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ABSTRACT

We propose a novel method, Textbook Consistency, to improve the training effi-
ciency of large language models by leveraging textbooks as a guiding signal for
learning from internet-scale data. Rather than relying on hard filtering of data based
on quality thresholds before training, our approach adaptively adjusts the weight
of data during training based on its consistency with textbooks during training.
We compute the cosine similarity between internet data and textbooks in a latent
space, using this metric to modulate the cross-entropy loss. Our method signifi-
cantly enhances training efficiency, achieving twice the effectiveness by reducing
training time or the number of tokens required. Empirical results show superior
performance on language models trained on large datasets like FineWeb and The
Pile, with extensions to other domains such as robotics. Our method is simple to
implement, incurs no additional overhead, and is compatible with existing data
curation techniques.

1 INTRODUCTION

The internet provides a vast and diverse pool of knowledge, making it a critical resource for advancing
large language models (Brown et al., 2020; Hoffmann et al., 2022; Kaplan et al., 2020). Training
these models on internet-scale data takes months and requires thousands, if not tens of thousands, of
GPUs (Touvron et al., 2023a; Dubey et al., 2024). To make training more efficient and improve data
quality, researchers have focused on methods to data filtering, duplicate removal, perplexity-based
filtering, hand curation, identifying new data sources (see e.g. Lee et al., 2021; Penedo et al., 2023;
Computer, 2023; Li et al., 2024; Soldaini et al., 2024; Gao et al., 2020; Soboleva et al., 2023; Albalak
et al., 2024a). A dominant strategy involves filtering data by comparing it to smaller, high-quality
sources such as textbooks, and filter out or keep data in hard manner (Brown et al., 2020; Wenzek et al.,
2019). This strategy is frequently applied in the training of state-of-the-art language models such as
Llama (Touvron et al., 2023a) and datasets such as RefinedWeb (Penedo et al., 2023). However, this
process requires training proxy LLMs on data filtered at different thresholds, which is a less scalable
and tedious process. Moreover, this method imposes a hard threshold, meaning data is either fully
retained or discarded before training, without allowing for a more nuanced approach to learning or
unlearning based on data’s relevance and importance.

In this paper, we explore whether training efficiency can be improved by adaptively weighting internet
data during training, based on its consistency with textbook-quality sources. We propose to use
textbooks to guide learning from internet during training. The intuition is that internet provide diverse
learning signals while textbooks provide high quality guidance – the model should learn more if the
data is consistent with target data or vice versa. We measure the consistency between internet (source
data) and textbooks (target data) by computing the cosine similarity between them in a latent space,
and weighting next token prediction cross entropy loss with cosine similarity. Since our method aims
to upweight and downweight data adaptively based on their consistency with textbook, we denote our
method as Textbook Consistency.

Empirically, we found that our method performs well in language model training at no measurable
additional cost. When using textbooks, which consist of high-quality public instruction tuning
datasets, as a consistency target for learning from large and diverse internet-scale datasets like
FineWeb (Penedo et al., 2023) and The Pile (Gao et al., 2020), our approach achieves significantly
lower validation loss, better performance in downstream tasks, and a superior scaling trend. Our
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Figure 1 Overview of Textbook Consistency method for training language models. The method
learns from internet by comparing them to high-quality textbook sources. The loss function is
weighted based on the consistency between internet and textbook data. This approach adaptively
upweights or downweights data to improve training efficiency and model performance without adding
significant computational cost.

method enables twice the training efficiency, meaning it can reduce training time or, equivalently, the
number of training tokens by half. This demonstrates the effectiveness of adaptively upweighting and
downweighting data based on their consistency with target datasets. We applied our method to tasks
beyond language modeling, such as learning robotics behaviors from large unsupervised exploration
data (Yarats et al., 2022), where it learns from large and diverse unsupervised exploration trajectories,
with consistency provided by a small but highly rewarding demonstration. Our method demonstrates
similar advantages, outperforming prior methods by a large margin and achieving higher reward.

Our empirical evaluations demonstrate the effectiveness of Textbook Consistency, highlighted below.

• We show Textbook Consistency can leverage high quality textbook to adaptively weight internet
data for efficient training with up to 2-3x efficiency.

• We show that Textbook Consistency performs well across various manually curated internet
datasets, demonstrating that our method is compatible with existing data curation approaches.

• We show that our method can enable higher accuracy in downstream language tasks and show
application in non-language domains.

2 METHOD

We introduce a method called Textbook Consistency that enhances learning from large-scale and
diverse internet data by aligning it with narrow but high-quality textbook datasets. The core idea
behind this approach is to guide the learning process using the structure and accuracy of textbooks
while drawing from the vastness and diversity of internet sources. To achieve this, we use two primary
data sources: large, general-purpose internet datasets, which provide a broad range of information,
and curated textbook datasets, which are more focused and domain-specific but contain high-quality
content.

We consider next token prediction objective which is to predict the probability distribution of the
next word in a sequence given the preceding words. Let’s denote the training data as a sequence of
tokens {x1, x2, . . . , xT }. For each token xt, the model aims to maximize the conditional likelihood
of token xt+1 given all the previous tokens, {x1, . . . , xt}. The objective function is the negative
log-likelihood (NLL) over all tokens in the dataset. Given a sequence of tokens {x1, x2, . . . , xT },
the training loss is defined as:

LNLL = −
T∑

t=1

logP (xt+1|x1, . . . , xt; θ)

where P (xt+1|x1, . . . , xt; θ) is the probability distribution over the vocabulary, predicted by the
model’s parameters θ.
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Incorporating Textbook Consistency into the next token prediction framework introduces a weighted
loss mechanism to improve the learning from diverse internet data by considering the similarity
between internet-sourced sentences and those from high-quality textbooks. Let’s denote two datasets:
internet: Dinternet = {sinternet

i }, where each sinternet
i represents a sentence sampled from the internet.

textbook: Dtextbook = {stextbook
j }, where each stextbook

j represents a sentence sampled from a high-
quality textbook.

In the weighted next token prediction setup, a random mini-batch of sentences from the internet, de-
noted as {sinternet

1 , sinternet
2 , . . . , sinternet

N }, is compared to a random mini-batch from textbooks, denoted
as {stextbook

1 , stextbook
2 , . . . , stextbook

M }, using cosine similarity.

The cosine similarity between two sentence embeddings e(sinternet
i ) and e(stextbook

j ), where e(·) repre-
sents the sentence embeddings produced by an embedding model, is computed as:

cosine(e(sinternet
i ), e(stextbook

j )) =
e(sinternet

i ) · e(stextbook
j )

∥e(sinternet
i )∥∥e(stextbook

j )∥
.

Each sentence from the internet dataset is weighted by its average cosine similarity with the sentences
in the textbook mini-batch, based on their embeddings. Let the weight for the i-th internet sentence
be denoted as wi, where:

wi =
1

M

M∑
j=1

cosine(e(sinternet
i ), e(stextbook

j )),

where the embedding e comes from a pretrained embedding model such as BERT, or from the model
itself. Incorporating these weights into the next token prediction task, the loss for internet-sourced
data becomes a weighted negative log-likelihood:

Lweighted = −
N∑
i=1

wi

Ti∑
t=1

logP (xt+1|x1, . . . , xt; θ).

This approach ensures that sentences from the internet, are weighted according to their cosine
similarity with sentences from textbooks. This ensures that the model can learn effectively from
large-scale, diverse internet data while being guided by high-quality textbooks.

The method is illustrated in Figure 1, and the corresponding algorithm is shown in Algorithm 1.

Algorithm 1 Learning On Internet With Textbook Consistency

Required: Internet dataset D, Textbook dataset T , Model M , Embedding Model E.
Initialize
for Training Iterations do

Sample a mini batch from internet dataset D
Sample a mini batch from textbook dataset T
Compute embeddings for both batches with E
Compute average cosine similarity between D and T in embedding space
Update model M to minimize weighted cross-entropy loss
(Optional) Update embedding E

end for
Final model

3 EXPERIMENT

Our study is based on the LLaMA (Dubey et al., 2024) architecture, and we consider model sizes of
375M, 1.2B, and 3B in our experiments. Although we explore larger models like the 3B size, the
majority of our experiments focus on the 1.2B model. The implementation is in Jax/Flax (Bradbury
et al., 2018; Heek et al., 2023). We use batch sizes of 0.5M and 1M, sampling a batch size of 0.5M
from a narrow domain. For embedding both the source and target, we utilize BERT-base (Devlin
et al., 2018) from sentence-transformers (Reimers and Gurevych, 2019). We swap learning rate
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with grid search. Unlike standard language model training, where sentences are packed together to
maximize FLOP utilization on GPUs/TPUs, our approach requires computing sentence embeddings
and using embedding similarity to weight the next-token prediction loss. To prevent cross-sentence
attention during next-token prediction, we compute the embeddings after loading the data. We then
pack the sentences and apply an attention segmentation mask to ensure that attention is restricted
within each sentence, with no interaction between different sentences.

We use muP (Yang et al., 2022) to parameterize the model and conduct proxy experiments to
confirm that the learning rate and other hyperparameters optimized for our small 375M model can be
successfully applied to larger models. When applying our hyperparameter search method to the C4
training set, our 375M baseline model achieves a test set loss of 2.58 on C4, which improves upon
the 2.7 loss reported in Appendix G of Chinchilla (Hoffmann et al., 2022) for a similarly sized model.
This result demonstrates the strength of our baseline model compared to the current state of the art.

We report the number of tokens consumed during training. The computational cost (FLOPs) incurred
by the embedding model is less than 0.5% of the total training FLOPs, even for the smallest 375M
model. This percentage decreases further for larger models, such as the 1.2B, 3B, and other larger
LLMs. For all methods, our experiments are conducted on 64 TPUv4 chips on Google Cloud,
equivalent to 32 Nvidia A100. We use bf16 for activation and fp32 for parameters and gradients. We
use the AdamW optimizer (Loshchilov, 2017) with max gradient norm 1.0. For the learning rate
schedule, we use linear warmup and cosine decay.

We apply Textbook Consistency to two datasets: FineWeb and The Pile. The Pile is an earlier,
widely-used dataset in the community. FineWeb, on the other hand, is a recent state-of-the-art,
high-quality dataset, carefully curated through both manual and model-based filtering techniques.

We list some details about the high-quality datasets used as textbooks.

• OpenHemes is a high-quality dataset (Teknium, 2023). The dataset consists of questions and answers
sourced from benchmarks and user and AI model conversations. Each turn in a conversation has
two fields: a "from" field, which denotes the role of that turn, and a "value" field, which contains the
actual text. For our embedding purposes, we format each conversation as a sentence.

• MetaMathQA is a math-focused dataset (Yu et al., 2023) that contains math questions and answers.
• EvoInstruct is a dataset containing conversations on various topics (Xu et al., 2023). Similar to the

above, we format each conversation as a sentence before computing embeddings.

Other high-quality textbook datasets, such as OpenOrca (Lian et al., 2023) and UltraChat (Ding
et al., 2023), can be also included into textbook, but we leave them for future work. We combine
EvoInstruct, MetaMathQA, and OpenHemes. We found that it is also important to mix in high-quality
internet datasets, such as C4 (Raffel et al., 2020), to achieve higher diversity. The corresponding
ablation study is presented in the experimental section. We randomly sampled 150M tokens from C4,
combined with about 50M tokens from the pre-processed textbooks, giving a total of 200M tokens in
the post-processed dataset, which we use for our Textbook Consistency training.

3.1 EVALUATION RESULTS

The evaluation section is divided into performance with different data sizes, performance with
different model sizes, downstream evaluation, and ablation evaluation.

3.1.1 TRAINING EFFICIENCY

The graph in Figure 2 shows the effect of different training data and methods on validation loss, using
a textbook holdout set for evaluation. Three distinct curves represent different configurations, with
each data point corresponding to a full training run, i.e., 10B token point and 20B token point each
denote training on 10B and 20B tokens, respectively.

• Textbook data. The blue curve, representing the baseline, shows training on multiple epochs of
textbook data (i.e., repeated textbook data). Initially, validation loss decreases as the number of
tokens increases, but this trend reverses as the model begins to overfit due to excessive repetition.
This demonstrates that although textbook data is high-quality, its limited quantity makes it ineffective
for training a well-performing model on its own.
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Figure 2 Validation loss as a function of data size. Each data point in this figure is a full training
run, and evaluated on a hold out subset of textbook. The blue curve repeating 200M textbook data
which is a mixture of C4 subset and high quality instruction tuning datasets for multi epoch training.
The orange curve denotes adding internet data (RefineWeb) to enlarge training set. The red curve
denotes our training method by incorporating the adaptive consistency between textbook and internet.

• Internet data. The orange curve, which incorporates internet data (RefineWeb), specifically shows
that the starting point of its overlap with the blue curve represents zero internet data, relying solely
on repeated textbook data. As more internet data is added, the validation loss decreases compared to
using textbook data alone, highlighting the benefit of a larger and more diverse training set.

• Textbook Consistency. The red curve represents the model using adaptive consistency between
textbook and internet data, and it achieves the lowest validation loss, with the most significant
improvement as the number of tokens increases. Notably, at the point where the model has
processed 40B tokens, the red curve outperforms the others by a factor of 2x in terms of validation
loss reduction, indicating the effectiveness of incorporating consistency between datasets. This
suggests that balancing and refining the dataset with consistency techniques can lead to better model
performance on unseen textbook data.

Takeaway: Our method surpasses the state-of-the-art, achieving more than double the training
efficiency, with the performance gap widening as scale increases.

3.1.2 GENERALIZATION ACROSS MODEL SIZE

Figure 3 presents the results of evaluating models of different sizes (375M, 1.2B, and 3B parameters)
on validation loss, highlighting the impact of incorporating additional data and consistency techniques.
The blue curve represents models trained solely on textbook data, showing a gradual decrease in
validation loss as the model size increases, but consistently yielding the highest validation loss
compared to other methods. The orange curve, which includes additional internet data, achieves
lower validation losses than textbook-only models, indicating the benefits of using a more diverse
dataset for training. The red curve, which incorporates textbook and internet data along with an
adaptive consistency method, consistently outperforms the other two approaches, demonstrating the
lowest validation loss across all model sizes. Notably, the margin of improvement provided by the
consistency approach becomes more pronounced as model size increases, with the 3B model showing
the most significant reduction in validation loss. This suggests that the adaptive consistency method
scales effectively with model size.

Takeaway: Similar to training efficiency, Textbook Consistency also scales with parameters: the gain
increases with model size.
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Figure 3 Validation loss as a function of parameters. Parameters (375M, 1.2B, 3B) are used for
models trained on textbook data (blue), textbook + internet data (orange), and textbook + internet data
with consistency training (red). The inclusion of the Textbook Consistency approach significantly
reduces validation loss, showing a notable 2x improvement in models with 3B parameters.

3.1.3 EVALUATE DOWNSTREAM TASKS

Table 1 shows the evaluation results on downstream tasks, comparing models trained on different
datasets: textbook-only data, textbook plus internet data, and Textbook Consistency approach. The
evaluation is based on the Eleuther AI Eval Harness (Gao et al., 2024) for standardized comparison.
Table 1 reports validation loss on the textbook holdout set, along with accuracies on downstream
tasks such as LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), and NaturalQues-
tions (Kwiatkowski et al., 2019). The model trained with only textbook data shows the highest
validation loss on the textbook holdout (2.538) and lower accuracies on the downstream tasks.
Adding internet data reduces the validation loss (2.351) and improves performance across down-
stream tasks. However, the best results are achieved by incorporating textbook consistency, where
the validation loss is further reduced to 2.233, and the model achieves the highest accuracies across
all downstream tasks. These results demonstrate that the textbook consistency approach not only
improves the model’s generalization on the holdout dataset but also significantly boosts performance
in diverse downstream tasks.

Table 1 Evaluation on downstream tasks. Textbook Consistency achieves lower validation loss
and higher downstream accuracy than baselines.

Val Loss (↓) LAMBADA (↑) HellaSwag (↑) NaturalQuestions (↑)

Textbook 2.538 9.9 7.3 11.4
+ Internet 2.351 11.5 9.8 13.4
+ Textbook Consistency 2.233 12.6 11.5 14.8

Takeaway: The Textbook Consistency model, combining textbook and internet data with textbook
consistency, outperforms others with the lowest validation loss and highest accuracies on downstream
tasks like LAMBADA, HellaSwag, and NaturalQuestions.

3.1.4 EVALUATING TEXTBOOK CONSISTENCY ON THE PILE DATASET

So far, the experiments are based on the FineWeb (Penedo et al., 2024) dataset. We experimented
with applying Textbook Consistency to a different internet dataset The Pile (Gao et al., 2020) to
check its effectiveness. Figure 4 compares the validation loss across various domains from The Pile
dataset with and without the use of textbook consistency. The orange bars represent models trained
without consistency, while the red bars represent models that incorporate consistency. Across all
domains, the use of textbook consistency leads to a reduction in validation loss. For example, in
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Figure 4 Validation loss on different domains from The Pile dataset. Textbook Consistency
achieves lower validation loss than baseline.

domains such as ArXiv and DM Mathematics, the improvement is quite significant, with the red bars
showing noticeably lower validation loss compared to the no-consistency baseline. Other domains,
such as GitHub, Gutenberg, and StackExchange, also exhibit substantial reductions in loss when
using consistency. Even in more specialized domains like PubMed Abstracts and PhilPapers, the
consistency approach consistently outperforms the baseline. This demonstrates that the adaptive
consistency method is effective in reducing the model’s validation loss across a diverse range of
domains, suggesting that it helps improve the model’s generalization and capability to handle varied
content more efficiently.

Takeaway: Applying Textbook Consistency to models trained on The Pile dataset consistently reduces
validation loss across various domains. This improvement is particularly notable in technical and
specialized domains like ArXiv, Mathematics, and PubMed Abstracts, indicating that the method
enhances the model’s ability to generalize across diverse content areas.

3.1.5 EVOLUTION OF CONSISTENCY

Figure 5 illustrates the evolution of adaptive textbook consistency values during training, showing
how the model adjusts the weight of training data based on its consistency with textbooks. The x-axis
represents the consistency values, ranging from negative (indicating low consistency) to positive
(indicating high consistency), while the y-axis tracks the evolution over time. The intensity of the
color indicates the density or frequency of these values at different stages of training.

The fact that consistency is predominantly positive indicates that the FineWeb data used in the training
is of high quality and generally aligns well with the textbook material. The model is effectively
learning to weight more consistent data heavily, leading to improved generalization and performance
on the textbook holdout and other downstream tasks. This adaptive weighting of the training data
allows for more efficient and targeted learning, leveraging the strengths of both textbooks and the
internet data.

3.2 ABLATION STUDY

Table 2 presents the results of an ablation study, comparing variations of the Textbook Consistency
method to evaluate its impact on validation loss and how each variant performs against a baseline.
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Figure 5 Evolution of adaptive textbooks consistency during training. Consistency is mostly
positive since FineWeb is a high quality dataset. Textbook Consistency adaptively weight training
data acccording their consistency with textbooks. The training progress is from bottom to top.

Table 2 Ablation study. Comparing variations of Textbook Consistency on hold out evaluation.

Adaptive Learning Rate Target Val Loss (↓) vs Baseline (↓)

Default Yes Textbook 2.233 -0.118

(A)
No (Filtering 0.6 - 0.8) 2.358 0.007
No (Filtering 0.6 - 1) 2.358 0.007
No (Filtering 0.4 - 0.8) 2.362 0.011

(B)
1.5x 2.386 0.035
0.8x 2.393 0.042
0.4x 2.409 0.058

(C) exclude C4 2.268 -0.083
C4 2.354 0.003

Data Filtering. In configuration (A), filtering techniques are introduced, restricting the consistency
target range to various thresholds (0.6-0.8, 0.6-1, and 0.4-0.8), and these variations consistently result
in a higher validation loss (2.358 - 2.362), with minimal to no improvement over the baseline. This
indicates that filtering consistency targets to these specific ranges limits the model’s performance,
possibly because it excludes some useful training data.

Learning Rate. Configuration (B) explores the effects of varying the learning rate (1.5x, 0.8x, 0.4x),
and all variants result in higher validation losses (2.386 - 2.409) compared to the default setting.
These results suggest that the default learning rate is optimal for this consistency approach, and
adjusting the learning rate, either up or down, degrades performance. This shows the effectiveness of
Textbook Consistency is not because adaptive weight samples may indirectly reduce learning rate.

Textbook Source. In configuration (C), the model is tested without C4 data and with only C4 data.
The validation loss is lower when the model excludes C4 (2.268) compared to when it relies solely
on C4 (2.354), but both configurations show a smaller improvement over the baseline (-0.083) or
underperform baseline (0.003). This indicates that while C4 data can be useful, combining it with
other sources in the default method yields the best results.

Takeaway: Ablation studies show that adaptive weighting is crucial, and using textbooks is important
to the method’s success. Replacing adaptive weighting with filtered weights or using a reduced
learning rate negatively impacts model performance.

3.3 APPLICATION TO SIMULATED ROBOTICS

Table 3 presents an application of the Textbook Consistency method to simulated robotics tasks
using the ExoRL dataset (Yarats et al., 2022). ExoRL includes a large set of diverse yet low-

8
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Figure 6 ExoRL dataset includes a large set of diverse but low reward behaviors. Textbook
Consistency trains on them by checking consistency with a small set of demonstrations.

Table 3 Rewards achieved on ExoRL. Textbook Consistency outperforms learning from ExoRL
only and learning from demonstration only.

ExoRL BC-10% ExoRL BC Demo BC Demo +
BC-10% ExoRL

Textbook Consistency
on ExoRL + Demo

Walker Stand 52.91 258.52 127.54 312.34
Walker Run 34.81 287.44 108.85 309.85
Walker Walk 13.53 234.34 94.57 267.45
Cheetah Run 34.66 278.65 187.55 323.95
Jaco Reach 23.95 253.50 201.87 301.87
Cartpole Swingup 56.82 217.37 198.56 257.67

Total Average 36.11 254.97 153.16 295.52

reward behaviors, making it challenging for agents to learn optimal actions (Laskin et al., 2021).
Examples of randomly sampled trajectories from the dataset are shown in Figure 6. To address
this challenge, Textbook Consistency trains the model by evaluating the consistency between the
low-reward behaviors from ExoRL and a small set of demonstration data we collected from the
corresponding RL environments, effectively combining both sources to guide learning. This hybrid
approach allows the model to leverage the strengths of both the demonstration data (high-quality
examples) and the broader ExoRL dataset (diverse but noisy behaviors).

We compare behavior cloning (BC) on demonstrations with BC applied to the top 10% of high-return
trajectories from diverse ExoRL (BC-10%). Both are widely used and effective approaches. Table 3
shows returns achieved across various simulated robotics tasks using different methods. The results
demonstrate that Textbook Consistency outperforms all other methods on average and across most
tasks. ExoRL and BC-10% ExoRL yields relatively low rewards due to ExoRL is diverse and
low-reward, BC Demo outperforms BC-10% on ExoRL, combining demonstrations with ExoRL (BC
Demo + BC-10% ExoRL) achieves higher performance. Textbook Consistency, which adaptively
balances consistency between ExoRL and demonstration data, achieves the highest rewards overall.

Takeaway: Textbook Consistency effectively combines demonstration data with diverse but low-
reward behaviors from the ExoRL dataset, outperforming baselines in simulated robotics tasks.

4 RELATED WORK

Data Filtering. Data filtering has been a high-impact and active area of research for language model
training (Brown et al., 2020). In addition to basics such as duplicate removal, methods include
filtering data based on similarity to Wikipedia (Gururangan et al., 2022; Wenzek et al., 2019; Touvron
et al., 2023a), heuristic-based (e.g., language and item count filtering), perplexity filtering, and
hand curation (Penedo et al., 2023; Abbas et al., 2023; Li et al., 2024; Penedo et al., 2024). Further
methods propose to filter pretraining data so that the resulting LLM will achieve higher scores on given
benchmarks. This is done by selecting training data that is similar to data from a given benchmark,
such as based on n-gram overlap (Xie et al., 2023), embedding similarity (Everaert and Potts, 2023),
or loss-performance correlation coefficients from existing pretrained models (Thrush et al., 2024);
or less scalable approaches that involve training proxy LLMs using various data mixtures (Touvron
et al., 2023a; Ilyas et al., 2022; Xie et al., 2023; Engstrom et al., 2024; Liu et al., 2024). Prior research
conducted extensive comparison of pretraining data selection techniques (Li et al., 2024) and found
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that many of these techniques have yet to show significant improvements. The current state-of-the-art
across many tasks remains fairly basic: typically, a fixed fastText (Bojanowski et al., 2017) or BERT
(Devlin et al., 2018) classifier, applied after comprehensive deduplication and filtering. Another line
of research focus on curriculum-based online data selection of challenging samples (Jiang et al., 2019;
Loshchilov and Hutter, 2015; Katharopoulos and Fleuret, 2018) requires proxy models to determine
difficulty. This approach is computationally expensive, limiting its scalability. Our work is motivated
by whether we can efficiently adjust the importance of internet-sourced examples based on their
consistency with high-quality textbooks. We provide compelling evidence supporting this hypothesis
– demonstrating that a simple adaptive weighting method, based on textbook-internet consistency, can
significantly improve training efficiency and model performance.

Data Mixing. Training datasets consisting of data from different domains or sources (for example,
web text, code, and Wikipedia) raise an important challenge for the data curation process: determining
the percentage of data that should come from each source, referred to as data mixing. These data
mixing methods include using heuristics (such as human judgment) (Gao et al., 2020; Touvron et al.,
2023b), or using a set of predefined configurations (Soboleva et al., 2023), or empirically determining
the best domain weights according to some downstream evaluation (Du et al., 2022). Other research
has explored more principled approaches (Albalak et al., 2024b; 2023; Xie et al., 2023; Thudi and
Maddison, 2024) using theories such as multi-armed bandits and distributionally robust optimization.
In addition, clustering-based rebalancing methods for data sampling (Shao et al., 2024) have been
proposed, outperforming both uniform and other cluster-based sampling methods. Clustering-based
method dynamically adjusts data sampling to rebalance data, while our method dynamically adjusts
weights to be consistent with textbooks. Further methods have been proposed, including the use of
learning-based strategies that optimize domain proportions through iterative training of both reference
and proxy models (Fan et al., 2023), skills-based selections (Chen et al., 2024), dynamically updates
the composition of sampled data based on varying losses across different domains (Xia et al., 2023),
and simultaneously models the behaviors of data quantity and mixing weights using proxy models (Ge
et al., 2024). These methods are primarily focused on mixing and balancing data sources. Our method
takes an orthogonal approach: Textbook Consistency focuses on training time adaptive weighting
using textbooks from the target domain.

5 DISCUSSION AND CONCLUSION

In this work, we present Textbook Consistency, a novel approach to enhancing the training efficiency
of large language models by leveraging textbooks as guiding signals to adaptively weight internet-
scale data. Our method dynamically adjusts the importance of data samples based on their cosine
similarity to textbook content within a latent space. Empirical evaluations demonstrate that Textbook
Consistency can substantially reduce training cost and improve training efficiency by more than
two times, while consistently improving model performance across a wide range of benchmarks
as well as non-language tasks. Our experimental results indicate that Textbook Consistency is a
computationally cost-free technique that improve pretraining efficiency twofold on state-of-the-art,
curated datasets. This efficiency enables further advancing and scaling both model and data sizes, and
as our experiments have shown, the advantage of Textbook Consistency becomes more significant
as the scale increases. Textbook Consistency offers several key advantages over conventional data
curation techniques: it is straightforward to implement, introduces no additional computational
overhead, and can be straightforwardly integrated with existing data filtering methods.

Limitations. Although our Textbook Consistency is effective, it has several limitations. Currently, it
uses embedding models to measure the consistency between textbooks and internet sources, which
does not take advantage of large language models, or the model being trained itself. However,
this limitation could be addressed by incorporating advanced models directly. Our study also has
limitations in scale. We experimented with models ranging from 375M to 3B parameters, trained
on datasets from 200M to 80B tokens. While our token-to-parameter ratios (up to 30-60) exceed
Chinchilla’s optimal ratio 20, our largest models are still significantly smaller than contemporary
LLMs, which often surpass 100B parameters. This scale disparity may limit the direct applicability
of our findings to these larger models. Extrapolating our results to estimate the performance and
behaviors of much larger LLMs should be done cautiously, as different scaling laws may apply
beyond the ranges we explored.
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A FURTHER EXPERIMENT DETAILS

We employ a Llama-like architecture for models of 375M, 1.2B, and 3B parameters. The configura-
tions for these models are provided in Table 4.

Table 4 Model configuration. Comparison of model architectures across different configurations
(375M, 1.2B, 3B), showing key attributes such as hidden size, intermediate size, and attention heads.

Config Llama-like 375M Llama-like 1.2B Llama-like 3B

Hidden Size 1536 2048 3200
Intermediate Size 4096 5504 8640
Hidden Layers 12 24 26
Attention Heads 16 16 32
Key/Value Heads 16 16 32
RMS Norm Eps 1e-6 1e-6 1e-6
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