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Abstract

Pairwise preference optimization, such as Di-
rect Preference Optimization (DPO), was orig-
inally designed to align large language mod-
els (LLMs) with human value. It has recently
been used to improve the supervised fine-tuning
(SFT) performance of LLMs. Using pairs of
single samples, DPO estimates the probabil-
ity distribution of the preferences of picking
one response over another. However, in tasks
that involve more complicated preferences (e.g.,
reasoning tasks) than those in the human value
alignment task, this sampling method is likely
to bring deviations from the ground-truth dis-
tribution. To solve the problem, extra efforts
(e.g., external annotations or amendment of the
loss function) are often required. In this pa-
per, we hypothesize that the preferences can be
better estimated through a multi-sampling pro-
cess. Accordingly, we propose an Expectation
Preference Optimization (EPO) algorithm that
takes pairs of sample groups, instead of pairs
of single samples as in DPO, for preference
learning. Compared to pairwise DPO, the pro-
posed EPO tends to produce more reliable pref-
erence estimations. Applying different prefer-
ence optimization methods in a self-training
paradigm, we have conducted extensive experi-
ments on various reasoning benchmarks. The
results show that our EPO approach outper-
forms a range of baseline approaches in terms
of zero-shot accuracy on all benchmarks.

1 Introduction

Large language models (LLMs), through super-
vised fine-tuning (SFT), have shown remarkable
abilities on various reasoning tasks such as mathe-
matical reasoning. However, it is well recognized
that the effectiveness of SFT can reach its upper
limit depending on the scale and quality of train-
ing samples, which are often limited and expensive
to construct. Thus, an important question arises:
with the same SFT training data, how can we fur-
ther improve the SFT performance? To tackle the

problem, pairwise preference optimization, which
was originally developed to align with human val-
ues (e.g., harmlessness or honesty), has become a
widely chosen solution.

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) is one of the most popular preference-
based methods due to its simplicity and effective-
ness compared to Reinforcement Learning with
Human Feedback (RLHF) (Bai et al., 2022). DPO
samples the preferred and dis-preferred responses
once in one updating step on a prompt, and then
uses the Bradley-Terry (BT) model to update the
LLM with an implicit reward function that models
the preference of picking the preferred sample over
the dis-preferred one. As can be naturally applied
in the self-improving approaches that alleviate the
issue of data construction (Yuan et al., 2024; Sun
et al., 2023), using DPO in reasoning tasks has
shown a broad prospect.

The selection of pairwise training data is key
in the utilization of DPO. The preferred and dis-
preferred responses on a prompt represent an es-
timation of the correct preference, which in the
training process guides the optimization direc-
tion (Rafailov et al., 2024). Different from the
human value alignment task, in most reasoning
tasks, the direction that the model needs to opti-
mize can be more multifaceted. For example, in
mathematical reasoning, the error of an answer can
be attributed to various aspects, such as calculation,
formula, and entity errors. Thus, directly using
DPO on such reasoning tasks, especially when us-
ing correctness as the selection criterion for pairs
of samples, would be insufficient to reflect the mul-
tifaceted nature of the reasoning tasks and result in
poor performance (Lu et al., 2024; Lai et al., 2024).
As shown in Fig. 1 (the red box on the left-hand
side), sampling a pair of single responses for opti-
mization, with one reporting the correct answer and
the other on the opposite, may lead to a wrong di-
rection of preference estimation that deviates from



the other correct responses (marked with crying
faces).

Various approaches have been developed to
solve this problem. Orca-Math (Mitra et al., 2024)
applies preference optimization on a fine-tuned
LLM using an augmented dataset that is con-
structed using GPT4 to select the pairs of responses,
while Brain (Chen et al., 2024a) uses human anno-
tations. DPOP (Pal et al., 2024) tries to solve the un-
stable optimization direction of pairwise optimiza-
tion by enhancing the supervision of preferred ends
in changing the loss function of DPO. Step-DPO
(Lai et al., 2024) uses a large amount of sampling
responses and boosts the training data into large
step-level pairs. Iterative RPO (Yuanzhe Pang et al.,
2024) uses a similar form of loss and applies it to
a self-training structure. However, these methods
do not fundamentally solve the problem of unsta-
ble preference modeling when facing complicated
preferences.

In this paper, we explore a different perspective
by leveraging more samples in preference estima-
tion. Starting with the basic Bradley-Terry (BT)
model, which is the basis of pairwise training, we
hypothesize that the preferences in the BT model
can be better estimated through a weighted multi-
sampling process. Specifically, we assume that
the preferences are not generated by the estima-
tion of a single response, but by the expectation of
the response sampling. Under this assumption, we
propose an Expectation Preference Optimization
(EPO) approach, a variant of DPO. EPO accepts
group-wise preference samples, i.e., pairs of sam-
ple groups, for training, with a length limitation
operation. EPO estimates the preference by calcu-
lating the weighted mean of each group. Our EPO
shares the same objective with DPO and RLHF
while overcoming the limitation of using only one
preferred and one dis-preferred response each time.
As shown in Fig. 1 (right-hand side), EPO makes
it easier to produce proper preference estimations
in reasoning tasks.

Utilizing the proposed EPO, we can simply use
correctness (i.e., if the sampled responses answer
the question correctly) as the signal for preference
construction on reasoning tasks and boost the capa-
bility of LLMs yet bring no further human annota-
tions. We apply a self-training algorithm that is de-
tailed in Section 3.3 which requires no extra annota-
tions and small cost on data preprocess. After SFT
on a task-specific reasoning dataset, the target LLM
generates responses for the input queries. Then we

divide the responses for each query into two groups.
Using EPO on these grouped responses, the opti-
mization direction is estimated through multiple
samples. Extensive experiments on various rea-
soning benchmarks (i.e. GSM8K (Cobbe et al.,
2021), ARC (Clark et al., 2018), Social QA (Amini
et al., 2019), MathQA (Sap et al., 2019)) across dif-
ferent base LLMs (including Llama2-7B, Llama2-
13B (Touvron et al., 2023), Qwen1.5-7B (Bai et al.,
2023), Mistral-7B (Jiang et al., 2023)) show that
our EPO constantly improves the performance of
SFT models and outperforms other preference opti-
mization baselines in the self-training framework.

2 Preliminaries

Given a large language model that is parameterized
by 6, donated as my, there are two categories of
methods to improve its performance: fine-tuning-
based and preference-optimization-based methods.

2.1 Fine-Tuning

SFT: Given a dataset D = {(xl,yz)}fil, Ty is
finetuned with the cross-entropy loss following a
typical chain-of-thought rationale y; with respect
to the input query z;, resulting in 757"

RFT: Rejection Sampling Fine-Tuning (RFT)
(Yuan et al., 2023) is a training method where
is fine-tuned on its own correct generations. After
SFT on D, TI'QSF T obtains the ability to perform
zero-shot chain-of-thought rationales. Thus we can
sample M candidate rationales v; 1,¥:2, - Yi.m

for each query x;. All the rationales together are
2 L \M
denoted as D = {(m,, 9ij)j=1 | (zi i) € D}.
Utilizing a filtering method (e.g. reward model
annotation), we can construct Drpr as a subset of
D. The outcome WfF T is trained on the augmented

dataset D U @RFT based on 7y.

2.2 Preference-Optimization

RLHF: RLHF (Bai et al., 2022) fits a reward model
to pairwise samples of human preferences and then
uses Reinforcement Learning to optimize a lan-
guage model policy to produce responses that are
assigned high reward without drifting excessively

far from the original model. Consider an annotated

dataset of pairwise samples D), = {;,y%,, yf}i\il,

where z; denotes the 7" prompt, 4/, and y} respec-
tively represent the preferred and dis-preferred re-
sponses to ;. RLHF begins by modeling the proba-
bility of preferring y?, to y/ using the Bradley-Terry



¢ Annotated responses

Latent Space of LLM

results: to

. or
O correct rationale +

O wrong rationale

Preference :
Optimization :

maximum|likelihood :

EPO

Annotated responses ¢

Latent Space of LLM
Select group

\/ i @\
l@a,)<fc@,
\@/; \/

‘results to|

my o terd

Figure 1: In the latent space of the target LLM, DPO chooses a pair of samples using correctness as the signal. In
more complicated case, as shown in the figure, DPO can result in a wrong estimation of the preference and drive the
LLM to a wrong reward updating direction (i.e., increased reward to the wrong samples and decreased to the correct
samples). On the opposite, EPO considers multi-sampling and can provide a more reliable optimizing direction.

model (Bradley and Terry, 1952), which appoints
the following probabilistic form:

P (v = vt | @) = o (r (@i 90) =7 (2,01)) (D

where o represents the logistic function and
(x4, ;) corresponds to a reward function r, (i.e.,
LLM classifier) that gives the estimation of y; with
respect to x; according to human preference.

Then the target model my can be trained by the
feedback from the learned reward function. In gen-
eral, we formulate the following optimization target
for this learning process:

— BDkw [mo(y | @) [t (y | )]

2

where [ is a parameter controlling the deviation

of the target model 7y from the status when the
training starts.

DPO: DPO (Rafailov et al., 2024) shows the
possibility of keeping the same optimization tar-
get as RLHF without explicitly training a reward
function and the implementation of RL. The loss
function of DPO is presented as below:

max B [r¢(z, y)]

Lppro (76 Tret) = —E(gy, 5)~D l0g 0
mo (Yw | T) o (Y1 | )

(. o
s Trref (yw | x) s Tref (yl ’ Q:)

Notably, this optimization objective is based on
a theoretical optimal 7y beyond 7y (x,y), which
enables its equivalence with Eq.2.

3 Expectation Preference Optimization

3.1 An Analysis of Pairwise Preference
Optimization

Taking DPO as an example, Pairwise Preference
Optimization methods accept one preferred sample
and one dis-preferred sample as the unit to calculate
the loss for updating the reward function. Consid-
ering an ideal reward function 7(z, y) reflects the
ground-truth preference, let us assume a sampling
of four responses {ya1, Ya2, Ys1, yp2 } With respect
to the query x, where 7(x, yai) > 7(x, ys;) holds.
When an initial reward function 7“25 is optimized

n (Ya1,Ys1), the optimization directions of /a2
and ygo are not restricted to follow the ground-
truth. The updated rfbﬂ may give a wrong estima-

tion Tf;l(x,yag) < rf;rl (x,yp2) while correctly
estimating the training pair as rf;’l(a:,yal) >

rf;rl (x,yp1), and vice versa.

The trigger for this issue is that the sampling
of (ya1,yp1) with respect to the prompt 2 may be
away from the ground-truth preference distribution.
Accordingly, the optimization of rfz) gives wrong
guidance on y,2 and ygo. When the purpose of
training is to align with humans, the inconsistency
of preference estimation is not so prominent (com-
pared to reasoning tasks), so the problem is less
significant. However, the reasoning tasks present
a different situation. For example, in math reason-
ing tasks such as GSM8K, LLMs can make mis-
takes for many reasons (e.g., equation calculation
errors, incorrect understanding of problems, etc.)
and the estimates from different aspects are not in-
dependent. Thus the true preference distribution is
complicated and varies with the target LLM.



3.2 Expectation Preference Optimization

Aiming to solve the aforementioned problem
brought by the single sampling of preference dis-
tribution in the reasoning tasks, we propose an
Expectation Preference Optimization (EPO) algo-
rithm starting from the RLHF pipeline. As we
have previously mentioned, the reward modelling
phase of RLHF is based on the BT model. Af-
ter a single sampling of response pair (y1, y2) for
a prompt z, we can annotate the responses using
human labellers or some stronger LLMs. As the
preferences are presented as y,, > y; | * where
Yuw, Y1 € {y1,y2} we can optimize a reward func-
tion through Eq. 1.

By estimating preferences through multi-
sampling, which results in a group of responses
{y;}}¥, for a prompt x, we present the group-wise
preference form G,, = G; | x where G, G| C
{y;}}V,. In general, G,, represents the preferred
group and G represents the dis-preferred group.
We assume that the reward level of G, and G| is
the expectation for all rewards in the group:

(2, G) = Bynglr(z, vi)] )

Thus the Bradley-Terry model can be rewritten
as:

P (Gw = G| z) =
o (Bq,[r(z,y:)] = Ea, [r(z,y:)])

EPO objective. Following the derivation pro-
cess of DPO, we can construct the reward function
under the optimal solution to Eq. 2 as follows:

&)

t(y | =)

r(z,y) = plog m + plog Z(x) (6)

where Z(z) = >, met(y | ) exp (%T(m,y))
represents a partial function referring to the previ-
ous work (Peters and Schaal, 2007; Rafailov et al.,
2024). Using this re-parameterization of r(x,y),
Eq. 5 can be formed as below using the optimal
solution.

p* (Gw = G| ) = 0(BPg, — Pa,)
T (yi | z) W

Pg = Egllog
Tref (yz ’ 33)

Due to space limitation, we present our proof
and detailed deriving process in the Appendix.

‘We can now formulate a minimum loss function
for the target model 7y through this preference
function:

L (r¢, D) = =B q,.cy~plloga(P)]  (8)

While the sampling model (reference model) pro-
vides the group result (i.e. G, G;), we regard the
Tret (Y; | ) as the probability of y; in the expec-
tation. In practice, this means that the response
with higher probability have a higher impact on
the overall optimization direction. Thus, the loss
function of EPO can be derived as:

Lg(rs,D) = —E@.q,.q)~D

[loga (/Bf(Gwa T, 7"'ref) - /Bf(le T, W{e]‘”)))]
Sy e Tres (Wilz) " log YT

f(G,TrﬂTref) _ Yy, €G Yy

Tref (yl\z)
2y;eq Tref (yilz)”

)

Notably, this method only calculates an approx-
imate expectation, as the sum of probabilities is
not 1. Thus we introduce a smoothing coefficient
0 < v < 1, to avoid weights with large variants
caused by incomplete calculation of expected devi-
ations.

A further interpretation of EPO. We here
present a brief analysis of EPO. The objective func-
tion of EPO is derived from RLHF, which means
that we share the same overall optimal solution with
RLHF and DPO. As we estimate the preferences
through a multi-sampling assumption, EPO has a
more reliable implicit reward function compared
to the pair-wise DPO, especially in reasoning tasks
with complicated preferences. EPO drives the tar-
get LLM to have higher probabilities of generating
responses in the preferred group and lower proba-
bilities of generating responses in the dispreferred
group, while ensuring the responses with higher
probabilities affect more on the optimization. No-
tably, when the sampling number of G; and G, is
1, EPO becomes a typical DPO algorithm. Theoret-
ically, in random sampling, the larger the sampling
number, the more accurate the estimation of prefer-
ences in line with the ground-truth distribution.

Length Limitation Operation. After the brief
analysis of the EPO loss function, we introduce
an additional module to the EPO algorithm. Pre-
vious work (Wang and Zhou, 2024) indicates that
the beginning tokens affect most of the decoding
(generating) process of an LLM. Considering the
subsequent tokens of the responses could adversely
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Figure 2: Overview of self-improving approach with EPO

impact the coherence of the model in the optimiz-
ing process, especially the dis-preferred responses,
we aim to increase the stability of the EPO opti-
mization process by limiting the length of samples.

Specifically, we truncate the responses in G
and G,, and ensure that the length of responses
is smaller than a preset threshold. Knowing that
this truncation drops some information from the
supervised data, we will analyze the effect of this
operation in our experiments.

3.3 Self-improve Training approach With
EPO

As EPO can provide reliable preference estimation,
we can simply use correctness (i.e., whether the an-
swer of sampled response is the same as the answer
of the target) as signals and boost the capability
of LLM on the datasets that contains verifiable
answers (e.g., math datasets). We design a self-
improve training approach, which is presented in
Fig 2.

We start with access to a base LLM m;,,;+ and
data of a verifiable task D = {x;,y;}Y . First,
we give the model the ability to follow and gen-
erate rational instructions by applying SFT to
it. The fine-tuned model is denoted as wgp7p.
Then we generate M different responses for ev-
ery query in D. We denote all the generated
responses ([2;) with the original responses y; as
Daug = {.1‘2', Yis Rl}iil where RZ' = {Ti,j}j]\/il'

In the next step, we generate the group-wise
preference data from Dy, using the correctness of
generated responses in R; as the annotation signal.
Specifically, if a response reports the same answer
as the typical rationale, it is put in G% and it is
put in (G; while it reports a different answer (which
means it is wrong). The constructed training data
are presented as follows:

Drpo = {:, G¥, G, (10)

where G¥ U Gé = R; U {y;}. Notably, we con-
struct the preference groups on [?; combining with
i, thus for each prompt x the number of candi-

dates’ correct responses is always greater than 1.
As the wrong response of a query does not always
exist in the sampling, we drop the triplets in Dy,,4
whose R; contains all correct responses.

Applying EPO algorithm on mgpr with Dgpo,
we can obtain the resultant LLLM denoted as mgpo.
In general, mgpo is optimized based on the su-
pervising information of base dataset D (i.e. the
correct answer), and the self-improve training en-
sures that the model can have better performance
on the fine-tuning dataset.

4 Experiments

We evaluate the effectiveness of our EPO on two
representative reasoning tasks: arithmetic reason-
ing and commonsense reasoning. We test four dif-
ferent LLMs: Llama3-8B (Dubey et al., 2024),
Llama2-13B (Touvron et al., 2023), Qwen2.5-
7B (Yang et al., 2024) and Mistral-7B (Jiang et al.,
2023) as our base LLM model. We mainly evaluate
the performance of EPO in the self-improving sce-
nario. Notably, we put our Implementation Details
in the Appendix D.4.

4.1 Datasets and Preprocessing

The experiments are carried out on two arithmetic
reasoning datasets and three commonsense reason-
ing datasets.

GSMBSK. GSM8K (Cobbe et al., 2021) has been
adopted as a benchmark for the mathematical rea-
soning skills of LLMs. It contains 7,473 training
and 1,319 test problems, and each sample is paired
with a rationale that clearly states the final answer.

MetaMath,. MetaMath (Yu et al., 2023)
is a popular augmentation of GSMS8K and
MATH (Hendrycks et al., 2020). It contains 240K
augmented samples based on GSM8K and 155K
samples based on MATH. Notably, for lighter re-
sponse generation, we only take 80K augmented
GSMSK samples for training. The subset is de-
noted as MetaMath;.

AI2 Reasoning Challenge (ARC). ARC (Clark
et al., 2018) consists of two subsets: ARC-Easy



Table 1: The False Positive Situation.

N 5 10 20 30 50

All Positive 22800 45660 79508 118978 198047
False Positive | 804 1634 4252 6921 11884
Proportion 352% 3.58% 535% 5.82% 6.00%

and ARC-Challenge. To obtain the rationales of
the queries for SFT, we apply a strong LLM (i.e.,
Yi-Chat-34B (Young et al., 2024)) to generate typ-
ical answers. Using the prompt presented in the
Appendix, we generate a rationale ending with an
answer statement for each query. After filtering the
rationales with wrong answers and incorrect format,
we construct an SFT training set with 1599 sam-
ples from ARC-Easy and another with 793 samples
from ARC-Challenge. They are then applied in the
first SFT phase of the approach. For the generation
phase, we use the original training set.

MathQA. MathQA (Amini et al., 2019) con-
tains 29837 training samples and 2985 test samples.
Each sample contains a math query, four candidate
results, a rationale, and a correct answer. We man-
ually add the answer statements at the end of the
rationales for SFT.

SociallQA. Social IQA (Sap et al., 2019) has
33410 training samples, each containing a query
and 3-5 candidate results without rationales, as well
as 2224 test samples. We utilize the same method
we use in constructing the ARC SFT dataset to
generate rationales. Notably, we generate 23624
samples with one correct rationale each.

4.2 Baselines

In the experiments, we compare the proposed self-
training EPO method (i.e. SFT + EPO) with various
existing self-training approaches. They are: SFT,
(SFT +) RFT, (SFT +) DPO, (SFT +) DPOyg:cp,
(SFT +) RPO, and (SFT +) Step-DPO. We present
the detailed introduction in the Appendix D.1.

4.3 Analysis of Misclassification Situation

Since our experiments are based on the rule-based
verifier to label the correctness of the sampled re-
sponses, there could be misclassified samples. For
True Negative samples, we consider that it either
gives no answer at the end of the responses or gives
the wrong formatted answers, which is not the be-
havior we want the model to learn. For the analysis
of False Positive samples, we utilize DPSK-Distill-
Qwen-32B(Guo et al., 2025) to annotate whether
the positive sampled responses are true positive
using the prompt given in Appendix A. From Tab.

1 we can observe that although the proportion of
false positive samples increases with the increase
of N, it only hovers around a 5% proportion of all
positive samples. This can indirectly confirm the
effectiveness of our method.

4.4 Main Results

The main results of our experiments are presented
in Tab. 2 and Tab. 3. Remarkably, on the GSM8K
benchmark, EPO achieves a 5.43% increase over
the SFT model in accuracy on the GSM8K dataset
and 3.29% based on the Metasub, dataset for
Llama2-13B. This improvement comes to 2.64%
and 2.05% for Qwen2.5-7B. As for the Common-
sense tasks, EPO brings an increase of 3.58% for
Llama3-*B on SociallQA, 4.47% for Mitral-7B
on ARC-Easy, 6.94% for Llama2-13B on ARC-
Challenge, and 6.29% for Mistral-7B on MathQA.

A cursory examination reveals that our EPO con-
sistently outperforms all the preference optimiza-
tion baselines across all tasks. Such a pattern un-
derscores the effectiveness of EPO in improving
LLM’s ability in reasoning tasks. The DPO base-
lines can eventually damage the performance of the
model, and this happens more frequently in math-
ematical reasoning. The DPOy,.;, method also
shows an unstable effect compared to the DPO,
while it can bring a slight improvement in many
cases. RPO, compared to the former two, shows
a more stable improvement effect. However, our
EPO provides a more reliable preference estimation
and constantly brings better performance improve-
ments.

4.5 Further Analysis

4.5.1 Analysis of Generation Parameters and
Length Limitation

Effect of sampling temperature and length lim-
itation. We analyze the effect of sampling tem-
perature in the generation phase and the length
limitation operation in the training phase. Fig. 3(a)
shows the effectiveness of length limitation in con-
tributing to the optimization stability. For GSM8K
datasets, limiting the length of participation in the
responses to the interval between 10 and 20 can
result in better performance. As the sampling tem-
perature grows, the peak is gradually moving to
the right. We consider this effect to be due to the
increasing variety of responses that would decrease
the instability of responses.

Effect of sampling number and length limita-
tion. We analyze the effect of sampling number



Table 2: Overall results on the math tasks in comparison with four base models. We report the accuracy of CoT
Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result Post Methods
RFT DPO DPOpstern  RPO  Step-DPO  EPO
GSM8K 50.03 53.27 50.83 49.07 51.85 51.70 53.92
Llama3-8B
MetaMath, 77.25 76.02 7537 76.12 79.02 79.78 81.03
GSM8K 49.27 47.99 4847 48.53 50.09 51.83 54.70
Llama2-13B —
MetaMath, 69.82 68.38  67.39 68.46 71.19 70.27 73.11
GSM8K 75.59 73.02 73.85 72.93 76.02 76.25 78.23
Qwen2.5-7B
MetaMath, 82.03 81.32 81.19 80.37 81.85 82.24 84.08
. GSMSK 41.84 41.74  39.57 38.89 41.48 43.25 45.40
Mistral-7B
MetaMath, 70.05 70.15  68.01 68.29 71.72 71.29 74.72

Table 3: Overall results on the Commonsense tasks in comparison with 4 base models. We report the accuracy of
CoT Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Post Methods
Base Model | Datasets SFT Result RFT  DPO DPOpsn RPO  StepDPO  EFO
ARC-Easy 81.31 81.24 83.52 81.45 82.73 82.92 84.10
Llama3-8B ARC-Challenge 52.98 56.56 54.77 55.02 54.88 53.05 55.74
MathQA 52.16 53.75 5129 50.77 52.75 52.03 55.37
SociallQA 75.17 7182 77.39 76.58 77.12 75.47 78.75
ARC-Easy 82.28 82.07 82.74 82.93 83.20 83.31 84.35
ARC-Challenge 57.93 62.62 61.60 62.07 63.99 64.72 64.87
Llama2-13B
MathQA 44.62 47.07 38.22 43.37 45.31 45.93 46.91
SociallQA 74.14 7455 78.50 77.58 77.36 77.46 79.86
ARC-Easy 91.03 89.30  90.52 90.33 91.86 91.97 92.15
ARC-Challenge 84.55 83.92 8549 86.14 84.72 86.49 87.28
Qwen2.5-7B
MathQA 67.67 68.25 66.92 67.64 68.75 68.30 68.96
SociallQA 77.02 76.84 77.31 76.32 77.95 78.37 78.94
ARC-Easy 74.47 72.83  74.83 75.05 78.30 78.33 78.94
Mistral-7B ARC-Challenge 60.45 62.71 63.84 60.03 62.97 63.45 64.73
MathQA 52.09 5236 50.83 51.95 55.70 57.92 58.38
SociallQA 74.10 7437 76.30 75.58 76.15 75.33 78.05
in the generation phase and the length limitation  4.5.3 Effects of Sampling Distribution on

operation in the training phase. As shown in Fig.
3(b), with the increase of the sampling number, the
performance increases for the length limitation of
less than 20. This result indicates that our EPO es-
timates the preference distribution more accurately
as the number of samples increases. When the
length limitation is increased, this benefit becomes
unstable.

4.5.2 Effect of EPO from the Training Set
Perspective

Considering that all the self-improving methods
can more effectively utilize the training set com-
pared to simple SFT, we analyze the performance
of our EPO in comparison with baselines from the
perspective of the training set. We apply an N=5
inference on GSMSK for each trained model with
different methods. Taking the leftmost bar (SFT)
in Fig. 4 as the reference, we can observe that EPO
increases the probability of the model responding
correctly (i.e., increased number of the "5" seg-
ments and decreased number of the "0" segments)
most. In fact, EPO drives the increase of the num-
ber of all-correct generations from 2441 to 3253,
while DPO and RPO even drive it to decrease.

Training Result

Table 4: Effect of sampling distribution on DPO. "High-
est / Lowest Prob" represents the selection of the re-
sponses with the highest / lowest probabilities

Base Model | Random Highest Prob Lowest Prob
Llama3-8B 54.05 53.25(-0.80)  51.37(-2.68)
Llama2-13B 54.96 54.61(-0.35)  50.58(-4.38)

As we utilize the expectation of a sampling pro-
cess to estimate the preference in EPO, the sam-
pling distribution (i.e. the samples in groups) can
affect the final optimization direction. Here we
present an analysis of the choice of responses for
EPO. Firstly, we apply an N=30 generation on
GSMS8K with T=0.7. Then we present three differ-
ent methods to select 15 responses for each prompt:
randomly selecting, selecting the responses with
the highest probabilities, and selecting the re-
sponses with the lowest probabilities. We perform
this analysis on two base LLMs: Llama3-*B and
Llama2-13B. As shown in Table 4, the randomly
selecting approach presents the best performance,
and selecting with the lowest probabilities shows
a poor performance. This implies that when se-
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Figure 3: Analysis of hyperparameters. The analysis experiments are conducted on GSMS8K for Llama2-13B. The
sampling number for the experiments in (a) is set to 10, and the temperature for the experiments in (b) is set to 0.7.
The blue dashed line represents the performance of DPO utilizing the length-limitation method.
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Figure 4: We calculate the number of correct responses
for each query in an N=5 generation for each method on
GSMSK, using Llama2-13B as base LLM. The different
colors reflect different numbers of correct responses.
The length of the bar represents the number of prompts.

lecting sample groups, it is necessary to follow a
true distribution that guides a correct optimization
direction, otherwise optimization deviations may
occur, leading to poor performance.

5 Related Work

Despite the success of instruction tuning on
LLMs which has shown a great zero-shot perfor-
mance (Chung et al., 2024; Mishra et al., 2021;
Sanh et al., 2021), preference optimization has
demonstrated its great effectiveness in aligning
LLMs with humans (Bai et al., 2022). As reinforce-
ment Learning with Human Feedback (RLHF) (Bai
et al., 2022) is a complex and often unstable proce-
dure (Pal et al., 2024), DPO (Rafailov et al., 2024)
has been proposed as a more stable and compu-
tationally lightweight algorithm with no need for
extra reward function training.

Reasoning ability is important for LLMs in prac-
tice. Let us take mathematical reasoning as an
example. To make a stronger math-reasoning
model, previous studies have focused on training
the base model on larger datasets of better qual-

ity (Yuanzhe Pang et al., 2024; Yu et al., 2023).
However, it is well-recognized that creating large-
scale and better-quality training samples is chal-
lenging and expensive.

The use of preference learning to improve the
LLM’s reasoning ability has attracted increas-
ing attention, while also facing certain problems.
DPOP (Pal et al., 2024) enhances the supervision
of the positive end in DPO by adjusting the loss
function. Iterative RPO (Yuanzhe Pang et al., 2024)
presents a similar loss function in a self-improving
scenario without the SFT phase. Step-DPO (Lai
et al., 2024; Lu et al., 2024) takes extra effort to
create step-wise paired data and utilizes methods
that are similar to vanilla DPO. However, these
methods do not solve the problem of preference
estimation of pair-wise optimization, thus gaining
little improvement.

6 Conclusions and Future Work

In this paper, we propose an Expectation Preference
Optimization (EPO) method that accepts pairs of re-
sponse groups for preference learning. Compared
to the existing pairwise preference optimization
approaches, our EPO method can more reliably es-
timate the preference distribution, especially when
facing complicated reasoning tasks. We further de-
sign a self-improving framework, in which EPO
can be effectively leveraged to improve the rea-
soning ability of LLMs. Experimental results on
various reasoning tasks and datasets demonstrate
the superior performance of our EP

For future work, we plan to explore other reason-
able methods (e.g., adding weights on responses)
to better estimate the preferences based on EPO.



7 Limitations

Our paper presents a simple and practical method
to improve the capability of LLMs in any reasoning
task. However, the theory of EPO is not confined
to reasoning tasks. Our intuition is to replace a
single sample with an expectation in the Bradley-
Terry model. Thus EPO can also used in alignment
tasks. However, we have not found a proper way to
calculate the expectation in alignment tasks since
in reasoning tasks the answer to a query is binary
(i.e., correct or incorrect) while it is not in align-
ment tasks. Finding a proper method to calculate
the expectation in alignment tasks can be a more
comprehensive demonstration of the superiority of
EPO theory.

8 Discussion of Ethical Considerations

Our proposed methods are used to improve the
capabilities of LLMs. Though we mainly utilize it
in reasoning tasks, it can also be used in other tasks
which depends on the purpose of its user. On the
other hand, using EPO training LLMs may cause an
environmental impact as all other training methods
do.

For the permissions of our used artifact,
each of our used models (Llama2-13B, Llama2-
7B, Mistral-7B, Qwenl1.5-7B) and the datasets
(GSMSK, ARC, MathQA) are open-sourced and
can be found from Github or Huggingface. Sec-
ondly, all the models can not be used commercially.

We utilize all the models and datasets consis-
tent with their intended use. We do not provide
extra data. Our construction of self-training data us-
ing the LLMs presents the answers to the datasets,
which is the purpose LLMs are designed.

The datasets we used contain no information that
names or uniquely identifies individual people or
offensive content.

We use Generative Al only for writing correc-
tion.
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A Used Prompt

A.1 Prompt for Yi to generate rationales

user: Please answer the following single-choice
question by presenting the thinking process and
presenting the answer. 1. The question has an
answer. 2. The thinking process part is a coherent
paragraph. 3. Present the answer in the end of the
response which is in the format of The answer is
A/B/C/D.:

Question:

[present question here]

Choice:

[present choice here]

assistant:

A.2 Prompt for base models to generate CoT
answer for GSM8K

Below is an instruction that describes a task.
"Write a response that appropriately completes
the request.
Instruction:
[present query here]
Response:

A.3 Prompt for base models to generate CoT
answer for Commonsense choosing task

Below is an instruction that describes a task.

Write a response that appropriately completes
the request.

Instruction:

Pick the most correct option to answer the fol-
lowing question.

[present question here]

A .[present choice here]

B.[present choice here]

C.[present choice here]

D.[present choice here]

Response:

A.4 Prompt for analysis the False Positive
Samples

You are an accurate answer evaluator. Your task
is to determine whether a candidate answer is gen-
uinely correct based on the question I provide and
the reference answer. Key notes:

1. The reference answer is always correct, and
the candidate answer to be evaluated will always
have the correct final result.

2. You must evaluate whether the reasoning pro-
cess of the candidate answer is correct.
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3. The candidate answer does not need to match
the reference answer verbatim—it only needs to be
logically self-consistent.

4. If the candidate answer contains calculation
errors, formula mistakes, or flawed logic (even if
the final result matches the reference answer), it
must be judged as incorrect.

5. Format your response strictly as:

{"conclusion": "correct/incorrect"}

Question

[present question here]

Reference Answer

[present reference answer here]

Candidate Answer

[present answer here]

B The Time Cost of EPO
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Figure 5: Analysis of training cost of EPO and baseline
(i.e. DPO) under different N along with their perfor-
mance.

The training cost involves time cost and mem-
ory costs. For the former, taking the sample of 20
responses per prompt, EPO requires the LLM to
process an input that is 10 times larger than other
methods (20 to 2). Benefiting from CUDA’s paral-
lel strategy for tensors, the extra time cost we need
to bear is smaller than the linear estimation. For
the latter, the extra GPU memory cost by a larger
input tensor is much smaller than that is required
for LLM training.

We present the relevance of training costs and
the performance of our EPO. As it is shown in
Fig 5, EPO’s training time is less than 3 times of
the other methods (while N is less than 30), while
requiring a small amount of extra GPU memory.



C Proof for optimal solution to EPO

C.1 Proof for optimal solution to EPO
We construct our proof following the previous works(Peters and Schaal, 2007; Rafailov et al., 2024).

From Eq. 2, our optimizing target is:
max Byp,ymr (2, y)] = ADk [7(y | 2)[|mret (y | )] (11)

Notably, we can derive as:

mEXEmNDyNﬂ[T(x, y)] — BDxkr, ['/T(y ’ x)H'”ref(y ‘ x)]
”(y‘@}

— mgXEINDEyNﬂ(ylw) [T(‘T’y) — Blog Tret (Y | )
re

. m(y | x) 1

= rr;ln Ea:NDEyNﬂ(y|x) |:10g m - Br(m, y):| (12)
m(y | =)

2wy Teet (y | ) exp (%T(wvy))

= H;’in EQJNDEyNﬂ(y|CC) log — log Z(l‘)

where we define as :
1
Z(z) = Zﬂ'ref (y | x)exp Br(m,y) (13)
y
Notably, Z(x) is a function of only = and m,.¢. We can additionally define:

w%y\a»——Zi;)wmdy\a»exp(;y«xﬁﬁ) (14)

As is a probability distribution which holds », 7*(y | ) = 1. Using the Z(z), we can re-organize the
Eq. 11 as:

. m(y | x
m;nIEpr {Eywﬂ(y,@) [log 77*((y||9:))] — log Z(x)} =

min B, p [Dkr, (7(y [ 2)[|7"(y | 2)) — log Z()]

(15)

Since Z(z)does not depend on 7, the optimal solution is achieved by the policy that minimizes the first
term. The KL divergence is minimized in the situation where two distributions are equal. Thus we have
the optimal solution:

1 1
=7" = —— — 16
m(y | z) =7"(y | ) Z(w)mef(y | ) exp (57“(3:, y)> (16)
C.1.1 Deriving the EPO Objective Under the Bradley-Terry Model

To derive the EPO objective under the Bradley-Terry preference model, we have the origin Bradley-Terry
Model:

) B 1
P (Gum G = o By I @ 9] = By I (5,30 an

In Eq. 6, we have:
r(z,y) —Blog%%—ﬂlogZ(a;) (18)
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Substituting Eq. 18 into Eq. 17, we can get:

1
(G = G =
P o) =3 + exp (Ey,~q, [ (@, 43)] — Ey,nc [ (2, 10)])
_ 1
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(19)
Which leads to Eq. 7.

D Implementation Details

D.1 Baselines

In this section, we present the details of the baselines we used compared to EPO. Notably, we are using
different training methods in the self-training scenario. Thus all of our baselines start from the SFT model:

SFT presents the mgpr which is the LLM fine-tuned on typical rationales for specific tasks. It is used
as the initialization of each self-training method below and our EPO.

Beyond the SFT model, we utilize several self-training methods that do not introduce additional
supervising information as our EPO does. The below methods are all beyond SFT model and the inference
responses D sampled from SFT model and the certain dataset:

(SFT +) RFT presents the model fine-tuned on the correct generated responses based on g7, referring
to the RFT method. Notably, we get a subset of D using the correction of responses as the filtering signal,
denoted as 153 7. RFT are fine-tuned on D U D rrer(Yuan et al., 2023). This method stands for the
performance of fine-tuning in the self-improving scenario.

(SFT +) DPO presents the fine-tuned model using typical DPO on the pair-wise preference samples
which are randomly chosen once for each prompt. Notably, we sample one correct response and one
incorrect response for each prompt in D U D(Yuan et al., 2023) randomly. Then we apply DPO to this
dataset. It has the same optimizing steps as our EPO.

(SFT +) DPOy.}, presents the model using DPO training on pairs selected as many as possible to the
prompt (while ensuring the single utilization of each response) in G; and G, for each prompt. Notably,
for each prompt in D U 25, we sample min(N UMright, N UMayrong) Preference pairs as N UMpight and
Numrong represent the number of correct and incorrect responses. It shows the performance of using
batched DPO compared to EPO.

(SFT +) RPO represents the model using the RPO algorithm (combining DPO loss with an NLL loss
on the preferred response) on the pair-wise preference samples same as SFT + DPO. Notably, the RPO
objective is represented as:

Mo (¢, yi* | =)
— 1 1 1Y
ERPO ogo <B og Mt (Cw yw ':E’L)

10 9%

— pBlo

¢ My (Clz‘7y§ | xl) B log My (¢, y;* | @i)
My (¢, yp | i) i+ |y

(SFT +) Step-DPO represents the model using the Step-DPO algorithm(Lai et al., 2024) on the step-
level pair-wise preference samples. We construct the step-level samples for each wrong responses using
in (SFT +) DPO.
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D.2 Hyperparameters

For the SFT training setups, we train SFT models
using the following hyperparameters: learning rate
of 2e-5, batch size of 64, max sequence length of
2048, and cosine learning rate schedule with 10%
warmup steps for 3 epochs. All the models are
trained with an Adam optimizer (Kingma and Ba,
2017). This setting is also the same for RFT.

For the preference optimization DPO, DPOyych,,
RPO and EPO. We apply a search on the learning
rate, training epoch, and additional hyperparame-
ters. The search range is presented as below:

D.3 Search range of Baselines

Table 5: Hyperparameter search range.

Methods Search Range
B €[0.05,01,05,1.0]
DPO Ir € [le—7,2¢ — 7,5¢ — 7, le — 6]
B €1[0.05,01,05,1.0]
Ir €[le—"7,2e —7,5e — 7,1e — 6]
B €1[0.05,01,05,1.0]
RPO Ir € [le — 7,2¢ — 7,5e — 7, le — 6]
a €1[0.25,0.5,1,2]
B €1[0.05,0.1,0.5,1.0]
EPO Ir € le—"7,2e —7,5e —7,1e — 6]
v €1[0.1,0.2,0.5,1.0]

DPObatch

Notably, we are referring the papers (Rafailov
et al., 2024; Yuanzhe Pang et al., 2024; Meng et al.,
2024) to set the search ranges. The length limita-
tion of £ PO is tuned from 5 to 100.

D.4 Implement Details

The experiments are carried out on 16 A100-80G
GPUs with a Linux system. For all methods, we
search the hyperparameters as we present the de-
tails in the Appendix. We train 3 epochs in each set-
ting and report the performance of the best check-
point. For the response generation phase in the
self-improving scenario, we use the sample num-
ber N = 20 with temperature T = 0.7 following
(Yuanzhe Pang et al., 2024). We use Pytorch' and
Huggingface?® as tools for the implementation. For
preference optimization, we run our experiments
based on #I°. All the generations were done us-
ing vilm (Kwon et al., 2023)*. The code will be
released on GitHub?.

"https://pytorch.org/
Zhttps://huggingface.co/
3https://github.com/huggingface/trl
*https://github.com/vllm-project/vllm
Shttp://github.com/xxxxxx
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