
Expectation Preference Optimization: Reliable Preference Estimation for
Improving the Reasoning Capability of Large Language Models

Anonymous ACL submission

Abstract

Pairwise preference optimization, such as Di-001
rect Preference Optimization (DPO), was orig-002
inally designed to align large language mod-003
els (LLMs) with human value. It has recently004
been used to improve the supervised fine-tuning005
(SFT) performance of LLMs. Using pairs of006
single samples, DPO estimates the probabil-007
ity distribution of the preferences of picking008
one response over another. However, in tasks009
that involve more complicated preferences (e.g.,010
reasoning tasks) than those in the human value011
alignment task, this sampling method is likely012
to bring deviations from the ground-truth dis-013
tribution. To solve the problem, extra efforts014
(e.g., external annotations or amendment of the015
loss function) are often required. In this pa-016
per, we hypothesize that the preferences can be017
better estimated through a multi-sampling pro-018
cess. Accordingly, we propose an Expectation019
Preference Optimization (EPO) algorithm that020
takes pairs of sample groups, instead of pairs021
of single samples as in DPO, for preference022
learning. Compared to pairwise DPO, the pro-023
posed EPO tends to produce more reliable pref-024
erence estimations. Applying different prefer-025
ence optimization methods in a self-training026
paradigm, we have conducted extensive experi-027
ments on various reasoning benchmarks. The028
results show that our EPO approach outper-029
forms a range of baseline approaches in terms030
of zero-shot accuracy on all benchmarks.031

1 Introduction032

Large language models (LLMs), through super-033

vised fine-tuning (SFT), have shown remarkable034

abilities on various reasoning tasks such as mathe-035

matical reasoning. However, it is well recognized036

that the effectiveness of SFT can reach its upper037

limit depending on the scale and quality of train-038

ing samples, which are often limited and expensive039

to construct. Thus, an important question arises:040

with the same SFT training data, how can we fur-041

ther improve the SFT performance? To tackle the042

problem, pairwise preference optimization, which 043

was originally developed to align with human val- 044

ues (e.g., harmlessness or honesty), has become a 045

widely chosen solution. 046

Direct Preference Optimization (DPO) (Rafailov 047

et al., 2024) is one of the most popular preference- 048

based methods due to its simplicity and effective- 049

ness compared to Reinforcement Learning with 050

Human Feedback (RLHF) (Bai et al., 2022). DPO 051

samples the preferred and dis-preferred responses 052

once in one updating step on a prompt, and then 053

uses the Bradley-Terry (BT) model to update the 054

LLM with an implicit reward function that models 055

the preference of picking the preferred sample over 056

the dis-preferred one. As can be naturally applied 057

in the self-improving approaches that alleviate the 058

issue of data construction (Yuan et al., 2024; Sun 059

et al., 2023), using DPO in reasoning tasks has 060

shown a broad prospect. 061

The selection of pairwise training data is key 062

in the utilization of DPO. The preferred and dis- 063

preferred responses on a prompt represent an es- 064

timation of the correct preference, which in the 065

training process guides the optimization direc- 066

tion (Rafailov et al., 2024). Different from the 067

human value alignment task, in most reasoning 068

tasks, the direction that the model needs to opti- 069

mize can be more multifaceted. For example, in 070

mathematical reasoning, the error of an answer can 071

be attributed to various aspects, such as calculation, 072

formula, and entity errors. Thus, directly using 073

DPO on such reasoning tasks, especially when us- 074

ing correctness as the selection criterion for pairs 075

of samples, would be insufficient to reflect the mul- 076

tifaceted nature of the reasoning tasks and result in 077

poor performance (Lu et al., 2024; Lai et al., 2024). 078

As shown in Fig. 1 (the red box on the left-hand 079

side), sampling a pair of single responses for opti- 080

mization, with one reporting the correct answer and 081

the other on the opposite, may lead to a wrong di- 082

rection of preference estimation that deviates from 083
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the other correct responses (marked with crying084

faces).085

Various approaches have been developed to086

solve this problem. Orca-Math (Mitra et al., 2024)087

applies preference optimization on a fine-tuned088

LLM using an augmented dataset that is con-089

structed using GPT4 to select the pairs of responses,090

while Brain (Chen et al., 2024a) uses human anno-091

tations. DPOP (Pal et al., 2024) tries to solve the un-092

stable optimization direction of pairwise optimiza-093

tion by enhancing the supervision of preferred ends094

in changing the loss function of DPO. Step-DPO095

(Lai et al., 2024) uses a large amount of sampling096

responses and boosts the training data into large097

step-level pairs. Iterative RPO (Yuanzhe Pang et al.,098

2024) uses a similar form of loss and applies it to099

a self-training structure. However, these methods100

do not fundamentally solve the problem of unsta-101

ble preference modeling when facing complicated102

preferences.103

In this paper, we explore a different perspective104

by leveraging more samples in preference estima-105

tion. Starting with the basic Bradley-Terry (BT)106

model, which is the basis of pairwise training, we107

hypothesize that the preferences in the BT model108

can be better estimated through a weighted multi-109

sampling process. Specifically, we assume that110

the preferences are not generated by the estima-111

tion of a single response, but by the expectation of112

the response sampling. Under this assumption, we113

propose an Expectation Preference Optimization114

(EPO) approach, a variant of DPO. EPO accepts115

group-wise preference samples, i.e., pairs of sam-116

ple groups, for training, with a length limitation117

operation. EPO estimates the preference by calcu-118

lating the weighted mean of each group. Our EPO119

shares the same objective with DPO and RLHF120

while overcoming the limitation of using only one121

preferred and one dis-preferred response each time.122

As shown in Fig. 1 (right-hand side), EPO makes123

it easier to produce proper preference estimations124

in reasoning tasks.125

Utilizing the proposed EPO, we can simply use126

correctness (i.e., if the sampled responses answer127

the question correctly) as the signal for preference128

construction on reasoning tasks and boost the capa-129

bility of LLMs yet bring no further human annota-130

tions. We apply a self-training algorithm that is de-131

tailed in Section 3.3 which requires no extra annota-132

tions and small cost on data preprocess. After SFT133

on a task-specific reasoning dataset, the target LLM134

generates responses for the input queries. Then we135

divide the responses for each query into two groups. 136

Using EPO on these grouped responses, the opti- 137

mization direction is estimated through multiple 138

samples. Extensive experiments on various rea- 139

soning benchmarks (i.e. GSM8K (Cobbe et al., 140

2021), ARC (Clark et al., 2018), SocialQA (Amini 141

et al., 2019), MathQA (Sap et al., 2019)) across dif- 142

ferent base LLMs (including Llama2-7B, Llama2- 143

13B (Touvron et al., 2023), Qwen1.5-7B (Bai et al., 144

2023), Mistral-7B (Jiang et al., 2023)) show that 145

our EPO constantly improves the performance of 146

SFT models and outperforms other preference opti- 147

mization baselines in the self-training framework. 148

2 Preliminaries 149

Given a large language model that is parameterized 150

by θ, donated as πθ, there are two categories of 151

methods to improve its performance: fine-tuning- 152

based and preference-optimization-based methods. 153

2.1 Fine-Tuning 154

SFT: Given a dataset D = {(xi, yi)}Ni=1, πθ is 155

finetuned with the cross-entropy loss following a 156

typical chain-of-thought rationale yi with respect 157

to the input query xi, resulting in πSFT
θ . 158

RFT: Rejection Sampling Fine-Tuning (RFT) 159

(Yuan et al., 2023) is a training method where πθ 160

is fine-tuned on its own correct generations. After 161

SFT on D, πSFT
θ obtains the ability to perform 162

zero-shot chain-of-thought rationales. Thus we can 163

sample M candidate rationales ˆyi,1, ˆyi,2, · · · ˆyi,M 164

for each query xi. All the rationales together are 165

denoted as D̂ =
{
(xi, ŷi,j)

M
j=1 | (xi, yi) ∈ D

}
. 166

Utilizing a filtering method (e.g. reward model 167

annotation), we can construct D̂RFT as a subset of 168

D̂. The outcome πRFT
θ is trained on the augmented 169

dataset D ∪ D̂RFT based on πθ. 170

2.2 Preference-Optimization 171

RLHF: RLHF (Bai et al., 2022) fits a reward model 172

to pairwise samples of human preferences and then 173

uses Reinforcement Learning to optimize a lan- 174

guage model policy to produce responses that are 175

assigned high reward without drifting excessively 176

far from the original model. Consider an annotated 177

dataset of pairwise samples Dp =
{
xi, y

i
w, y

i
l

}N
i=1

, 178

where xi denotes the ith prompt, yiw and yil respec- 179

tively represent the preferred and dis-preferred re- 180

sponses to xi. RLHF begins by modeling the proba- 181

bility of preferring yiw to yil using the Bradley-Terry 182
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Figure 1: In the latent space of the target LLM, DPO chooses a pair of samples using correctness as the signal. In
more complicated case, as shown in the figure, DPO can result in a wrong estimation of the preference and drive the
LLM to a wrong reward updating direction (i.e., increased reward to the wrong samples and decreased to the correct
samples). On the opposite, EPO considers multi-sampling and can provide a more reliable optimizing direction.

model (Bradley and Terry, 1952), which appoints183

the following probabilistic form:184

p
(
yiw ≻ yil | x

)
= σ

(
r
(
xi, y

i
w

)
− r

(
x, yil

))
(1)185

where σ represents the logistic function and186

r(xi, yi) corresponds to a reward function rϕ (i.e.,187

LLM classifier) that gives the estimation of yi with188

respect to xi according to human preference.189

Then the target model πθ can be trained by the190

feedback from the learned reward function. In gen-191

eral, we formulate the following optimization target192

for this learning process:193

max
πθ

E [rϕ(x, y)]− βDKL [πθ(y | x)∥πref(y | x)]
(2)194

where β is a parameter controlling the deviation195

of the target model πθ from the status when the196

training starts.197

DPO: DPO (Rafailov et al., 2024) shows the198

possibility of keeping the same optimization tar-199

get as RLHF without explicitly training a reward200

function and the implementation of RL. The loss201

function of DPO is presented as below:202

LDPO (πθ;πref) = −E(x,yw,yl)∼D log σ(
β log

πθ (yw | x)
πref (yw | x)

− β log
πθ (yl | x)
πref (yl | x)

) (3)203

Notably, this optimization objective is based on204

a theoretical optimal πθ beyond rU (x, y), which205

enables its equivalence with Eq.2.206

3 Expectation Preference Optimization 207

3.1 An Analysis of Pairwise Preference 208

Optimization 209

Taking DPO as an example, Pairwise Preference 210

Optimization methods accept one preferred sample 211

and one dis-preferred sample as the unit to calculate 212

the loss for updating the reward function. Consid- 213

ering an ideal reward function r̂(x, y) reflects the 214

ground-truth preference, let us assume a sampling 215

of four responses {yα1, yα2, yβ1, yβ2} with respect 216

to the query x, where r̂(x, yαi) > r̂(x, yβi) holds. 217

When an initial reward function rtϕ is optimized 218

on (yα1, yβ1), the optimization directions of yα2 219

and yβ2 are not restricted to follow the ground- 220

truth. The updated rt+1
ϕ may give a wrong estima- 221

tion rt+1
ϕ (x, yα2) < rt+1

ϕ (x, yβ2) while correctly 222

estimating the training pair as rt+1
ϕ (x, yα1) > 223

rt+1
ϕ (x, yβ1), and vice versa. 224

The trigger for this issue is that the sampling 225

of (yα1, yβ1) with respect to the prompt x may be 226

away from the ground-truth preference distribution. 227

Accordingly, the optimization of rtϕ gives wrong 228

guidance on yα2 and yβ2. When the purpose of 229

training is to align with humans, the inconsistency 230

of preference estimation is not so prominent (com- 231

pared to reasoning tasks), so the problem is less 232

significant. However, the reasoning tasks present 233

a different situation. For example, in math reason- 234

ing tasks such as GSM8K, LLMs can make mis- 235

takes for many reasons (e.g., equation calculation 236

errors, incorrect understanding of problems, etc.) 237

and the estimates from different aspects are not in- 238

dependent. Thus the true preference distribution is 239

complicated and varies with the target LLM. 240
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3.2 Expectation Preference Optimization241

Aiming to solve the aforementioned problem242

brought by the single sampling of preference dis-243

tribution in the reasoning tasks, we propose an244

Expectation Preference Optimization (EPO) algo-245

rithm starting from the RLHF pipeline. As we246

have previously mentioned, the reward modelling247

phase of RLHF is based on the BT model. Af-248

ter a single sampling of response pair (y1, y2) for249

a prompt x, we can annotate the responses using250

human labellers or some stronger LLMs. As the251

preferences are presented as yw ≻ yl | x where252

yw, yl ∈ {y1, y2} we can optimize a reward func-253

tion through Eq. 1.254

By estimating preferences through multi-255

sampling, which results in a group of responses256

{yi}Ni=1 for a prompt x, we present the group-wise257

preference form Gw ≻ Gl | x where Gw, Gl ⊆258

{yi}Ni=1. In general, Gw represents the preferred259

group and Gl represents the dis-preferred group.260

We assume that the reward level of Gw and Gl is261

the expectation for all rewards in the group:262

r∗(x,G) = Eyi∼G[r(x, yi)] (4)263

Thus the Bradley-Terry model can be rewritten264

as:265

p∗ (Gw ≻ Gl | x) =
σ (EGl

[r(x, yi)]− EGw [r(x, yi)])
(5)266

EPO objective. Following the derivation pro-267

cess of DPO, we can construct the reward function268

under the optimal solution to Eq. 2 as follows:269

r(x, y) = β log
π̂(y | x)

πref (y | x)
+ β logZ(x) (6)270

where Z(x) =
∑

y πref(y | x) exp
(

1
β r(x, y)

)
271

represents a partial function referring to the previ-272

ous work (Peters and Schaal, 2007; Rafailov et al.,273

2024). Using this re-parameterization of r(x, y),274

Eq. 5 can be formed as below using the optimal275

solution.276

p∗ (Gw ≻ Gl | x) = σ(βPGl
− PGw)

PG = EG[log
π (yi | x)

πref (yi | x)
)]

(7)277

Due to space limitation, we present our proof278

and detailed deriving process in the Appendix.279

We can now formulate a minimum loss function 280

for the target model πθ through this preference 281

function: 282

LR (rϕ,D) = −E(x,Gw,Gl)∼D[logσ(P )] (8) 283

While the sampling model (reference model) pro- 284

vides the group result (i.e. Gw, Gl), we regard the 285

πref (yi | x) as the probability of yi in the expec- 286

tation. In practice, this means that the response 287

with higher probability have a higher impact on 288

the overall optimization direction. Thus, the loss 289

function of EPO can be derived as: 290

LR (rϕ,D) = −E(x,Gw,Gl)∼D

[logσ (βf(Gw, π, πref )− βf(Gl, π, πref ))]

f(G, π, πref ) =

∑
yi∈G πref (yi|x)γ log

π(yi|x)
πref (yi|x)∑

yi∈G πref (yi|x)γ

(9) 291

Notably, this method only calculates an approx- 292

imate expectation, as the sum of probabilities is 293

not 1. Thus we introduce a smoothing coefficient 294

0 < γ ≤ 1, to avoid weights with large variants 295

caused by incomplete calculation of expected devi- 296

ations. 297

A further interpretation of EPO. We here 298

present a brief analysis of EPO. The objective func- 299

tion of EPO is derived from RLHF, which means 300

that we share the same overall optimal solution with 301

RLHF and DPO. As we estimate the preferences 302

through a multi-sampling assumption, EPO has a 303

more reliable implicit reward function compared 304

to the pair-wise DPO, especially in reasoning tasks 305

with complicated preferences. EPO drives the tar- 306

get LLM to have higher probabilities of generating 307

responses in the preferred group and lower proba- 308

bilities of generating responses in the dispreferred 309

group, while ensuring the responses with higher 310

probabilities affect more on the optimization. No- 311

tably, when the sampling number of Gl and Gw is 312

1, EPO becomes a typical DPO algorithm. Theoret- 313

ically, in random sampling, the larger the sampling 314

number, the more accurate the estimation of prefer- 315

ences in line with the ground-truth distribution. 316

Length Limitation Operation. After the brief 317

analysis of the EPO loss function, we introduce 318

an additional module to the EPO algorithm. Pre- 319

vious work (Wang and Zhou, 2024) indicates that 320

the beginning tokens affect most of the decoding 321

(generating) process of an LLM. Considering the 322

subsequent tokens of the responses could adversely 323
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Figure 2: Overview of self-improving approach with EPO

impact the coherence of the model in the optimiz-324

ing process, especially the dis-preferred responses,325

we aim to increase the stability of the EPO opti-326

mization process by limiting the length of samples.327

Specifically, we truncate the responses in Gl328

and Gw and ensure that the length of responses329

is smaller than a preset threshold. Knowing that330

this truncation drops some information from the331

supervised data, we will analyze the effect of this332

operation in our experiments.333

3.3 Self-improve Training approach With334

EPO335

As EPO can provide reliable preference estimation,336

we can simply use correctness (i.e., whether the an-337

swer of sampled response is the same as the answer338

of the target) as signals and boost the capability339

of LLM on the datasets that contains verifiable340

answers (e.g., math datasets). We design a self-341

improve training approach, which is presented in342

Fig 2.343

We start with access to a base LLM πinit and344

data of a verifiable task D = {xi, yi}Ni=1. First,345

we give the model the ability to follow and gen-346

erate rational instructions by applying SFT to347

it. The fine-tuned model is denoted as πSFT .348

Then we generate M different responses for ev-349

ery query in D. We denote all the generated350

responses (Ri) with the original responses yi as351

Daug = {xi, yi, Ri}Ni=1 where Ri = {ri,j}Mj=1.352

In the next step, we generate the group-wise353

preference data from Daug using the correctness of354

generated responses in Ri as the annotation signal.355

Specifically, if a response reports the same answer356

as the typical rationale, it is put in Gw and it is357

put in Gl while it reports a different answer (which358

means it is wrong). The constructed training data359

are presented as follows:360

DEPO = {xi, Gw
i , G

l
i}N

′
i=1 (10)361

where Gw
i ∪Gl

i = Ri ∪ {yi}. Notably, we con-362

struct the preference groups on Ri combining with363

yi, thus for each prompt x the number of candi-364

dates’ correct responses is always greater than 1. 365

As the wrong response of a query does not always 366

exist in the sampling, we drop the triplets in Daug 367

whose Ri contains all correct responses. 368

Applying EPO algorithm on πSFT with DEPO, 369

we can obtain the resultant LLM denoted as πEPO. 370

In general, πEPO is optimized based on the su- 371

pervising information of base dataset D (i.e. the 372

correct answer), and the self-improve training en- 373

sures that the model can have better performance 374

on the fine-tuning dataset. 375

4 Experiments 376

We evaluate the effectiveness of our EPO on two 377

representative reasoning tasks: arithmetic reason- 378

ing and commonsense reasoning. We test four dif- 379

ferent LLMs: Llama3-8B (Dubey et al., 2024), 380

Llama2-13B (Touvron et al., 2023), Qwen2.5- 381

7B (Yang et al., 2024) and Mistral-7B (Jiang et al., 382

2023) as our base LLM model. We mainly evaluate 383

the performance of EPO in the self-improving sce- 384

nario. Notably, we put our Implementation Details 385

in the Appendix D.4. 386

4.1 Datasets and Preprocessing 387

The experiments are carried out on two arithmetic 388

reasoning datasets and three commonsense reason- 389

ing datasets. 390

GSM8K. GSM8K (Cobbe et al., 2021) has been 391

adopted as a benchmark for the mathematical rea- 392

soning skills of LLMs. It contains 7,473 training 393

and 1,319 test problems, and each sample is paired 394

with a rationale that clearly states the final answer. 395

MetaMaths. MetaMath (Yu et al., 2023) 396

is a popular augmentation of GSM8K and 397

MATH (Hendrycks et al., 2020). It contains 240K 398

augmented samples based on GSM8K and 155K 399

samples based on MATH. Notably, for lighter re- 400

sponse generation, we only take 80K augmented 401

GSM8K samples for training. The subset is de- 402

noted as MetaMaths. 403

AI2 Reasoning Challenge (ARC). ARC (Clark 404

et al., 2018) consists of two subsets: ARC-Easy 405
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Table 1: The False Positive Situation.

N 5 10 20 30 50
All Positive 22800 45660 79508 118978 198047
False Positive 804 1634 4252 6921 11884
Proportion 3.52% 3.58% 5.35% 5.82% 6.00%

and ARC-Challenge. To obtain the rationales of406

the queries for SFT, we apply a strong LLM (i.e.,407

Yi-Chat-34B (Young et al., 2024)) to generate typ-408

ical answers. Using the prompt presented in the409

Appendix, we generate a rationale ending with an410

answer statement for each query. After filtering the411

rationales with wrong answers and incorrect format,412

we construct an SFT training set with 1599 sam-413

ples from ARC-Easy and another with 793 samples414

from ARC-Challenge. They are then applied in the415

first SFT phase of the approach. For the generation416

phase, we use the original training set.417

MathQA. MathQA (Amini et al., 2019) con-418

tains 29837 training samples and 2985 test samples.419

Each sample contains a math query, four candidate420

results, a rationale, and a correct answer. We man-421

ually add the answer statements at the end of the422

rationales for SFT.423

SocialIQA. Social IQA (Sap et al., 2019) has424

33410 training samples, each containing a query425

and 3-5 candidate results without rationales, as well426

as 2224 test samples. We utilize the same method427

we use in constructing the ARC SFT dataset to428

generate rationales. Notably, we generate 23624429

samples with one correct rationale each.430

4.2 Baselines431

In the experiments, we compare the proposed self-432

training EPO method (i.e. SFT + EPO) with various433

existing self-training approaches. They are: SFT,434

(SFT +) RFT, (SFT +) DPO, (SFT +) DPObatch,435

(SFT +) RPO, and (SFT +) Step-DPO. We present436

the detailed introduction in the Appendix D.1.437

4.3 Analysis of Misclassification Situation438

Since our experiments are based on the rule-based439

verifier to label the correctness of the sampled re-440

sponses, there could be misclassified samples. For441

True Negative samples, we consider that it either442

gives no answer at the end of the responses or gives443

the wrong formatted answers, which is not the be-444

havior we want the model to learn. For the analysis445

of False Positive samples, we utilize DPSK-Distill-446

Qwen-32B(Guo et al., 2025) to annotate whether447

the positive sampled responses are true positive448

using the prompt given in Appendix A. From Tab.449

1 we can observe that although the proportion of 450

false positive samples increases with the increase 451

of N, it only hovers around a 5% proportion of all 452

positive samples. This can indirectly confirm the 453

effectiveness of our method. 454

4.4 Main Results 455

The main results of our experiments are presented 456

in Tab. 2 and Tab. 3. Remarkably, on the GSM8K 457

benchmark, EPO achieves a 5.43% increase over 458

the SFT model in accuracy on the GSM8K dataset 459

and 3.29% based on the Metasubs dataset for 460

Llama2-13B. This improvement comes to 2.64% 461

and 2.05% for Qwen2.5-7B. As for the Common- 462

sense tasks, EPO brings an increase of 3.58% for 463

Llama3-*B on SocialIQA, 4.47% for Mitral-7B 464

on ARC-Easy, 6.94% for Llama2-13B on ARC- 465

Challenge, and 6.29% for Mistral-7B on MathQA. 466

A cursory examination reveals that our EPO con- 467

sistently outperforms all the preference optimiza- 468

tion baselines across all tasks. Such a pattern un- 469

derscores the effectiveness of EPO in improving 470

LLM’s ability in reasoning tasks. The DPO base- 471

lines can eventually damage the performance of the 472

model, and this happens more frequently in math- 473

ematical reasoning. The DPObatch method also 474

shows an unstable effect compared to the DPO, 475

while it can bring a slight improvement in many 476

cases. RPO, compared to the former two, shows 477

a more stable improvement effect. However, our 478

EPO provides a more reliable preference estimation 479

and constantly brings better performance improve- 480

ments. 481

4.5 Further Analysis 482

4.5.1 Analysis of Generation Parameters and 483

Length Limitation 484

Effect of sampling temperature and length lim- 485

itation. We analyze the effect of sampling tem- 486

perature in the generation phase and the length 487

limitation operation in the training phase. Fig. 3(a) 488

shows the effectiveness of length limitation in con- 489

tributing to the optimization stability. For GSM8K 490

datasets, limiting the length of participation in the 491

responses to the interval between 10 and 20 can 492

result in better performance. As the sampling tem- 493

perature grows, the peak is gradually moving to 494

the right. We consider this effect to be due to the 495

increasing variety of responses that would decrease 496

the instability of responses. 497

Effect of sampling number and length limita- 498

tion. We analyze the effect of sampling number 499
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Table 2: Overall results on the math tasks in comparison with four base models. We report the accuracy of CoT
Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Post Methods

RFT DPO DPObatch RPO Step-DPO EPO

Llama3-8B
GSM8K 50.03 53.27 50.83 49.07 51.85 51.70 53.92
MetaMaths 77.25 76.02 75.37 76.12 79.02 79.78 81.03

Llama2-13B
GSM8K 49.27 47.99 48.47 48.53 50.09 51.83 54.70
MetaMaths 69.82 68.38 67.39 68.46 71.19 70.27 73.11

Qwen2.5-7B
GSM8K 75.59 73.02 73.85 72.93 76.02 76.25 78.23
MetaMaths 82.03 81.32 81.19 80.37 81.85 82.24 84.08

Mistral-7B
GSM8K 41.84 41.74 39.57 38.89 41.48 43.25 45.40
MetaMaths 70.05 70.15 68.01 68.29 71.72 71.29 74.72

Table 3: Overall results on the Commonsense tasks in comparison with 4 base models. We report the accuracy of
CoT Pass@1 greedy sampling. The best performance is in bold and the second-best is underlined.

Base Model Datasets SFT Result
Post Methods

RFT DPO DPObatch RPO Step-DPO EPO

Llama3-8B

ARC-Easy 81.31 81.24 83.52 81.45 82.73 82.92 84.10
ARC-Challenge 52.98 56.56 54.77 55.02 54.88 53.05 55.74
MathQA 52.16 53.75 51.29 50.77 52.75 52.03 55.37
SocialIQA 75.17 71.82 77.39 76.58 77.12 75.47 78.75

Llama2-13B

ARC-Easy 82.28 82.07 82.74 82.93 83.20 83.31 84.35
ARC-Challenge 57.93 62.62 61.60 62.07 63.99 64.72 64.87
MathQA 44.62 47.07 38.22 43.37 45.31 45.93 46.91
SocialIQA 74.14 74.55 78.50 77.58 77.36 77.46 79.86

Qwen2.5-7B

ARC-Easy 91.03 89.30 90.52 90.33 91.86 91.97 92.15
ARC-Challenge 84.55 83.92 85.49 86.14 84.72 86.49 87.28
MathQA 67.67 68.25 66.92 67.64 68.75 68.30 68.96
SocialIQA 77.02 76.84 77.31 76.32 77.95 78.37 78.94

Mistral-7B

ARC-Easy 74.47 72.83 74.83 75.05 78.30 78.33 78.94
ARC-Challenge 60.45 62.71 63.84 60.03 62.97 63.45 64.73
MathQA 52.09 52.36 50.83 51.95 55.70 57.92 58.38
SocialIQA 74.10 74.37 76.30 75.58 76.15 75.33 78.05

in the generation phase and the length limitation500

operation in the training phase. As shown in Fig.501

3(b), with the increase of the sampling number, the502

performance increases for the length limitation of503

less than 20. This result indicates that our EPO es-504

timates the preference distribution more accurately505

as the number of samples increases. When the506

length limitation is increased, this benefit becomes507

unstable.508

4.5.2 Effect of EPO from the Training Set509

Perspective510

Considering that all the self-improving methods511

can more effectively utilize the training set com-512

pared to simple SFT, we analyze the performance513

of our EPO in comparison with baselines from the514

perspective of the training set. We apply an N=5515

inference on GSM8K for each trained model with516

different methods. Taking the leftmost bar (SFT)517

in Fig. 4 as the reference, we can observe that EPO518

increases the probability of the model responding519

correctly (i.e., increased number of the "5" seg-520

ments and decreased number of the "0" segments)521

most. In fact, EPO drives the increase of the num-522

ber of all-correct generations from 2441 to 3253,523

while DPO and RPO even drive it to decrease.524

4.5.3 Effects of Sampling Distribution on 525

Training Result 526

Table 4: Effect of sampling distribution on DPO. "High-
est / Lowest Prob" represents the selection of the re-
sponses with the highest / lowest probabilities

Base Model Random Highest Prob Lowest Prob
Llama3-8B 54.05 53.25(-0.80) 51.37(-2.68)
Llama2-13B 54.96 54.61(-0.35) 50.58(-4.38)

As we utilize the expectation of a sampling pro- 527

cess to estimate the preference in EPO, the sam- 528

pling distribution (i.e. the samples in groups) can 529

affect the final optimization direction. Here we 530

present an analysis of the choice of responses for 531

EPO. Firstly, we apply an N=30 generation on 532

GSM8K with T=0.7. Then we present three differ- 533

ent methods to select 15 responses for each prompt: 534

randomly selecting, selecting the responses with 535

the highest probabilities, and selecting the re- 536

sponses with the lowest probabilities. We perform 537

this analysis on two base LLMs: Llama3-*B and 538

Llama2-13B. As shown in Table 4, the randomly 539

selecting approach presents the best performance, 540

and selecting with the lowest probabilities shows 541

a poor performance. This implies that when se- 542
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(a) (b)

Figure 3: Analysis of hyperparameters. The analysis experiments are conducted on GSM8K for Llama2-13B. The
sampling number for the experiments in (a) is set to 10, and the temperature for the experiments in (b) is set to 0.7.
The blue dashed line represents the performance of DPO utilizing the length-limitation method.

Figure 4: We calculate the number of correct responses
for each query in an N=5 generation for each method on
GSM8K, using Llama2-13B as base LLM. The different
colors reflect different numbers of correct responses.
The length of the bar represents the number of prompts.

lecting sample groups, it is necessary to follow a543

true distribution that guides a correct optimization544

direction, otherwise optimization deviations may545

occur, leading to poor performance.546

5 Related Work547

Despite the success of instruction tuning on548

LLMs which has shown a great zero-shot perfor-549

mance (Chung et al., 2024; Mishra et al., 2021;550

Sanh et al., 2021), preference optimization has551

demonstrated its great effectiveness in aligning552

LLMs with humans (Bai et al., 2022). As reinforce-553

ment Learning with Human Feedback (RLHF) (Bai554

et al., 2022) is a complex and often unstable proce-555

dure (Pal et al., 2024), DPO (Rafailov et al., 2024)556

has been proposed as a more stable and compu-557

tationally lightweight algorithm with no need for558

extra reward function training.559

Reasoning ability is important for LLMs in prac-560

tice. Let us take mathematical reasoning as an561

example. To make a stronger math-reasoning562

model, previous studies have focused on training563

the base model on larger datasets of better qual-564

ity (Yuanzhe Pang et al., 2024; Yu et al., 2023). 565

However, it is well-recognized that creating large- 566

scale and better-quality training samples is chal- 567

lenging and expensive. 568

The use of preference learning to improve the 569

LLM’s reasoning ability has attracted increas- 570

ing attention, while also facing certain problems. 571

DPOP (Pal et al., 2024) enhances the supervision 572

of the positive end in DPO by adjusting the loss 573

function. Iterative RPO (Yuanzhe Pang et al., 2024) 574

presents a similar loss function in a self-improving 575

scenario without the SFT phase. Step-DPO (Lai 576

et al., 2024; Lu et al., 2024) takes extra effort to 577

create step-wise paired data and utilizes methods 578

that are similar to vanilla DPO. However, these 579

methods do not solve the problem of preference 580

estimation of pair-wise optimization, thus gaining 581

little improvement. 582

6 Conclusions and Future Work 583

In this paper, we propose an Expectation Preference 584

Optimization (EPO) method that accepts pairs of re- 585

sponse groups for preference learning. Compared 586

to the existing pairwise preference optimization 587

approaches, our EPO method can more reliably es- 588

timate the preference distribution, especially when 589

facing complicated reasoning tasks. We further de- 590

sign a self-improving framework, in which EPO 591

can be effectively leveraged to improve the rea- 592

soning ability of LLMs. Experimental results on 593

various reasoning tasks and datasets demonstrate 594

the superior performance of our EP 595

For future work, we plan to explore other reason- 596

able methods (e.g., adding weights on responses) 597

to better estimate the preferences based on EPO. 598
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7 Limitations599

Our paper presents a simple and practical method600

to improve the capability of LLMs in any reasoning601

task. However, the theory of EPO is not confined602

to reasoning tasks. Our intuition is to replace a603

single sample with an expectation in the Bradley-604

Terry model. Thus EPO can also used in alignment605

tasks. However, we have not found a proper way to606

calculate the expectation in alignment tasks since607

in reasoning tasks the answer to a query is binary608

(i.e., correct or incorrect) while it is not in align-609

ment tasks. Finding a proper method to calculate610

the expectation in alignment tasks can be a more611

comprehensive demonstration of the superiority of612

EPO theory.613

8 Discussion of Ethical Considerations614

Our proposed methods are used to improve the615

capabilities of LLMs. Though we mainly utilize it616

in reasoning tasks, it can also be used in other tasks617

which depends on the purpose of its user. On the618

other hand, using EPO training LLMs may cause an619

environmental impact as all other training methods620

do.621

For the permissions of our used artifact,622

each of our used models (Llama2-13B, Llama2-623

7B, Mistral-7B, Qwen1.5-7B) and the datasets624

(GSM8K, ARC, MathQA) are open-sourced and625

can be found from Github or Huggingface. Sec-626

ondly, all the models can not be used commercially.627

We utilize all the models and datasets consis-628

tent with their intended use. We do not provide629

extra data. Our construction of self-training data us-630

ing the LLMs presents the answers to the datasets,631

which is the purpose LLMs are designed.632

The datasets we used contain no information that633

names or uniquely identifies individual people or634

offensive content.635

We use Generative AI only for writing correc-636

tion.637
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A Used Prompt887

A.1 Prompt for Yi to generate rationales888

user: Please answer the following single-choice889

question by presenting the thinking process and890

presenting the answer. 1. The question has an891

answer. 2. The thinking process part is a coherent892

paragraph. 3. Present the answer in the end of the893

response which is in the format of T̈he answer is894

A/B/C/D.̈.895

Question:896

[present question here]897

Choice:898

[present choice here]899

assistant:900

A.2 Prompt for base models to generate CoT901

answer for GSM8K902

Below is an instruction that describes a task.903

"Write a response that appropriately completes904

the request.905

Instruction:906

[present query here]907

Response:908

A.3 Prompt for base models to generate CoT909

answer for Commonsense choosing task910

Below is an instruction that describes a task.911

Write a response that appropriately completes912

the request.913

Instruction:914

Pick the most correct option to answer the fol-915

lowing question.916

[present question here]917

A.[present choice here]918

B.[present choice here]919

C.[present choice here]920

D.[present choice here]921

Response:922

A.4 Prompt for analysis the False Positive923

Samples924

You are an accurate answer evaluator. Your task925

is to determine whether a candidate answer is gen-926

uinely correct based on the question I provide and927

the reference answer. Key notes:928

1. The reference answer is always correct, and929

the candidate answer to be evaluated will always930

have the correct final result.931

2. You must evaluate whether the reasoning pro-932

cess of the candidate answer is correct.933

3. The candidate answer does not need to match 934

the reference answer verbatim—it only needs to be 935

logically self-consistent. 936

4. If the candidate answer contains calculation 937

errors, formula mistakes, or flawed logic (even if 938

the final result matches the reference answer), it 939

must be judged as incorrect. 940

5. Format your response strictly as: 941

{"conclusion": "correct/incorrect"} 942

Question 943

[present question here] 944

Reference Answer 945

[present reference answer here] 946

Candidate Answer 947

[present answer here] 948

B The Time Cost of EPO 949

Figure 5: Analysis of training cost of EPO and baseline
(i.e. DPO) under different N along with their perfor-
mance.

The training cost involves time cost and mem- 950

ory costs. For the former, taking the sample of 20 951

responses per prompt, EPO requires the LLM to 952

process an input that is 10 times larger than other 953

methods (20 to 2). Benefiting from CUDA’s paral- 954

lel strategy for tensors, the extra time cost we need 955

to bear is smaller than the linear estimation. For 956

the latter, the extra GPU memory cost by a larger 957

input tensor is much smaller than that is required 958

for LLM training. 959

We present the relevance of training costs and 960

the performance of our EPO. As it is shown in 961

Fig 5, EPO’s training time is less than 3 times of 962

the other methods (while N is less than 30), while 963

requiring a small amount of extra GPU memory. 964
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C Proof for optimal solution to EPO 965

C.1 Proof for optimal solution to EPO 966

We construct our proof following the previous works(Peters and Schaal, 2007; Rafailov et al., 2024). 967

From Eq. 2, our optimizing target is: 968

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)] (11) 969

Notably, we can derive as: 970

max
π

Ex∼D,y∼π[r(x, y)]− βDKL [π(y | x)∥πref(y | x)]

= max
π

Ex∼DEy∼π(y|x)

[
r(x, y)− β log

π(y | x)
πref(y | x)

]
= min

π
Ex∼DEy∼π(y|x)

[
log

π(y | x)
πref(y | x)

− 1

β
r(x, y)

]

= min
π

Ex∼DEy∼π(y|x)

log π(y | x)
1

Z(x)πref(y | x) exp
(

1
β r(x, y)

) − logZ(x)


(12) 971

where we define as : 972

Z(x) =
∑
y

πref (y | x) exp
(
1

β
r(x, y)

)
(13) 973

Notably, Z(x) is a function of only x and πref . We can additionally define: 974

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(14) 975

As is a probability distribution which holds
∑

y π
∗(y | x) = 1. Using the Z(x), we can re-organize the 976

Eq. 11 as: 977

min
π

Ex∼D

[
Ey∼π(y|x)

[
log

π(y | x)
π∗(y | x)

]
− logZ(x)

]
=

min
π

Ex∼D [DKL (π(y | x)∥π∗(y | x))− logZ(x)]
(15) 978

Since Z(x)does not depend on π, the optimal solution is achieved by the policy that minimizes the first 979

term. The KL divergence is minimized in the situation where two distributions are equal. Thus we have 980

the optimal solution: 981

π(y | x) = π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
(16) 982

C.1.1 Deriving the EPO Objective Under the Bradley-Terry Model 983

To derive the EPO objective under the Bradley-Terry preference model, we have the origin Bradley-Terry 984

Model: 985

p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw [r (x, yi)])

(17) 986

In Eq. 6, we have: 987

r(x, y) = β log
π̂(y | x)

πref (y | x)
+ β logZ(x) (18) 988
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Substituting Eq. 18 into Eq. 17, we can get:989

p∗ (Gw ≻ Gl | x) =
1

1 + exp (Eyi∼Gl
[r (x, yi)]− Eyi∼Gw [r (x, yi)])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x) + β logZ(x)
])

=
1

1 + exp
(
Eyi∼Gl

[
β log π̂(yi|x)

πref (yi|x)

]
− Eyi∼Gw

[
β log π̂(yi|x)

πref (yi|x)

])
= σ

(
Eyi∼Gl

[
β log

π̂(yi | x)
πref (yi | x)

]
− Eyi∼Gw

[
β log

π̂(yi | x)
πref (yi | x)

])
(19)990

Which leads to Eq. 7.991

D Implementation Details992

D.1 Baselines993

In this section, we present the details of the baselines we used compared to EPO. Notably, we are using994

different training methods in the self-training scenario. Thus all of our baselines start from the SFT model:995

SFT presents the πSFT which is the LLM fine-tuned on typical rationales for specific tasks. It is used996

as the initialization of each self-training method below and our EPO.997

Beyond the SFT model, we utilize several self-training methods that do not introduce additional998

supervising information as our EPO does. The below methods are all beyond SFT model and the inference999

responses D̂ sampled from SFT model and the certain dataset:1000

(SFT +) RFT presents the model fine-tuned on the correct generated responses based on πSFT , referring1001

to the RFT method. Notably, we get a subset of D̂ using the correction of responses as the filtering signal,1002

denoted as D̂RFT . RFT are fine-tuned on D ∪ D̂RFT (Yuan et al., 2023). This method stands for the1003

performance of fine-tuning in the self-improving scenario.1004

(SFT +) DPO presents the fine-tuned model using typical DPO on the pair-wise preference samples1005

which are randomly chosen once for each prompt. Notably, we sample one correct response and one1006

incorrect response for each prompt in D ∪ D̂(Yuan et al., 2023) randomly. Then we apply DPO to this1007

dataset. It has the same optimizing steps as our EPO.1008

(SFT +) DPObatch presents the model using DPO training on pairs selected as many as possible to the1009

prompt (while ensuring the single utilization of each response) in Gl and Gw for each prompt. Notably,1010

for each prompt in D ∪ D̂, we sample min(Numright, Numwrong) preference pairs as Numright and1011

Numwrong represent the number of correct and incorrect responses. It shows the performance of using1012

batched DPO compared to EPO.1013

(SFT +) RPO represents the model using the RPO algorithm (combining DPO loss with an NLL loss1014

on the preferred response) on the pair-wise preference samples same as SFT + DPO. Notably, the RPO1015

objective is represented as:1016

LRPO = − log σ

(
β log

Mθ (c
w
i , y

w
i | xi)

Mt (cwi , y
w
i | xi)

− β log
Mθ

(
cli, y

l
i | xi

)
Mt

(
cli, y

l
i | xi

))− α
logMθ (c

w
i , y

w
i | xi)

|cwi |+ |ywi |
1017

(SFT +) Step-DPO represents the model using the Step-DPO algorithm(Lai et al., 2024) on the step-1018

level pair-wise preference samples. We construct the step-level samples for each wrong responses using1019

in (SFT +) DPO.1020

14



D.2 Hyperparameters1021

For the SFT training setups, we train SFT models1022

using the following hyperparameters: learning rate1023

of 2e-5, batch size of 64, max sequence length of1024

2048, and cosine learning rate schedule with 10%1025

warmup steps for 3 epochs. All the models are1026

trained with an Adam optimizer (Kingma and Ba,1027

2017). This setting is also the same for RFT.1028

For the preference optimization DPO, DPObatch,1029

RPO and EPO. We apply a search on the learning1030

rate, training epoch, and additional hyperparame-1031

ters. The search range is presented as below:1032

D.3 Search range of Baselines1033

Table 5: Hyperparameter search range.

Methods Search Range

DPO β ∈ [0.05, 0.1, 0.5, 1.0]
lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

DPObatch
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]

RPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
α ∈ [0.25, 0.5, 1, 2]

EPO
β ∈ [0.05, 0.1, 0.5, 1.0]

lr ∈ [1e− 7, 2e− 7, 5e− 7, 1e− 6]
γ ∈ [0.1, 0.2, 0.5, 1.0]

Notably, we are referring the papers (Rafailov1034

et al., 2024; Yuanzhe Pang et al., 2024; Meng et al.,1035

2024) to set the search ranges. The length limita-1036

tion of EPO is tuned from 5 to 100.1037

D.4 Implement Details1038

The experiments are carried out on 16 A100-80G1039

GPUs with a Linux system. For all methods, we1040

search the hyperparameters as we present the de-1041

tails in the Appendix. We train 3 epochs in each set-1042

ting and report the performance of the best check-1043

point. For the response generation phase in the1044

self-improving scenario, we use the sample num-1045

ber N = 20 with temperature T = 0.7 following1046

(Yuanzhe Pang et al., 2024). We use Pytorch1 and1047

Huggingface2 as tools for the implementation. For1048

preference optimization, we run our experiments1049

based on trl3. All the generations were done us-1050

ing vllm (Kwon et al., 2023)4. The code will be1051

released on GitHub5.1052

1https://pytorch.org/
2https://huggingface.co/
3https://github.com/huggingface/trl
4https://github.com/vllm-project/vllm
5http://github.com/xxxxxx
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