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Abstract

Fourier Neural Operators (FNOs) have shown promise for solving partial differen-
tial equations (PDEs). Typically, FNOs employ separate parameters for different
frequency modes to specify tunable kernel integrals in Fourier space, which, yet, re-
sults in an undesirably large number of parameters when solving high-dimensional
PDEs. A workaround is to abandon the frequency modes exceeding a predefined
threshold, but this limits the FNOs’ ability to represent high-frequency details and
poses non-trivial challenges for hyper-parameter specification. To address these,
we propose AMortized Fourier Neural Operator (AM-FNO), where an amortized
neural parameterization of the kernel function is deployed to accommodate arbi-
trarily many frequency modes using a fixed number of parameters. We introduce
two implementations of AM-FNO, based on the recently developed, appealing Kol-
mogorov–Arnold Network (KAN) and Multi-Layer Perceptrons (MLPs) equipped
with orthogonal embedding functions respectively. We extensively evaluate our
method on diverse datasets from various domains and observe up to 31% average
improvement compared to competing neural operator baselines.

1 Introduction

Neural operators (NOs) have been extensively studied for their potential in accelerating the solving
of partial differential equations (PDEs) in science and engineering fields [19, 20, 18, 24, 25, 2].
In contrast to approaches limited to specific discretizations or PDE instances [8, 36, 28, 29], NOs
characterize the solving operator of a family of PDEs across different discretizations and hence enjoy
higher efficiency and usability, e.g., for weather forecasting [26] and material analysis [5].

Fourier neural operator (FNO) [18] and its variants [17, 33, 31, 35] stand out as a significant subclass
of NOs, which explore the convolution theorem and Fast Fourier Transform (FFT) to efficiently
performs kernel integral, a central module for the learning operator of PDEs. Typically, FNO
separately parameterizes the values of the Fourier-transformed kernel function for different frequency
modes, and hinges on frequency truncation—abandons the parameters corresponding to frequencies
exceeding some threshold—to reduce modeling costs, particularly for high-dimensional PDEs.

Frequency truncation can be problematic when solving PDE systems with intense high-frequency
components. To address this, IFNO dynamically adjusts the threshold for frequency truncation during
training, though it still experiences exponential parameter growth with increasing dimensionality [35].
This complexity can result in substantial memory consumption and hinder the development of large-
scale pretrained models [9]. Conversely, AFNO [7] employs a shared MLP to transform the outcomes
of FFT, but the uniform treatment of frequency modes may constrain expressiveness and lead to
suboptimal performance.
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Figure 1: Comparison between FNO and AM-FNO: FNO assigns each value at the discretized
frequencies of the Fourier-transformed kernel function as a learnable parameter, while AM-FNO
utilizes neural network parameterization (MLP or KAN) to approximate the mapping between
frequencies and function values. The frequencies are embedded using a set of orthogonal basis
functions before being processed by the MLP.

We address this by developing AMortized Fourier Neural Operator (AM-FNO), where we introduce
extra neural networks (NNs) to specify the kernel integral operator to amortize the modeling cost. As
illustrated in Figure 2, AM-FNO is simple and intuitive—learnable NN transformations are leveraged
to directly define the Fourier-space kernel function to accommodate arbitrarily many frequency modes
at the cost of a fixed number of parameters. An amortized parameterization also provides an inherent
regularization mechanism for resisting overfitting to potential high-frequency noise.

The NN transformation in AM-FNO can be flexibly defined. One natural choice is the Kol-
mogorov–Arnold Network (KAN) due to its superior accuracy in function fitting [21]. Doing
so, we, for the first time, reveal the potential of KAN for the operator learning of PDEs. Considering
the widely criticized inefficiency issues of KAN in both time and memory consumption, we also
investigate the regular Multi-Layer Perceptrons (MLPs) for amortized parameterization. We empiri-
cally identify the necessity of embedding the frequency modes with orthogonal basis functions before
MLP transformation.

We experiment on challenging benchmarks governed by diverse typical PDEs, covering six standard
PDE benchmarks [18, 17, 30]. AM-FNO (KAN) and AM-FNO (MLP) achieve an average 22%
and 31% reduction in relative error on these benchmarks, respectively. We also analyze the error of
different frequency modes, and the results show that our models outperform in all frequency ranges.
Additionally, we perform zero-shot super-resolution on three benchmarks to assess the generalization
ability of AM-FNO across discretizations. We observe that AM-FNOs outperform the baselines and
achieve lower error even compared to FNO trained on the test resolution. The results reflect that
AM-FNOs have the promising potential to substantially reduce both the data collection and training
costs for solving high-resolution PDE problems.

2 Related Works

Neural Operators. Neural operators have attracted considerable interest for their capacity to
map infinite-dimensional function spaces [24, 19, 1], thereby facilitating solutions across diverse
discretizations without retraining. The pioneering work DeepONet [24] introduces a trunk and branch
network architecture grounded in the universal approximation theorem for operators. Transformer-
based neural operators represent a notable line of work in the domain. Galerkin Transformer [2]
proposes self-attention operators that theoretically correspond to a learnable kernel integral operator
and projection. OFormer [16] introduces an architecture with input and query encoders for querying
arbitrary output locations. GNOT [10] proposes a heterogeneous normalized attention layer to encode
different input information.

FNO and its Variants. Fourier neural operator (FNO) [18] represents a novel approach with excep-
tional efficiency and accuracy due to its ability to learn kernel integral operators in the Fourier domain.
The theoretical proof establishes its capability to approximate arbitrary continuous operator [15].
Tailored for addressing multiphase flow problems, U-FNO [33] augments its representation in higher
frequency information through U-Net paths. Geo-FNO [17] extends the applicability of FNO beyond
uniform grids by employing a learnable mapping from irregular domains to uniform latent meshes.
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F-FNO [31] reduces the model parameters and addresses performance degradation with increasing
layers by factorizing the integral operator and enhancing the architecture. AFNO [7] transforms the
function values after FFT with a shared MLP for each frequency, effectively reducing the parameter
count. FNOs have made notable contributions across various challenging tasks [6, 25, 33, 26].
However, minimizing model complexity while effectively managing high-frequency information
and ensuring generalization across different discretizations poses a persistent challenge in FNOs.
Additionally, to the best of our knowledge, there has been no attempt to incorporate KANs with
neural operators.

3 Preliminary

This section presents the foundations of operator learning and the integral operator used in FNO.

3.1 Operator Learning

Consider the input function space A = A(D;Rda) and the target function space U = U(D;Rdu)
defined on a bounded and open set D ⊂ Rd. Operator learning seeks to learn a θ-parameterized
operator Gθ to approximate the ground-truth mapping G : A → U specified by a PDE. This learning
process is based on a finite set of function observations {ai, ui}Ni=1, where functions ai and ui are
discretized on meshes {xj ∈ D}Mj=1. The optimization problem is:

min
θ

1

N

N∑
i=1

∥Gθ(ai)− ui∥2
∥ui∥2

, (1)

where the regular mean-squared error (MSE) is extended with a normalizer ∥ui∥2 to handle scale
variations across benchmarks, denoted as l2 relative error. The relative error can also be substituted
with other loss functions.

3.2 Fourier Integral Operator

A learnable kernel integral is a central module for defining mappings among functions. Specifically,
we denote the hidden state of the input function in the l-th transformation stage as h(l)(y) : D → Rdh ,
where dh represents the dimensionality, assumed to be consistent across all stages. The kernel integral
operator makes the following transformation:

(K(h(l)))(x) =

∫
D

κ(x, y)h(l)(y)dy, ∀x ∈ D (2)

However, the integral is not computation-friendly within deep learning frameworks. To address this,
FNO [18] assumes the kernel is shift-invariant, i.e., κ(x, y) = κ(x−y), and leverages the convolution
theorem to efficiently compute the integral in the Fourier domain:

(K(h(l)))(x) = F−1(R · F(h))(x), ∀x ∈ D (3)

where F and F−1 denote the FFT and its inverse (IFFT), and R(k) : E → C(dh×dh) represents
the Fourier-transformed complex-valued kernel function with k ∈ E denoting a frequency mode.
Typically, FNO individually parameterizes the values of R(k) for a fixed range of frequency modes
(denoting the number as kT ) to avoid high modeling costs. This, yet, limits the exploration of high-
frequency details in the function and poses non-trivial challenges for hyper-parameter specification.

4 Method

This section elaborates on amortized FNO (AM-FNO), which amortizes an arbitrary number of
frequency modes by sharing a fixed number of parameters.

4.1 Amortized Parameterization

Instead of parameterizing the kernel function point-by-point, we propose to build the mapping
between frequency and the values of the Fourier-transformed kernel function using an NN. On one
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hand, this mitigates the issue that the number of parameters increases significantly with that of
frequency modes and dimensionality of PDEs. On the other hand, this approach avoids AFNO’s
uniform transformation, ensuring richer expressiveness in the Fourier domain.

Concretely, by the rule of Fourier transformation, there is:

R(k) =

∫
D

κ(x)e−2iπx·kdx. (4)

Note that the output of R is a matrix, so we can use Rp,q , p, q ∈ {1, 2, . . . , dh} to denote the complex
scalar-valued function yielding one element of the matrix output. Our AM-FNO directly uses NNs
to define the real and imaginary parts of the function Rp,q to maximize the modeling flexibility.
Formally, there is

Rp,q(k) := NNre(k) +
√
−1NNim(k). (5)

The detailed implementations of the two NNs have no essential difference, so we only discuss one of
them in the following.

4.2 Kolmogorov-Arnold Networks

Kolmogorov-Arnold Networks (KANs) have been empirically shown to show promise in function
approximation [21]. According to theoretical analysis, KANs are usually defined as:

KAN(x) =

2H+1∑
j=1

η′j(

H∑
t=1

ηj,t(xt)) (6)

where η′j , ηj,l : R → R denote the learnable basis functions. In practice, we can generalize the above
definition and set a KAN layer as (with x as a H-dim variable):

x′ =


η1,1(·) η1,2(·) · · · η1,H(·)
η2,1(·) η2,2(·) · · · η2,H(·)

...
...

. . .
...

ηH′,1(·) ηH′,2(·) · · · ηH′,H(·)

x. (7)

We can specify the function by learnable coefficients and multiple local B-spline basis functions [21]:

η(x) = w(r(x) + spline(x)), spline(x) =
∑
g

cgBg(x) (8)

where r(x) represents a basis function (typically sigmoid linear unit or SiLU [3]) and w is a factor
controlling the magnitude.

We utilize two two-layer KANs in each layer of AM-FNO to define the real and imaginary parts of
Rp,q. The inputs to the network are all frequencies of h(l) after FFT. In fact, we can share weights
among the KANs associated with Rp,q with different p and q. Empirical results (Table 4) indicate
superior performance compared to the corresponding MLP implementation.

4.3 Multi-Layer Perceptrons

In practice, KANs require extensive training time. To address this, we propose an alternative
parameterization aimed at improving the performance of Multi-Layer Perceptrons (MLPs). Despite
its universal approximation ability, MLPs empirically suffer from compromising performance. The
spectral bias of vanilla MLPs, i.e., their tendency to favor low-frequency functions, may limit their
capacity to represent more complex functions. Motivated by the success of leveraging orthogonal
basis functions for function approximation [12, 14, 27], we propose to augment the MLP with
orthogonal embedding functions to construct AM-FNO.

Specifically, we can embed the frequency mode input using a set of orthogonal functions before the
MLP transformation. The Fourier basis is a natural choice due to its capacity to capture high-frequency
components, thereby enhancing the high-frequency representation of vanilla MLPs. However, our
empirical results show that Chebyshev basis functions can perform better (see Table 4). Of note, we
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Figure 2: AM-FNO structure for 2D PDEs: The input function a is mapped to a higher-dimensional
space. Stacked operators and activation functions are applied for function propagation. Within the
operator layers, a linear transformation R is applied to h(l) after FFT, followed by a feed-forward
network (FFN) after the Inverse Fast Fourier Transform (IFFT). The values of R result from KAN
or multiplying the MLP transformations of selected one-dimensional orthogonal basis functions (w
denotes linear weights.). Finally, the function is projected to the solution dimension space.

use only the first nmax orthogonal basis functions in the family for the parameterization as we cannot
employ infinite parameters.

Factorization trick for high-dimensional PDEs. For the Fourier-transformed kernel, the dimension-
ality of the frequency modes matches that of the PDE being solved. To approximate functions with
d-dimensional inputs, a common approach is to construct d-dimensional orthogonal functions based
on one-dimensional basis functions. Specifically, for nmax one-dimensional basis functions in each of
the d dimensions, the complete space contains nd

max high-dimensional basis functions, resulting in an
exponential complexity for modeling.

Motivated by the dimension factorization in the integral operator [31], we separate the input dimen-
sions and construct the final kernel by the products of the kernel approximated in each dimension.
Such a process is illustrated in Figure 2. In this way, the total parameter count scales linearly w.r.t.
the dimension of the PDEs.

4.4 AM-FNO Architecture

In FNO, a stacked structure is employed to approximate the entire mapping G, as illustrated below:

G = P ◦ Q(L) ◦ · · · ◦ Q(1) ◦ L (9)

where L maps the input function a to the hidden state h(0), and P maps the hidden state h(L) to the
output function u, both in a point-wise manner. Q : h(l) → h(l+1) is the operator layer responsible
for the iterative update:

Q(h(l)) = σ(Wh(l) +K(h(l)) + b) (10)

where K represents the kernel integral operator in Equation (3), and b represents the bias. FNO
employs a pointwise linear mapping with W to enable the propagation of high-frequency information,
but this is empirically limited, validated by the results in Table 8.

Given the non-truncated Fourier transform of the kernel function R in AM-FNO, we employ the
operator layer architecture in [31], which replaces the linear map W with residual connection [11]:

N (hl) = h(l) + (W2σ(W1K(h(l)) + b1) + b2). (11)

As shown in Figure 2, we also incorporate activation functions between the operator layers for
enhanced flexibility. The resultant model structure is:

G := P ◦ N (L) ◦ σ ◦ N (L−1) ◦ σ ◦ · · · ◦ N (1) ◦ L. (12)
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Table 1: Overview of benchmarks including their spatial dimensions d, spatial resolution M , temporal
resolution Nt, and training data Ntrain and test data Ntest.

Benchmark PDE Geometry d M Nt Ntrain Ntest

Darcy Darcy flow Regular grid 2 85× 85 - 1000 200
NS-2D Navier-Stokes Regular grid 2 64× 64 20 1000 200
Pipe Navier-Stokes Structured mesh 2 129× 129 - 1000 200
Airfoil Euler equation Structured mesh 2 221× 51 - 1000 200
Elasticity Elastic Wave Point cloud 2 972 - 1000 200
CFD-1D Compressible Navier-Stokes Regular grid 1 128 21 1800 200
CFD-2D Compressible Navier-Stokes Regular grid 2 64× 64 21 1800 200

5 Experiment

In this section, we validate the effectiveness of our proposed method by conducting extensive
experiments on challenging benchmarks governed by typical solid and fluid PDEs.

5.1 Experimental Setup

Benchmarks. We evaluate the performance of AM-FNO on six well-established benchmarks.
These benchmarks include Burger, Darcy, and NS-2D, which are presented in regular grids with
varying dimensions [18]. We extend our experiments to assess the method’s performance in different
geometries, including Pipe, Airfoil, and Elasticity benchmarks [17] Additionally, we incorporate the
compressible fluid dynamics (CFD) 1D and 2D benchmarks [30], which involves more high-frequency
information. The benchmarks are summarized in Table 1.

Baselines. We conduct a comparative evaluation of our neural operator against seven baseline
methods. These baselines include well-recognized approaches such as FNO [18] and its variants
Geo-FNO [17], U-FNO [33], F-FNO [31] and AFNO [7]. Additionally, we consider other models,
including OFormer [16] and LSM [34]. Notably, LSM represents the latest state-of-the-art (SOTA)
neural operator among the baselines.

Implementation details. We train all models for 500 epochs using the AdamW optimizer [23] with a
cosine annealing scheduler [22]. The initial learning rate is 10−3, and the weight decay is set to 10−4.
Our models consist of 4 layers with a width of 32 and process all the frequency modes of training
data. The Gaussian Error Linear Unit (GELU) is used as the activation function [13]. For AM-FNO
(KAN), the number of spline grids is selected from {24, 32, 48}, while for AM-FNO (MLP), the
number of basis functions is set to 32 or 48. AM-FNO (MLP) utilizes Chebyshev basis functions
as the orthogonal basis functions, as elaborated in the appendix. The batch size is selected from
{4, 8, 16, 32}, and the experiments are conducted on a single 4090 GPU. The evaluation metric and
training loss are based on the l2 relative error in Equation (1), unless otherwise specified. We employ
the transformation method from geo-FNO [17] to map between irregular input domains and uniform
meshes for the Elasticity benchmark on point clouds. More details about the baselines can be found
in Appendix A.

5.2 Main Results

The main results are shown in Table 2. Our models consistently achieve state-of-the-art (SOTA)
performance on all six benchmarks with various PDEs, geometries, and dimensions. AM-FNOs
exhibit a significant average performance improvement of 22% from KAN implementation and 31%
from MLP implementation compared to the top-performing baseline. We provide a comparison of
GPU memory and training time in Appendix D, showing that although AM-FNO retains all frequency
modes, it achieves comparable memory usage and training time to other FNOs.

AM-FNOs significantly reduce prediction error on Darcy and NS-2D benchmarks, standard bench-
marks with strong low-frequency components. Specifically, AM-FNO (KAN) reduces the error by
39% (2.73e-3) and 11% (1.40e-2), while AM-FNO (MLP) reduces the error by 40% (2.80e-3) and
30% (3.69e-2). This improvement can be attributed to AM-FNO’s kernel parameterization, which
effectively captures the low-frequency information. Additionally, AM-FNO demonstrates robustness
across irregular geometries, with reductions of 5% (3.30e-4), 32% (1.66e-3) and 7%(1.5e-3) from
AM-FNO (KAN), and 12% (7.50e-4), 34% (1.76e-3) and 10% (2.20e-3) from AM-FNO (MLP) in
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Table 2: Comparison of the primary findings across six benchmark tests with six baseline methods.
Lower scores signify superior performance, with the best outcome highlighted in bold and the second-
best outcome underlined. The presence of a “- " indicates that the corresponding baseline is incapable
of addressing the benchmark.

Model Darcy NS-2D Pipe Airfoil Elasticity CFD-1D CFD-2D

FNO 1.08e-2 1.56e-1 - - - 2.93e-2 5.36e-3
AFNO 3.17e-2 2.17e-1 1.72e-2 9.88e-3 4.57e-2 - 6.72e-2
Geo-FNO 1.08e-2 1.56e-1 6.70e-3 1.38e-2 2.29e-2 2.93e-2 5.36e-3
OFormer 1.24e-2 1.71e-1 9.59e-3 1.83e-2 - - -
U-FNO 1.24e-2 1.22e-1 5.76e-3 1.05e-2 2.26e-2 2.44e-2 4.52e-3
F-FNO 9.92e-3 1.74e-1 5.99e-3 1.00e-2 3.16e-2 2.54e-2 7.86e-3
LSM 7.01e-3 1.64e-1 5.20e-3 6.39e-3 2.25e-2 - 7.62e-2
Ours (KAN) 4.28e-3 1.08e-1 3.54e-3 6.06e-3 2.10e-2 1.83e-2 2.70e-3
Ours (MLP) 4.21e-3 8.51e-2 3.44e-3 5.64e-3 2.03e-2 1.47e-2 2.16e-3

prediction error on Airfoil, Pipe and Elasticity benchmarks. For CFD-1D and CFD-2D benchmarks
characterized by stronger high-frequency components, AM-FNO (KAN) achieves improvements of
25% (6.10e-3) and 40% (1.83e-3), while AM-FNO (MLP) achieves improvements of 40% (9.70e-3)
and 52% (2.36e-3). The promotion highlights the effectiveness of our method of handling high-
frequency components. We also find that AM-FNO (MLP) outperforms AM-FNO (KAN) across all
benchmarks, likely due to the enhanced expressiveness of the orthogonal embedding.

5.3 Frequency-Based Error Analysis

CFD-1D. To assess the performance across various frequency modes, we calculate the error of
different frequency modes after FFT on CFD-1D benchmark and incorporate FNO without truncation
(FNO+) for comparison. The results are visualized in Figure 3.
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Figure 3: Comparison of L2 norm error on different frequency modes on CFD-1D benchmark.
As shown, the errors primarily stem from the first few frequency modes and decrease as the frequency
increases. The baselines exhibit similar errors in the truncated frequency range, whereas our models
demonstrate significantly lower errors. Our models maintain an advantage over the baselines in the
initial modes within the truncated frequency range. As the frequency increases, the strength of the
high-frequency components diminishes, and all the errors become negligible.

CFD-2D. We further evaluate the performance across various frequency modes with the metrics
outlined in [30] (detailed in Appendix B) and present the results on CFD-2D benchmark in Table 3.

The results showcase that FNO+ demonstrates lower train error but higher test error than FNO
and U-FNO. Notably, FNO+ exhibits similar prediction errors to FNO in the high-frequency range,
suggesting potential overfitting to the training data. We propose that the substantial complexity
parameterization of FNO+ may render it sensitive to high-frequency details, limiting the effectiveness
of the additional parameters in handling such components. The fL2 error of U-FNO across all
frequency ranges is lower than FNO, which can be attributed to the enhanced expressiveness enabled
by the additional U-Net architecture. AM-FNO (MLP) achieves the lowest training error and fL2 error
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Table 3: Comparison of the error in different frequency regions on CFD-2D benchmarks. Each
complex-valued parameter is considered as 2 in the parameter count (Param). Train error (Train Err.)
and test error (Test Err.) are evaluated using the l2 relative error at each time step. fL2 signifies the l2
relative error in Fourier space (fRMSE) pertaining to the low, middle, and high-frequency regions.
FNO+ refers to FNO without frequency truncation.

Model Param (M) CFD-2D

Train Err. Test Err. fL2 low fL2 mid fL2 high

FNO 2.37 2.57e-3 5.36e-3 1.51e-3 7.66e-1 1.49e-1
FNO+ 18.39 1.63e-3 5.81e-3 1.82e-3 7.31e-1 1.42e-1
U-FNO 2.66 2.00e-3 4.52e-3 1.26e-3 6.55e-1 1.28e-1
Ours (KAN) 2.21 1.79e-3 2.70e-3 7.78e-4 4.19e-1 7.65e-2
Ours (MLP) 2.29 1.34e-3 2.16e-3 6.22e-4 3.55e-1 5.76e-2

Table 4: Comparison of the l2 relative error for different components of AM-FNO (MLP) on Darcy,
Airfoil, and Pipe benchmarks. Chebyshev basis functions are substituted with triangular basis
functions (TBF) and non-orthogonal polynomial basis functions (PBF). A version of the model
without orthogonal embedding (Non) is included for comparison. The training time and memory
requirements are derived from the Airfoil benchmark.

Designs Param Mem Time Darcy Airfoil Pipe(M) (MB) (s/epoch)

TBF 1.14 1890 2.61 4.13e-3 7.60e-3 3.80e-3
PBF 1.13 1890 2.55 1.77e-2 1.30e-2 1.03e-2
Non 1.10 1826 2.70 1.29e-2 7.21e-3 7.84e-3
Ours (MLP) 1.14 1890 2.52 4.21e-3 5.64e-3 3.44e-3
Ours (KAN) 1.56 2230 4.70 4.28e-3 6.06e-3 3.54e-3

across all frequency ranges, while AM-FNO (KAN) achieves the second lowest fL2 error. Specifically,
AM-FNO (MLP) and AM-FNO (KAN) achieve 55%(7.04e-2) and 50%(5.15e-2) reduction in the
high-frequency range. This outcome can be attributed to our amortized parameterization, which
significantly reduces model complexity while maintaining adequate expressiveness to approximate
the Fourier-transformed kernel function.

5.4 Ablation Experiments

We conduct a detailed ablation study to assess the effectiveness of different components and hyperpa-
rameters of our models.

Necessity of Orthogonal Embedding. We study the impact of orthogonal embedding on Darcy,
Airfoil, and Pipe benchmarks. Table 4 presents the findings. Although AM-FNO (KAN) outperforms
the MLP version without embedding (Non), its efficiency is significantly lower than that of versions
utilizing MLPs. Removal of the orthogonal embedding leads to a notable performance decline
across all three benchmarks. Meanwhile, replacing the orthogonal functions with non-orthogonal
polynomial basis functions results in the highest prediction error among the baseline models. These
outcomes showcase the efficacy and indispensability of the orthogonal embedding. To validate the
robustness of the embedding, we use triangular basis functions and observe comparable errors on the
Darcy and Pipe benchmarks, but higher errors on the Airfoil benchmark. We attribute this difference
to the accuracy of function approximation achieved by Chebyshev basis functions.

Influence of Some Hyperparameters We conduct experiments to assess how prediction error varies
with different numbers of basis functions, hidden sizes of KANs, and grid sizes of splines (linearly
scaled with local spline count) in KANs. Figure 4 shows the results. The left figure illustrates that
the error decreases with an increasing number of basis functions in orthogonal embedding on both
benchmarks. This reduction is particularly evident initially on the Airfoil benchmark, followed
by diminishing returns. In this case, employing 24 basis functions achieves a favorable balance
between efficiency and accuracy. This performance enhancement can be attributed to the increased
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Figure 4: l2 relative error varies w.r.t. the number of basis functions (Left), hidden layer size of KANs
(middle), and grid size of KANs (right) on Darcy and Airfoil benchmarks.

Figure 5: Comparison of zero-shot super-resolution absolute errors on NS-2D benchmark. The top
row displays the ground truth, FNO, U-FNO, AM-FNO (KAN), and AM-FNO (MLP) predictions
from left to right. The bottom row illustrates their errors.

expressiveness from the additional orthogonal basis functions. In the middle figure, while the error
decreases with increasing hidden size, we observe a decline in performance compared to KANs with
larger grid sizes but smaller hidden sizes. This may suggest that the expressive power of KANs is
primarily derived from the number of local spline functions (grid size). The right figure displays a
trend similar to the left one: a noticeable decrease initially, followed by a less pronounced reduction
later. In this study, we suggest increasing the grid size to enhance performance rather than focusing
on adjusting the hidden layer size. We also present the performance of AM-FNOs, retaining the same
frequency modes as other FNOs, in Table 9. AM-FNOs consistently outperform baseline models,
underscoring the advantages of our amortized parameterization over the standard FNO approach.

5.5 Zero-Shot Super-Resolution

A notable characteristic of neural operators is their ability to generalize across various discretizations.
We conduct experiments training on lower resolution data and evaluate on higher resolution data on
NS-2D benchmark. We visualize the results in Figure 5 and provide the numerical results in Table 5.

M FNO U-FNO Ours (KAN) Ours (MLP)

32× 32 1.32e-1 1.39e-1 9.84e-2 8.79e-2
64× 64 1.28e-1 2.18e-1 9.96e-2 8.73e-2

Table 5: Comparison of l2 relative error across different
resolutions on NS-2D benchmark, with all models trained
with 32× 32 resolution.

U-FNO exhibits a significant perfor-
mance degradation when evaluated on
higher resolution. This decline can be
attributed to the convolutional opera-
tion in the U-Net architecture, which
possesses a fixed receptive field and
cannot effectively generalize across
different discretizations. In contrast,
FNO and AM-FNOs demonstrate the
ability to generalize across different discretizations. Notably, AM-FNOs achieve superior perfor-
mance at 64× 64 resolution compared to baselines trained with the same resolution (see Table 2),
which underscores the data efficiency of AM-FNOs.
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6 Conclusion

This paper proposes AM-FNOs to improve Fourier neural operator (FNO)’s efficiency in addressing
PDEs without frequency truncation. Our approach utilizes Kolmogorov–Arnold Networks (KANs)
and Multi-Layer Perceptrons (MLPs) with orthogonal embedding functions to mitigate exponential
complexity and overfitting to high-frequency noise. Comprehensive experiments across various
datasets demonstrate the effectiveness of AM-FNOs compared to baseline approaches.

Limitations. This work attempts to enhance FNO’s handling of high-frequency information but has
the following limitations. The benchmarks used are idealized physical systems, excluding real-world
complex problems. Meanwhile, although AM-FNOs reduce the parameter count, the extremely
high-dimensional PDEs still pose challenges for FNOs due to the complexity of FFT.
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A Hyperparameters and Details for Models

AM-FNOs. For AM-FNO (MLP), Chebyshev polynomials are chosen due to their favorable theoreti-
cal accuracy [32, 4]. Formally, they are defined as:

For k ∈ [−1, 1], T0(k) = 1, T1(k) = k,

Tn+1(k) = 2kTn(k)− Tn−1(k) n ≥ 1.
(13)

The polynomial demonstrates an increase in the degree of its highest power term concerning k as n
increases. It can be alternatively formulated as:

Tn(k) = cos(narccos(k)), for k ∈ [−1, 1]. (14)

For AM-FNO (KAN), we fix the grid size during training to ensure a consistent parameter count. The
order of the spline is fixed as 3.

FNO and its Variants. We employ 4 layers with modes set to 12 and widths set to 32 for FNO
and its variations (Geo-FNO, U-FNO, F-FNO). U-FNO incorporates the U-Net path in the last two
layers. For AFNO, we set the width to 512 and use 4 layers to maintain a comparable parameter
count. Notably, Geo-FNO reverts to the vanilla FNO when applied to benchmarks with regular grids,
resulting in equivalent performance for Darcy and NS-2D benchmarks.

LSM. The model is employed with 8 basis operators and 4 latent tokens. The width of the first scale
is set to 32, with a downsampling ratio of 0.5.

OFormer The depth of the encoder is fixed at 6, while the hidden dimension is set to 96.

B Metrics

Following [30], we use fL2 error to quantify errors in different frequency ranges. It is computed as:
∥F(upred)−F(utrue)∥2

∥F(utrue)∥2
(15)

where F denotes the FFT and the frequency range is restricted to kmin ≤ k ≤ kmax. For fL2 low,
kmin = 0 and kmax = 4; for fL2 mid, kmin = 5 and kmax = 12; for fL2 high, kmin = 12 and kmax = ∞.
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C Comparison of GPU Memory, Training Time, and Parameter Counts.

Table 6: Comparison of GPU memory, training time per epoch, and parameter counts on Darcy
benchmark.

Model AM-FNO(MLP) AM-FNO(KAN) FNO U-FNO OFormer LSM F-FNO AFNO

Train Time (s) 1.11 2.1 0.9 1.6 16.5 2.1 1.1 27.3
Memory (M) 1850 2066 1212 1444 16090 1894 1126 11288
Params. (M) 1.1 1.5 2.4 2.6 1.3 4.8 0.2 2.6

D Repeated results on NS-2D and CFD-2D benchmarks.

Table 7: Comparison of the l2 relative error on NS-2D and CFD-2D benchmark.

Benchmark AM-FNO(MLP) AM-FNO(KAN)

NS-2D 8.53e-2 ± 7.48e-4 1.04e-1 ± 3.27e-3
CFD-2D 2.21e-3 ± 4.13e-5 2.75e-3 ± 8.96e-5

E Abltation Study

We investigate the impact of the dimensional factorization trick and the model architecture. The
results are shown in Table 8.

Table 8: Comparison of the l2 relative error for different components of AM-FNO (MLP) on Darcy,
Airfoil, and Pipe benchmarks. The version with the vanilla FNO architecture (Vanilla) and the version
without dimensional factorization (No-DF) are included. The training time and memory requirements
are derived from the Airfoil benchmark.

Designs Param Mem Time Darcy Airfoil Pipe(M) (MB) (s/epoch)

Vanilla 1.11 1274 2.28 5.25e-3 8.03e-3 3.89e-3
No-DF 1.10 1938 2.61 5.24e-3 5.89e-3 3.83e-3
Ours (MLP) 1.14 1890 2.52 4.21e-3 5.64e-3 3.44e-3
Ours (KAN) 1.56 2230 4.70 4.28e-3 6.06e-3 3.54e-3

The results indicate that the version without dimensional factorization performs comparably. Di-
mensional factorization can be unnecessary for handling low-dimensional PDEs. Meanwhile, the
employed architecture achieves an average error reduction of 20%.

We also report the performance of AM-FNOs retaining the same number of frequency modes as other
FNOs on the Darcy benchmark. The results, shown in Table 9, indicate that AM-FNOs consistently
outperform the baselines, highlighting the advantages of our amortized parameterization.

F Discussion about KAN and MLP.

Our findings in Section 5 demonstrate that implementing MLPs with orthogonal embeddings results in
superior accuracy and efficiency. We attribute this success to the efficacy of the embedding technique
employed. Meanwhile, the compatibility of the KAN architecture with widely used optimizers, such
as AdamW, remains questionable. However, AM-FNO (KAN) offers several benefits over AM-FNO
(MLP). First, as illustrated in Figure 4, the expressiveness of KANs primarily stems from the grid size.
To uphold a constant parameter count, the grid size remains unchanged. However, the architecture
is inherently extensible during training, which could potentially enhance accuracy. Second, KANs
provide a level of interpretability, as discussed in [21], which holds significant value within this
domain. Third, there is no need to select orthogonal basis functions for AM-FNO (KAN).
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Table 9: Comparison of the l2 relative error on Darcy benchmark.

BenchmarkAM-FNO(MLP) AM-FNO(KAN) Geo-FNO U-FNO OFormer LSM F-FNO

Darcy 4.72e-3 4.78e-3 1.08e-2 1.24e-2 1.24e-2 7.01e-3 9.92e-3
Airfoil 6.26e-3 6.62e-3 1.38e-2 1.05e-2 1.83e-2 6.59e-3 1.00e-2
Elasticity 2.10e-2 2.10e-2 2.29e-2 2.26e-2 - 2.25e-2 3.16e-2

G Impact Statements

This study introduces a neural operator specifically designed for the effective solution of partial
differential equations (PDEs), potentially contributing to advancements in scientific and engineering
domains. Positioned as foundational research in machine learning, the immediate identification of
negative consequences is not evident, and the current risk of misuse remains low.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 5 and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the high computational cost of training on all benchmarks, we conducted
each experiment only once.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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Answer: [NA]

Justification:
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necessary safeguards to allow for controlled use of the model, for example by requiring
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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