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Abstract

Federated Learning (FL) has emerged as a pivotal framework for the development of ef-
fective global models (global FL) or personalized models (personalized FL) across clients
with heterogeneous, non-iid data distribution. A key challenge in FL is client drift, where
data heterogeneity impedes the aggregation of scattered knowledge. Recent studies have
tackled the client drift issue by identifying significant divergence in the last linear (classi-
fier) layer. To mitigate this divergence, strategies such as freezing the classifier weights and
aligning the feature extractor accordingly have proven effective. Although the local align-
ment between classifier and feature extractor has been studied as a crucial factor in FL, we
observe that it may lead the model to overemphasize the observed classes and underestimate
the unobserved classes within each client. Therefore, our goals are twofold: (1) improving
local alignment and (2) maintaining the representation of unseen class samples, ensuring
that the solution seamlessly incorporates knowledge from individual clients, thus enhancing
performance in both global and personalized FL. To achieve this, we introduce a novel al-
gorithm named FedDr+, which empowers local model alignment using dot-regression loss.
FedDr+ freezes the classifier as a simplex ETF to align the features and improves aggregated
global models by employing a feature distillation mechanism to retain information about
unseen/missing classes. Our empirical results demonstrate that FedDr+ not only outper-
forms methods with a frozen classifier but also surpasses other state-of-the-art approaches,
ensuring robust performance across diverse data distributions. The code is available at:
https://github.com/curisam/FedDr_plus.

∗ Corresponding authors. This work was done while Sumyeong Ahn was at KAIST.
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1 Introduction

Federated Learning (FL) (McMahan et al., 2017; He et al., 2020b) is a distributed learning strategy that
enables multiple clients to collaboratively train a model while preserving data privacy. The foundational
method, FedAvg (McMahan et al., 2017), involves distributing a global model, training local models on
each client’s private data, and aggregating these models without transmitting raw data. However, a major
challenge in FL is data heterogeneity, or non-iidness, where differing data distributions across clients lead
to client drift, hindering the convergence and effectiveness of the global model. Addressing this challenge
involves improving two key aspects: local alignment and global knowledge preservation. Local alignment
refers to the cosine similarity between the features extracted by the local model and the classifier’s true class
vectors, computed on the client’s training data, aiming to maximize alignment for improved local training.
Global knowledge preservation aims to retain the global model’s knowledge of rare or unobserved classes in
the client’s training data, preventing forgetting during local updates.

While both local alignment and global knowledge preservation are essential, they have generally been
studied separately. Global knowledge preservation is crucial because it prevents the model from be-
coming overly biased toward the data of individual clients, ensuring decisions are based on a broader,
shared understanding. This approach enables better generalization across all clients, particularly for
unseen classes (Lee et al., 2022; 2024). The challenge of balancing global and local knowledge in
FL resembles Catastrophic Forgetting in Continual Learning (CL) (McCloskey & Cohen, 1989), where
learning new tasks can cause models to forget previously learned ones. To achieve this, strategies
like FedProx (Li et al., 2020), MOON (Li et al., 2021a), and FedNTD (Lee et al., 2022) integrate
global model regularization during local training. These methods align local models with the global
objective through techniques like proximal terms, contrastive learning, and logit-based regularizers.
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Figure 1: Overview of the proposed method, FedDr+ trained
with LDr+. To enhance the local alignment, we employ dot-
regression loss LDR, which discards the pushing term of
cross-entropy loss, and propose a feature distillation LFD
to preserve the knowledge imbued in the global model.

On the other direction, to improve the local
alignment, recent studies have extensively fo-
cused on freezing the last linear layer (called
classifier) while updating only the feature ex-
tractor. This approach is motivated by the fact
that the classifier is most sensitive to data het-
erogeneity (Luo et al., 2021; Li et al., 2023b;
Fan et al., 2024); freezing it ensures that all
local models align their features to a consis-
tent classifier across clients. For example, Fed-
BABU (Oh et al., 2022) fixes the classifier after
initialization, allowing only the feature extrac-
tor to adapt. Other methods (Dong et al., 2022;
Li et al., 2023b; Fan et al., 2024; Huang et al.,
2023; Xiao et al., 2024) further enhance local
alignment by modifying the loss function or by
using robust initialization techniques, such as
the Equiangular Tight Frame (ETF) classifier.

A frozen classifier is also extensively explored
in other research areas, such as class imbal-
ance (Yang et al., 2022) and class incremental
learning (Yang et al., 2023), with a consistent
objective similar to aforementioned FL studies—enhancing alignment. Recently, these fields have advanced
by introducing and utilizing a novel type of loss, called dot-regression loss LDR, which aims to achieve align-
ment rapidly. In summary, LDR originates from the decomposition analysis of cross-entropy (CE) loss, which
includes pulling and pushing. As suggested in (Yang et al., 2022), the pulling component is a force that
attracts features to the target class, whereas the pushing component is a force that drives features away from
other non-target classes. LDR discards the pushing component, as it slows down convergence to the desired
alignment (refer to Figure 1).
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However, our findings indicate that while dot-regression loss enhances local alignment as intended, it does
not lead to sufficient performance improvement of the aggregated server-side model. The main issue arises
from the insufficient global knowledge preservation of unobserved classes during local training. Specifically,
the focus on improving alignment for classes present in the local training dataset induces significant feature
dynamics, which inadvertently disrupt the representation of features associated with unobserved classes.
This disruption leads to forgetting and deteriorated alignment for these classes, highlighting the need for
better preservation of global knowledge during local training.

We emphasize the importance of addressing both local alignment and global knowledge preservation together.
FedDr+ provides a well-generalized global model by combining dot-regression loss with feature distillation,
reducing the distance between feature vectors of local and global models. FedDr+FT extends this by fine-
tuning the FedDr+ global model using the same FedDr+ loss function, enhancing local alignment for client-
specific data. Starting with a well-trained global model is essential for achieving effective personalization
while maintaining global generalization (Nguyen et al., 2022; Chen et al., 2023).

Contributions. Our main contributions are summarized as follows:

• In high-heterogeneity FL settings, we observe a trade-off in the classifier-freezing setup: dot-regression loss
improves local alignment with observed classes but leads to lower global model performance compared to
CE loss, due to a significant loss of information on unseen classes, which is critical for the global model.

• To address this, we propose FedDr+, which preserves global knowledge through feature distillation while
maintaining the advantages of dot-regression loss for local alignment. This contribution focuses on im-
proving global federated learning (GFL).

• We extend FedDr+ to personalized federated learning (PFL) via FedDr+FT, which fine-tunes the FedDr+
global model using the FedDr+ loss function for client-specific data. This highlights the importance of
starting with a well-generalized global model for personalization.

• We demonstrate the superiority of our method across various datasets and non-iid settings.

Table 1: Main notations used throughout the paper.

Indices
c ∈ [C] Index for a class
r ∈ [R] Index for FL round
i ∈ [N ] Index for a client
Dataset
Di

train Training dataset for client i
Di

test Test dataset for client i
(x, y) ∈ Di

train,test ; (x, y) ∼ Di Data on client i sampled from distribution Di

(x: input data, y: class label)
Oi Dataset consists of observed classes in client i
U i Dataset consists of unobserved classes in client i

Parameters
θ Feature extractor weight parameters
V = [v1, . . . , vC ] ∈ RC×d Classifier weight parameters (frozen during training)
vc, c ∈ [C] c-th row vector of V
Θ = (θ, V ) All model parameters
Θg

r = (θg
r , V ) Aggregated global model parameters at round r

Θi
r = (θi

r, V ) Trained model parameters on client i at round r

Model Forward
p(x; θ) ∈ RC Softmax probability of input x
pc(x; θ), c ∈ [C] c-th element of p(x; θ)
LCE(x; θ) = − log py(x; θ) Cross-entropy loss of input x
f(x; θ) ∈ Rd Feature vector of input x
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2 Preliminaries

In this section, we describe the basic settings of Federated Learning (FL), including the FedAvg
pipeline (McMahan et al., 2017) and the dot-regression loss (Yang et al., 2022), both of which are utilized
in our framework. For clarity, we summarize the main notations in Table 1.

2.1 Basic Setup of Conventional FedAvg Pipeline

Basic FL setup. Let [N ] = {1, . . . , N} denote the indices of clients, each with a unique training dataset
Di

train = {(xm, ym)}|Di
train|

m=1 , where (xm, ym) ∼ Di for the ith client, xm is the input data, and ym ∈ [C] is the
corresponding label among C classes. Importantly, FL studies predominantly address the scenario where the
data distributions are heterogeneous, i.e., Di varies across clients. Knowledge distributed among clients is
collected over R communication rounds. The general objective of FL is to train a model fit to the aggregated
knowledge,

⋃
i∈[N ]Di. This objective can be seen as solving the optimization problem:

min
Θ=(θ,V )

∑
i∈[N ]

|Di
train|∑

j∈[N ] |D
j
train|

E(x,y)∼Di

[
L(x, y; θ, V )

]
,

where L is the instance-wise loss function, θ is the weight parameter for the feature extractor, and V =
[v1, . . . , vC ] ∈ Rd×C is the classifier weight matrix. We use the notation Θ to denote the entire set of model
parameters.

At the beginning of each round r ∈ [R], the server has access to only a subset of clients Sr ⊂ [N ] participating
in the rth round. At each round r, the server transmits the global model parameters Θg

r−1 to the participating
clients. Each client then updates the parameters with their private data Di

train and uploads Θi
r to the global

server. By incorporating the locally trained weights, the server then updates the global model parameters to
Θg

r .

FedAvg pipeline. Our study follows the conventional FedAvg (McMahan et al., 2017) framework to address
the FL problem. FedAvg updates the global model parameters from locally trained parameters by aggregating
these local models into Θg

r =
∑

i∈Sr
wi

rΘi
r, where wi

r = |Di
train| /

∑
j∈Sr

|Dj
train| is the importance weight of

the ith client.

2.2 Dot-Regression Loss for Feature Alignment

Dot-regression loss LDR. This loss (Yang et al., 2022) facilitates a faster alignment of feature vectors
(penultimate layer outputs) f(x; θ) ∈ Rd to the true class direction of vy, reducing the cosine angle as follows:

LDR(x, y; θ, V ) = 1
2

(
cos

(
f(x; θ), vy

)
− 1

)2

where cos(vec1, vec2) denotes the cosine of the angle between two vectors ∠(vec1, vec2).

The main motivation is that the gradient of the cross-entropy (CE) loss for the feature vector can be
decomposed into a pulling and pushing gradient, and recent work indicates that we can achieve better
convergence by removing the pushing effect (Yang et al., 2022; Li & Zhan, 2021). The pulling gradient aligns
f(x; θ) with vy, while the pushing gradient ensures f(x; θ) does not align with vc for all c ̸= y (Appendix B
details the exact form of pulling and pushing gradients). Since LDR directly attracts features to the true-
class classifier, it drops the pushing gradient, thereby increasing the convergence speed for maximizing
cos(f(x; θ), vy).

Frozen ETF classifier. Since LDR focuses on aligning feature vectors with the true-class classifier, the
classifier is not required to be trained. Instead, we construct the classifier to satisfy the simplex Equiangular
Tight Frame (ETF) condition, a constructive way to achieve maximum angular separation between class
vectors (Yang et al., 2022; 2023). Concretely, we initialize the classifier weight V as follows and freeze it
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Figure 2: Comparison of (a) feature-classifier alignment gap and (b) feature-classifier alignment on the
observed and unobserved classes test data for θi

r trained with LCE and LDR.

throughout training:

V ←−
√

C

C − 1U

(
IC −

1
C

1C1⊤
C

)
,

where U ∈ Rd×C is a randomly initialized orthogonal matrix. Note that each vi in the classifier weight V
satisfies cos(vi, vj) = − 1

C−1 for all i ̸= j ∈ [C]∗.

3 When Dot-Regression Loss Meets FL

Given our focus on applying LDR to FL, we first examine its impact on FL models compared to the CE
loss LCE. In summary, we find that while LDR improves alignment-related performance on observed class
labels, it faces challenge with unobserved classes†, which are essential for the generalization objective. To
address this issue, we propose FedDr+, which integrates LDR with a novel feature distillation loss. We then
evaluate FedDr+ by analyzing the effect of feature distillation and compare it with various FL algorithms
and regularizers.

Experimental configuration. In this section, we conduct experiments on CIFAR-100 (Krizhevsky et al.,
2009) with a shard non-iid setting (s=10), where each client contains at most 10 classes. We additionally
employ LDA setting (α=0.1) in Section 3.4. Refer to Section 4 for more details on the dataset configuration.
The model is trained for 320 communication rounds, randomly selecting 10% of clients in each round, and
the learning rate is decayed at 160th and 240th rounds. The experimental configuration for this section is
detailed in subsection 4.1.

3.1 Impact of LDR on Local and Global Models

We analyze the average performance of local and global models trained with LDR compared to LCE, focusing
on their ability to generalize. In Figure 2a–2b, we evaluate statistics on two datasets: the observed class set
Oi, containing classes in each client’s training data Di

train, and the unobserved class set U i, representing
unseen classes. Separately, Figure 3 reports the evaluation on all classes.

First, we examine the amount of change from the given global model to each local model in every commu-
nication round (Figure 2a). The alignment gap is denoted by cos(f(x; θi

r), vy)− cos(f(x; θg
r−1), vy). We then

evaluate the feature-classifier alignment cos(f(x; θi
r), vy) of each local model on the test data (Figure 2b).

Finally, we observe the test accuracy of the global model θg
r (Figure 3).

∗This relation for cosines holds if the vi’s are symmetrically distributed such that v̄ = 1
C

∑
i∈[C] vi = 0, and cos(vi, vj) are

all the same for i ̸= j .
†While we use the term “unobserved” in this context, it also applies to “rarely” existing classes.
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Alignment analysis of local models. As shown in Figure 2a–2b, LDR outperforms LCE on observed
classes in terms of alignment gap and alignment, while LCE achieves better results on unobserved classes for
these metrics. The improvement on observed classes is attributed to LDR, which removes the pushing term
present in LCE and concentrates its pulling effects on these classes. However, this design inherently overlooks
unobserved classes, resulting in poorer performance on these classes compared to LCE.‡

Accuracy result of global models. Figure 3 shows that in the shard setting (s =
10), LCE consistently outperforms LDR. This difference is due to the higher proportion of un-
observed in this setting, where each client has access to at most 10 out of 100 classes.

CE DR
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60

Round
0 100 200 300

Global Accuracy

Figure 3: Comparison of the global test accuracy
of θg

r on all classes trained using LCE and LDR.

As observed in the alignment analysis, LDR performs par-
ticularly poorly on the unobserved, with a significantly
negative alignment gap and lower alignment compared to
models trained with LCE, which contributes to the lower
overall accuracy of the global model when using LDR.

Importance of local alignment in observed
classes. While LDR struggles with local alignment on
unobserved classes, leading to lower global accuracy com-
pared to LCE, local alignment in observed classes remains
critical. At the last learning rate decay round (240th),
both methods achieve higher or comparable performance
on unobserved classes than in the final round (320th).
However, the final round shows higher global accuracy due to improved local alignment on observed classes.
This underscores the need to preserve the advantages of LDR in observed classes while mitigating its degra-
dation on unobserved classes.

3.2 FedDr+: LDR With Feature Distillation for FL

We propose FedDr+ to mitigate forgetting unobserved classes while retaining the strengths of dot-regression
loss in aligning features of observed classes. Using LDR with the frozen classifier V , FedDr+ includes a
regularizer that fully distills the global model’s feature vectors f(x; θg) ∈ Rd to the client features f(x; θ), to
enhance generalization across all classes. The proposed loss function LDr+, shown in (1), combines LDR with
a regularizer LFD(x; θ, θg) = 1

d∥f(x; θ) − f(x; θg)∥2
2. Unless specified, we use a scaling parameter β = 0.9

throughout the paper. The overall pseudocode of FedDr+ can be found in Appendix A.

LDr+(x, y; θ, θg, V ) = β · LDR(x, y; θ, V ) + (1− β) · LFD(x; θ, θg) (1)

Why feature distillation? To address data heterogeneity in FL, various distillation methods have been
explored, including model parameters (Oh et al., 2022; Li et al., 2020; He et al., 2020a; Li & Wang, 2019),
logit-related measurement (Li & Wang, 2019; Lee et al., 2022; Itahara et al., 2021; Ye et al., 2024; Lin
et al., 2020; Chen et al., 2019; Qian et al., 2022), and co-distillation (Chen et al., 2024; Cho et al., 2023). In
contrast, we utilize the feature distillation (Heo et al., 2019) technique because the feature directly concerns
alignment. On the other hand, logits lose information from features when projected onto a frozen ETF
classifier (Heo et al., 2019; Li et al., 2017; 2023a; Ben-Baruch et al., 2022). By distilling features, we leverage
the global, differentiated knowledge for each data input x. This approach aims to minimize drift towards
observed classes, and hence, we expect it to enhance overall generalization.

3.3 Effect of Feature Distillation

Our findings from Section 3.1 indicate that LDR is unsuitable for the heterogeneous FL environment. This
is primarily because there is a notable gap in how features align with the fixed classifier between Oi and

‡A theoretical justification for why LDR struggles with unobserved classes is provided in Appendix C, where we analyze
feature gradients under the NTK framework.
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Figure 5: Comparison of feature-classifier alignment
on the observed and unobserved classes test data for
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r trained with LCE,LDR and LDr+.
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Figure 6: Comparison of the global test accuracy of
θg

r on all classes trained using LCE,LDR and LDr+.

U i. To assess the effect of feature distillation (LFD), which imposes a constraint on the feature distance
∥f(x; θi

r) − f(x; θg
r−1)∥2 for x ∈ Oi, we measure this distance for both Oi and U i from the models trained

with LDR and LDr+. We additionally analyze the angle distance, ∠(f(x; θi
r), f(x; θg

r−1)), as it impacts feature-
classifier alignment. These values are averaged over the selected client set Sr.

Feature distillation stabilizes the feature dynamics. By adding LFD, as revealed in Figure 4a, the
local model trained with LDr+ shows a reduction in feature distance for observed classes, compared to the
model trained with LDR. This reduction happens even for unobserved classes. As demonstrated in Figure 4b,
the overall decrease in feature distance leads to a reduction in feature angle distance for both class sets. In
both local models trained with LDR and LDr+, there is a trend where the angle distance is significantly larger
for U i than for Oi(Figure 4b). This large angle distance of U i leads to the degradation of the feature-classifier
alignment.

Feature distillation enhances local alignment and global accuracy. As in Figure 5–6, our proposed
algorithm, i.e., LDr+, improves feature-classifier alignment for both Oi and U i, along with enhanced global
accuracy compared to LDR. We attribute this improvement to the enhanced knowledge of the global model
which is preserved by preventing the forgetting of previously trained knowledge. During the final convergence
phase (240th-320th), LDr+ achieves better feature-classifier alignment even on unobserved classes compared
to LCE. As a result, at the final round (320th), LDr+ demonstrates the best local alignment across all classes,
surpassing both LCE and LDR, contributing to its global model’s superior performance. Even though the
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Table 2: Synergy of various FL algorithms and regularizers. Baseline indicates training FL models without
a regularizer. FD denotes feature distillation, which is the regularizer we use in FedDr+.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +KD +NTD +LD +MOON +FD Baseline +Prox +KD +NTD +LD +MOON +FD

FedAvg 37.22 36.87 36.25 37.71 37.17 37.43 37.82 42.52 43.22 44.21 43.39 43.43 44.79 43.76

FedBABU 46.20 46.03 46.37 47.22 46.71 46.49 46.95 47.37 46.62 47.60 46.48 45.78 46.27 46.49
SphereFed 43.90 41.96 44.94 43.47 43.95 43.13 45.21 46.98 43.77 47.76 47.25 47.01 46.81 49.74
FedETF 32.42 31.87 32.76 32.65 32.25 34.30 32.77 46.27 45.71 46.67 46.16 45.91 45.98 46.47
FedGELA 29.17 28.69 29.11 28.84 29.36 28.80 30.33 27.11 29.03 28.45 29.62 29.41 28.09 29.75

Dot-Regression 42.52 41.95 47.45 48.32 47.52 44.72 48.69 42.72 46.35 49.47 50.36 49.28 50.36 50.86

proposed regularizer demonstrates a reasonable regularizing effect, one question remains: “Is it superior to
other previously used regularizers?”

3.4 Synergistic Effect with Different Types of FL Algorithms and Regularizers

We answer the above question by evaluating the synergy effect of various FL algorithms by maintaining their
original training loss and incorporating specific regularizers, following the approach suggested in Equation 1.
To address the issue of differing loss scales between the baseline FL algorithms and the regularizers, we
thoroughly tune the coefficient β within the range {0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999, 0.9999}, and report the
resulting performance in Table 2. The selected β values are detailed in Appendix E.

FL algorithms and regularizers. We evaluate several baseline FL algorithms, including dot-regression.
The baseline also include FedAvg (McMahan et al., 2017)—using an unfrozen classifier, FedBABU (Oh
et al., 2022)—extending FedAvg by freezing the classifier during local training, and SphereFed(Dong et al.,
2022)—enhancing feature-classifier alignment by using MSE loss between one-hot encoded labels and cosine
similarity based logits. We also considered FedGELA and FedETF—both applying client-specific adaptive
loss functions tailored to data distribution.

Alongside the FD regularizer, we evaluate a range of regularizers, including Prox (Li et al., 2020)—con-
straining the distance between local and global model parameters; MOON (Li et al., 2021a)—minimizing
the angle distance between feature vectors of global and local models through contrastive learning; and
several logit-based regularizers—KD (Hinton et al., 2015), NTD (Lee et al., 2022; Zhao et al., 2022), and
LD (Kim et al., 2021)—keeping logit-related measurements of local models closely aligned with the global
model. Specifically, KD applies softened softmax probability from the logit vector, NTD does the same but
excludes the true class dimension, and LD distills the entire logit vector.

FedDr+ shows best synergy. Table 2 shows that FedDr+ (dot-regression + FD) achieves the strongest
performance among the tested combinations. FD performs exceptionally well when combined with dot-
regression, SphereFed, and FedBABU. These baselines freeze the classifier while not using client-specific
adaptive loss. Among them, the synergy is most effective in the order of dot-regression, SphereFed, and
FedBABU—reflecting how each optimizes feature-classifier alignment well. FD outperforms other regularizers
by effectively stabilizing feature dynamics for observed classes, which helps mitigate the misalignment and
performance degradation for unobserved classes. MOON,on the other hand, prioritizes the cosine similarity
between feature vectors from local and global models but fails to adequately control feature norm dynamics.
Prox applies uniform regularization that is independent of specific data instances, leading to less refined
control over feature dynamics. Logit-based regularizers lose effectiveness due to information loss when features
are projected onto the classifier, as they focus on mitigating the dynamics of the less informative projected
vectors rather than the richer original feature vectors.

For baselines like FedGELA and FedETF, which apply client-specific loss functions, none of the regularizers,
including FD, lead to consistently lead to significant performance, particularly in the sharding setting. In
non-frozen settings, FedAvg, the FD regularizer does not offer a significant performance boost. Under LDA,
FedAvg combined with MOON outperforms FedAvg with FD, consistent with the claim of MOON (Li et al.,
2021a).
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4 Experiments and Results

In this section, we first present the experimental results of FedDr+ in the context of global federated learning
(GFL). We then analyze the elapsed time and conduct a sensitivity analysis for GFL, investigating the
effects of varying local epochs, client sampling ratios, and different β values on the performance of FedDr+.
Finally, we propose FedDr+ FT, which fine-tunes the FedDr+ GFL model with LDr+, and report the results
comparing it with existing PFL methods.

4.1 Experimental Setup

Dataset and models. To simulate a realistic FL scenario involving 100 clients, we conduct extensive
studies on three widely used datasets: CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet-100 (Deng et al., 2009). We use VGG11 (Simonyan & Zisserman, 2014) for CIFAR-10,
MobileNet (Howard et al., 2017) for CIFAR-100, and ResNet-18 (He et al., 2016) for ImageNet-100. The
training data is distributed among the 100 clients using sharding and the LDA (Latent Dirichlet Allocation)
partition strategies.

Following the convention, sharding distributes the data into non-overlapping shards of equal size, each
shard encompassing |Dtrain|

100×s and |Dtest|
100×s samples per class, where s denotes the number of shards per

client. On the other hand, LDA involves sampling a probability vector from Dirichlet distribution, pc =
(pc,1, pc,2, · · · , pc,100) ∼ Dir(α), and allocating a proportion pc,k of instances of class c ∈ [C] to each client
k ∈ [100]. Smaller values of s and α increase the level of data heterogeneity. For CIFAR-10 and CIFAR-
100, we explore a range of s and α values to assess the impact of different data heterogeneity levels. For
ImageNet-100, we focus on experiments with s = 20 and α = 0.1.

Implementation details. In each round of communication, a random 10% of clients are selected to
participate in the training process. The total number of communication rounds is set to 320. The initial
learning rate and the number of local epochs for CIFAR-10, CIFAR-100, and ImageNet-100 are determined
through grid searches, with the detailed process and results provided in Appendix D. The learning rate η is
decayed by a factor of 0.1 at the 160th and 240th communication rounds.

4.2 Global Federated Learning Results

We compare FedDr+ with a range of GFL algorithms, considering both non-freezing and freezing classifier
approaches. Among non-freezing classifiers, FedDr+ competes with FedAvg (McMahan et al., 2017), Fed-
Prox (Li et al., 2020), SCAFFOLD (Karimireddy et al., 2020), MOON (Li et al., 2021a), FedNTD (Lee
et al., 2022), FedExP (Jhunjhunwala et al., 2023), and FedSOL (Lee et al., 2024). FedDr+ is also evaluated
against freezing classifier algorithms such as FedBABU (Oh et al., 2022), SphereFed (Dong et al., 2022),
FedETF (Li et al., 2023b), and FedGELA (Fan et al., 2024). Among the baseline algorithms, SCAFFOLD
incurs a communication cost two times higher per round, denoted as (×2). Our experiments encompass
heterogeneous settings involving sharding and LDA non-IID environments.

Table 3 summarizes the accuracy comparison between various GFL methods proposed in recent literature and
FedAvg under various conditions. While specific methods demonstrated effectiveness in particular scenarios,
some of these underperformed relative to the robustness of FedAvg. For example, SCAFFOLD shown strong
performance in the less heterogeneous sharding setting on CIFAR-10; however, it failed in model training
under the highly heterogeneous LDA condition with α = 0.1. Notably, FedDr+ consistently outperformed all
baselines in highly heterogeneous settings, achieving a 3.15% improvement in CIFAR-100 LDA with α = 0.05
and 3.17% in ImageNet-100 LDA.

4.3 Elapsed Time Results

We compare FedDr+ with various GFL algorithms for the elapsed time per communication round on CIFAR-
100 (s=10). As shown in Table 4, incorporating a global model during the local update generally results
in higher computation costs, leading to longer elapsed times compared to updates without a global model.
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Table 3: Accuracy comparison in the GFL setting. The entries are based on results obtained from three
different seeds, indicating the mean and standard deviation of the accuracy of the global model, represented
as X±Y. The best performance in each case is highlighted in bold.

NIID Partition Strategy: Sharding

CIFAR-100 CIFAR-10 ImageNet-100
s=10 s=20 s=50 s=100 s=2 s=5 s=10

FedAvg 36.63± 0.22 42.25± 1.42 45.57± 0.22 48.20± 1.36 72.08± 0.67 81.53± 0.35 82.38± 0.40 67.78± 0.41

FedProx 37.07± 0.21 42.35± 0.83 45.18± 1.07 47.78± 0.79 71.92± 0.51 81.29± 0.40 82.45± 0.35 67.81± 0.65

SCAFFOLD (×2) 46.08± 0.37 48.15± 1.21 49.31± 0.62 50.73± 0.42 75.49± 0.42 84.14± 0.13 85.11± 0.29 70.47± 0.46

MOON 36.95± 0.37 43.05± 0.27 43.95± 0.12 46.92± 0.08 67.55± 1.16 80.90± 0.26 82.62± 0.31 68.19± 0.32

FedNTD 34.05± 1.19 41.78± 0.31 46.42± 0.63 47.17± 0.32 72.21± 0.59 69.96± 17.10 81.99± 0.42 67.51± 0.25

FedExP 36.85± 0.11 42.49± 1.22 45.07± 0.92 48.09± 1.00 72.31± 0.60 81.41± 0.19 82.47± 0.16 63.34± 0.51

FedSOL 32.18± 0.18 41.54± 1.03 47.42± 0.76 47.70± 1.13 54.93± 3.52 75.73± 0.10 77.00± 0.41 66.61± 1.17

FedBABU 45.97± 0.48 45.53± 0.79 46.52± 0.51 46.02± 0.28 71.99± 0.52 81.07± 0.60 82.32± 0.06 68.82± 0.46

SphereFed 42.71± 0.65 48.63± 0.90 52.16± 0.22 53.41± 0.19 76.33± 0.33 83.67± 0.18 84.36± 0.30 69.71± 0.39

FedETF 31.37± 0.72 42.22± 0.77 47.47± 0.67 49.00± 0.74 67.81± 0.94 80.78± 0.68 82.60± 0.46 70.81± 0.28

FedGELA 27.95± 0.81 38.63± 0.66 44.67± 0.51 47.95± 0.85 63.77± 2.34 79.05± 0.14 81.56± 0.09 67.08± 0.18

FedDr+ (Ours) 48.21± 0.56 50.77± 0.14 52.15± 0.03 52.41± 0.81 76.57± 0.51 83.22± 0.34 84.14± 0.27 71.47± 0.45

NIID Partition Strategy: LDA

CIFAR-100 CIFAR-10 ImageNet-100
α=0.05 α=0.1 α=0.2 α=0.3 α=0.1 α=0.2 α=0.3

FedAvg 35.58± 1.35 42.10± 0.60 44.78± 0.72 45.73± 0.88 68.71± 1.82 77.75± 0.26 80.76± 0.51 65.11± 0.25

FedProx 37.07± 0.21 42.35± 0.83 45.18± 1.06 48.18± 0.51 69.00± 2.27 77.81± 0.24 80.55± 0.19 40.48± 1.28

SCAFFOLD (×2) 40.54± 0.48 46.14± 0.70 47.98± 0.93 48.06± 1.08 (Failed) 80.15± 0.29 82.63± 0.23 66.84± 0.77

MOON 23.97± 1.15 30.86± 0.21 33.60± 0.62 35.54± 0.45 66.44± 3.28 77.36± 0.08 80.15± 0.22 41.25± 0.60

FedNTD 31.78± 3.14 40.41± 0.96 43.10± 2.03 43.04± 0.82 70.22± 0.40 77.16± 0.20 79.50± 0.56 64.87± 0.20

FedExP 34.39± 1.77 40.85± 1.32 44.47± 0.28 45.44± 0.14 70.14± 0.53 78.09± 0.21 80.40± 0.54 59.40± 0.36

FedSOL 34.49± 0.80 41.19± 0.30 43.55± 1.51 44.85± 0.54 59.51± 1.77 67.55± 0.41 70.96± 0.32 62.70± 0.89

FedBABU 41.97± 1.01 45.77± 0.28 44.28± 0.45 44.80± 0.63 65.15± 3.66 77.03± 0.25 79.91± 0.13 66.54± 0.30

SphereFed 39.56± 0.48 46.54± 0.58 49.41± 0.78 49.22± 0.86 67.49± 3.49 80.05± 0.40 82.62± 0.66 67.03± 0.30

FedETF 40.71± 0.90 45.63± 0.33 46.28± 1.05 46.69± 0.87 70.75± 0.36 77.86± 0.46 79.95± 0.34 68.98± 0.21

FedGELA 16.72± 1.91 27.12± 1.58 33.68± 0.19 36.17± 0.26 50.69± 7.55 66.04± 14.87 77.89± 0.97 55.57± 0.42

FedDr+ (Ours) 45.12± 1.00 49.48± 0.50 50.67± 0.88 51.15± 0.65 72.07± 2.26 80.90± 0.02 82.42± 0.10 70.20± 0.09

Table 4: Elapsed time per round (in seconds) for various GFL algorithms.
Local update without global model Local update with global model

FedAvg FedBABU FedETF SphereFed FedGELA FedExP FedProx SCAFFOLD FedNTD FedSOL MOON FedDr+ (Ours)

Elapsed time 20.4 20.5 20.7 20.4 20.5 20.1 22.6 21.4 21.2 27.2 56.7 24.9

FedDr+ exhibits a slightly longer elapsed time than most other algorithms, yet still requires less time than
FedSOL and MOON.

4.4 Sensitivity Analysis

We explore the impact of varying client sampling ratio and local epochs on performance, as well as the
effect of different β values in FedDr+, as detailed in Figure 7. All experiments are conducted on MobileNet
using the CIFAR-100 dataset with LDA (α=0.1).

Effect of client sampling ratio and local epochs. We evaluate the sensitivity of hyperparameters in
FedDr+ by comparing it to baselines under varying client sampling ratio and local epochs, starting from the
default setting of client sampling ratio of 0.1 and local epoch of 3. Compared to FedAvg (without classifier
freezing), FedBABU and SphereFed (all with classifier freezing) generally show performance improvements
with increasing fraction ratios, but FedDr+ consistently outperforms the baselines. The number of local
epochs is crucial in FL; too few epochs result in underfitting, while too many cause client drift, degrading
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FedAvg FedBABU SphereFed FedDr+

(a) Client sampling ratio (b) Local epochs (c) β sensitivity

Figure 7: Performance of baselines and FedDr+ on CIFAR-100 (α=0.1) with various analyses: (a) client
sampling ratio, (b) the number of local epochs, and (c) sensitivity to β.

Table 5: PFL accuracy comparison with MobileNet on CIFAR-100. Results are reported in the format
X±Y, representing the mean and standard deviation of the average personalized accuracies across all clients,
computed over five seeds. The best performance in each case is highlighted in bold.

Algorithm s=10 s=20 s=100 α=0.05 α=0.1 α=0.3

Local only (LCE) 58.42± 0.22 42.37± 0.29 19.02± 0.34 55.71± 0.19 44.02± 0.39 27.98± 0.08

Local only (LCE+ETF) 58.05± 0.25 41.72± 0.26 19.06± 0.18 55.41± 0.21 43.56± 0.31 27.69± 0.17

Local only (LDR) 61.05± 0.37 44.28± 0.21 21.06± 0.21 58.56± 0.14 47.05± 0.13 31.16± 0.15

FedPer 70.62± 0.71 55.65± 1.35 25.57± 0.59 63.35± 1.96 51.90± 2.13 35.84± 2.16

Per-FedAvg 31.71± 1.08 38.64± 0.40 45.71± 0.81 28.85± 0.27 36.00± 0.42 42.41± 0.32

FedRep 62.59± 0.30 51.18± 1.00 26.51± 0.27 57.73± 0.41 49.59± 0.40 36.22± 0.86

Ditto 38.39± 0.54 42.16± 1.14 44.04± 0.81 34.86± 1.18 38.67± 1.30 42.05± 0.58

FedAvg-FT 70.20± 0.54 56.26± 0.51 48.67± 0.99 61.08± 1.86 56.34± 1.18 49.74± 1.08

FedBABU-FT 80.73± 0.65 71.02± 0.34 51.70± 0.21 76.12± 0.55 69.94± 0.34 57.40± 1.50

SphereFed-FT 81.34± 0.64 72.22± 0.56 56.58± 0.89 74.49± 0.86 69.39± 1.04 59.51± 1.03

FedETF-FT 53.32± 0.60 53.05± 0.49 49.74± 0.85 52.31± 0.40 53.70± 0.35 50.80± 0.65

FedGELA-FT 75.75± 0.57 68.96± 0.37 52.23± 0.59 58.26± 5.78 60.12± 0.71 53.09± 0.82

FedDr+FT (ours) 83.08± 0.27 74.80± 0.66 56.56± 1.04 78.40± 0.40 73.23± 0.89 62.22± 0.86

global model performance. The default setting of local epochs 3 is optimal for all baselines, with FedDr+
achieving the best performance. Although performance generally declines when deviating from this peak
point, FedDr+ remains the best or highly competitive.

Weight ratio β analysis. We analyze the effect of scaling parameter in FedDr+ by varying β while keeping
other hyperparameters constant. The performance is evaluated for β ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. When
β = 0, only feature distillation is applied, and when β = 1, only dot-regression is used. β ∈ {0, 1} are
generally less effective, whereas β ∈ {0.3, 0.5, 0.7, 0.9} show consistently good performance, indicating a
balanced approach is beneficial.

4.5 Personalized Federated Learning Results

We introduce FedDr+FT, inspired by prior work (Oh et al., 2022; Dong et al., 2022; Li et al., 2023b;
Kim et al., 2023; Fan et al., 2024), which enhances personalization by leveraging local data to fine-tune
the global federated learning (GFL) model. We fine-tune the FedDr+ GFL model using LDr+ to create
FedDr+FT, i.e., 2-step approach. The overall pseudocode of FedDr+FT can be found in Appendix A.
For a comprehensive analysis, we compare FedDr+FT with existing personalized federated learning (PFL)
methods, including 1-step approaches, i.e., creating PFL models from scratch, such as FedPer (Arivazhagan
et al., 2019), Per-FedAvg (Fallah et al., 2020), FedRep (Collins et al., 2021), and Ditto (Li et al., 2021b), as
well as 2-step methods such as FedAVG-FT, FedBABU-FT (Oh et al., 2022), SphereFed-FT (Dong et al.,
2022), FedETF-FT (Li et al., 2023b), and FedGELA-FT (Fan et al., 2024). Additionally, we compare these
methods with various simple local models that have not undergone federated learning: (1) Local only (LCE),
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trained with LCE, (2) Local only (LCE + ETF), trained with LCE and initializing the classifier with an ETF
classifier, and (3) Local only (LDR), trained using LDR.

In Table 5, we first compare the performance of simple local models in PFL by examining LDR and LCE.
While methods using LCE show no significant differences, utilizing LDR leads to substantial performance
improvements in PFL across all settings. The “Local only (LCE)” and “Local only (LCE + ETF)” methods
exhibit similar performance due to the nearly classwise orthogonal nature of randomly initialized classi-
fiers (Oh et al., 2022; Saxe et al., 2013; Glorot & Bengio, 2010a; He et al., 2015; Lezama et al., 2018). With
a large number of classes (C=100), the ETF classifier, which is also nearly classwise orthogonal, performs
similarly to random initialization. When comparing FedDr+FT with other 2-step methods, FedDr+FT con-
sistently demonstrates superior performance. This aligns with previous research (Nguyen et al., 2022; Chen
et al., 2023) suggesting that fine-tuning from a well-initialized model yields better PFL performance. Ad-
ditionally, compared with 1-step algorithms, FedDr+FT continues to show superiority, outperforming all
baseline methods across all settings.

5 Related Work

Federated learning. Federated Learning (FL) is a decentralized approach to deep learning where multiple
clients collaboratively train a global model using their own datasets (McMahan et al., 2017; Li et al., 2020).
This approach faces challenges due to data heterogeneity across clients, causing instability in the learning
process (Karimireddy et al., 2020; Luo et al., 2021). To address this problem, strategies like classifier variance
reduction in FedPVR (Li et al., 2022) and virtual features in CCVR (Luo et al., 2021) have been proposed.
Additionally, it is essential to distinguish between Global Federated Learning (GFL) and Personalized Fed-
erated Learning (PFL), as these are crucial concepts in FL. GFL aims to improve a single global model’s
performance across clients by addressing data heterogeneity through methods like client drift mitigation (Li
et al., 2020; Karimireddy et al., 2020; Jhunjhunwala et al., 2023), enhanced aggregation schemes (Wang
et al., 2020a;b), and data sharing techniques using public or synthesized datasets (Lin et al., 2020; Luo et al.,
2021). Otherwise, PFL focuses on creating personalized models for individual clients by decoupling feature
extractors and classifiers for unique updates (Oh et al., 2022; Arivazhagan et al., 2019; Collins et al., 2021),
modifying local loss functions (Fallah et al., 2020; Li et al., 2021b), and using prototype communication
techniques (Tan et al., 2022; Xu et al., 2023).

Frozen classifier in FL. By focusing on alignment, previous studies have attempted to mitigate data
heterogeneity by freezing the classifier (Oh et al., 2022; Dong et al., 2022; Li et al., 2023b). Nevertheless, these
methods have yet to effectively improve the alignment between features and their corresponding classifier
weights. Motivated by this, we integrated the dot-regression method into FL to achieve a better-aligned local
model by freezing the classifier. Dot-regression, proposed to address class imbalance, focuses on aligning
feature vectors to a fixed classifier, demonstrating superior alignment performance compared to previous
approaches. However, optimizing the dot-regression loss to align feature vectors with a fixed classifier caused
the local model to lose information on unobserved classes, thereby degrading global model performance. To
address these issues, FedLoGe (Xiao et al., 2024) employing realignment techniques to ensure the well-aligned
local model’s performance translated to the global model. Additionally, in FedGELA (Fan et al., 2024), the
classifier is globally fixed as a simplex ETF while being locally adapted to personal distributions. Also,
FedPAC Xu et al. (2023) addressed these challenges by leveraging global semantic knowledge for explicit
local-global feature alignment. Besides alignment-focused methods, there have been various attempts to
maintain good local model performance in the global model Jiang et al. (2023); An et al. (2024); Chen &
Chao (2022).

Knowledge distillation in FL. Knowledge distillation (KD) has been widely studied in FL settings, such
as in FedMD (Li & Wang, 2019) and FedDF (Lin et al., 2020), where a pretrained teacher model transfers
knowledge to a student model. Additional distillation-based methods, such as FedFed (Yang et al., 2024) and
co-distillation framework for PFL (Chen et al., 2024; Cho et al., 2023), have also been explored. In contrast to
existing methods, we propose a loss function incorporating feature distillation to maintain the performance
of both local and global models. To our knowledge, this is the first application of feature distillation in FL.
This approach highlights the importance of distinguishing between GFL and PFL.
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6 Limitations

While our proposed method, FedDr+, effectively enhances both local alignment and global knowledge preser-
vation in Federated Learning (FL), it has certain limitations. First, our approach builds upon dot-regression
to improve local alignment, but this is just one possible strategy. Alternative methods, such as directly max-
imizing local alignment without relying on dot-regression, could be explored to further enhance performance
in FL settings. Second, although FedDr+ effectively mitigates forgetting of unobserved classes by incorpo-
rating feature distillation, dot-regression alone remains less effective in preserving alignment for unobserved
classes. While our empirical results demonstrate that FedDr+ alleviates this issue, further theoretical in-
vestigation is needed to develop a more principled approach to ensuring alignment across both observed
and unobserved classes. These limitations highlight opportunities for future work to extend and refine our
method, improving its robustness and generalizability in diverse FL environments.

7 Conclusion

Motivated by the recent FL methods enhancing feature alignment with a fixed classifier, we first investigate
the effects of applying dot-regression loss for FL. Since the dot-regression is the most direct method for
feature-classifier alignment, we find it improves alignment and accuracy in local models but degrades the
performance of the global model. This happens because local clients trained with dot-regression tend to
forget classes that have not been observed. To address this, we propose FedDr+, combining dot-regression
with a feature distillation method. By regularizing the deviation of local features from global features, FedDr+
allows local models to maintain knowledge about all classes during training, thereby ultimately preserving
general knowledge of the global model. Our method achieves top performance in global and personalized FL
experiments, even when data is distributed unevenly across devices (non-IID settings).
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- Appendix -

FedDr+: Stabilizing Dot-regression with Global Feature Distillation
for Federated Learning

The notations and pseudo code of FedDr+ and FedDr+FT are organized in Appendix A. In Appendix B,
we provide a detailed explanation of the pulling and pushing gradients of the CE loss. In Appendix C,
we provide a theoretical analysis of dot-regression, focusing on the feature vector gradient of the loss and
its implications under the NTK framework, particularly for unobserved classes. The experimental setup is
described in Appendix D, which includes code implementation, dataset descriptions, model specifications,
optimizer settings, NIID partition, and the hyperparameter search process. Additional experimental results,
including further analysis on the synergy effect and PFL, as well as results on IID dataset performance,
scalability experiments, and stochastic client data settings, are presented in Appendix E.

A Notations, Pseudo Code of FedDr+ and FedDr+ FT

In this section, we first introduce the key notations used in our method and then present the pseudocode for
FedDr+ and FedDr+FT. The pseudocode provides a clear and concise implementation guide for both global
federated learning (GFL) with FedDr+ and personalized federated learning (PFL) with FedDr+FT.

A.1 Main Notations

To maintain clarity, Table 6 defines key indices, datasets, model parameters, and computations in alg and
FedDr+FT, forming the basis for our method and analysis.

Table 6: Notations used throughout the paper.

Indices
c ∈ [C] Index for a class
r ∈ [R] Index for FL round
i ∈ [N ] Index for a client
Dataset
Di

train Training dataset for client i
Di

test Test dataset for client i
(x, y) ∈ Di

train,test ; (x, y) ∼ Di Data on client i sampled from distribution Di

(x: input data, y: class label)
Oi Dataset consists of observed classes in client i
U i Dataset consists of unobserved classes in client i

Parameters
θ Feature extractor weight parameters
V = [v1, . . . , vC ] ∈ RC×d Classifier weight parameters (frozen during training)
vc, c ∈ [C] c-th row vector of V
Θ = (θ, V ) All model parameters
Θg

r = (θg
r , V ) Aggregated global model parameters at round r

Θi
r = (θi

r, V ) Trained model parameters on client i at round r

Model Forward
p(x; θ) ∈ RC Softmax probability of input x
pc(x; θ), c ∈ [C] c-th element of p(x; θ)
LCE(x; θ) = − log py(x; θ) Cross-entropy loss of input x
f(x; θ) ∈ Rd Feature vector of input x
z(x; θ) = f(x; θ)V ⊤ ∈ RC Logit vector of input x
zc(x; θ), c ∈ [C] c-th element of z(x; θ)
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A.2 Pseudo Code of FedDr+ and FedDr+ FT

We now present the pseudocode for FedDr+ and FedDr+FT, outlining their key operations for global and
personalized federated learning. The algorithm consists of two main stages:

Algorithm 1 FedDr+, FedDr+FT
Input: Total rounds R, local epochs E, training dataset Di

train for client i, sampled client set N (r) ⊂ [N ] at
round r, learning rate η(r) at round r

1 Initial Parameters: ETF Classifier V, Initial global model parameters Θg
0 = (θg

0 , V)

2 for i = 1, . . . , N do
3 Server broadcasts V to client i

4 /** STEP 1: Get a GFL Model Θg
R of FedDr+ **/

for r = 1, . . . , R do
5 Server samples clients N (r) and broadcasts θi

r ← θg
r−1 for each client i ∈ N (r) in parallel do

6 for Local Steps e = 1, . . . , E do
7 for Batches j = 1, . . . , B do
8 θi

r ← θi
r − η(r)∇LDr+([Di

train]j ; θi
r, θg

r−1, V ) Using [Equation (1)]

9 Upload θi
r to server

10 Server Aggregation: θg
r ← 1

|N(r)|
∑

i∈N(r) θi
r

11 GFL output: Θg
R = (θg

r , V )

12 /** STEP 2: Get a PFL Models {Θi
R+1}N

i=1 of FedDr+FT **/
for i = 1, . . . , N do

13 Server broadcasts θi
R+1 ← θg

R to client i
for Local Steps e = 1, . . . , E do

14 for Batches j = 1, . . . , B do
15 θi

R+1 ← θi
R+1 − η(R)∇LDr+([Di

train]j ; θi
R, θg

R, V ) Using [Equation (1)]

16 PFL outputs: {Θi
R+1 = (θi

R+1, V )}N
i=1

B Preliminaries: Pulling and Pushing Feature Gradients in CE

In this section, we first compute the classifier’s gradient with respect to the features. Next, we explain how
the cross-entropy loss draws the pulling and pushing effects.

B.1 Feature Gradient of LCE

We begin by presenting two lemmas that support Proposition 1 and clarify pulling and pushing feature
gradients in the cross-entropy (CE) loss.

Lemma 1. For all c, c′ ∈ [C], ∂pc′(x; θ)
∂zc(x; θ) =

{
pc(x; θ) · (1− pc(x; θ)) if c = c′

−pc(x; θ) · pc′(x; θ) otherwise
.

Proof. Note that p(x; θ) =
[

exp(zj(x; θ))∑C
i=1 exp(zi(x; θ))

]C

j=1
∈ RC . Then,

(i) c = c′ case:

∂pc(x; θ)
∂zc(x; θ) = ∂

∂zc(x; θ)

{
exp(zc(x; θ))∑C
i=1 exp(zi(x; θ))

}
=

exp(zc(x; θ))
(∑C

i=1 exp(zi(x; θ))
)
− exp(zc(x; θ))2(∑C

i=1 exp(zi(x; θ))
)2

= pc(x; θ)− pc(x; θ)2 = pc(x; θ)(1− pc(x; θ)).
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(ii) c ̸= c′ case:

∂pc′(x; θ)
∂zc(x; θ) = ∂

∂zc(x; θ)

{
exp(zc′(x; θ))∑C
i=1 exp(zi(x; θ))

}
= − exp(zc(x; θ)) exp(zc′(x; θ))(∑C

i=1 exp(zi(x; θ))
)2

= −pc(x; θ)pc′(x; θ).

Lemma 2. ∇z(x;θ)LCE(x, y; θ) = p(x; θ)− ey, where ey ∈ RC is the unit vector with its y-th element as 1.

Proof.
∂LCE(x, y; θ)

∂zc(x; θ) = − ∂

∂zc(x; θ) log py(x; θ) = − 1
py(x; θ)

∂py(x; θ)
∂zc(x; θ)

=
{

pc(x; θ)− 1 if c = y

pc(x; θ) else
= pc(x; θ)− 1{c = y}.

The last equality holds by Lemma 1. Therefore, the desired result is satisfied.

Proposition 1. Given (x, y), the gradient of the LCE with respect to f(x; θ) is given by:

∇f(x;θ)LCE(x, y; θ) = −(1− py(x; θ))vy +
∑

c∈[C]\{y}

pc(x; θ)vc (2)

Proof.
∇f(x;θ)LCE(x, y; θ)=

[
∇f(x;θ)z1(x; θ)

∣∣ · · · ∣∣∇f(x;θ)zC(x; θ)
]
∇z(x;θ)LCE(x, y; θ)

=
C∑

c=1

∂LCE(x, y; θ)
∂zc(x; θ) ∇f(x;θ)zc(x; θ)

= ∂LCE(x, y; θ)
∂zy(x; θ) ∇f(x;θ)zy(x; θ) +

∑
c∈[C]\{y}

∂LCE(x, y; θ)
∂zc(x; θ) ∇f(x;θ)zc(x; θ)

= ∂LCE(x, y; θ)
∂zy(x; θ) vy +

∑
c∈[C]\{y}

∂LCE(x, y; θ)
∂zc(x; θ) vc

= −(1− py(x; θ))vy +
∑

c∈[C]\{y}

pc(x; θ)vc.

Applying the chain rule for the second step and invoking Lemma 2 for the final equality confirms the result.

B.2 Physical Meaning of ∇f(x;θ)LCE(x, y; θ)

The gradient ∇f(x;θ)LCE(x, y; θ) consists of two components:

FPull =
(
1− py(x; θ)

)
vy,

FPush = −
∑

c∈[C]\{y}

pc(x; θ)vc.

FPull moves the feature vector towards the classifier vector vy of the true class, promoting alignment. In
contrast, FPush moves it away from the classifier vectors vc for c ∈ [C] \ {y}, inducing misalignment.

20



Published in Transactions on Machine Learning Research (03/2025)

C Theoretical Perspective of Dot-Regression (DR)

In this section, we provide a theoretical analysis of dot-regression (DR) loss in the context of feature-classifier
alignment. We first derive the feature gradient of LDR and analyze its effect on feature updates. We then
present an NTK-based perspective explaining why dot-regression struggles with unobserved classes in FL.
Finally, we compare DR with cross-entropy (CE) loss to highlight its limitations and the necessity of feature
distillation.

C.1 Feature Gradient of LDR

In this subsection, we derive the gradient of dot-regression loss with respect to the feature vector on the
observed classes.
Theorem C.1. Given (x, y), the gradient of the LDR with respect to f(x; θf ) is given by:

∇f(x;θf )LDR(x, y; θ) = − 1− cos α

∥f(x; θf )∥2

{
Vy − cos α

f(x; θf )
∥f(x; θf )∥2

}
,

where cos α = f(x; θf )⊤

∥f(x; θf )∥2
Vy.

Proof.

∇f(x;θf )LDR(x, y; θ) = ∇f(x;θf )

{
1
2

(
f(x; θf )T

∥f(x; θf )∥2
Vy − 1

)2}

=
(

f(x; θf )T

∥f(x; θf )∥2
Vy − 1

)
∇f(x;θf )

f(x; θf )T

∥f(x; θf )∥2
Vy

=
(

f(x; θf )T

∥f(x; θf )∥2
Vy − 1

) [
1

∥f(x; θf )∥2

{
I − f(x; θf )f(x; θf )T

∥f(x; θf )∥2
2

}
Vy

]

= − 1− cos α

∥f(x; θf )∥2

{
Vy − cos α

f(x; θf )
∥f(x; θf )∥2

}
.

C.1.1 Physical Meaning of ∇f(x;θ)LDR(x, y; θ)

According to Theorem C.1, the change in the feature vector ∆f(x; θf ) is given by:

∆f(x; θf ) = η
1− cos α

∥f(x; θf )∥2

(
Vy − cos α

f(x; θf )
∥f(x; θf )∥2

)
,

where η is the learning rate and α is the angle between the feature vector f(x; θf ) and the target vector Vy.

The term inside the parentheses, Vy − cos α
f(x;θf )

∥f(x;θf )∥2
, represents a component orthogonal to f(x; θf ) that

points towards Vy. This component adjusts f(x; θf ) to increase its cosine similarity with Vy while also
expanding its norm.

The scaling factor 1−cos α
∥f(x;θf )∥2

determines the update magnitude. As training progresses, f(x; θf ) aligns more
closely with Vy, reducing 1−cos α and increasing ∥f(x; θf )∥2. Consequently, ∆f(x; θf ) diminishes over time,
reflecting convergence as the cosine similarity with Vy approaches its maximum.

Figure 8 illustrates this process, showing how the orthogonal component drives both the rotation and scaling
of f(x; θf ) toward alignment with Vy.
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Figure 8: Feature gradient of LDR. The gradient update rotates f(x; θf ) toward Vy while increasing its norm.
As training progresses, the update magnitude decreases, leading to convergence.

C.2 NTK Perspective: Why Dot-Regression in FL Fails on Unobserved Classes

In this subsection, we analyze why dot-regression struggles with unobserved classes under the Neural Tangent
Kernel (NTK) regime (Jacot et al., 2018). In the NTK regime, the feature gradient of any input is a weighted
sum of the feature gradients from training samples. Assuming the network width is sufficiently wide, these
weights depend only on the pair of inputs, the initialization distribution, such as He initialization (Glorot &
Bengio, 2010b), and the activation functions.§ The NTK regime holds when the setting where every layer
in the neural network has infinite width, with parameters initialized i.i.d. This section explains how NTK-
based gradient updates fail to align feature vectors with unobserved class directions, which leads to poor
generalization in FL.

C.2.1 Gradient Flow in the NTK Regime

We treat gradient descent as a continuous process. P is the number of trainable parameters in the feature
extractor, and θp (p ∈ [P ]) denote each parameter. We focus on a specific client, denoted by i.

During training, gradient descent updates the model parameters to minimize the loss function. As below, we
can see the evolution of the function f(x; θ(t)) can be analyzed using the kernel Θ(L)(t)(x, xi), which evolves
along the training process:

df(x; θ(t))
dt

=
P∑

p=1

(∂f(x; θ(t))
∂θp

)⊤ dθp

dt
(Chain Rule)

= −
P∑

p=1

(∂f(x; θ(t))
∂θp

)⊤ 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

∂f(x̃; θ(t))
∂θp

∇f(xi;θ)L(x̃, ỹ; θ) (Gradient Descent)

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

( P∑
p=1

(∂f(x; θ(t))
∂θp

)⊤ ∂f(x̃; θ(t))
∂θp︸ ︷︷ ︸

Θ(L)(t)(x,x̃)∈Rd×d

)
∇f(x̃;θ)L(x̃, ỹ; θ)

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

Θ(L)(t)(x, x̃)∇f(x̃;θ)L(x̃, ỹ; θ) .

§In practice, finite-width effects cause deviations from the ideal NTK behavior.
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In the NTK regime with infinitely large widths, the matrix Θ(L)(t)(x, x̃) converges to a scalar multiple of
the identity matrix, Θ(L)

∞ (x, x̃)I. Furthermore, with the same condition, this scalar kernel remains constant
throughout training (Jacot et al., 2018; Yang, 2020; Belfer et al., 2021), though finite-width effects may
introduce small variations. In the NTK regime, the gradient descent dynamics are given by:

df(x; θ(t))
dt

= − 1
|Di

train|
∑

(x̃,ỹ)∈Di
train

Θ(L)
∞ (x, x̃)︸ ︷︷ ︸

∈ R

∇f(xi;θ)L(x̃, ỹ; θ) . (in NTK Regime)

Thus, Θ(L)
∞ (x, x̃) determines how each training sample x̃ influences an arbitrary input x, and in NTK regime,

this weight depends only on the initialization distribution.

In Federated Learning (FL), local models are independently updated on different clients before aggregation.
Under the NTK regime, each client follows the gradient flow during local training. FL aggregation then
combines feature representations learned from different data distributions, leading to shifts in the global
feature representation. By aggregating updates from multiple clients, FL integrates feature information from
clients that have observed missing classes, thereby improving feature alignment.

C.2.2 Limitations of Dot-Regression loss in FL under the NTK Regime

Dot-regression loss (Yang et al., 2022) speeds up the alignment of feature vectors f(x; θ) ∈ Rd (pre-classifier
layer outputs) with the true class direction vy by minimizing the cosine angle:

LDR(x, y; θ, V ) = 1
2

(
cos

(
f(x; θ), vy

)
− 1

)2
.

This loss function is motivated by the decomposition of cross-entropy (CE) loss gradients into pulling and
pushing components. Prior work suggests that removing the pushing effect in CE can improve conver-
gence (Yang et al., 2022; Li & Zhan, 2021).

Let c be an unobserved class for a specific client i with the classifier vector vc. From Theorem C.1, it follows
that under the NTK regime, the gradient descent process on the client i is independent of vc for arbitrary
input x.

To analyze this, we first express the feature gradient under the dot-regression loss LDR in the local learning
stage. For simplicity, we omit the dependence on θ(t) in the feature notation and write cos(f(x̃; θ(t)), vy) as
cos(f(x̃), vy). The feature gradient is given by:

df(x)
dt

= 1
|Di

train|
∑

y∈Oi

∑
(x̃,y)∈Di

train

Θ(L)
∞ (x, x̃)1− cos(f(x̃),vy)

∥f(x̃)∥2

(
vy − cos(f(x̃),vy) f(x̃)

∥f(x̃)∥2

)
. (in NTK Regime)

Since c /∈ Oi, the feature gradient evaluated on training data does not depend on vc. Given that feature
gradients are a weighted sum over training data in the NTK regime, this implies that the learned feature
representation for an arbitrary input remains unaffected by vc during local training.

Therefore, dot-regression cannot align features with unobserved classes in local training. To examine this
effect more closely, consider two cases f1(x) and f2(x) with the same input x with label c, whose settings
and initialization at time t = 0 are identical except for the classifier vector vc of class c, fixed with w and
−w (∥w∥ = 1, ∀y ∈ Oi : w ⊥ vy). In the NTK regime under the dot-regression loss, we have:

d
dt
⟨f(x), vc⟩ = − 1

|Di
train|

∑
y∈Oi

∑
(x̃,y)∈Di

train

Θ(L)
∞ (x, x̃)cos(f(x̃),vy)(1− cos(f(x̃),vy))

∥f(x̃)∥2
2

⟨f(x̃), vc⟩.

(in NTK Regime)

Since every term in the update equation is identical for f1(x) and f2(x), except for ⟨f(x̃), vc⟩, which takes
opposite values in each case, it follows that ⟨f1(x), vc⟩ = −⟨f2(x), vc⟩ for all time t ≥ 0. This demonstrates
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that classifier initialization strongly determines alignment in the local learning stage. Consequently, the
global aggregation stage is the only way to generalize to classes that haven’t been observed yet. This slows
down the overall accuracy of the FL server.

C.2.3 Cross-Entropy Loss and Feature-Classifier Alignment

In contrast, cross-entropy (CE) loss explicitly guides feature gradients toward vc, weighted by the softmax
probability pc and the NTK weight. This ensures that even when class c is absent, local training still produces
meaningful updates. After each global aggregation, the refined pc further strengthens alignment, allowing
CE to maintain consistent feature-classifier alignment across all classes.

This observation aligns with our empirical findings: without feature distillation, dot-regression struggles
to generalize to unobserved classes, whereas CE enables continuous feature updates, leading to improved
generalization.
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D Experimental Setup

This section details the code implementation, dataset descriptions, model specifications, optimizer settings,
non-IID (NIID) partitioning, and hyperparameter search process used in our experiments.

D.1 Code Implementation

Our implementations are conducted using the PyTorch framework. Specifically, the experiments presented in
Table 3 and Table 4 are executed on a single NVIDIA RTX 3090 GPU, based on the code structure from the
following repository: https://github.com/Lee-Gihun/FedNTD. The other parts of our study are carried
out on a single NVIDIA A5000 GPU, utilizing the code framework from https://github.com/jhoon-oh/
FedBABU.

D.2 Datasets, Model, and Optimizer

To simulate a realistic FL scenario, we conduct extensive studies on three widely used datasets: CIFAR-
10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009) and ImageNet-100 Deng et al. (2009).
For each dataset, appropriate models are employed: VGG11 (Simonyan & Zisserman, 2014) for CIFAR-
10, MobileNet (Howard et al., 2017) for CIFAR-100, and ResNet-18 (He et al., 2016) for ImageNet-100. A
momentum optimizer is utilized for all experiments. The data preprocessing pipeline for the training phase
includes RandomResizedCrop, RandomHorizontalFlip, and Normalize transformations for all datasets.
During testing, only the Normalize transformation is applied for CIFAR-10 and CIFAR-100, while for
ImageNet-100, Resize, CenterCrop, and Normalize are applied. Unless otherwise noted, the basic setting
of our experiments follows the dataset statistics, FL scenario specifications, and optimizer hyperparameters
summarized in Table 7.

Table 7: Summary of Dataset, Model, FL System, and Optimizer Specifications

Datasets C |Dtrain| |Dtest| N R r E B m λ

CIFAR-10 10 50000 10000 100 320 0.1 10 50 0.9 1e-5
CIFAR-100 100 50000 10000 100 320 0.1 3 50 0.9 1e-5
ImageNet-100 100 130000 5000 100 320 0.1 5 50 0.9 1e-5

Note: In terms of dataset information, C represents the number of classes in the dataset, with |Dtrain| and
|Dtest| indicating the total numbers of training and test data used, respectively. For the federated learning
(FL) system specifics, R indicates the total number of FL rounds, r is the ratio of clients selected for each
round, and E denotes the number of local epochs. Local model training utilizes a momentum optimizer
where B is the batch size, and m and λ represent the momentum and weight decay parameters, respectively.
The initial learning rate η is decayed by a factor of 0.1 at the 160th and 240th communication rounds. The
initial learning rate η and the number of local epochs E were determined via extensive grid search for each
algorithm, with details outlined in Appendix D.4.

D.3 Non-IID Partition Strategies

To induce heterogeneity in each client’s training and test data (Di
train, Di

test), we distribute the entire class-
balanced datasets, Dtrain and Dtest, among 100 clients using both sharding and Latent Dirichlet Allocation
(LDA) partitioning strategies:

• Sharding (McMahan et al., 2017; Oh et al., 2022): We organize the Dtrain and Dtest by label and divide
them into non-overlapping shards of equal size. Each shard encompasses |Dtrain|

100×s and |Dtest|
100×s samples of the

same class, where s denotes the number of shards per client. This sharding technique is used to create
Di

train and Di
test, which are then distributed to each client i, ensuring that each client has the same number

of training and test samples. The data for each client is disjoint. As a result, each client has access to a
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maximum of s different classes. Decreasing the number of shards per user s increases the level of data
heterogeneity among clients.

• Latent Dirichlet Allocation (LDA) (Luo et al., 2021; Wang et al., 2020a): We utilize the LDA technique
to create Di

train from Dtrain. This involves sampling a probability vector pc = (pc,1, pc,2, · · · , pc,100) ∼
Dir(α) and allocating a proportion pc,k of instances of class c ∈ [C] to each client k ∈ [100]. Here, Dir(α)
represents the Dirichlet distribution with the concentration parameter α. The parameter α controls the
strength of data heterogeneity, with smaller values leading to stronger heterogeneity among clients. For
Di

test, we randomly sample from Dtest to match the class frequency of Di
train and distribute it to each

client i.

D.4 Hyperparameter Search for η and E

To optimize the initial learning rate (η) and the number of local epochs (E) for our algorithm, we conduct
a grid search on the CIFAR-10, CIFAR-100, and ImageNet-100 datasets. The process and reasoning are
outlined below.

D.4.1 Rationale for Varying Initial Learning Rate (η)

The algorithms used in our experiments differ in handling feature normalization within the loss function.
Some algorithms apply feature normalization, while others do not. When features f(x; θ) are normalized, the
resulting gradient is scaled by 1

∥f(x;θ)∥2
. This scaling effect necessitates a grid search across various learning

rates to account for the differences in learning behavior.

D.4.2 Rationale for Varying Local Epochs E

In FL, choosing the appropriate number of local epochs is crucial. Too few epochs can lead to underfitting,
while too many can cause client drift. Therefore, finding the optimal number of local epochs is essential by
exploring a range of values.

D.4.3 Grid Search Process and Results

Considering the above reasons, we perform grid search for η and E on CIFAR-10, CIFAR-100, and ImageNet-
100 datasets. The grid search for CIFAR-10 uses a shard size of 2, while for CIFAR-100, a shard size of 10
is used. Additionally, for ImageNet-100, a shard size of 20 is used. The detailed procedures for each dataset
are provided below. These optimal settings have also been confirmed to yield good performance in less
heterogeneous settings.

CIFAR-10. We examine η values from {0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6}. For
E, we consider {1, 3, 5, 10, 15}. A default initial learning rate of 0.01 is used unless specified otherwise. The
optimal learning rates vary by algorithm, and the results are summarized in Table 8. Table 8 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is found to be 10 for every
algorithm.

CIFAR-100. We examine η values from {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5,
7.0}. For E, we consider {1, 3, 5, 10}. A default initial learning rate of 0.1 is used unless specified otherwise.
The optimal learning rates differ by algorithm, and the results are listed in Table 9. Table 9 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is found to be 3 for every
algorithm.

ImageNet-100. We examine η values from {0.01, 0.1, 1.0, 10.0}, which are chosen to maintain a consistent
logarithmic scale difference. A default initial learning rate of 0.1 is used unless specified otherwise. The
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optimal learning rates differ by algorithm, and the results are listed in Table 10. Table 10 also includes
the additional hyperparameters used for each algorithm. The notation for these additional hyperparameters
follows the conventions used throughout this paper (Li et al., 2020; Lee et al., 2022; Jhunjhunwala et al.,
2023; Li et al., 2023b; Lee et al., 2024). The optimal number of local epochs is fixed at 5, following the setting
of (Lee et al., 2024).

Table 8: Hyperparameters for VGG11 training on CIFAR-10.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.55 0.35

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9

Table 9: Hyperparameters for MobileNet training on CIFAR-100.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 6.5 5.0

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9

Table 10: Hyperparameters for ResNet-18 training on ImageNet-100.

Feature un-normalized algorithms Feature normalized algorithms

Hyperparameters FedAvg FedBABU FedProx SCAFFOLD MOON FedNTD FedExP FedSOL FedGELA FedETF SphereFed FedDr+ (Ours)
η 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 1.0 1.0 1.0

Additional None None µ=0.001 None (µ, τ)=(1,0.5) (β, τ)=(1,3) ϵ=0.001 ρ=2.0 None (β, τ)=(1,1) None β=0.9
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E Additional Experiment Results

This section provides additional experimental results, including analysis on the synergy effect, personalized
FL (PFL), IID dataset performance, stochastic client data settings, and scalability experiments.

E.1 Synergy Effect Details
Table 11: Synergy of various FL algorithms and regularizers. Baseline indicates training FL models without
a regularizer. FD denotes feature distillation, which is the regularizer we use in FedDr+.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg 37.22 36.87 37.43 36.25 37.71 37.17 37.82 42.52 43.22 44.79 44.21 43.39 43.43 43.76

FedBABU 46.20 46.03 46.49 46.37 47.22 46.71 46.95 47.37 46.62 46.27 47.60 46.48 45.78 46.49
SphereFed 43.90 41.96 43.13 44.94 43.47 43.95 45.21 46.98 43.77 46.81 47.76 47.25 47.01 49.74
FedETF 32.42 31.87 34.30 32.76 32.65 32.25 32.77 46.27 45.71 45.98 46.67 46.16 45.91 46.47
FedGELA 29.17 28.69 28.80 29.11 28.84 29.36 30.33 27.11 29.03 28.09 28.45 29.62 29.41 29.75

Dot-Regression 42.52 41.95 44.72 47.45 48.32 47.52 48.69 42.72 46.35 50.36 49.47 50.36 49.28 50.86

Table 12: Optimal β value selected through grid search to achieve the best synergy of various FL algorithms
and regularizers.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg None 0.999 0.5 0.9999 0.9999 0.999 0.9 None 0.999 0.99 0.999 0.99 0.999 0.9999

FedBABU None 0.9999 0.9 0.999 0.99 0.999 0.999 None 0.999 0.999 0.999 0.999 0.99 0.9999
SphereFed None 0.9999 0.9999 0.9999 0.9 0.99 0.9 None 0.9999 0.999 0.999 0.9999 0.999 0.99
FedETF None 0.999 0.3 0.5 0.999 0.9 0.9 None 0.9999 0.9999 0.5 0.999 0.99 0.99
FedGELA None 0.9999 0.7 0.5 0.7 0.5 0.7 None 0.99 0.9 0.5 0.5 0.5 0.3

Dot-Regression None 0.9999 0.9 0.5 0.5 0.5 0.9 None 0.9999 0.5 0.5 0.5 0.5 0.9

Table 13: Synergy of various FL algorithms and regularizers at β = 0.9.

Sharding (s = 10) LDA (α = 0.1)

Algorithm Baseline +Prox +MOON +KD +NTD +LD +FD Baseline +Prox +MOON +KD +NTD +LD +FD

FedAvg 37.22 30.27 36.67 35.14 35.56 34.83 37.82 42.52 36.09 42.09 41.48 41.34 43.36 43.10

FedBABU 46.20 36.71 46.49 45.50 45.09 45.81 45.31 47.37 39.04 45.92 45.58 45.56 46.46 44.77
SphereFed 43.90 1.36 1.89 41.01 43.47 41.73 45.21 46.98 1.46 2.21 45.22 46.25 43.84 48.61
FedETF 32.42 25.18 32.58 32.76 31.98 32.25 32.77 46.27 34.92 45.38 44.94 45.77 44.36 45.92
FedGELA 29.17 25.52 28.57 28.84 28.67 28.37 29.07 27.11 26.84 28.09 27.78 28.27 27.97 27.60

Dot-Regression 42.52 5.42 44.72 46.60 45.78 47.52 48.69 42.72 7.47 30.69 48.19 33.08 49.09 50.79

We evaluate the synergy effect of various FL algorithms by maintaining their original training loss while
incorporating specific regularizers, as detailed in Equation 1 of the main text. To manage the differing loss
scales between the baseline FL algorithms and the regularizers, we systematically tune the coefficient β across
a range of values (0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999, 0.9999). The resulting performance and optimal β values
are shown in Table 11 and Table 12. However, when we set β = 0.9 without addressing the issue of differing
loss scales, the performance results, presented in Table 13, reveal that several synergies are significantly
inferior due to this oversight.
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Table 14: PFL accuracy comparison with MobileNet on CIFAR-100. For PFL, we denote the entries in the
form of X±(Y), representing the mean and standard deviation of personalized accuracies across all clients
derived from a single seed.

Algorithm s=10 s=20 s=100 α=0.05 α=0.1 α=0.3

Dot-Regression 42.52 49.02 52.86 30.31±7.95 37.52±5.60 47.08±3.69

Dot-Regression FT (LDR) 80.84±(5.99) 74.18±(5.78) 56.84±(5.04) 72.02±(6.80) 66.96±(5.36) 60.34±(3.66)

Dot-Regression FT (LDr+) 80.82±(6.12) 73.73±(5.75) 56.69±(4.95) 71.85±(7.03) 66.59±(5.32) 59.87±(3.65)

FedDr+ (ours) 48.69 51.00 53.23 39.63±9.12 45.83±6.18 48.04±3.44

FedDr+ FT (LDR) (ours) 84.23±(5.44) 75.73±(4.79) 56.90±(4.85) 78.65±(6.17) 74.86±(4.77) 62.47±(3.72)

FedDr+ FT (LDr+) (ours) 84.10±(5.43) 75.42±(4.80) 56.76±(4.91) 78.55±(6.16) 74.75±(4.75) 62.16±(3.73)

E.2 Personalized Federated Learning Results

We introduce FedDr+ FT and dot-regression FT, inspired by prior work (Oh et al., 2022; Dong et al., 2022; Li
et al., 2023b; Kim et al., 2023). These methods enhance personalization by leveraging local data to fine-tune
the GFL model. We investigate the impact of fine-tuning using LDr+ and LDR loss for each GFL model to
assess their effectiveness on personalized accuracy. Performance metrics without standard deviations indicate
results on Dtest, obtained from the GFL model after the initial step in the 2-step method. Our experiments
involve heterogeneous settings with sharding and LDA non-IID environments, using MobileNet on CIFAR-
100 datasets. We set s as 10, 20, and 100, and the LDA concentration parameter (α) as 0.05, 0.1, and 0.3.
Table 14 provides detailed personalized accuracy results.

Our 2-step process involves first developing the GFL model either using dot-regression or FedDr+. In the
second step, we fine-tune this model to create the PFL model, again using LDR or LDr+. This results
in four combinations: Dot-Regression FT (LDR), Dot-Regression FT (LDr+), FedDr+ FT (LDR), and FedDr+
FT (LDr+). When the GFL model is fixed, using LDR for fine-tuning consistently outperforms LDr+ across
all settings, because dot-regression focuses on local alignment which advantages personalized fine-tuning.
Conversely, when the fine-tuning method is fixed, employing LDr+ for the GFL model consistently outper-
forms LDR across all settings. This aligns with previous research (Nguyen et al., 2022; Chen et al., 2023)
suggesting that fine-tuning from a well-initialized model yields better PFL performance.

E.3 IID Data Performance

To address the question regarding the performance of FedDr+ or dot-regression loss in Federated Learning
(FL) settings with IID data, we conducted experiments on CIFAR-100 with 100 clients, distributing data
IID and ensuring a fair number of samples per client. We evaluated FedAvg, FedBABU, Dot-regression, and
FedDr+ across 5 seeds, calculating the mean and standard deviation of the global model accuracy for each
algorithm.

Table 15: Global model accuracy (%) in IID data settings.

Algorithm Accuracy (mean ± std)
FedAvg 47.19 ± 1.06
FedBABU 45.18 ± 0.61
Dot-regression 51.48 ± 0.99
FedDr+ 51.10 ± 0.61

From the Table 15, it is evident that Dot-regression and FedDr+ achieve the highest performance, significantly
outperforming both FedAvg and FedBABU. The performance of Dot-regression and FedDr+ is nearly identical
under IID settings.
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This similarity arises because, in the IID scenario, there are no unobserved classes across clients. As a
result, the feature distillation mechanism in FedDr+, which is specifically designed to mitigate forgetting on
unobserved classes, does not provide additional benefits. Instead, both Dot-regression and FedDr+ excel in
improving local alignment across all classes, fully achieving the global model’s objective of enhancing local
alignment for all clients.

E.4 Performance in Stochastic Client Data Settings

While our original experiments on CIFAR-100 (s=10) with 100 clients assumed a static client dataset,
we conducted additional experiments where each client randomly removed one class from its dataset every
10 FL rounds. As expected, global model accuracy decreased for all methods, as shown in Table 16. However,
FedDr+ consistently outperformed CE and Dot-regression, demonstrating its robustness in handling dynamic
class distributions. The round-wise global test accuracy trends for CE, Dot-regression, and FedDr+ in the
stochastic setting are presented in Figure 9c, further confirming FedDr+ ’s stability and superior performance
across training rounds.

Table 16: Global model accuracy (%) in static and stochastic client data settings.

Algorithm Static Setting Stochastic Setting
CE 46.20 43.59
Dot-regression 42.52 38.13
FedDr+ 48.69 44.96
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Figure 9: Comparison of (a) feature-classifier alignment on the observed and unobserved classes test data,
(b) feature-classifier alignment on erased-class test data for θi

r, and (c) global test accuracy of θg
r on all

classes. Models are trained using LCE, LDR, and LDr+.

To further investigate why FedDr+ maintains superior global accuracy in the stochastic setting, we analyzed
the feature-classifier alignment for both observed/unobserved classes and erased classes.

• Local alignment for observed/unobserved classes (Fig 9a):

– FedDr+ maintains superior feature-classifier alignment for both observed and unobserved classes
compared to Dot-regression, consistently outperforming it across all rounds.

– During the final convergence phase, FedDr+ surpasses even CE in unobserved class alignment,
confirming its effectiveness in preserving global knowledge.

• Local alignment for erased class (Fig 9b):

– Even for erased class (those removed during training), FedDr+ retains stronger feature-classifier
alignment than Dot-regression.

– During the final convergence phase, FedDr+ also surpasses CE in erased class alignment, further
demonstrating its ability to mitigate forgetting of removed class knowledge.
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These results suggest that the feature distillation mechanism in FedDr+ effectively enhances global
knowledge preservation while also enabling effective learning of observed classes, even when
class distributions change dynamically.

E.5 Scaling to Larger Numbers of Clients and Training Rounds

We conducted experiments on CIFAR-100 (s=10) with 1,000 communication rounds, increasing the
number of clients to 100, 200, 500, and 1,000. All algorithms used previously grid-searched optimal hyperpa-
rameters, and results are averaged over three independent seeds. All algorithms used previously grid-searched
optimal hyperparameters, and results are averaged over three independent seeds.

Table 17: Global model accuracy (%) for different numbers of clients with 1,000 communication rounds.

Algorithm N=100 N=200 N=500 N=1,000
FedAvg 50.50 ± 0.57 42.51 ± 1.47 33.02 ± 0.74 26.63 ± 1.31
FedBABU 58.19 ± 1.07 48.75 ± 1.99 37.40 ± 0.41 25.10 ± 1.08
FedDr+ 64.21 ± 1.24 59.78 ± 0.71 43.27 ± 0.31 28.99 ± 0.98

Table 17 confirms that FedDr+ consistently outperforms FedAvg and FedBABU across all settings, demon-
strating robust scalability in large-scale FL.
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