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Abstract

The increasing adoption of web crawling opt-outs by copyright holders of
online content raises critical questions about the impact of data compliance
on large language model (LLM) performance. However, little is known
about how these restrictions (and the resultant filtering of pretraining
datasets) affect the capabilities of models trained using these corpora. In this
work, we conceptualize this effect as the data compliance gap (DCG), which
quantifies the performance difference between models trained on datasets
that comply with web crawling opt-outs, and those that do not. We measure
the data compliance gap in two settings: pretraining models from scratch
and continual pretraining from existing compliant models (simulating a set-
ting where copyrighted data could be integrated later in pretraining). Our
experiments with 1.5B models show that, as of January 2025, compliance
with web data opt-outs does not degrade general knowledge acquisition
(close to 0% DCG). However, in specialized domains such as biomedi-
cal research, excluding major publishers leads to performance declines.
These findings suggest that while general-purpose LLMs can be trained
to perform equally well using fully open data, performance in specialized
domains may benefit from access to high-quality copyrighted sources later
in training. Our study provides empirical insights into the long-debated
trade-off between data compliance and downstream model performance,
informing future discussions on Al training practices and policy decisions.
Our website is available athttps://data-compliance.github.io/.|

1 Introduction

The success of Large Language Models (LLMs) is largely dependent on web-scale data.
As data becomes an increasingly valuable business asset, companies are treating it as part
of their Intellectual Property (IP). However, whether training LLMs on copyrighted data
qualifies as fair use remains an open question. In a statement from Library Copyright
Alliance (LCA): the ingestion of copyrighted works to create LLMs or other Al training
databases generally is a fair use; however, if a work created by Al is substantially similar in
protected expression to a work that was ingested by the Al, then it is considered copyright
infringement (LCA| [2023).

One of the most notable cases in this debate is the lawsuit filed by The New York Times
against OpenAl and Microsof alleging the unauthorized use of its articles to train GPT
models. The accusation is two-fold: first, ChatGPT can generate verbatim excerpts from
its copyrighted articles; second, ChatGPT has also hallucinated articles attributed to the
Times. This case brings copyright infringement and Al development to the forefront. Amid
ongoing legal and ethical debates, Al companies offer an opt-out mechanism for content
publishers. Publishers can modify their Robots Exclusion Protocol (REP), commonly known
as robots.txt, to block web crawlers at their discretion.

t denotes equal supervision
Inytco-assets.nytimes.com/2023/12/Lawsuit-Document-dkt-1-68-Ex-J.pdf
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Starting from mid 2023, there is a rapidly increasing trend for content owners to apply
restrictions on web crawling, as shown in Figure[I] This results in 5-7% token loss among
the major web crawl corpora — C4 (Raffel et al.|[2020), RefinedWeb (Penedo et al., 2023), and
Dolma (Soldaini et al.,2024) — in April 2024. We refer readers to the work from [Longpre
et al.|(2024) for a more detailed analysis.
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Figure 1: Timeline of the number of Top 20 filtered (based on robots.txt compliance) domains
(excluding theguardian. conEb that block at least one of the web crawlers listed in Appendix
Robots.txt files were retrieved via the Internet Archive API for each domain on a monthly
basis from January 2016 to March 2025. Images indicate the first instance in which a crawler
is explicitly blocked by any of the domains.

Ensuring legal compliance across the full LLM pipeline—from data preparation to training
and inference—begins most effectively at the data preparation stage, by excluding content
from websites that have opted out of web crawling. Although largely believed high-
quality sources such as news articles are often found in non-permissible data, the impact of
excluding major publishers on LLM performance remains poorly understood. This raises
a critical question: Can we quantify the effect of content publisher opt-outs? And if so, can we
identify the specific knowledge gaps introduced by adhering to robots.txt restrictions?

In this work, we make a first step towards answering this question. We show that, as
of January 2025, content publishers opting out does not alter the training corpus data
distribution much. This results in minimal performance gaps observed by complying with
crawling opt-outs. Our contributions are as follows:

¢ We provide a thorough inspection of the change in FineWeb-Edu corpus by respect-
ing web crawling opt-out (Section 3).

* We introduce the concept of Data Compliance Gap (DCG), which quantifies the per-
formance gap between models trained with and without respect for web crawling
opt-outs and propose two methods for measuring it (Section [4).

¢ We demonstrate that DCG is close to 0% for general knowledge acquisition, how-
ever, compliance gap exists in knowledge of veracity and in structural formats
(Section [5.2). A noticeable DCG also exists for non-compliant medical domain data
(Section|5.3).

* We show that pretraining in compliance with robots.txt reduces memorization of
copyrighted content, though it also limits the acquisition of knowledge derived
from that content (Section

2 Related Works

AI and Fair Use. Fair use allows users to utilize copyrighted material without explicit
permission under specific conditions. To prevent copyright infringement—especially given
the strong memorization abilities of large language models (LLMs)—a variety of methods

2theguardian. com was not accessible via the Internet Archive API
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have been proposed to support fair use across different stages of model development. Prior
to model training, data filtering is the most straightforward strategy to limit the use of non-
permissible content. For instance, AlphaCode (Li et al., 2022) excluded GitHub code based
on license types, while Apple Foundation Models (Gunter et al.,[2024) honor websites” opt-
out requests using standard robots.txt directives to prevent crawling by Applebot. During
model training, techniques like differentially private training (Carlini et al., 2021; Mattern
et al.| 2022) help prevent the extraction of personal data. Source-aware training (Khalifa et al.,
2024) associates source information with each document, enabling instance-level attribution.
More recently, approaches like training with Goldfish loss (Hans et al.,|2024) have been
introduced to effectively reduce verbatim memorization. For models that have already been
trained on copyrighted content, post-training techniques such as Reinforcement Learning
from Human Feedback (RLHF) and output filtering (Ippolito et al.,|2023) have been studied.
Another area that is gaining traction for mitigating the generation of privacy-sensitive or
copyrighted material in post-training is model unlearning (Golatkar et al.,|2020; Chundawat
et al., 2023bja; [Tarun et al., 2023ajb; Shi et al., 2025). Our work falls into the first category, as
we respect robots.txt compliance from the data preparation stage.

Data Valuation. In the Machine Learning field, data valuation is to understand the impact
of data in downstream tasks. Koh & Liang| (2020) popularized the Leave-One-Out (LOO)
valuation (Weisberg & Cook),[1982) from statistics to measure data impact for black-box ML
approaches. Inspired by cooperative game theory, Data Shapley (Ghorbani & Zou, [2019) is
another popular approach for measuring data importance, which offers a more theoretically
fair attribution of data value compared to LOO. However, it is significantly more computa-
tionally intensive than LOO, as it requires retraining over all possible data subsets. While
LOO offers a more tractable alternative, it still involves model retraining, making it costly
for large-scale models (Fan et al.,2025). In the LLM world, more computationally feasible
methods such as influence functions (Kwon et al.,[2024; Choe et al., [2024} Xia et al., 2024)
are more often used. Yet these methods often rely on gradient alignment and model loss is
not directly indicative for downstream performance for LLMs. Thus, these methods can
be inaccurate. In this work, aiming for a more accurate measurement, we adopt LOO for
evaluating the impact of robots.txt excluded data, and we propose more computationally
feasible alternatives specifically designed for LLM pretraining.

3 Data Inspection

We analyze the FineWeb-Edu dataset (Lozhkov et al., 2024), excluding any documents that,
as of January 2025, disallow crawling to the bots listed in Appendix|B|in their robots.txt

file. While FineWeb-Edu is derived from CommonCrawlP—which dates back to 2008 and
respects robots.txt restrictions—those restrictions are enforced only at the time of crawling.
Since website owners can modify their robots.txt files at any time, CommonCrawl may
include content from sites that currently block crawlers but did not at the time of data
collection. To ensure full compliance, we apply retrospective filtering using the most recent
robots.txt files, resulting in a dataset that adheres to current crawling restrictions. We refer
to the original, unfiltered dataset as non-compliant, and the filtered version as compliant. In
comparison to the non-compliant corpus, the compliant version contains 8% fewer training
tokens. This ratio is consistent with what was reported in|Longpre et al.|[(2024).

Top Filtered Domains. Comparing the non-compliant and compliant data corpora, we
present a list of the Top 20 filtered URL domains in Figure [2} sorted by document count
differences between the two corpora. We used ChatGPT to help get the taxonomy and
refined it via human inspection. The top URL domains are largely centered around the
following topics: News & Media, Science & Technology, Health & Medical Information.

Opt-out Timelines for the Top Domains. We collected historical snapshots of the robots.txt
files for the Top 20 domains and plotted the first recorded instance of each domain blocking
any of the Al training crawling bots (as listed in Appendix|B) in Figure[I} Notably, Bytespider

3 commoncrawl.org
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1. reference.com General Reference 11. dictionary.com

2. stackexchange.com Q&A Communities 12. webmd.com

3. teacherspayteachers.com 13. lessonplanet.com

4. wikia.com Fandom Wikis 14. elsevier.com

5. thefreedictionary.com 15. biomedcentral.com

6. phys.org 16. chron.com

7. bbc.co.uk 17. pbs.org

8. theguardian.com 18. definitions.net

9. wordpress.com | Blogging Platform 19. medicalxpress.com
10. nytimes.com 20. scientificamerican.com

Figure 2: Top 20 filtered URL domains based on differences in document counts between
the compliant and non-compliant corpora, along with their corresponding taxonomy.

bot by ByteDance was already being blocked as early as 2021. Since mid-2023, the OpenAl
bot began to appear in blocklists. By mid 2024, more major tech companies had started
facing blocks across these top domains.

Data Distribution Change After Robots.txt Filtering. To assess whether adhering to the
opt-out process affects the data distribution, we used WebOrganizer (Wettig et al.,[2025)) to
cluster documents based on both topic and format, two orthogonal features representing
the subject of content (topic) and the form of the content (format). We then visualized the
distribution of these clusters in Figure Interestingly, the overall distribution differences
between compliant and non-compliant data are minimal, with the notable exception of a de-
crease in the proportion of News Articles and Science & Tech. and an increase in Personal Blogs.
For completeness, the percentage decrease in each category is presented in Appendix|C}

Reduced Occurrence of Copyrighted Data. To further validate our data processing
pipeline, we searched for matching 50-grams of data from nytimes. com, medicalxpress.com,
and stackexchange. com domains between the compliant and non-compliant corpora. While
the frequency of copyrighted articles is reduced in the compliant corpus, it is not en-
tirely eliminated. Our manual inspection of the compliant corpus found that many re-
maining overlaps in nytimes.com data result from republished content, while matched
medicalxpress.com content in the compliant dataset is itself republished from other sources;
in contrast, stackexchange.com content primarily consists of references to other websites
and is not republished. We provide examples of matched 50-grams found in the compliant
dataset in Appendix[D}

Table 1: Percentage of documents that have a 50-gram match with documents coming
from nytimes.com, medicalxpress.com, or stackexchange.com domains in compliant and
non-compliant FineWeb-Edu training corpora

nytimes.com medicalxpress.com stackexchange.com

Compliant corpus 0.267% 0.637% 0.348%
Non-compliant corpus 0.354% 0.702% 0.539%

4 Data Compliance Gap

While we have observed differences between the compliant and non-compliant training
corpora, it remains unclear how these differences affect the performance of a language
model. In this section, we introduce the concept of the Data Compliance Gap (DCG) to
characterize the impact of data compliance on model performance.

4.1 Definition

We define DCG as the downstream performance gap between the compliant and non-
compliant trained models. The difference between compliant and non-compliant trained
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Figure 3: Distribution of WebOrganizer (Wettig et al., |2025)) topic and format domains
annotated in non-compliant and compliant FineWeb-Edu corpora.

models should only be the training corpus, i.e. the compliant version is derived by filtering
the non-compliant corpus according to robots.txt restrictions.

DCG depends on the downstream task domain and the training strategy, including model
architecture, size, and the volume of training data.

4.2 Settings

We measure DCG using the standard Leave-One-Out approach: excluding non-compliant
data completely from training to assess DCG under robots.txt restrictions (M1), or reinte-
grating non-compliant data into compliant training to approximate the DCG (M2). The two
settings are presented in Figure [

M1. Conduct pre-training runs using compliant and non-compliant corpora, respectively.
The resulting differences in downstream performance define the DCG. M1 is an exact
measure of DCG, yet can be computationally expensive.

M2. From a pre-trained compliant checkpoint, conduct continual pre-training with an
annealing learning rate (cooldown) using compliant and non-compliant data. The resulting
downstream performance differences are thus DCG. M2 is an approximate measure, which
is more computationally feasible.

5 Experiments

5.1 Experimental Setup

Model. We adopt the Llama model architecture (Grattafiori et al., 2024) with 16 layers,
a hidden size of 2048, a sequence length of 4096, and a batch size of 2.06 million, totaling
1.5 billion parameters. To enable cooldown experiments without retraining models from
scratch, we follow the WSD learning schedule (Hu et al., 2024), applying 2000 warmup
steps and 4844 cooldown steps. We use the AdamW optimizer with regularization strength
0.1 (Loshchilov & Hutter| [2019) with a learning rate of 3e-4 and cool down to learning rate
3e-5. To train the models, we use the Megatron-LM framework (Narayanan et al., 2021).
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Figure 4: Different settings of estimating DCG. For both settings, the difference between
compliant and non-compliant trained models only exists in the data, i.e. if non-compliant
data are involved in model training. DCG measures the downstream eval differences
between the trained models.

5.2 Compliance Gap Measured from Training from Scratch

We pre-train using the compliant and non-compliant corpora respectively. To evaluate DCG,
we focus on the following evaluation benchmarks.

Benchmarks for General Knowledge. As standard practice, we evaluate models on general
knowledge understanding using LM-Eval-Harness developed by [Gao et al|(2024). The
benchmarks used are Arc-Easy (Clark et al.,2018), Arc-Challenge (Clark et al.,|{2018), Com-
monSense QA (CSQA, [Talmor et al., 2018), OpenBook QA (OBQA, [Mihaylov et al., 2018),
MMLU (Hendrycks et al., 2020), PIQA (Bisk et al.,2020), Social IQA (SIQA, Sap et al.,2019),
HellaSwag (HS, |Zellers et al., 2019), Lambada (LBD, Paperno et al.,[2016) and Winogrande
(WG, [Sakaguchi et al.||[2021).

Benchmarks for Different Knowledge Categories. We use the Pinocchio dataset from |Hu
et al.[(2023), which covers factual knowledge of the following aspects. Note these aspects
are not disjoint, for example, a temporal fact can be stored in a structural format as well.

¢ Temporal. Questions based on modifications made to factual content in Wikipedia articles.
The goal is to test if LLMs are capable of discerning factual knowledge from different
time periods.

e Structural. Questions are based on Wikipedia articles. The goal is to test if LLMs can
memorize and reason over facts from structured formats (tables, lists, or databases).

* Multifaceted. Questions are based on Wikipedia articles. The goal is to test if LLMs can
memorize and reason over multiple pieces of information obtained during pre-training.

® Adversarial. Questions curated from Symmetric (Schuster et al.,[2019) and FM2 (Eisensch{
los et al.,[2021) that are strategically modified to deceive advanced LLMs. The goal is to
examine whether LLMs can withstand adversarial examples in the context of factuality.

® Domain Specific. The dataset covers samples from PubHealth (Kotonya & Toni, 2020) in
the public health domain and SciFact (Wadden et al., 2022) in the science domain. The
goal is to test if LLMs can reason over domain-specific factual knowledge.

e Real World. Questions based on Politifact (Misral, [2022), focusing primarily on political
claims. The goal is to test if LLMs understand real-world political facts.

Table 2: Compliance gap evaluated over standard common knowledge benchmarks between
1.5B models trained from scratch on 100B tokens. Each row denotes a different model trained
from scratch.

Arc-C Arc-E CSQA OBQA MMLU PIQA SIQA HS LBD WG Avg

Non-compliant  34.1 70.0 20.8 274 32.0 71.5 404 420 347 522 425
Compliant 32.8 69.1 20.2 26.0 32.0 71.0 415 420 354 575 428
-News 35.1 70.1 19.8 26.6 31.8 71.8 404 424 360 56.0 43.0

Table 2|shows no significant difference in general knowledge performance between com-
pliant and non-compliant pre-trained models. However, Figure [5| reveals a noticeable
compliance gap in structural and adversarial knowledge. This likely stems from the fact
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that structural formats are prevalent in documents from Math & Science and Biomedical do-
mains, and resistance to falsified facts can be enhanced through the inclusion of newspaper
articles and scientific papers—areas often associated with organizations that restrict web
crawling.

55 Temporal Structural Multifaceted Adversarial Domain Specific  Real World Avg

501 ~ ~ ~ ~ ~ ~
45 ~ ~ ~ ~ ~ ~
40 E g E E E g
354 ~ ~ ~ ~ ~ ~
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25
Non-compliant Compliant Compliant (News Removed)

Figure 5: Compliance gap within different sources of factual knowledge from Pinocchio
Benchmark (Hu et al.} [2023) after pre-training on 100B tokens. The compliance gap is more
prominent in structural (from tables, lists, or databases) and adversarial knowledge.

What If All News Publishers Opt Out? We have previously shown that, as of January
2025, adhering to robots.txt does not lead to a significant change in performance. We
hypothesize that a large number of smaller publishers help compensate for the knowledge
lost from major publishers who have opted out. But what happens if this trend continues
and smaller publishers also begin to opt out? We aim to investigate whether this would
have a measurable impact.

Since obtaining a comprehensive list of all URLs within a specific domain is challenging, we
rely on existing sources. Currently, a critical domain is newspapers. To simulate a scenario
where all newsq%aper publishers opt out, we use a list of 1,158 news publishers curated by

homepages . news*}, which serves as a reasonable proxy for the broader set of news domains.
We then exclude all newspaper articles from these domains in our compliant corpus, resulting
in an approximate 4% reduction in total tokens. As shown in Appendix D} the republication
of news articles is quite common. To accurately assess their impact, we further perform
a decontamination step that removes document segments replicated from news articles
hosted on different URL domains. This process results in a further 14% reduction in total
compliant tokens. After this process, the proportion of documents containing a 50-gram
match with content from nytimes.com drops to 0.012%, indicating the effectiveness of the
decontamination.

Interestingly, even after excluding all newspaper articles, we observe almost no change
in downstream performance, as shown in Table [2} Moreover, in the Pinocchio-Temporal
and Pinocchio-Real World tasks—where newspaper articles would be expected to perform
well—we observe no drop in performance even after removing all newspaper content. We
believe this is due to factual knowledge being present from other sources.

Takeaway 1. Pre-training on fully open data does not significantly impact general
knowledge understanding. Even if all news publishers opt out, the effect remains
minimal.

Takeaway 2. Compared to training on non-compliant data, compliant pretraining
tends to reduce a model’s ability to understand structural knowledge (i.e., informa-
tion presented in structured formats) and its robustness against falsified knowledge
(strategically crafted to mislead advanced LLMs).

4https://palewi.re/docs/news-homepages/openai-gptbot-robotstxt.html
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Takeaway 3. Newspaper articles may not be as important as expected. Temporal
and real-world knowledge, which are prominently featured in newspaper articles,
can be supplemented through other sources.

5.3 Compliance Gap Measured from Continual Pre-Training

Continual pretraining has been the standard paradigm for models to efficiently adapt to
emergent new knowledge or a different target distribution (Parmar et al., |2024;|Cagatay
Y1ildiz et al., 2025). In this section, we simulate the scenario where copyrighted data can be
integrated later into pretraining. We take the compliant 1.5B model checkpoint after training
on 90B/1.6T tokens and continually pre-train with 10B/100B tokens. We use an annealing
learning rate with a linear cooldown schedule for the continual pretraining phase.

Major Non-compliant Domains. Based on the taxonomy in Section[3} we focus on the major
domains identified among the Top 50 filtered URLs: News, Medical, and Math & Science.
We categorize the Top 50 URL domains into the aforementioned three groups, and construct
three domain-specific sets of non-compliant data, detailed in Appendix To perform a
fine-grained ablation, we compare the performance of compliant continual pretraining with
that of continual pretraining on the same compliant dataset (4.5T tokens) augmented by
reintegrating domain-specific non-compliant documents. The proportion of non-compliant
tokens added reflects their natural distribution in the original corpus.

Domain-specific Benchmarks. The aim of this evaluation is to test whether the inclusion
of certain non-compliant data later in training can enhance domain-specific knowledge
acquisition. Towards this goal, we selected the following benchmarks: 1) Concurrent and
temporal factual knowledge. We select Reuters-QA (Muhlgay et al.|[2023), which is based
on Reuters articles published after 1/10/2021, and the Temporal QA category from Pinocchio
benchmark. 2) Medical knowledge. We select PubMedQA (Jin et al., 2019), which contains
biomedical knowledge curated from biomedical research publications, and Domain-Specific
QA from the Pinocchio benchmark, which covers samples from PubHealth. 3) Scientific
knowledge. We select SciQ (Welbl et al.,2017), which is curated from 28 books covering
biology, chemistry, earth science, and physics and spanning elementary level to college
introductory material.

Table B presents the domain-specific cooldown results. The underlined scores correspond
to runs where task-specific, non-compliant data was added during cooldown, which is
supposed to enhance performance on that specific task. The remaining entries illustrate
expected variability across cooldown runs without such targeted augmentation. Among the
three domains, only the Medical tasks with long training (1.7T tokens) show a consistent
signal. A similar pattern emerges with the Pinocchio benchmarks, where reintroducing
non-compliant Medical data leads to the most pronounced compliance gap, as shown in

Figure [6]

Table 3: Domain-specific evaluation results are shown across various cooldown checkpoints.
Underlining indicates instances where the non-compliant domain-specific data aligns with
the knowledge assessed in the target domain.

Reuters-QA  Pnc-Temporal-QA  PubMedQA  Pnc-DomainSpecific-QA  SciQ

100B Tokens Trained

Compliant 52.9 53.0 57.4 41.5 88.4
Compliant + News 52.5 542 57.2 413 89.4
Compliant + Med 51.7 54.3 57.0 42.1 88.8
Compliant + MathSci 52.7 52.8 56.6 41.6 89.0
1.7T Tokens Trained

Compliant 65.1 52.8 61.4 445 90.0
Compliant + News 64.6 54.1 61.2 44.7 90.2
Compliant + Med 65.1 53.0 63.0 469 90.0
Compliant + MathSci 65.3 51.9 61.6 45.6 90.0
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Figure 6: Compliance gap measured using the Pinocchio benchmark across various
cooldown checkpoints (100B). Non-compliant medical data introduces a noticeable compli-
ance gap.

Takeaway 4. A noticeable compliance gap exists when non-compliant medical
domain data is introduced at a later stage of training.

5.4 Reduced Memorization of Copyrighted Articles?

As data without crawling consent is removed from the corpus, we would expect compliant
models to have less memorization of copyrighted content. To test this, we filter out all New
York Times articles from the non-compliant corpus and measure the memorization of these
articles across our trained models. We sampled 12’800 New York Times articles and for
each article, we extracted the first 128, 256, and 512 tokens as prompts, then compared the
models’ generations against the original text. Following the setup of [Freeman et al.|(2024),
we also measure the longest common continuous substrings (LCCS), as an indication of
verbatim memorization. On top of that, we add the BLEU metric, which is calculated based
on N-gram overlap.

We further curated two benchmarks from these 12’800 articles, each containing 1000 ques-
tions: (1) NYTimes Multiple Choice Completion (NYTimes-MCC) task, to test if a model can
select the correct completion among multiple choices given a partial excerpt from a news
article. (2) NYTimes Multiple Choice Question (NYTimes-MCQ) task, which asks factual
questions derived from these articles, aiming to provide challenging questions grounded in
unique event details or context found in the news coverage. The benchmarks are verified
using Proprietary LLMs. We offer more details regarding the scripts used for generating the
QAs and more experimental results in Appendix[H

Table ?]presents the results of the memorization assessment. For comparison, we include
models from the Qwen2.5 (Yang et al., 2024) and Llama3.2 (Grattafiori et al.,[2024)) families,
noting that larger models tend to exhibit higher levels of memorization. The compliant
model demonstrates reduced memorization of copyrighted content compared to the non-
compliant model, as shown by lower LCCS, BLEU, and NYT-MCC scores—a trend consistent
with the removal of newspaper articles. Importantly, compliance does not necessarily lead
to a loss of specific knowledge from New York Times articles, as indicated by comparable
NYT-MCQ scores. Notably, even with news decontamination applied, the NYT-MCQ score
does not decrease.

Takeaway 5. Compliant training reduces verbatim memorization of copyrighted
content without necessarily compromising specific knowledge derived from the
publications.
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Table 4: Memorization and factual knowledge assessment of New York Times articles across
various models using 256-token prefix prompts. PT, CD, and Compl. stand for “Pretraining”,
”"Cooldown”, and "Compliant” respectively. Values in parentheses indicate the number of
tokens seen in training.

LCCS| BLEU] NYTimes-MCC | NYTimes-MCQ 1

Qwen2.5-0.5B 19.51 0.71 42.8 244
Qwen2.5-1.5B 24.35 1.18 52.1 30.7
Qwen2.5-3B 27.13 1.54 56.4 31.3
Qwen2.5-7B 30.99 1.95 63.8 36.4
Llama-3.2-1.2B 20.71 0.58 49.9 24.8
Llama-3.2-3B 22.75 0.70 57.6 30.1
PT + CD (Non-compl. 100B) 23.11 0.63 50.6 28.9
PT + CD (Compl., 100B) 21.27 0.51 48.6 27.5
PT + CD (Compl., with News Removed, 100B) 20.28 0.53 48.0 28.6
PT (Compl., 90B) + CD (Non-Compl., 10B) 21.74 0.55 50.4 26.9
PT (Compl.,90B) + CD (Compl. + Non-Compl. News, 10B)  21.33 0.51 484 28.0

6 Conclusions and Future Work

In this work, we take an initial step toward examining the widely discussed trade-off
between data compliance and downstream model performance. We introduce the concept
of the Data Compliance Gap (DCG) to quantify performance differences resulting from
adhering to robots.txt opt-outs, and evaluate DCG across various training settings. Our
findings indicate that it is currently feasible to train performant LLMs exclusively on data
that respects web crawling restrictions. Thus, we recommend adherence to robots.txt
restrictions for LLM developments.

We clarify that our notion of compliance addresses only part of data usage rights. Our
approach focuses on Al-specific user agents, offering a clearer signal of consent than general
crawling permissions. However, it does not cover all legal constraints, such as Terms of
Service in “browsewrap agreements”, which are legally ambiguous and challenging to
process at scale. Therefore, our robots.txt filtering represents a practical upper bound on
demonstrable compliance, not full legal clearance. We call for future work for a finer-grained
study.

Our study is constrained by the model size and training budget feasible within an academic
setting. Whether the DCG scales similarly with larger models remains an open question,
which we further discuss in Appendix|Al While current-day robots.txt restrictions do not
lead to a significant DCG, it is yet to be seen whether the gap will widen as more content
owners opt out of web crawling.
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A Limitations

Despite our efforts to construct a strictly compliant corpus, some non-permissible con-
tent may still be present. For instance, New York Times articles republished on personal
blogs remain accessible, as these blogs do not block web crawlers. Similarly, websites
like medicalexpress.com, though they restrict crawling, often rehost content from publicly
accessible sources. As a result, distinguishing truly compliant from non-compliant data at
the document level is challenging. Adhering to URL-specific robots.txt directives remains
the most practical and enforceable approach available.

We acknowledge that robots.txt compliance addresses only one aspect of data usage rights.
Our approach evaluates robots.txt rules specifically for Al training user agents, offering a
clearer signal of consent than general crawling permissions. However, this does not account
for all legal restrictions, such as Terms of Service in “browsewrap agreements.” These terms
are legally ambiguous and difficult to process at scale due to their natural language format.
Thus, our robots.txt filtering reflects a practical upper bound of demonstrable compliance,
not comprehensive legal clearance.

A key limitation of our study is that evaluations were conducted solely on 1B-scale models.
Given their limited capacity, these models may exhibit constrained knowledge acquisition
and produce noisier evaluation results. In contrast, larger models tend to memorize more
readily and at a faster rate (Tirumala et al., 2022; Carlini et al., 2023} [Freeman et al.,[2024).
At the scale used in our experiments, it is likely that the models lack sufficient capacity for
effective memorization, which may explain the generally low LCCS observed in Table [4

Moreover, due to the limited model size, we are unable to reliably evaluate domain-specific
knowledge in Math & Science, which often requires reasoning capabilities. Our current
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benchmark, SciQ, primarily assesses factual recall rather than reasoning. While a DCG may
exist in this domain, our current setup does not allow for a rigorous evaluation.

B List of blocked web crawlers

The list of crawler bots that we consider for data filtering.

# list of blocked bots
"AI2Bot", # AI2
"Applebot-Extended”, # Apple
"Bytespider”, # Bytedance
"CCBot"”, # Common Crawl
"CCBot/2.0", # Common Crawl
"CCBot/1.0", # Common Crawl
"ClaudeBot"”, # Anthropic
"cohere-training-data-crawler”, # Cohere
"Diffbot”, # Diffbot
"Meta-ExternalAgent"”, # Meta
"Google-Extended"”, # Google
"GPTBot", # OpenAl
"PanguBot"”, # Huawei

wyn

C Percentage decrease in each category due to data compliance

In addition to changes in data distribution, Tables [5|and [f] report the percentage of data
removed by domain and relative to the entire corpus. For instance, filtering out 11.39% of
Science & Tech data leads to a 2.6483% reduction in total corpus tokens.

Table 5: Topic domain removal percentages

Topic Domain % Removed (Domain) % Removed (Corpus)
Science & Tech. 11.39 2.6483
Health 9.65 1.8893
History 8.05 0.7921
Education & Jobs 7.11 0.7639
Politics 10.45 0.4778
Literature 8.94 0.3639
Industrial 8.02 0.2438
Home & Hobbies 6.01 0.2002
Finance & Business 8.46 0.1894
Art & Design 8.08 0.1832
Transportation 10.84 0.1676
Religion 3.58 0.1377
Software Dev. 6.52 0.1327
Crime & Law 8.03 0.1184
Food & Dining 8.46 0.1114
Software 6.92 0.1096
Sports & Fitness 7.36 0.0903
Hardware 9.12 0.0829
Entertainment 9.44 0.0806
Social Life 6.72 0.0572
Travel 6.94 0.0534
Games 11.69 0.0478
Fashion & Beauty 3.61 0.0089
Adult 0.81 0.0001
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Table 6: Format domain removal percentages

Format Domain % Removed (Domain) % Removed (Corpus)
News Article 24.09 2.4956
Knowledge Article 6.87 1.6224
Nonfiction Writing 9.76 1.2853
Academic Writing 9.57 0.7303
Tutorial 5.95 0.5673
Product Page 6.53 0.4566
Structured Data 17.39 0.3920
Q&A Forum 27.33 0.3518
Listicle 6.62 0.2115
Content Listing 8.51 0.1708
Personal Blog 1.68 0.1330
Truncated 10.22 0.1236
News (Org.) 2.49 0.0942
Audio Transcript 12.23 0.0940
Documentation 7.58 0.0804
FAQ 5.13 0.0336
Comment Section 4.13 0.0233
Customer Support 2.88 0.0223
About (Org.) 1.15 0.0208
Creative Writing 4.09 0.0154
Spam / Ads 217 0.0122
User Review 4.09 0.0103
About (Pers.) 1.85 0.0023
Legal Notices 1.67 0.0020

D Matched 50-grams in the compliant dataset

We show parts of documents that contain matched 50-grams (in bold) from the nytimes. com,
medicalxpress.com, and stackexchange.com domains in the compliant FineWeb-Edu cor-
pora.

D.1 nytimes.com

Part of an article|quoted on (unavailable)

[...] The billionaire writes in the The New York Times:

Every one of us — citizens, philanthropists, business and government leaders —
should be troubled by the enormous gap between how little of our natural world
is currently protected and how much should be protected. It is a gap that we must
urgently narrow, before our human footprint consumes the earth’s remaining wild
places. [...]

Republished [article|on|alessandrosicurocomunication. com

Google and a corporation associated with NASA are forming a laboratory to study
artificial intelligence by means of computers that use the unusual properties of
quantum physics. Their quantum computer, which performs complex calculations
thousands of times faster than existing supercomputers, is expected to be in active
use in the third quarter of this year. The Quantum Artificial Intelligence Lab, as the
entity is called, will focus on machine learning, which is the way computers take
note of patterns of information to improve their outputs. |...]
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Republished farticle on bike. enginerve. con

In a post today on the NYTimes there was an interesting piece on the nature of
cycling and head injuries. I still object to laws requiring a helmet to be worn at all
times and wear my helmet constantly for touring and commuting. Assumption of
risk, and cost, is an issue and not one to be lightly avoided. And neither are the
responsibility to utilize appropriate safety gear.

Cycling Is the Top Sport for Head Injuries

Anahad O’Connor tackles health myths in this NY Times Post.

Last week, New York City began its long-awaited bicycle sharing program, the
largest in the nation. As in many other cities, helmet use was made optional, in
part to encourage greater participation. But a look at the statistics suggests that
riding without a helmet is not a decision to |...]

D.2 medicalxpress.com

and [healthed. com. au republished Stanford University Medical
enter

People suffering from a debilitating and often discounted disease known as
chronic fatigue syndrome may soon have something they’ve been seeking for
decades: scientific proof of their ailment. Researchers at the Stanford University
School of Medicine have created a blood test that can flag the disease, which
currently lacks a standard, reliable diagnostic test. “Too often, this disease is catego-
rized as imaginary,” said Ron Davis, PhD, professor of biochemistry and of genetics.
When individuals with chronic fatigue syndrome seek help from a doctor, they may
undergo a series of tests that check liver, kidney and heart function, as well as blood
and immune cell counts, Davis said. |[...]

and hamodia. com (unavailable) republished The Associated Press

Since late last year, people in the central Chinese city of Wuhan have been infected
with a viral pneumonia whose cause was unknown. The outbreak raised the
specter of another SARS epidemic, which killed hundreds in 2002 and 2003. A
preliminary investigation has now identified the respiratory disease as a new type
of coronavirus, Chinese state media reported Thursday, citing scientists handling
the investigation. As of Sunday, local authorities reported 59 people with the illness.
Seven were in critical condition, while the rest were stable. Eight were discharged
Wednesday night after they didn’t exhibit any more symptoms for several days. |...]

D.3 stackexchange.com

Quote found on jwww-cs-faculty.stanford.edu/matches quoted

[...] Many readers are no doubt thinking, “Why does Knuth replace MIX by another
machine instead of just sticking to a high-level programming language? Hardly
anybody uses assemblers these days.” Such people are entitled to their opinions,
and they need not bother reading the machine-language parts of my books. But
the reasons for machine language that I gave in the preface to Volume 1, written in
the early 1960s, remain valid today: |...]
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Poetry found onen.wikiquote.org/matches quoted

And the Raven, never flitting,

Still is sitting, still is sitting

On the pallid bust of Pallas

Just above my chamber door;

And his eyes have all the seeming
Of a demon’s that is dreaming,
And the lamplight o’er him streaming
Throws his shadow on the floor,
And my soul from out that shadow,
That lies floating on the floor,

Shall be lifted—nevermore.

]

E Additional experimental results

E.1 Top 50 filtered URLs

e News Domains: bbc.co.uk, theguardian.com, nytimes.com, chron.com,
abc.net.au, washingtonpost.com, theatlantic.com, wired.com,
businessinsider.com, forbes.com. This in total accumulates to around 1B
tokens.

¢ Medical Domains: webmd.com, biomedcentral.com, medicalxpress.com,
healthline.com, psychcentral.com, medicalnewstoday.com, medicinenet.com,
emedicinehealth.com, jamanetwork.com. This in total accumulates to around 10B

tokens.
e Math & Science Domains: mathhelpforum.com, mathworks. com,
stackexchange.com, scientificamerican.com, elsevier.com,

windows2universe.org. This in total accumulates to around 1.4B tokens.

E.2 More results

55 Temporal Structural Multifacted Adversarial Domain Specific Real World Avg
50
45 4
40 4
35 4 1 1
2 )L
25 - - - - - -
B Compliant ~ mmm Compliant + News Compliant + MathSci Compliant + Med

Figure 7: Compliance gap measured using the Pinocchio benchmark across various
cooldown checkpoints (1.7T tokens). DCG is less prominent with longer training.

F NYTimes Memorization Experiments

In this section, we provide additional details about our experiments measuring the memo-
rization of New York Times articles. The underlying datasets are not publicly released due
to copyright limitations.
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F1 Benchmark Creation Prompts

We used DeepSeek-R1 to generate the NYTimes-MCC and NYTimes-MCQ benchmarks.

* NYTimes-MCQ Prompt: We instructed the model to generate a self-contained
multiple-choice question that requires synthesizing information across the provided
context.

¢ NYTimes-MCC Prompt: We instructed the model to extract a meaningful prefix
from an article and create a multiple-choice task with four possible continuations.
Only one continuation (the original text from the article) is correct, while the other
three are minimal edits containing specific types of factual errors.

We gathered 1000 questions for each benchmark to make the benchmarks more robust to
noise. Here, you can see the prompts that we used to create the questions for each article.

NYTimes-MCQ Prompt

Create a multiple-choice question that requires synthesizing information
across the provided context. While the correct answer should only be
determinable by analyzing and combining specific details from the context,
the question itself must be self-contained and clearly understandable to
someone who hasn’t read the context.

Your question should 1) test the ability to connect related information
from different parts of the context, 2) be completely clear and unambiguous
as a standalone question, 3) avoid referencing the context directly, e.g.,
no "according to the passage” phrasing.

The question should have 4 options, one of which is the correct
answer. Please explain how to reach the correct answer from the given
context.

You are communicating with an API, not a user. Please output in
JSON format. Begin all AI responses with the character { to produce valid
JSON. Here is an example:

"question”: "<question>",
"A": "<optionl>",
"B": "<option2>",
"C": "<option3>",
"D": "<option4>",

"answer": "<correct_option>",
"explanation”: "<explanation>"

Here is an example:
<the example>

<the article>
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NYTimes-MCC Prompt

Given the provided context, create a multiple-choice context completion
task. Extract a prefix from the given context and provide four possible
completions, where only one is factually correct. While the correct
completion should only be determinable by analyzing the provided context,
the prefix itself must be self-contained with information and clearly
understandable to someone who hasn’t read the context.

The prefix must be an exact excerpt from the given context. The
correct completion must be the original continuation of this prefix in the
given context. The three incorrect completions should be minimal edits of
the correct completion, each containing a contradiction and specific type
of factual error while remaining grammatical and fluent.

The incorrect completions should incorporate these error types:

1) Predicate error: Modify a verb or action that makes the completion
factually inconsistent.

2) Entity error: Replace a subject or object with an incorrect entity that
creates a factual inconsistency.

3) Circumstance error: Change information about location, time, or manner
that introduces a factual error.

4) Coreference error: Modify a pronoun or reference to point to a wrong or
non-existing entity.

5) Link error: Change how statements are linked together (causal/temporal
links) to create a factual inconsistency.

Select three of these error types to create your three incorrect
completions (one error type per incorrect completion).

You are communicating with an API, not a user. Please output in
JSON format. Begin all AI responses with the character { to produce valid
JSON. Here is a template:

"full_prefix”: "<prefix from the context>",

"completion”: "<correct completion>",

"contradiction_@": "<contradictive option>",

"contradiction_1": "<contradictive option>",

"contradiction_2": "<contradictive option>",

"explanation”: "<explanation of why the correct completion is factual and
how each incorrect completion contains errors>"

}

Here is an example:
<the example>

<the article>

E2 Additional Results

We present memorization quantification results in Table[7} Table[8| and Table ] for 256, 128,
and 512 prompt lengths, respectively. We further added BLEU and 4GP metrics, where 4GP
measures word-level 4-gram overlap precision (Table . For each prompt length, we filter
those articles with less than the prompt length since there is no completion for this kind of
prefix. The evaluation results on the 1T token pretrained model from section can be seen
in Table[7} For all the generations, we used temperature 0.0 (greedy decoding).
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To verify the validity of the NYT-MCQ, we performed a sanity check using DeepSeek-R1.
When the model was supplied with the relevant article at inference, it attained a 99.0%
accuracy. When the article was withheld, the model achieved 91.7% accuracy. For additional
comparison, we tested GPT-40 on NYT-MCQ and observed 89.8% accuracy.

Table 7: Memorization assessment of New York Times articles using 256-token prefix
prompts. PT, CD, and Compl. stand for “Pretraining”, "Cooldown”, and “Compliant”
respectively. Values in parentheses indicate the number of tokens seen in training.

LCCS| BLEU| NYT-MCC| NYT-MCQ 1

Qwen2.5-0.5B 19.51 0.71 42.8 244
Qwen2.5-1.5B 24.35 1.18 52.1 30.7
Qwen2.5-3B 27.13 1.54 56.4 313
Qwen2.5-7B 30.99 1.95 63.8 36.4
Llama-3.2-1.2B 20.71 0.58 499 24.8
Llama-3.2-3B 22.75 0.70 57.6 30.1
PT + CD (Non-compl., 100B) 23.11 0.63 50.6 289
PT + CD (Compl., 100B ) 21.27 0.51 48.6 27.5
PT + CD (Compl., News removed, 100B) 20.28 0.53 48.0 28.6
PT + CD (Compl., News removed w/o Decontamination, 100B) ~ 21.06 0.55 489 27.3
PT (Compl., 90B) + CD (Non-compl., 10B) 21.74 0.55 50.4 26.9
PT (Compl., 90B) + CD (Compl. + Non-compl. News, 10B) 21.33 0.51 48.4 28.0
PT + CD (Compl., 1.7T tokens) 21.65 0.54 50.9 30.2
PT (Compl., 1.6T) + CD (compl. + Non-compl. News 0.1T) 21.50 0.54 50.1 30.1

Table 8: Memorization assessment of New York Times articles using 128-token prefix
prompts. PT, CD, and Compl. stand for “Pretraining”, “Cooldown”, and “Compliant”
respectively. Values in parentheses indicate the number of tokens seen in training.

LCCS| BLEU |

Qwen2.5-0.5B 19.11 0.64
Qwen2.5-1.5B 22.77 1.09
Qwen2.5-3B 25.62 1.43
Qwen2.5-7B 29.61 1.97
Llama-3.2-1.2B 19.89 0.44
Llama-3.2-3B 2217 0.55
PT + CD (Non-compl., 100B) 21.76 0.49
PT + CD (Compl., 100B ) 20.53 0.41
PT + CD (Compl., News removed, 100B) 19.93 0.42
PT + CD (Compl., News removed w/o Decontamination, 100B) 20.42 0.44
PT (Compl., 90B) + CD (Non-compl., 10B) 21.06 0.44
PT (Compl., 90B) + CD (Compl. + Non-compl. News, 10B) 20.62 0.41
PT + CD (Compl., 1.7T) 20.75 0.43
PT (Compl., 1.6T) + CD (Compl. + Non-compl. News, 0.1T) 20.95 0.43

Table 9: Memorization assessment of New York Times articles using 512-token prefix
prompts. PT, CD, and Compl. stand for ”Pretraining”, “Cooldown”, and “Compliant”
respectively. Values in parentheses indicate the number of tokens seen in training.

LCCS| BLEU.

Qwen2.5-0.5B 19.21 0.76
Qwen2.5-1.5B 23.38 1.16
Qwen2.5-3B 25.31 1.38
Qwen2.5-7B 27.74 1.69
Llama-3.2-1.2B 20.71 0.71
Llama-3.2-3B 22.68 0.87
PT + CD (Non-compl., 100B) 22.03 0.68
PT + CD (Compl., 100B) 20.38 0.58
PT + CD (Compl., News removed, 100B) 19.56 0.65
PT + CD (Compl., News removed w /o Decontamination, 100B) 20.05 0.68
PT (Compl., 90B) + CD (Non-compl., 10B) 20.65 0.62
PT (Compl., 90B) + CD (Compl. + Non-compl. News, 10B) 20.25 0.58
PT + CD (Compl., 1.7T) 20.55 0.63
PT (Compl,, 1.6T) + CD (Compl. + Non-compl. News, 0.1T) 20.42 0.64
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Table 10: Word-level 4-gram overlap precision (4GP) assessment of New York Times articles
across 128-token, 256-token, and 512-token prefix prompts. PT, CD, and Compl. stand for

“Pretraining”, “Cooldown”, and "Compliant” respectively. Values in parentheses indicate
the number of tokens seen in training.

128-token 256-token  512-token

Qwen2.5-0.5B 0.08 0.11 0.12
Qwen2.5-1.5B 0.20 0.25 0.24
Qwen2.5-3B 0.31 0.37 0.30
Qwen2.5-7B 0.49 0.51 0.39
Llama-3.2-1.2B 0.67 0.92 0.98
Llama-3.2-3B 0.98 1.27 1.35
PT + CD (Non-compl., 100B) 1.15 1.58 1.50
PT + CD (Compl., 100B) 0.82 1.09 1.11
PT + CD (Compl., News removed, 100B) 0.67 0.86 0.83
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