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Abstract

When analyzing real-world data it is common to work with event ensembles, which comprise
sets of observations that collectively constrain the parameters of an underlying model of
interest. Such models often have a hierarchical structure, where “local” parameters impact
individual events and “global” parameters influence the entire dataset. We introduce practical
approaches for optimal frequentist and Bayesian dataset-wide probabilistic inference in cases
where the likelihood is intractable, but simulations can be realized via forward modeling. We
construct neural estimators for the likelihood(-ratio) or posterior and show that explicitly
accounting for the model’s hierarchical structure can lead to significantly tighter parameter
constraints. We ground our discussion using case studies from the physical sciences, focusing
on examples from particle physics and cosmology.

1 Introduction

Datasets composed of multiple samples are ubiquitous in scientific and more broadly real-world data analysis
tasks. These datasets are typically governed by underlying models that exhibit a rich hierarchical structure,
with local parameters shaping individual events while global parameters exert influence across the entire
dataset. This layered structure, if appropriately utilized, can greatly augment the efficiency and effectiveness
of the inference process.

The complexity of scientific models and high-dimensionality of datasets has led to a recent surge in interest
in implicitly-specified models, where the likelihood function is intractable but simulations can be realized via
mechanistic forward modeling. The paradigm of simulation-based inference (SBI), augmented using tools
from machine learning and differentiable optimization more broadly, has emerged as a powerful approach for
performing inference in such scenarios (Cranmer et al.l [2020). However, the majority of existing methods for
simulation-based inference are designed for learning from individual data points and do not fully capitalize
on the hierarchical structure of the data-generating process.

To address these gaps, we propose a set of novel approaches that augment existing simulation-based inference
techniques, in both frequentist and Bayesian paradigms, with the goal of exploiting the hierarchical structure
of the governing models. We contextualize our discussion using case studies from the physical sciences, with
a particular focus on particle physics (particle collider data) and astrophysics (strong gravitational lensing
images).

While several previous works have used set-based aggregation in the context of simulation-based inference
(Geftner et al., 2022 |Rodrigues et al.,[2021)), in the present work we make several complementary methodological
contributions that are necessary for optimal deployment of simulation-based inference methods on large-scale
scientific datasets. Our primary contributions are the following:

o We substantiate theoretically as well as empirically the fact that optimal inference in many implicit
models with a hierarchical structure requires a dataset-wide approach, contrasted with the more
common paradigm of combining implicit likelihood or posterior estimators associated with individual
observations. We systematically derive conditions under which such a hierarchical approach is
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necessary for optimal inference, depending on how the model parameters are partitioned into local
and global parameters of interest and nuisance parameters;

e We introduce frequentist as well as Bayesian methods for dataset-wide learning that can be used
to perform simulation-based inference over event ensembles and can deal with datasets of varying
cardinality. We connect our insights to several common use cases in the physical sciences and show
how popular simulation-based inference paradigms can be adapted for optimal dataset-wide learning.
In particular, we introduce the first approach for end-to-end frequentist simulation-based inference
targeting hierarchical set-valued data;

e We show that our machine learning-based inference methods are generically substantially faster
than traditional approaches, such as Markov Chain Monte Carlo (MCMC) methods, even when
the likelihood is tractable, while giving consistent results. They also allow performing inference
in “streaming” mode where, e.g., posterior estimates are efficiently updated in real-time as new
observations are made without having to perform a re-analysis of the entire updated dataset.

Related work: The methods presented in this paper build upon previous studies across several disciplines.
A likelihood-free algorithm for obtaining frequentist profile likelihood ratios corresponding to individual
observations was previously presented in Heinrich| (2022)). [Nachman & Thaler| (2021)) explored dataset-wide
inference in the context of particle collider studies, without distinguishing nuisance parameters and parameters
of interest. Hierarchical inference for implicit models has been studied using Gaussian posterior density
estimators in (Wagner-Carena et al.| (2021} 2022), where per-event posteriors are learned and combined to
obtain estimates for the global parameters. |[Agrawal & Domke| (2021)) considered amortized variational
inference for a simple class of hierarchical models. While similar in spirit, we consider hierarchical inference in
the language of modern scientific simulation-based inference methods, and discuss subtleties associated with
treating classes of variables in different hierarchies (local and global) as nuisance parameters. Hierarchical
Neural Posterior Estimation (Rodrigues et all [2021) is a recently-introduced simulation-based inference
method closely related to the deep set-based Bayesian inference model used here. We complement this
approach by introducing frequentist analogues for dataset-wide learning; by including amortized estimators
that can then target datasets of varying sizes; and by comparing the proposed approach to more traditional
methods in terms of inference computational time. Finally, |Geffner et al| (2022)) introduced a method
for efficient set-wide learning by combining score estimators targeting a sub-set of events. Our method is
complementary, focusing on the unexplored setting of hierarchical models and bridging applications to domain
sciences.

2 Theory and architectures

We use the following notation throughout: z; refers to an observation associated with an individual event,
0 are the global (dataset-wide) parameters, and z; are the local (per-event) parameters. Ensembles of
either observations or variables are denoted with curly braces, {z} = {z}X¥,. We will also differentiate
nuisance parameters, which are parameters associated with the data-generating process that we are generally
not interested in inferring; these will be treated through either profiling (defined later) or marginalization.
Nuisance parameters will be denoted by v, or 8, and z, when we wish to distinguish between global and
local nuisance parameters.

2.1 Background and theory

Hierarchical models: The joint probability distribution of a set of events with cardinality N, with global
parameters of interest 0, global nuisance parameters 0, as well as local parameters z; can be written as:

N
p{a} [{2},0.0,) = [[ p (i | 2:,0.6,), (1)
i=1

In many scientific applications, the number of events in a dataset may not be known a priori. This could
occur if events are observed sequentially (such as gravitational wave events observed over time), if we aim to
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apply the same model to datasets with different event counts (e.g., astronomical observations of sky patches
containing different numbers of stars/galaxies), or if the rate of events is itself a model parameter that may
be interesting to measure (e.g., an interaction cross section at a particle collider experiment). In these cases,
we can generalize the joint probability to an extended model:

N

p{a} [{z}1.0,6,) = > p(N | 0) [T p (i | 2,0.6.). (2)

N=0 i=1

Here, p(N | 0) represents the probability of observing N events given the global parameters 6. Often, p(N | 6)
is a Poisson distribution, and the full model is known as a marked Poisson process. Our proposed techniques
apply to both situations, and we present example applications described by Egs. equation [I] as well as
equation [2 below.

Bayesian inference: In the Bayesian paradigm, we introduce a prior p({z},0,0,) = p(0,0,) ], p(z: | 6,6.)
and wish to target the posterior distribution over the global as well as local parameters of interest (and
marginalizations thereof) given a dataset.

In special cases, it is possible to combine event-level inferences to construct the dataset-wide inference. For
example, in the non-extended case one can construct the dataset-wide full posterior from the event-level
posteriors p(0,0,, z; | ©;),

N
(0.0, 42} | (o)) =~ [[9(0.00. | 2, (3)

1

where the prior factor in the denominator ensures that the prior density is not counted multiple times.
Similarly, if one has access to the per-event posteriors marginalized over local parameters z;, and the target
quantity is the dataset-wide posterior marginalized over local nuisance parameters, a combination is possible
due to the independence of the events and the assumption that the various priors also factorize:

p01 o)) = [l dal6.15) | o)) = [ gy PEHEAS S POAED ()

N
= dz,; M P20 | 9)] (0) = S (0| )
[H / Cp) P TOLES gp

However in the general case such combinations do not hold; e.g., it is not possible to combine marginal
per-event posteriors over global nuisance parameters p(6 | z;) = [ d6,p(6,6, | ;) to construct the dataset-wide
posterior p(f | {«}), marginalized over global and local nuisance parameters. Therefore, a general solution
for marginalized dataset-wide posteriors mecessitates a dataset-wide approach to inference. This can be
done either by inferring global parameters at a dataset-wide level (in particular if the dimensionality of the
resulting posterior is sufficiently wieldy), or by performing dataset-level marginalization.

Frequentist inference: In the frequentist setting, inference on parameters is typically split into procedures
for point estimation and interval estimation. A popular choice for a point estimator is the maximum-likelihood
estimator (MLE), due to its favorable asymptotic property of being the minimum-variance unbiased estimator.
Interval estimation and hypothesis testing are based on a subjective choice of a test statistic g ¢, () and a
desired confidence level:

0,0, = argming , [~ log L(,}(0,6,)]; 1§, = {0 | tes, ({z}) <t§e,} (5)

where L,y (0,0,) is a function proportional to the likelihood p({z} | 0,0,) and tg, is the value of the
quantile function at 1 — « cumulative probability and serves as the threshold value for the interval. Here,
indicates the size of a hypothesis test, with a typical value being av = 0.05.

As in the Bayesian case, one is often interested in an inference that only considers the parameters of interest 6
and removes any dependence on nuisance parameters 6,,. The frequentist analogue to (partial) marginalization
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is (partial) optimization (also referred to as “profiling”). For interval estimation and hypothesis testing the
test statistic is thus modified to read

p({z}0,0,)

where § = 0({x},0) is the optimal value for 6, when 6 is fixed to a particular value. Similarly to the Bayesian
case, it is in general not possible to reconstruct the data-set wide nuisance-free inferences from per-event
nuisance free inferences: In general the dataset-wide profile likelihood ratios cannot be constructed from
per-event profile likelihood ratios.

to({x}) = —log (6)

Simulation-based inference: When the likelihood is not tractable but simulations can be realized via
forward modeling, neural simulation-based inference methods can be leveraged to perform inference. In
cases where event-level inference quantities can be combined to yield a correct dataset-wide quantity, neural
posterior or likelihood-ratio estimators trained on individual events can be combined. For example, marginal
posteriors p(6, 6, | z;) can be trained and combined using Eq. equation

Alternatively, a per-event likelihood ratio estimator parameterized by all parameters, including nuisance
parameters, can be learned (Cranmer et al., [2015; [Nachman & Thaler, [2021) to train a neural estimate for

M, These can be used to build a dataset-wide likelihood
p(zi]60,0,,0)

ratio [, % that can be an input for a dataset-wide statistical analysis to yield posteriors or likelihood
ratios which can then be marginalized or profiled over to yield dataset-level quantities. While this simplifies
the training procedure as the networks are only performing inference for single events, a disadvantage of
this approach is that the downstream statistical treatment can be very costly if the number of nuisance
parameters 6, is large, so that the amortization gains from the neural estimates are not fully exploited.

the per-event likelihood ratio sy (z;,6,6,) =

Given these nuances, methods for set-wide simulation-based inference necessitate architectures which can
efficiently model joint posteriors or likelihood ratio over global and local parameters of interest, for sets of
varying cardinality, without requiring explicit parameterization over a potentially large number of nuisance
parameters (which would otherwise be necessary for optimal inference with event-level estimators). In the
following, we describe two such architectures for amortized dataset-wide inferences.

2.2 Architectures

We consider the following architectures, which respect the hierarchical structure of the forward models and
can process event ensembles of varying cardinality.

Deep set-based model: Here we consider a simple deep sets-inspired (Zaheer et al.,|2017)) architecture,
where per-event encoded features sibb (z;) are aggregated via a permutation-invariant pooling and passed
through a decoder network g¢,, that outputs the parameters of a variational posterior distribution for the global
parameters qélOb (0 | {=}) (Papamakarios & Murray}, 2016). At the same time, local per-event embeddings
}z‘fc(xz) are used to condition a density estimator for the local parameters, q};ﬁ (z | {z},6), including a
conditional dependence on the global parameter 6. In practice, the local and global embeddings are obtained
by chunking a feature vector obtained with s,. For the variational ansatz we consider either a multivariate
normal distribution or a normalizing flow (Rezende & Mohamed, 2015)), with the decoder outputting either
the mean-covariance of the normal distribution or the conditioning context for a normalizing flow. The
(negative) sum of the local and global posterior log-densities is used as the minimization objective,

L= logqglob <9 | 9y <Z sglob )) + Zlogqloc 2 | 8100( Z)’a) ) (7)

We derive and further motivate this loss function in App. Bl For models of the form of Eq. equation [2] the
cardinality of the input set is drawn as N ~ p(N | 6) in the training. The density estimator parameters
{¢,¢'} as well as the embedding network and decoder parameters ¢ and ¢ are optimized simultaneously. We
note that this is similar to the set-up used in [Rodrigues et al.| (2021)).
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Transformer-based model: In a similar vein, we consider a decoder-only transformer (Vaswani et al., 2017}
Phuong & Hutter, |2022) which takes feature embeddings from individual events and produces cumulative
posterior embeddings using blocks of self-attention and dense layers, applying a causal mask to ensure that
output embeddings are only sensitive to preceding events in the sequence. The embeddings are then used to
predict the posterior mean and covariance of the variational Gaussian ansatz. The advantage of the transformer
approach is that, assuming a uniform distribution on the cardinality N, we don’t need to vary the cardinality
of the input set during training — since the loss consists of a sum of log-likelihoods corresponding to cumulative
posteriors, all cardinalities are considered together; —£ = 3\ log¢8°P(0 | {z}}L,) + >, log ¢, (2i | 1,0),
leaving the data-point encodings implicit.

Fig. [[] shows a schematic illustration of the deep set architecture used in this work. Networks that used LSTM
cells to iteratively update a posterior embedding based on incoming data embeddings were also considered,
but their convergence properties were noticeably poorer than those of the deep set- and transformer-inspired
architectures described above.

Figure 1: Schematic illustration of the deep set-based architecture used in this work. The red lines/arrows
show the path used only in the frequentist setting for training a global test-statistic estimator while profiling
over global nuisance parameters.

3 Experiments

We describe several case studies of dataset-wide learning, ranging from illustrative “toy” experiments to more
prototypical examples representing problems in particle physics and astrophysics. We refer to App. [A] for
additional details on the experiments, including details on training. All experiments are implemented using
PyTorch (Paszke et al., 2019).

3.1 Simple multi-variate normal likelihood

The forward model: To verify the ability of our method to recover the true posterior distribution for sets
of varying cardinality, we consider a simple multivariate normal likelihood with known covariance matrix 3;

p({z}]6.%) = [I;L, No(z; | 6,5).

The model parameter is the mean vector 6 , and pg, 3¢ are the hyperparameters of the prior multivariate
normal distribution. In this case, the posterior distribution p(6 | {z}) is also a multivariate normal — the
prior and posterior are conjugate — with mean ppost and covariance ¥,s¢ of an updated posterior given by
Hpost = (20_1 + ]\72_1)_1 (Zgluo + NY7'Z) and Spost = (20_1 + NZ_l)_l where T is the sample mean of
x; and N is the total cardinality of the dataset.
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Inference: We choose ¥ = diag(2,4,6), with each sample consisting of 5 draws from the multi-variate
normal distribution; each individual data point then consists of 15 features. We train the deep set and
transformer architectures described in Sec. on 50,000 samples drawn from this likelihood with prior
p(p) = No(0,3) and a maximum sequence length of 200. The cardinality of the training set is randomly
varying as N ~ Unif(1, Nyax). The model is then tested on 500 new sequences, and the distribution (median
and middle-68% containment) over inferred standard deviation o for each of the 3 parameters is shown in
Fig. |2 (left: deep set, middle: transformer) compared to the true expected scaling of the parameters (dashed
lines).

Results: The deep set model typically gives more faithful posterior widths compared to the transformer,
potentially due to the simple nature of the problem combined with the more data-hungry nature of the
transformer architecture. The right plot shows the evolution of a posterior for a specific sequence using the
deep set model, illustrating convergence of the posterior mass around the true point as more data points
are included. We note that although this is a simple, analytically tractable example, the final posterior is
obtained by analyzing a dataset of dimensionality 3000 — far from a trivial task.

Predicted posterior width; Transformer Predicted posterior evolution; Deep Set
T T 1 10 T T 200
i S Ground truth
100} £ sl AR
= g P 150
- £ x of E
S I ey R & - H 100
g, ‘\\\:\\\ é % a4t
-1 02 = : ;
1071k o3 oF E 50
————— Ground truth i
L L 21
10° 10t 0 0.5 1.0

Sequence length

Figure 2: The median and middle-68% containment of the inferred posterior width over 500 test samples as a
function of the size of the dataset. Results for the deep sets (left) and transformer (middle) architectures are
shown. The expected scaling (dashed lines) is observed in all cases, but the deep set architecture shows a
narrower spread in outcomes. The right plot shows the evolution of a posterior for a specific sequence using
the deep set model, illustrating convergence of the posterior mass around the true point.

3.2 Mixture models in particle physics: frequentist treatment

We demonstrate the dataset level profiling by adapting the approach described in|Heinrich| (2022) and compare
the trained test statistic to the true profile likelihood ratio (not to be confused by the likelihood-to-evidence
ratio (Miller et al., 2022])).

The forward model: In this example we consider a situation that is common in both particle and
astrophysics. Here, the observed data can often originates from multiple disparate physics processes of varying
intensity (for example a signal process and a background process), such that the overall model is a mixture of
the per-process models:

N
p({z}]6,0,) = Pois(N | A(6,6,) H csps(xi 1 0,60,) + (1 —cs)pp(x; | 0,0,)) ; with, (8)
1=1

with ¢s = ¢5(6,0,) being the relative signal strength and ps and p, the per-event densities for signal and
background, respectively. Fast inference for such models is especially important in settings that perform
real-time monitoring of the quality of the data stream delivered by the experiment. The observed per-event
densities are typically not tractable, but high-fidelity simulators exist. In this work we focus on Gaussian
mixture components, since the empirical distributions typically considered in the domain use-cases feature
multi-modal densities (e.g., in searches for “bump” features).
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Figure 3: (Left) True profile likelihood ratio for the mixture model scenario in Sec. (bottom) compared to
the neural test statistic (top). (Center) Neural test statistic and profile likelihood ratio scatter plot, showing
bijective relationship between the two. (Right) Maximum-likelihood estimate obtained from the neural test
statistic éML, compared with the true value épLR.

To demonstrate the simulation-based frequentist inference, we consider the special case where ps; and py are
Normal distributions No(u, o) with fixed hyperparameters fi /4, 0,/5, but the component coefficients are a
function of both the parameter of interest (the “signal strength”) 6 as well as the nuisance parameter (i.e.
“the background strength”): ¢; = 6/(6 + 6,). The overall expected rate is then \(6,6,) =6 + 6,,.

Inference: The model is again based on the deep set-inspired architecture described in Sec. with a
small variation — after aggregating the per-event embeddings, these are concatenated with the parameters
of interest # in order to obtain a parameterized neural network classifier one-to-one with the desired test
statistic (]Cranmer et al.L |2015|), so({z},0) & to({x}). Following the procedure in we aim to
train a test statistic with best average power across alternatives irrespective of the nuisance parameters and
show that the result is a good approximation of the profile likelihood ratio, i.e., the dataset-wide test statistic
typically used for interval estimation and hypothesis testing in frequentist inference:

so({2},0) & to({}) = —2logw

) ;
p({x}10,0,) )

Results: As the ground truth is available in this model, we can compare the performance of the learned
test statistic directly. In Fig.|3| (left) we show the ground truth profile likelihood ratio tP*F as a function of
the parameter of interest 6 for 1000 datasets {z} ~ p({z} | 0, 60,) with average cardinality of 110 events. The
profile likelihoods have the typical parabolic structure with its minimum at the maximum-likelihood estimate
épLR = argmin, tf{’fg{ (6). The neural test statistic t™" exhibits similar features, however as it is an output of
a classification task is constrained to the interval [0,1]. The relationship between neural and profile likelihood
ratio test statistic is shown in Fig. [3| (center), where a clear bijective mapping is recognizable. The network
therefore learns an equivalent test statistic in terms of inferential power. Similar to the ground truth case,
the best fit parameter can be found by minimizing the test statistic Oy, = argmin, tl{\%(ﬁ) to produce a fully
likelihood-free point estimate. In Fig. 3| (right) the two point estimates can be seen to correspond well to
each other.

One of the major advantages of the neural test statistic is its inference time: While explicit profiling based on
either a known or learned test statistic L, (6,6,) requires multiple optimizations for each data instance, the
neural network statistic allows for a fast vectorized computation in a single forward pass. We observe the
neural network based inference for 1000 datasets to be over two orders of magnitude faster than the standard

approach, i.e. explicit construction of the profile likelihood ratio computation of é, éy, 91 via optimization.
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Figure 4: Signal- and background densities ps and p; in a simplified particle physics analysis for two different
true values of the nuisance parameter 6, (left), additionally showing sample datasets {z} of size Ny = 100.
The median mean g (center) and median standard deviation og (right) of the posterior p( | {z}), obtained
with different inference methods for different true nuisance parameter values 6, ¢;ue. The median is computed
on ensembles of 400 datasets for each parameter point.

3.3 Mixture models in particle physics: Bayesian inference for a narrow resonance

The forward model: We also demonstrate a Bayesian dataset-wide inference for the mixture model case.
Here the parameters of the model affect the mean of the signal component and the mixture coefficient,
whereas the signal width and all background parameters are fixed hyperparameters. Using the notation in
Eq. 8] we have

Ps(zi | 0,) = No(z; | 0,,04); po(w:) = No(x; |y, 0p); cs() =0, (10)

i.e. the parameter of interest 6 is the relative signal strength and the location of the signal in the observed
feature space is a nuisance parameter. In typical applications in particle physics, the signal is often very
narrow, whereas the background distribution is more diffuse. All parameter choices and the priors p(6) and
p(0,) are specified in App. [Al Instead of parameterizing the overall Poisson rate A, here we used a fixed batch
of events of size Ny, corresponding to the situation one might encounter in a real-time inference task. In
summary, the dataset-wide joint probability is:

No

p({x} 10,0,)p(0,0,) = p(O)p(0,) [T les(0) ps(ai | 6,) + (1 = cs(0)) py()]. (11)

i=1

Inference We wish to extract the posterior p(6 | {x}) characterizing the prevalence of the signal process
given a set of Ny events, marginalizing over 6,,. The mixture fraction 6 is a fundamental property of nature;
tracing its evolution over time is thus an excellent indicator of the health of the experimental apparatus.

We use a deep set network to perform fast, amortized inference in this setting, trained as described in Sec.
directly on the set of observations {z}. Using the likelihood of Eq. equation the posterior is also accessible
through MCMC inference (as described in App. , which can serve as a point of comparison.

In many cases, the individual events x are too high-dimensional for direct inference to be possible. A
fundamental problem in the analysis of collider data thus consists in the construction of a low-dimensional
summary statistic x — s(x), designed to retain the relevant information contained in the data, subsequently
used in the inference step.

It is common practice in contemporary work to use the signal-to-background density ratio spom(Z; 0y nom) =
Ds(z | 0y nom)/pe(x) evaluated at a particular “nominal” nuisance parameter value 6, nom. This observable is
known to be a sufficient statistic for § under the hypothesis 6, = 0, nom (Neyman & ES| 1933).

Another popular choice is to neglect the hierarchical structure of the data-generating process; in the
Bayesian paradigm this involves marginalizing over the nuisance parameters at a per-event level and using
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Smarg(x) = [d6, ps(z | 0,) p(6,)/ps(z) as summary statistic. Both quantities are known to not be information-
preserving in general. Our example admits analytic likelihoods also for syom and Smarg, allowing their
performance to be evaluated through the MCMC procedure described above.

Results and discussion The center and right panes in Fig. [4f compare the neural posterior estimate (black
lines) to MCMC posterior estimates based on x (blue markers). The width of the neural posterior closely
matches the MCMC results, demonstrating the ability of the deep set to extract the entire information about
the parameter 6 contained in the data. Also shown are MCMC posterior estimates for spom (red markers),
and Smare (green markers). As expected, these generate wider posterior&ﬂ and, hence, weaker parameter
constraints, illustrating the importance of a proper treatment of global nuisance parameters.

Using the fully parameterized density ratio ps(z | 8,)/ps(x) for optimal inference is, as mentioned in Sec.
complicated by the fact that often many hundred nuisance parameters are present in contemporary particle
physics problems (The ATLAS Collaboration) [2022; |The CMS Collaboration [2022]). However, nuisance
parameters inform the the deep set through their presence in the training dataset and do not require any
explicit parameterization of the network, suggesting a much better scaling behavior.

While we do not explore this direction further here, we note that the event-embedding sglOb( ) learned by

the deep set also plays the role of an information-preserving summary statistic that can serve as input to
traditional (non-amortized) inference pipelines.

3.4 Astrophysics example: Strong gravitational lensing

We test our procedure for hierarchical simulation-based inference on a more complicated problem from
the domain of astrophysics, where the likelihood associated with the forward model is intractable — the
characterization of the distribution of dark matter clumps (subhalos) in galaxies using images of galaxies
gravitationally lensed by the clumps as well as a larger smooth mass distribution. The model contains both
per-event (i.e., local) as well as dataset-wide (i.e., global) parameters. Estimating global lensing parameters
with more sophisticated forward models was studied in, e.g., |Anau Montel et al.| (2023); [Montel & Weniger
(2022)); |Coogan et al.| (2022); [Wagner-Carena et al.| (2022); Brehmer et al| (2019); we note that our aim here
is instead to showcase the ability to do optimal hierarchical simulation-based inference over local and global
parameters with an amortized set-wide estimator.

The forward model: The substructure mass function, which describes the mass distribution of clumps, is
parameterized as a power law dm =q- msub where the normalization o parameterizes the overall abundance
of subhalos, and f is the bpectral index. 4101 = {a, 8} are the global parameters in the hierarchical model.
The number of subhalos follows a Poisson rate, Ngup ~ Pois(usub), where we have the expected number of
subhalos pigu, = [ dmgup %

In addition we have per-image (local) parameters 6i,. = {0, Az, Ay, q}, where 0 is the Einstein radius
characterizing the overall scale of the lensing ring, {Az, Ay} is the offset vector between the centers of the
background source and the lens galaxy, and ¢ € [0,1] is the axis ratio with 1 corresponding to a spherical
lens. The subhalo radial positions are drawn from a uniform distribution close to the Einstein radius,
{roun } w0 ~ Unif (g — 0.2”, 05 +0.2”) and the azimuthal angle is drawn uniformly from the interval [0, 27].

Given a realization of the masses and positions of the clumps {Zsub, Ysub, msub}fv;;" (which otherwise act as
latent variables, collectively denoted {zsup}), the expected image ftimage can be obtained using a gravitational
lensing simulator (Brehmer et al.l |2019). The actual image is then a Poisson realization of this expectation,
x ~ Pois(ftimage). We choose our simulated lensed images to be 64 x 64 pixels in size; see App. [A| for more
details on the lensing forward model.

The per-image likelihood is intractable because of the high dimensionality of the latent space.

(ZL’ | 9 Z /dNnub{Zsub}POls(fr | /lemxge) (,Uflmage | {Zsub} Neub 0loc) PO]S( sub | Hsub) (12)

Ngup=1

'In our simple example, smarg () is related to snom (; 0, nom) for 0;, ;.o = —0.3, leading to a sharp improvement in sensitivity
for this model point. This is an artifact that is not expected to occur in more complicated environments.
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Inference: We would like to infer the posterior over the local as well as global parameters p(6, z | {«}) given
an ensemble of images. As discussed in Sec. [2| building per-image posterior estimators ignores the joint
influence of the global parameters over the entire dataset, potentially reducing the identifiability of the local
parameters. If a combined posterior for the global parameters is desired, combining per-image estimators into
a global posterior can also be error-prone as per-observation errors accumulate, especially if flexible density
estimators (e.g., normalizing flows) are used, as we do here.

We train a hierarchical neural posterior estimator with datasets containing up to 25 lensed images, using a
ResNet-18 CNN as the per-event feature extractor. Figure |5| shows exemplary posterior
inference results on one of the local parameters, the Einstein radius 6 (left) and one of the global parameters,
the amplitude of the clump mass function « (right), on test datasets. The red lines show posteriors using the
hierarchical estimator, while the blue dotted lines show results of using a per-image estimator. We can see that
the posterior mass concentrates around the true value (vertical dashed) as more images are analyzed. On the
other hand, the local parameter values are very similar to those obtained without simultaneously constraining
dataset-wide global parameters. This is because, in this case, sub-clumps have a minimal (sub-percent level)
effect on the lensing image, and the degeneracy between the local and global parameters is weak.
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Figure 5: Example results of inference on local (left) as well as global (right) gravitational lensing parameters
using the hierarchical simulation-based inference model. Concentration of the posterior mass around the true
global parameter value is seen as more lensed images are analyzed, and the local parameters are correctly
recovered.

4 Test of statistical coverage for the gravitational lensing experiment

We perform a test of posterior statistical coverage (described in detail in Hermans et al| (2021])) for
the gravitational lensing example, serving as a validation check of the learned posterior estimator across
cardinalities. Using the same notation as in the main text, let  be the global parameter of interest and {z}
be a dataset. Denoting our learned posterior density estimator as p(6|{x}). For a confidence level 1 — a, the
expected coverage probability is

E6,(e})~p(0.42}) [L (0 € Opoy ey (1 — )], (13)

where ©g|{2}) (1 — a) gives the 1 — « highest posterior density interval (HDPI) of the estimator p(0|{x}) and
1e() is an indicator function mapping samples that fall within the HDPI to one. Given N sampled datasets
from the joint distribution (6*,{z}) ~ p(6,x), the empirical expected coverage for the posterior estimator

p(O|{x}) is

N
% > 1o (6" € Op0ap (1~ ). (14)

i=1
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The nominal expected coverage is the expected coverage when p(f|{z}) = p(f|{z}) and is equal to the
confidence level 1 — a.

In Fig. [l we show the results of a test of statistical coverage for the gravitational lensing example, showing
empirical against nominal coverage probability for the same posterior estimator evaluated over different
cardinalities (corresponding to the different lines shown), using 100 test samples.

If an estimator produces perfectly calibrated posteriors, its empirical expected coverage probability and
nominal expected coverage probability match (dashed diagonal line). The amortized posteriors obtained are
shown to be well-calibrated across different cardinalities.

Coverage for substructure fraction a
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Figure 6: Test of statistical coverage for the gravitational lensing example, showing empirical against nominal
coverage probability. If an estimator produces perfectly calibrated posteriors, its empirical expected coverage
probability and nominal expected coverage probability match (dashed diagonal line). The amortized posteriors
obtained are shown to be well-calibrated across different cardinalities (corresponding to the different lines).

5 Conclusions

We studied the problem of simulation-based inference over event ensembles in the presence of hierarchical
structures in the underlying forward model. In this setting, common in the physical sciences, optimal
parameter inference requires a dataset-wide approach. For this purpose, we introduced neural estimators for
likelihood-ratios and posteriors, illustrated their use for Bayesian as well as frequentist analysis in situations
typical of astro- and particle physics, and substantiated optimal inference performance in these scenarios. Our
methods do not require explicit parameterization in terms of marginalized or profiled nuisance parameters,
making them complementary to existing techniques for dataset-wide inference. Once trained, they provide
fully amortized inference over datasets of varying cardinality and offer significant speedups over traditional
frequentist and Bayesian methods, making them suitable also for high-throughput applications.

Limitations: Our methods apply to situations where the cardinality IV of the observed dataset follows an
arbitrary, but fixed, distribution p(N | ) (cf. Eq.[2). It is currently an open question to what extent estimators
trained on p; (N | 0) achieve statistically sound performance when applied to datasets corresponding to
a different distribution ps(N | 6), encoding, for example, the accumulation of additional data. We leave
this extension for future investigation, but note that insights from recent work |Berman et al.| (2022]); |Chen
et al.| (2019) describing Bayesian updating as a dynamical system may offer a promising way to address this
important problem.
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A Additional details on experiments

A.1 Details of ‘Simple multi-variate normal likelihood’ experiments

The deep set as well as transformer multivariate normal posterior estimators are trained on 50,000 sequences
{z} with a batch size of 128, withholding 10% of the samples for validation. Sequences consist of up to
200 elements, with each element having 15 features (3 multivariate normal dimensions with 5 draws per
dimension). The means across the 3 dimensions of the multivariate normal are the parameters of interest 6,
and we target a posterior distribution over these.

A 3-layer MLP with RELU activations and hidden size 512 is used as the per-event encoder Sil()b, which
generates 256-dimensional per-event embeddings which are either aggregated (in the deep set model) or fed
through transformer layers. An analogous decoder or prediction network g, then outputs the means and
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log-standard deviations, which are used along with the ground truth values to train the Gaussian density
estimator ¢, (0 | {z}).

The estimators are trained using the AdamW [Loshchilov & Hutter| (2019); Kingma & Bal (2014) optimizer with
initial learning rate 3 x 10~* and cosine annealing over 100 epochs. The checkpoint corresponding to the
lowest validation loss is used. Evaluation is performed on 500 new test samples, evaluating the posterior
estimator for sequences with cardinality varied from 1 to 200 for each test sequence.

A.2 Details of ‘Mixture models in particle physics: frequentist treatment’ experiments

Hyperparameters The hyperparameters are chosen such that at the nominal parameter values § =6, =1
the total number of expected background events is n, = 100 events, and the total number of expected signal
events is ng = 10. The hyperparameters of the Gaussian mixture components are us = —7,0, = 2 and
My = 0, Op — 3.

Minibatch Sampling The training algorithm for learning the test statistic for frequentist use requires
choosing a weighting function in the (6,6, )-space. For each minibatch the (y = 0)-labeled instances are
sampled from the simulator {x} ~ p({z}|0,0,) at (8 = 6,0, = 6,0). The parameter of interest is chosen
randomly from a uniform distribution, 6 ~ Unif(3,7), and a random nuisance parameter value is sampled
from 6, ~ Unif(0.5,2.0). The (y = 1)-labeled instances are sampled from (0 = 6y + A, 0, = 6, 1), where
A ~ Unif(0.5,2.0) and 6, + ~ Unif(0.5,2.0). Overall, each minibatch has N = 100 positive instances and
N = 100 negative instances and the former are split equally between the two 8 = 6y £ A cases.

Training For each minibatch sampled for § = 6, the instances {z}; are evaluated with the deep set
conditioning parameter set to 8 = 0y and the loss is evaluated as a standard binary cross-entropy loss averaged
over the minibatch. The network parameters are optimized with the Adam optimizer with a learning rate
of Aelem = 1074 for the per-element network parameters and Aget—wide = 1073 for the set-wide network
parameters. Training proceeds for 30000 steps.

A.3 Details of ‘Mixture models in particle physics: Bayesian inference for a narrow resonance’
experiments

Choice of distributions and priors The model hyperparameters are chosen to be o, = 0.1 for the signal
and p, = 0, 0, = 1 for the background. The mixture coefficient 6 is subject to a uniform prior, § ~ Unif(0, 1),
and the nuisance parameter ¢, has a Gaussian prior p(6,) = No(0,|u = 1,0 = 2).

Training of the deep set The networks implementing the per-event encoder s&1°" and decoder qgl‘)b are
comprised of two dense layers with 128 hidden units and GELU activation functions; the event encoding
consists of 64 features. 500k example datasets are generated from the prior distributions over 6, and 6; these
datasets are used to train for 300 epochs with the AdamW optimizer, a batch-size of 256 and an initial learning
rate of 1073. Cosine-annealing is used over 300 epochs.

The evaluation is performed on independent datasets not used during training.

Markov Chain Monte Carlo We use the implementation of the NUTS algorithm available in PyMC5
Salvatier et al.|(2016). For each inference run, two Markov Chains of 50k samples each are sampled. The first
12k samples in each chain are discarded and not used for the estimation of the posterior.

A.4 Details of ‘Astrophysics example: Strong gravitational lensing’ experiments

We generate 5000 ensembles (drawn from the same global parameters 8q10, = {a, 8}), each containing 25
lensed images with varying local parameters 0, = {0, Az, Ay, q}. We use a ResNet-18 [He et al.| (2016)
convolutional neural network as the per-event encoder s81°P to extract a 128-dim embedding vector from each
image; half of the features are concatenated with the true global parameters and used to condition masked

autoregressive normalizing flows |Papamakarios et al.| (2017)); Rezende & Mohamed| (2015) qg’,c characterizing
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the local parameters for each image. The other half of the features are averaged, concatenated with the
(randomly-varying at training-time) cardinality of the image dataset, and passed through a 3-layer MLP
decoder, subsequently conditioning a normalizing flow qgl‘)b modeling the global parameters of interest.

The experiment is trained with a batch size of 16 (each batch containing 16 x 25 = 400 images), using the AdamW
optimizer with cosine-annealed learning rate starting at 3 x 10~* for up to 100 epochs with early stopping,
using the model with the best validation loss for evaluation. The sum of global- and local-normalizing flow
log-likelihoods is used as the optimization objective.

B Motivation for loss function for joint posterior inference
We motivate the loss function used in Eq. (7), which factorizes the joint posterior over the local and global

parameters z; and 6 into a global posterior given the set {x} and a product of posteriors over local parameters
additionally conditioned on the global parameters:

N N
—L =log ¢8°" (0 | 9y (Z sik’b(xi)>> + Zlog a2 (2 | s(2:),6) . (15)
i=1

=1

Given a hierarchical model with global parameters # and local parameters z;, and associated observed data
{z}, we aim to demonstrate the factorization

p(0, {zi}[{z}) o< p(Ol{z}) Hp(zl'lﬁvxi)- (16)

We make two key assumptions, given the nature of common hierarchical models. (a) Given the observations
{z}, the global parameters 6 are conditionally independent of the local parameters {z;}, which gives us

p(0, {zit[{z}) = p(0|{z}) p({2i }|0, {x}), (17)

and (b) Each local parameter z; is conditionally independent of any other z; given 6 and its respective
observation x;, which gives

p({z:}16, {z}) = [ [ p(2:16, z,). (18)
Substituting the result from (b) into the expression from (a), we obtain our targeted factorized form:

p(0,{zi}[{z}) = p(Ol{z}) Hp(zilt‘?,xi) (19)

justifying the loss function used in the hierarchical model.
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