
high-depth versions of deduction corpora as source corpus.

First, as seen, the provers trained on both deduction cor-
pora (RT.D5, FLD.D5) performed better than the baseline
prover without such training (T5). This suggests that the
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deductive reasoning ability acquired by synthetic deduction
corpora generalizes to more complex real-world deductive
reasoning. We showcase some examples in Appendix G.3,
where the error of the baseline prover is fixed by training on
a deduction corpus (FLD.D5). As seen, the prover captured
the fundamentals of deduction rules better than the baseline
as follows: (i) it chose the correct premises necessary and
sufficient to derive the next conclusion, (ii) it included only
such information that logically follows from the chosen
premises into a conclusion, and (iii) and it correctly used
the rules of logical operators.

Looking at the results of deduction corpora closely, the
prover trained on FLD.D5 performed on par with the prover
trained on RT.D5, even though it had mastered various de-
duction rules better, as shown in Section 6.1. We consider
a possible reason as follows. Firstly, real-world reasoning
can require more coarse-grained deduction rules than those
required by deduction corpora. For expressing such coarse-
grained deduction rules by the most fine-grained axioms,
many steps are required, as in Figure 2. However, the prover
trained on FLD still struggles with constructing many-step
proofs using the axioms (detailed in Section 7.1). In this
sense, the prover could have failed to exploit the axioms’
potential fully. We will discuss future directions to tackle
this challenge in Section 8.

7. On What Aspects are Synthetic Deduction
Corpora Beneficial?

A deduction corpus in Table 2 emphasizes a specific as-
pect different from those emphasized by the other corpora.
For each corpus (each aspect), we investigate whether the
LM trained on that corpus outperforms the LM trained on
the other corpus that does not emphasize the aspect. If it
does, we interpret it as meaning that the supervision from
deduction corpus on that aspect is beneficial for LMs.

7.1. Ability to Solve Complex Proof Trees
Table 6: The depth-wise proof accuracies of the provers.

(a) Target corpus is FLD-impl.1

Source corpus

T5 FLD-impl.0 FLD-impl.1

0 41.7 83.3 70.8
1 77.4 88.7 93.5
2 38.0 56.0 53.0
3 33.8 50.0 47.5
4 36.7 51.1 40.0
5 21.4 42.9 42.9
6 22.7 38.7 41.3
7 25.5 38.7 44.3
8 23.0 36.1 37.7

avg. 35.6 53.9 52.3

(b) Target corpus is FLD.4

Source corpus

T5 FLD.3 FLD.4

75.0 100.0 100.0
64.9 98.6 95.9
2.3 62.5 59.1
1.1 18.9 23.7
0.0 1.4 7.5
0.0 0.9 2.3
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 1.2

15.9 31.4 32.2

Table 6 shows the depth-wise performances of provers. The
corpora in Table 6a use the implication arguments. The
prover trained on the corpus of shallower (∼ 3) trees (FLD-
impl.0) generalizes to deeper (4 ∼ 8) trees to some extent,

and performs similarly to the prover trained on the corpus
of deeper trees (FLD-impl.1). This generalization to deeper
trees coincides with previous findings (Tafjord et al., 2021;
Sanyal et al., 2022). However, as Table 6b shows, when
the corpora use the axioms, neither the provers trained on
the shallower tree corpus (FLD.3) nor deeper tree corpus
(FLD.4) failed in solving deeper trees.

We can interpret this seemingly contradictory result as fol-
lows. As discussed in Section 5, the number of possi-
ble proof tree patterns can be estimated (very roughly) as
O(Ad). When a prover tries to solve a deduction instance,
it has to choose and generate exactly the one gold proof tree
from these possible negative proof trees. This should be very
difficult for large d with large A. Now, while the corpora in
Table 6a use a few arguments (A = 2) of implication type,
corpora in Table 6b use various arguments (A ∼ 10) of
the axioms. This made it very difficult to solve large-depth
deduction instances of these corpora, which lead the provers
to fail in solving large-depth proof trees in Table 6b.

Overall, for solving complex trees, the supervision from
deduction corpora can be necessary but not sufficient alone.

7.2. Understanding of Diverse Linguistic Expressions

Table 7: Few-shot proof accuracies of provers transferred
among corpora that differ in the diversity of linguistic ex-
pressions.

Source corpus

RuleTaker FLD

T5 RT RT.PR FLD.2 FLD.3

Target
corpus

RT 70.1 92.4 91.3 78.3 76.6
RT.BE 64.3 91.3 93.9 71.3 73.4
FLD.2 31.0 34.2 34.7 66.8 66.2
FLD.3 24.8 28.7 27.5 65.3 66.4

avg. 47.6 61.6 61.8 70.4 70.7

Table 7 shows that a prover trained on a corpus with less
linguistic diversity (i.e., RT and FLD.2) performed as well
as the prover trained on the linguistically diverse counterpart
of that corpus (i.e., RT.PR and FLD.3, respectively). This
suggests that LMs are self-sufficient on the linguistic aspect,
and thus additional supervision from deduction corpora is
not that important.

Indeed, this result coincides with the previous findings
(Clark et al., 2021; Tafjord et al., 2021) and can be intu-
itively understood: since the pre-training corpora of LMs
are huge and linguistically diverse, they should have given
LMs many chances to learn linguistic of logical statements
such as that “If A, then B” paraphrases to “A leads to B”.

7.3. Understanding of Complex Formulas
Table 8 shows that while the prover trained on the corpus
with simple formulas (FLD.1) performed poorly on the cor-
pus with complex formulas (FLD.2), the prover trained
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Table 8: Few-shot proof accuracies of provers transferred
among corpora that differ in the complexity of formulas.

Source corpus

T5 FLD.1 FLD.2

Target
corpus

FLD.1 43.1 77.9 71.6
FLD.2 31.0 46.0 66.8

FLD.2 performed well on both corpora. Thus, deduction
corpora are beneficial for mastering complex formulas.

We can interpret this result as follows. The complex for-
mulas included in FLD.2 are formed by modifying atomic
formulas with logical operators ¬,∧,∨. The semantics of
these logical operators, such that “a sentence with negation
¬ have the opposite meaning of that sentence without nega-
tion”, and that “A ∨B does not necessarily imply A”, are
seldom written explicitly by humans. Thus, the pre-training
corpora gave LMs too few chances for learning these se-
mantics. This result is enhanced by the previous findings
that LMs fail to understand the semantics of negation (Naik
et al., 2018; Hossain et al., 2020; Kassner & Schütze, 2020).

7.4. Robustness to Distractive Facts

Table 9: Few-shot proof accuracies of provers transferred
among corpora that differ in the number of distractors.

Source corpus

T5 FLD.0 FLD.2

Target
corpus

FLD.0 38.9 76.4 75.2
FLD.2 31.0 56.7 66.8

Table 9 shows that, while the prover trained on the corpus
without distractors (FLD.0) performed poorly on the cor-
pus with distractors (FLD.2), the prover trained on FLD.2
performed well on both corpora. Thus, synthetic distrac-
tors are beneficial for acquiring the robustness to distractive
facts. This result is intuitive: since the human-written text
should not include the facts irrelevant to the content, the
pre-training corpora should not have given LMs a chance to
acquire robustness to irrelevant facts.

8. Discussions and Future Directions
So far, we have investigated each aspect of deductive reason-
ing. We summarize the results and discuss future directions.

Mastery on Various Deduction Rules: Mastering various
deduction rules is the most important in deductive reasoning.
We showed that FLD corpora teach LMs various arguments
the most effectively (Section 6.1). This should be because
that FLD adopts the axioms of first-order predicate logic
system, which can derive any valid deduction rules in this
system. The next step will be to examine the axioms of
other logic systems, such as linear and modal logic systems,
which are also important in real-world reasoning.

Ability to Solve Complex Proof Trees: We have shown

that solving a many-step proof tree is still challenging for
LMs even after training on deduction corpora (Section 7.1).
The possible reason is that they have to choose and generate
a gold proof from a large number of possible trees. To solve
this problem, inventing smarter and strategic search meth-
ods on possible generation space, such as Li et al. (2016);
Negrinho et al. (2018); Picco et al. (2021); Welleck et al.
(2022), could be a promising direction.

Understanding of Complex Formulas: We have shown
that deduction corpora are effective for LMs to understand
the semantics of logical operators such as ¬,∧,∨ (Sec-
tions 6.2 and 7.3). It could be even more effective to in-
corporate the recent learning methodological approaches for
making LMs understand negation (Pröllochs et al., 2019;
Hosseini et al., 2021) into the learning on deduction corpora.

Robustness to Distractive Facts: We have shown that
the synthetic distractors can make LMs robust to distractive
facts (Section 7.4). In a real scenario of logical reasoning,
the facts have to be collected by possibly incomplete re-
trieval systems. The distractors that imitate ones appearing
in such a scenario could be more effective. We can generate
such distractors as follows: (i) We build a database of syn-
thetic facts. (ii) For a given deduction instance, we collect
facts from the database by actual retrieval systems.

Generalization to Real-World Reasoning Tasks: We
have shown that the training on deduction corpora is even
useful for deductive reasoning in a more real-world setting
(Section 6.2). However, the LMs trained on FLD could not
fully utilize the potential of the axioms, as they failed in
constructing many-step proofs to express coarse-grained de-
duction rules, which could be required in real-world reason-
ing (Sections 6.2 and 7.1). We discussed future directions
to solve such many-step proofs above.

Further, LMs may need additional training to utilize deduc-
tion rules well in a realistic context. For example, the LMs
could have to combine deduction rules with common sense
knowledge, use multiple deduction rules at once to jump
to the next conclusion, and judge the validity of a proof
step considering the overall context. Recently, Wei et al.
(2022); Kojima et al. (2022) showed that large LMs can uti-
lize deduction rules in a realistic context, given appropriate
prompts. It could be promising to integrate this approach
and deduction corpora training.

Pursuing further real-world scenarios, we have to tackle
tasks of other settings. One is deductive reasoning that re-
quires us to collect relevant facts by ourselves. For this,
we could exploit factual knowledge implicitly embedded in
LMs (Petroni et al., 2019; Davison et al., 2019; Talmor et al.,
2020), or use retrieval systems. For the latter, we could
train LM-based retrievers (Karpukhin et al., 2020; Guu
et al., 2020) using synthetic deduction instances and fact
database. Abductive reasoning (Bhagavatula et al., 2019) is
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another kind of real-world logical reasoning with which we
derive hidden premises from a conclusion and other visible
premises. Synthetic corpora for abduction based on formal
logic can be generated similarly to as done in this study.

9. Conclusion
To teach language models deductive reasoning, we proposed
a synthetic corpus based on formal logic theory and verified
its effectiveness empirically. Further, we analyzed each
aspect of deductive reasoning and provided future directions
on each. We will advance on the basis of these directions.
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A. Related Work
A.1. Synthetic Corpus for Acquiring Deductive

Reasoning Ability

A synthetic deduction corpus can be one promising approach
for language models (LMs) to acquire logical deductive rea-
soning ability. The automatic (programmatic) generation en-
sures the validity of the resulting deductive proof instances.
Further, since we can bypass high-cost human annotations
we can generate many instances, which should be required
by LMs to learn deductive reasoning inductively.

RuleTaker (Clark et al., 2021) proposed a deduction corpus
composed of synthetically generated multistep deductive
proofs written in natural languages. Each deductive proof
(dis-)proves a hypothesis by applying deduction rules mul-
tiple times to a given set of facts. As the deduction rules,
rules of the implication kind were used. They showed that
Transformer (Vaswani et al., 2017) LMs can solve these
problems in the sense that they can predict the final an-
swer (i.e., “proved”, “disproved”, or “unknown”) of each
deductive proof given the fact set. Later studies (Saha et al.,
2020; Dalvi et al., 2021; Tafjord et al., 2021; Sanyal et al.,
2022) showed that generative LMs can generate even the
intermediate proofs as well as the final answer.

Artificial Argument Corpus (Betz et al., 2021) is another
corpus composed of synthetically generated single-step de-
ductive proofs. As the deduction rules, hand-selected rules
useful for critical thinking were used. They showed that the
LMs trained on this corpus not only solve the task of this
corpus itself but generalize to other NLI tasks from GLUE
benchmark (Wang et al., 2018). However, at the same time,
they showed that such LMs do not generalize well to more
challenging logical reasoning tasks such as ARC (Habernal
et al., 2018) and LogiQA (Liu et al., 2020).

Gontier et al. (2020) investigated the deductive reasoning
ability of LMs on a corpus, which is composed of a specific
type of multistep inference: kinship relationship on syn-
thetic kinship graphs. They found that LMs can solve this
task when the number of proof steps is not large, but it is dif-
ficult for them to generalize to longer-than-training proofs.
Bostrom et al. (2021) studied how we can create realistic
natural language expressions that represent deduction rules.
To this end, they scraped sentences from Wikipedia by a
template-based method and paraphrased them. They showed
that training on this corpus is helpful for solving real-world
deductive reasoning such as EntailmentBank (Dalvi et al.,
2021).

While all these corpora focused on specific sets of deduction
rules, we focus on the theoretically well-grounded set of
deduction rules that can derive any other deduction rules.
Further, we analyze each aspect of deductive reasoning
using corpora of various patterns to advance the research

direction of deductive reasoning.

A.2. Benchmarks for Deductive Reasoning

Many benchmarks of single-step logical reasoning using
specific reasoning rules have been proposed: bAbI (Weston
et al., 2015), QuaRTz (Tafjord et al., 2019), ROPES (Lin
et al., 2019) and Richardson et al. (2020). For multistep
deductive reasoning, FOLIO (Han et al., 2022) is a human-
authored benchmark of the SAT (i.e., satisfiability) problem.
Given a set of facts and hypotheses, which are created by
a human referencing a specific page of Wikipedia, we are
required to assign a truth value to each hypothesis. This re-
quires (implicitly) conducting multistep deductive reasoning
using high-granularity deduction rules.

RuleTaker (Clark et al., 2021; Tafjord et al., 2021) can work
as a benchmark as well as a synthetic training corpus. Rule-
Taker focuses on multistep deductive reasoning constructed
from implication rules. Since RuleTaker requires generating
all the intermediate steps as well as the final prediction on
the hypothesis, it is suitable for measuring deductive reason-
ing ability explicitly and transparently. Further, it includes
many irrelevant facts so that the model has to choose only
relevant facts under these noises. This makes the task chal-
lenging. LogicNLI (Tian et al., 2021) can be considered as
an extension of RuleTaker, where additional logical opera-
tors such as “≡” are used 7 . Additionally, the instances of
LogicNLI are checked manually by humans to ensure their
quality.

EntailmentBank (EB) (Dalvi et al., 2021) is the same type
of task as RuleTaker, but is even more challenging. The
proof trees in EB dataset are human-authored rather than
synthetically generated. Further, each proof step can be
a rough entailment instead of a rigid logical step. Thus,
EB measures logical reasoning ability in a more real-world
setting.

A.3. Proof Generation Models

Earlier work (Saha et al., 2020; Gontier et al., 2020; Dalvi
et al., 2021; Sun et al., 2021) generated proof sequences at
once by LMs. Later work (Tafjord et al., 2021; Bostrom
et al., 2022; Sanyal et al., 2022; Yang et al., 2022) generated
proofs step-wisely one by one. The stepwise methods are
more faithful and robustly generalize to longer proofs. Re-
cently, Wei et al. (2022); Kojima et al. (2022) showed that
large language models (LLMs) perform well on multi-hop
inference tasks provided appropriate prompts. However,
Yang et al. (2022) showed that LLMs given few-shot exam-
ples perform poorer than fine-tuned smaller LMs.

7We do not compare our method with this study directly be-
cause the code and corpora are not publicly available and the paper
does not clarify the exact rules used.
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Table B.10: Truth values of the premises (Pi) and the con-
clusion (C) of the two arguments. Blue shows truth value
assignments where both the premises and the conclusion
are true (=1). Red shows truth value assignments where the
conclusion is false even if all the premises are true.

(a) The valid argument (4) (syllogism).
P1 = (F → G) ∧ (G → H),
C = F → H.

F G H P1 C

1 1 1 1 1
1 1 0 0 0
1 0 1 0 1
1 0 0 0 0
0 1 1 1 1
0 1 0 0 1
0 0 1 1 1
0 0 0 1 1

(b) The invalid argument
(6).
P1 = F ,P2 = F ∨ G,
C = G.

F G P1 P2 C

1 1 1 1 1
1 0 1 1 0
0 1 0 1 1
0 0 0 0 0

The synthetic corpora approach examined in this paper could
potentially help all these models to acquire better deductive
reasoning ability.

B. Limitations
The study has the following limitations:

• We examined only a kind of logical reasoning: deduc-
tive reasoning with a given set of facts. As stated in
Section 8, we have other types of logical reasoning to
be solved in the future.

• We examined only the first-order predicate logic sys-
tem, while there are other logic systems useful for
real-world reasoning to be tackled in the future, as
stated in Section 8.

C. Ethics and Social Impacts
The ultimate goal of the direction of this study is to make
an artificial intelligence (AI) that reasons logically step by
step. If AI can make a decision by showing logical steps
one by one, it will be highly explainable and transparent to
users. Furthermore, a user will be able to trace the error of
AI. Thus, we think this study makes steps towards AI that
will positively impact society.

D. Formal Logic
D.1. Definition of Validity of an Argument

An argument is valid when for all truth value assignments,
the conclusion is always true (=1) if all the premises are true
(=1). This is exemplified in Table B.10a

An argument is invalid when for some truth value assign-
ments, the conclusion is false (=0) even if all the premises

are true (=1). This is exemplified in Table B.10b.

D.2. Arguments used in Relevant Corpora

Figure B.3a shows the axioms of first-order predicate logic.
Figure B.3b shows the arguments of implication type used
in RuleTaker (Clark et al., 2021). For the arguments used in
AACorpus, see Figure 1 in Betz et al. (2021).

D.3. Examples of Multistep Deduction constructed from
the Axioms

Figure B.4a shows the derivation of an argument of im-
plication type used in RuleTaker. Figure B.4b shows the
derivation of the contraposition argument used in AACor-
pus.

E. Corpus Generation based on Formal Logic
Deduction

We show the examples of FLD instance in Figure C.5

Below, we show additional details of each module of FLD.
Please refer to Figure 1 on intuitive understanding.

E.1. Proof Tree Generation

As stated in Section 3.1, the generator module generates
a proof tree by forward- and backward random deduction,
using the arguments specified by a user. A user can specify
arguments via a template file as exemplified in Figure E.6.

The forward random deduction is done as follows. The
generator first chooses an argument randomly and forms
the initial tree where the root node is the conclusion of the
chosen argument and the child nodes are the premises of
the chosen argument. The generator next randomly chooses
another argument that can be “jointed” to the root note of
the tree. An argument can be jointed to the root node of a
tree if one of the premises of that argument can be identified
with the root node. Then, the generator updates the tree
by jointing this chosen argument. The generator continues
this step multiple times until the tree achieves the required
depth.

The backward random deduction is done as follows. For
each step, the generator randomly chooses a leaf node of
the tree. Then, the generator randomly chooses an argument
that can be jointed to the leaf node. Here, an argument can
be jointed to the leaf node if the argument’s conclusion can
be identified with the leaf node. Then, the generator updates
the tree by jointing this chosen argument. The generator
continues this step multiple times until the complexity of
branches achieves the required level.
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𝓕𝓕 (𝓕𝓕 → 𝓖𝓖)

𝓖𝓖

(𝓕𝓕 ∧ 𝓖𝓖)

𝓕𝓕 𝓖𝓖

(𝓕𝓕 ∧ 𝓖𝓖)
→ introduction

𝓕𝓕

𝓖𝓖
→ elimination
(modus ponens)

(…)

𝓕𝓕 → 𝓖𝓖

∧ elimination
𝓕𝓕 𝓖𝓖

(𝓕𝓕 ∧ 𝓖𝓖)
∧ introduction

𝓖𝓖

(𝓕𝓕 ∨ 𝓖𝓖)
∨ introduction

𝓕𝓕

(𝓕𝓕 ∨ 𝓖𝓖)

𝓕𝓕

𝓗𝓗

(…)
∨ elimination

𝓖𝓖

𝓗𝓗

(…)
(𝓕𝓕 ∨ 𝓖𝓖)

𝓗𝓗

𝓕𝓕

⊥
¬ introduction

(…)

¬𝓕𝓕

⊥

(𝓕𝓕 ∧ ¬𝓕𝓕)
¬ elimination

∀𝒙𝒙 𝑭𝑭(𝒙𝒙)

𝑭𝑭(𝒂𝒂)
∀ introduction

∀𝒙𝒙 𝑭𝑭(𝒙𝒙)

𝑭𝑭(𝒂𝒂)
∀ elimination

∃𝒙𝒙 𝑭𝑭(𝒙𝒙)

𝑭𝑭(𝒂𝒂)
∃ introduction

𝑭𝑭(𝒂𝒂)

𝓗𝓗

(…)

∃ elimination∃𝒙𝒙 𝑭𝑭(𝒙𝒙)

𝓗𝓗
𝓕𝓕

¬¬𝓕𝓕
¬¬ elimination

(… no 𝑎𝑎 here…)

(a) The axioms of first-order predicate logic used in FLD.

𝑮𝑮(𝒃𝒃)

𝑭𝑭 𝒂𝒂 → 𝑮𝑮(𝒃𝒃) 𝑭𝑭(𝒂𝒂)

𝑮𝑮(𝒃𝒃)

∀𝒙𝒙 𝑭𝑭 𝒙𝒙 → 𝑮𝑮(𝒙𝒙) 𝑭𝑭(𝒂𝒂)

(b) The arguments of the implication type used in RuleTaker (Clark
et al., 2021).

Figure B.3: We show the arguments used in relevant corpora. For the “critical thinking” arguments used in AACorpus (Betz
et al., 2021), please refer to Figure 1 in Betz et al. (2021).

∀ 𝒙𝒙 𝑭𝑭 𝒙𝒙 → 𝑮𝑮(𝒙𝒙)
∀ elimination

Modus ponens

𝑭𝑭(𝒂𝒂)

𝑭𝑭 𝒂𝒂 → 𝑮𝑮(𝒂𝒂)𝑭𝑭(𝒂𝒂)

𝑮𝑮(𝒂𝒂)

(a) Derivation of an argument of
implication type used in Rule-
Taker (Clark et al., 2021).

¬𝓕𝓕

Modus ponens

𝓕𝓕 → 𝓖𝓖

𝓖𝓖

¬𝓖𝓖 → ¬𝓕𝓕

𝓕𝓕 ¬𝓖𝓖

¬𝓖𝓖
⊥¬ introduction

⊥ introduction

Contraposition

→ introduction

(b) Derivation of contraposition
argument used in AACorpus
(Betz et al., 2021).

Figure B.4: As examples of multistep deduction constructed
from the axioms, we show the derivations of the arguments
used in the previous studies.

E.2. Factual Distractor Generation

We implemented three types of distractors. For a deductive
instance, we use the random mixture of these distractors.
Below, we detail each type of distractor.

Logical Distractor: We construct a distractive formula the
form of which is similar to a gold formula. For example, if
a gold formula is (A∧B) → C, then the following formula
can be a distractor: (¬A ∧ B) → C. The aim of this type
of distractor is to generate negative facts in a logic sense.

Linguistic Distractor: We construct a distractive sentence
by randomly flipping a word in a gold sentence into another
word. For example, if a gold sentence is “If it is not the
fact that a sun rises, then (. . . )”, then the following sentence
can be a distractor: “If it is not the lion that a sun rises,

(. . . )” We considered grammatical constraints (e.g., part-of-
speech) when flipping a word. Note that these distractors
are made after the natural languages are assigned to gold
formulas. The aim of this type of distractor is to generate
negative facts in a linguistic sense.

Negative Tree Distractor: We create another proof tree
irrelevant to the gold proof tree and use its leaf nodes as
distractors. If a prover chooses these distractors as the
starting point of the proof, then it will reach a conclusion
that is irrelevant to the given hypothesis. Thus, this type of
distractor measures the prover’s look-ahead ability.

E.3. Natural Language Assignment

We show an example of the natural language template file
in Figure E.6.

When we assign natural language statements to each atomic
component such as A,B, F,G,H, I, a, b, we used grammat-
ical heuristics as exemplified as follows: (i) Atomic propo-
sitions like A and B are converted into complete-sentence
statement like “[NOUN] is [ADJ]”, “[NOUN] [VERB]” and
“[NOUN] occurs”. (ii) (Logical) predicates like F and G
are converted into predicate phrases such as “[VERB]”, “is
[ADJ]” and “is [NOUN]”. (iii) Constants like a are con-
verted into entity-like phrases such as “[NOUN]”.
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(a) An example where the proof by contradiction is used.

(b) An example that can test the semantics of logical conjunction ∧.

Figure C.5: Examples of FLD instances.

F. Details of Experiments
F.1. Corpora

As shown in Table 2, we generated multiple corpora to align
conditions as closely as possible across the corpora being
compared. Below, we detail each aspect.

Preprocessing on RuleTaker: We sub-sampled the in-
stances so that the number of instances in the training split
becomes 30k and that the answer label distribution (over
“proved”, “disproved”, and “unknown”) becomes uniform.

Dataset Size: All the corpora have the training split of
30k instances. FLD corpora have validation and test split of
1k instances. For RuleTaker, see (Tafjord et al., 2021).

Label Distribution: All the corpora have a uniform distri-
bution over answer labels, i.e., over “proved”, “disproved”,
and “unknown”.

Arguments: “Implication” arguments are shown in Fig-
ure B.3b. Complicated formula versions such as F1(a) ∧
F2(a) → G(b) are also used. For “critical thinking”, we
used the ones listed in Figure 1 in Betz et al. (2021). For
“axioms”, we used the axioms of first-order predicate logic
shown in Figure B.3a.

Linguistic Diversity: First, we detail the linguistic di-
versity of RuleTaker corpora. RT is classified into “less”
since it uses only few templates for each logical statement.
RT.PR is classified into “more” since it includes various
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Figure E.6: An example of the template rule file for argu-
ments used by the proof tree generator.

paraphrases of logical statements collected from human
annotators. RT.BE is classified into “more” since it is com-
pletely human-made and includes various paraphrases.

For FLD corpora, “less” means that we used only one natural
language template for each logical statement and limited
vocabulary (sized 100) for each POS. For “more”, we used
several (up to five) natural language templates for each
logical statement, and a large vocabulary (sized 5000) for
each POS. Note that since the templates can be nested such
as:

(A ∧B) → C : “If (A ∧B), then C.”, “(A ∧B), thus C.”
(A ∧B) : “A, and B”, “B and also A”, . . .

Thus, the number of resulting patterns is combinatorially
large.

Formula Complexity: For FLD corpora that have for-
mula complexity “simple”, we assign each compound for-
mula such as F and G only a single atomic component as
F = A and G = B. For “complex”, we used compound
formulas randomly constructed from atomic formulas with
logical operators, such as F = (A ∧B), F = ¬(A ∨ ¬B),
in addition to the “simple” formulas.

RuleTaker corpora use “complex” formula.

Tree Depth: The tree depth of “critical thinking” is lim-
ited to one because the critical thinking arguments have
high-granularity, and thus cannot be easily combined to
form multistep deductions.

Tree Depth Distribution: We have two types of tree depth
distribution: skewed and uniform. The skewed distribution
is biased toward lower depths. This distribution comes from
the distribution of RT(D0-D3). The uniform distribution is
uniform over the depths.

F.2. Prover Training and Performance Measurement

We detail the prover training and performance measure-
ments on the benchmarks. This experimental setting is
basically the same as Yang et al. (2022). Thus, please refer
to the study when necessary.

F.2.1. THE PROVER MODEL

We added a slight modification to the original model for
simplicity as follows. While the original model predicted an
answer label (i.e., proved, disproved, or unknown) of a given
instance on the basis of the log-likelihood of the augmented
proof sequences, we predict the answer label by forcing
the prover to generate the label token (“__PROVED__”,
“__DISPROVED__” or “__UNKNOWN__”) at the end of
proof sequences.

F.2.2. FEW-SHOT TRANSFER TO SYNTHETIC
DEDUCTION CORPORA

We first train a prover on the training split of a corpus in
Table 2. Then, we train the prover on a training split of
another corpus in few-shot, and after that, we measured its
performance on the test split. We used validation split for
tuning hyperparameters. We adopted T5-base for prover
LM for computational efficiency. Table F.11 shows the
hyperparameters. For the “fully-fine-tuning” setting used in
Section 5 and Appendix G, we trained a prover using all the
dataset instances for 20k steps.

We run the experiments for one seed for computational
reasons. Training on a source corpus takes about ten hours
on a single NVIDIA A100 (48GB) GPU. Training on a
target corpus takes a few hours on the same GPU.

F.2.3. TRANSFER TO ENTAILMENTBANK

We first train a prover on the training split of a corpus from
Table 2. Then, we train the prover on the training split
of each EntailmentBank corpus. We adopted T5-large for
prover LM following Yang et al. (2022). The hyperparame-
ters are basically the same as Yang et al. (2022). Table F.12
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(a) For each formula, we have several templates. A template can be nested (redirected to other
templates), as shown.

(b) The final natural language templates
of logical phrases.

Figure E.7: An example the template file of the natural language assigner

Table F.11: The hyperparameters of prover training in the
transfer experiments among deduction corpora. See (Yang
et al., 2022) or the code for other parameters.

Source corpus Target corpus

transformer model T5-base T5-base
# dataset instances 30000 300

steps 20000 2000
learning rate 1e-4 1e-4

learning rate scheduler AdamW AdamW
warmup steps 1000 500

batch size 64 64
gradient clipping 0.5 0.5

shows the hyperparameters.

For training the verifier, we used exactly the same setting as
Yang et al. (2022).

For the EB scorer, we used the same version as Yang et al.
(2022), that is, version v3 that was released on May 28,
2022 8.

We run the experiments for six seeds. Training on a source
synthetic deduction corpus takes about one day on a single
NVIDIA A100 (48GB) GPU. Training on a target EB corpus

8https://github.com/allenai/entailment_
bank

Table F.12: The hyperparameters of prover training in the
transfer experiments from deduction corpora to Entailment-
Bank. See (Yang et al., 2022) or the code for other parame-
ters.

Source
synthetic corpus

Traget
EB corpus

transformer model T5-large T5-large
# dataset instances 30000 1313

steps 10000 10000
learning rate 1e-4 5e-5(task1), 2.5e-5(task2)

learning rate scheduler AdamW AdamW
warmup steps 1000 1000(task1), 3000(task2)

batch size 64 64
gradient clipping 0.5 0.5

takes about one day on the same GPU.

F.3. License of used Datasets.

All the datasets used in this paper are publicly available:
RuleTaker (Clark et al., 2021; Tafjord et al., 2021), Entail-
mentBank (Mishra et al., 2022) and FLD (will be publicly
available).
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G. How Well do LMs Solve Logic?

Table G.13: Proof accuracy of a prover fully fine-tuned on
each corpus using all the instances.

Skewed depth distrib. Uniform depth distrib.

RT RT.PR sFLD-impl FLD-impl.0 FLD.2 FLD.3 (FLD) FLD.4 (FLD⋆)

92.4 93.9 82.2 74.6 66.8 66.4 37.7

We analyze the challengingness of each corpus in detail by
using Table G.13.

First, we look into the results on skewed depth distribution
corpora. As seen, sFLD-impl is more challenging than Rule-
Taker corpora. Since the corpus design in relevant aspects
is aligned between RuleTaker and sFLD-impl as in Table 2,
the difference should come from the other implementation
details. For example, the distractors of FLD are designed
to be easily confused with positive facts (Section 3.2), and
natural language assignments are extremely diverse due to
the random statement generation (Section 3.3).

FLD-impl.0 is more challenging than sFLD-impl even
though they use the same arguments. This should be be-
cause FLD-impl.0 has “uniform” tree depth distribution
and thus includes a higher depth tree than sFLD-impl do
(Appendix F.1).

The reason that FLD.2 is more challenging than FLD-impl.0
should be as follows. First, since a proof tree is constructed
from the combination of arguments chosen at each level of
the tree, the number of possible proof tree patterns can be
estimated (very roughly) as O(Ad), where A is the number
of argument choices at each level and d is the depth of the
proof tree. Next, while FLD-impl.0 uses only a few argu-
ments (A = 2) of implication type shown in Figure B.3b,
FLD.2 uses various arguments (A ∼ 10) of the axioms
shown in Figure B.3a. Thus, FLD.2 includes exponentially
more diverse patterns of proof trees than RuleTaker. This
makes FLD.2 more challenging than FLD-impl.0 .

FLD.3 is the linguistically diverse version of FLD.2 . The
challengingness of FLD.3 remains almost the same as that
of FLD.2 provably because LMs can solve the linguistic
aspects such as paraphrasing, as discussed in Section 7.2.

FLD.4 is the higher-depth (d up to 8) version of FLD.3.
This corpus is the most challenging provably due to the
exponentially combinatorially more diverse patterns proof
trees coming from O(Ad).

G.1. Answer Accuracies on Transfer Experiments
among Deduction Corpora

Below, we show the results of transfer among synthetic
corpora measured by the other metric of answer accuracy.

However, notice that, as stated in Section 4.2, due to biases
in fact sets, answers can be guessed without considering
proofs to some extent, as found in Tafjord et al. (2021)
where answer accuracy exceeds proof accuracy. Thus, the
answer accuracy is not appropriate for measuring the logical
deductive reasoning ability explicitly.

Table G.14: Answer accuracy of a prover fully fine-tuned using
all the dataset instances on each corpus.

RT RT.PR sFLD-impl FLD-impl.0 FLD.2 FLD.3 FLD.4

95.2 95.8 96.1 94.9 88.3 87.7 68.1

Table G.15: Few-shot answer accuracies of provers trans-
ferred among corpora that differ in arguments.

T5 RT RT.PR sFLD-impl sFLD-crit sFLD

RT 80.7 95.2 93.7 83.6 83.2 84.8
RT.PR 78.4 93.0 95.8 82.5 79.7 82.4
RT.BE 56.2 88.3 88.2 75.2 79.4 85.0
FLD (RT) 78.3 83.1 83.3 96.1 86.0 95.3
FLD (AA) 84.9 85.5 84.5 91.7 95.2 95.1
FLD (axiom) 79.0 76.9 76.9 87.3 85.7 92.9

avg. 76.3 87.0 87.1 86.1 84.9 89.3

Table G.16: The depth-wise answer accuracies of the
provers.

(a) Target corpus is FLD-impl.1.

Source corpus

T5 FLD-impl.0 FLD-impl.1

0 50.0 91.7 87.5
1 96.8 98.4 96.8
2 88.0 97.0 94.0
3 90.0 93.8 96.2
4 88.9 93.3 90.0
5 72.6 90.5 95.2
6 78.7 89.3 98.7
7 84.0 90.6 91.5
8 82.0 90.2 91.8

avg. 81.2 92.8 93.5

(b) Target corpus is FLD.4.

Source corpus

T5 FLD.3 FLD.4

75.0 100.0 100.0
82.4 98.6 95.9
77.3 89.8 91.5
78.9 84.2 78.9
76.7 79.5 71.2
70.4 65.7 60.6
70.6 63.5 51.8
77.1 52.9 47.1
71.1 47.0 45.2

75.5 75.7 71.4

Table G.17: Few-shot answer accuracies of provers trans-
ferred among corpora that differ in the diversity of linguistic
expressions.

T5 RT RT.PR FLD.2 FLD.3

RT 80.7 95.2 93.7 85.2 83.9
RT.PR 78.4 93.0 95.8 80.8 82.0
FLD.2 72.1 72.1 71.3 88.3 86.9
FLD.3 68.2 68.0 67.7 86.7 87.7

avg. 74.9 82.1 82.1 85.3 85.1
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Table G.18: Few-shot answer accuracies of provers trans-
ferred among corpora that differ in the complexity of formu-
las.

T5 FLD.1 FLD.2

FLD.1 77.9 96.5 91.6
FLD.2 72.1 77.8 88.3

Table G.19: Few-shot answer accuracies of provers trans-
ferred among corpora that differ in the number of distractors.

T5 FLD.0 FLD.2

FLD.0 77.7 95.8 93.4
FLD.2 72.1 83.1 88.3

G.2. Results of Other Metrics on EntailmentBank

We show the results of other metrics on EntailmentBank in
Tables G.20 to G.22.

G.3. Case Study on EntailmentBank

Table G.23 shows some cases where the error of the baseline
prover (T5) is fixed by the training on a deduction corpus
(FLD.D5).

As seen from “T5 error fixed by FLD.D5” column, typi-
cal error of T5 is such as follows: (i) T5 misses some of
the premises required to derive the required conclusion, or,
simply choose wrong premises. (ii) T5 overclaims, that
is, included in the generated conclusion such information
that does not logically follow from the chosen premises. It
is also suggested that T5 does not understand the rules of
logical operators such as negation ¬ and conjunction ∧.

In contrast, the prover trained on FLD.D5 captured the
fundamentals of deduction rules better than the baseline: (i)
it chose correct premises necessary and sufficient to derive
the next conclusion, (ii) it included in a conclusion only such
information that logically follows from the chosen premises,
and (iii) it correctly used the rules of logical operators.
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Table G.20: The results of all the metrics on EntailmentBank Task1. For the details of these metrics, refer to Dalvi et al.
(2021).

Task Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

T5 98.2 90.6 53.8 40.3 72.1 39.7 36.8
RT.D5 98.2 88.6 56.0 42.7 72.8 41.6 39.4
FLD.D5 99.0 92.7 55.5 42.2 73.4 41.3 39.2

Table G.21: The results of all the metrics on EntailmentBank Task2. For the details of these metrics, refer to Dalvi et al.
(2021).

Task Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

T5 88.1 52.1 45.9 33.2 68.6 36.2 31.2
RT.D5 88.6 53.1 45.6 32.7 68.4 36.1 32.0
FLD.D5 88.4 53.6 45.6 33.8 67.9 36.1 32.6

Table G.22: The results of all the metrics on EntailmentBank Task3. For the details of these metrics, refer to Dalvi et al.
(2021).

Task Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

T5 43.7 8.2 10.7 6.5 42.2 16.8 6.2
RT.D5 43.1 10.0 13.1 8.2 41.7 17.3 8.2
FLD.D5 43.6 9.7 12.1 8.3 43.0 20.1 8.3

Table G.23: Cases where baseline (T5) error on a proof step is fixed by the training on FLD.D5. A proof step is composed
of a set of chosen premises and a derived conclusion. A derived conclusion is either a sequence generated by the prover
model when the step is an intermediate step of the proof or is (fixed to) the hypothesis given to the model when the step is
the final step of the proof (marked as [hypothesis]). Thus, in the final step, the task of the prover model is just to choose the
right premises that can derive the hypothesis.

chosen premises derived conclusion T5 error fixed by FLD.D5

FLD.D5
1. force causes the speed of an object to increase / to decrease
2. an increase is a kind of change
3. a decrease is a kind of change

force causes the speed of an object to change
[hypothesis] The chosen premises are not sufficient,

possibly happened because T5 do not
understand the rule of conjunction (∧).

T5 1. force causes the speed of an object to increase / to decrease
2. an increase is a kind of change

force causes the speed of an object to change
[hypothesis]

FLD.D5 1. the milky way is made of stars
2. light year can be used to measure the distance between stars

light year can be used to measure the distance
between the stars in milky way T5 overclaimed, that is,

included in the conclusion such information
that does not logically follow from
the chosen premises. (a.k.a “hallucination”)T5 1. the milky way is made of stars the distance between the stars in milky way

is light years

FLD.D5 1. fossils are formed by the remains of living things
2. rock is a kind of nonliving thing rocks cannot form fossils [hypothesis] T5 missed a premise to choose wrong one,

possibly because T5 do not understand
the semantics of negation (¬)
at “nonliving”.T5 1. fossils are formed by the remains of living things

2. cannot means not be able to rocks cannot form fossils [hypothesis]

FLD.D5 1. the first quarter phase of the moon occurs after the new moon
2. a different moon phase occurs approximately once per week

the first quarter phase of the moon will occur
one week after the new moon [hypothesis] T5 chose wrong premises.

T5 1. the first quarter phase of the moon occurs after the new moon
2. old is the opposite of new

the first quarter phase of the moon will occur
one week after the new moon [hypothesis]

FLD.D5 1. cutting down trees has a negative impact on an environment
2. decreasing something negative has a positive impact on a thing

decreasing the amount of trees cut has
a positive impact on the environment T5 generation was merely a repetition

of a premise (a.k.a “repetition”)

T5 1. cutting down trees has a negative impact on an environment
2. creating paper requires cutting down trees

cutting down trees has
a negative impact on the environment

FLD.D5 1. the heart is situated in the chest
2. chest and abdomen are different location on a body

the abdomen does not contain the heart
[hypothesis] T5 chose wrong premises.

T5
1. the heart is situated in the chest
2. if something does not contain something else
then that something lacks that something else

the abdomen does not contain the heart
[hypothesis]
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