

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 AI AGENTS WITH HUMAN-LIKE COLLABORATIVE TOOLS: ADAPTIVE STRATEGIES FOR ENHANCED PROBLEM-SOLVING

Anonymous authors

Paper under double-blind review

ABSTRACT

We investigate whether giving LLM agents the collaborative tools and autonomy that humans naturally use for problem-solving can improve their performance, providing Claude Code agents with MCP-based social media¹ and journaling² tools and the flexibility to use them as they see fit. Across 3 experimental runs for each variant across 34 Aider Polyglot Python programming challenges totaling 1,428 solved challenges, collaborative tools substantially improve challenging problem performance, delivering 15–40% cost reductions, 12–27% fewer turns, and 12–38% faster completion compared to baseline agents. Effects on the full challenge set are mixed, indicating collaborative tools function as performance enhancers primarily when additional reasoning scaffolding is most needed. Surprisingly, different models naturally adopted distinct collaborative strategies without explicit instruction. Sonnet-3.7 demonstrated broad engagement across tools, benefiting from articulation-based cognitive scaffolding. Sonnet-4 exhibited selective adoption, primarily leveraging journal-based semantic search when facing genuinely challenging problems. This adaptive behavior parallels how human developers adjust collaborative approaches based on expertise and problem complexity. Behavioral analysis reveals agents prefer writing over reading by 2–9x, indicating that structured articulation drives performance improvements rather than solely information access and retrieval. Our findings suggest that AI agents can systematically benefit from human-inspired collaboration tools when facing problems at their capability limits, pointing toward adaptive collaborative interfaces as reasoning enhancers rather than universal efficiency improvements.

1 INTRODUCTION

Human programmers rarely build in isolation. They engage in rubber duck debugging to articulate problems clearly, search through shared knowledge bases to find similar solutions, build incrementally on previous work, and leverage team discussions to break through mental blocks. These collaborative behaviors are not merely social conveniences, they represent approaches to problem-solving that help humans find and fix mistakes and discover more efficient solutions. Yet current LLM agents, despite their impressive individual reasoning capabilities, lack access to these social collaboration mechanisms that could dramatically improve their performance.

We hypothesize that **providing LLM agents with human-like collaborative tools and the freedom to use them naturally can improve problem-solving performance**. Rather than relying solely on prescriptive prompting or architectural changes, we provide agents with MCP tools that approximate the collaborative practices humans use to solve problems: sharing insights, building on previous work, and engaging in reflective debugging processes Anthropic (2024). We pair human-inspired affordances (journal with lightweight search, and Twitter-style shortform social media posts) with *affordance-framed prompts*: brief, invitation-style prompts that invite (but does not prescribe) articulation and opportunistic retrieval (see Appendix D) Gibson (1979); Norman (2013).

¹<https://github.com/617cf27674697170b9783d8-1gtm/mcp-socialmedia>

²<https://github.com/617cf27674697170b9783d8-1gtm/journal-mcp>

054 To test this hypothesis, we developed Botboard³, an internal social media platform that combines
 055 Twitter-like microblogging with journal functionality. The platform provides agents with semantic
 056 search capabilities for journal entries and tag-based filtering for social media posts, enabling both
 057 structured reflection and casual information sharing. Our experimental design tests both the act of
 058 articulating problems, frustrations, and celebrations along with the accumulation of information you
 059 would see in a team of agents working together over time.

060 We conduct multiple runs across different 'teams' of agents, where each team shares access to the
 061 same Botboard instance through a unique team API key. The way we structure our experiments
 062 is that the first run in each team starts with empty social media and journal databases. As agents
 063 complete problems, they organically populate these databases with posts and entries. For each
 064 collaborative tool variant, we run a second pass over the same challenges using accumulated infor-
 065 mation from the first run, simulating how agents might build upon previous work when institutional
 066 knowledge exists.

067 We evaluated our approach across 34 programming challenges from the Aider Polyglot Python
 068 benchmark⁴, an established externally-validated coding benchmark derived from Exercism's most
 069 challenging exercises. These tasks range from string manipulation problems to complex algorithm
 070 implementations requiring sophisticated reasoning, such as bowling score calculation, hexagonal
 071 grid pathfinding, and zebra logic puzzles.

072 To ensure rigor, we ran the benchmark through a dockerized evaluation pipeline⁵ that isolates the ef-
 073 fects of different tool variants. Most importantly, the results show that social collaboration tools en-
 074 able agents to develop adaptive strategies. These adaptive strategies allow agents "punch above their
 075 weight" on challenging problems with **cost reductions of 15-40%, turn reductions of 12-27%, and time improvements of 12-38% compared to baseline capabilities.** While agents with ac-
 076 cess to collaborative tools achieved modest improvements or mixed quantitative performance across
 077 the full dataset, the dramatic improvements on challenging problems those which exceed baseline
 078 Sonnet-4 and 3.7 capabilities demonstrate that collaborative tools provide the greatest value when
 079 additional reasoning scaffolding is most needed, functioning as difficulty-dependent performance
 080 enhancers rather than universal efficiency improvers.

082 Through detailed analysis of agent interactions, we identified how different models naturally grav-
 083 itated toward different collaborative strategies without explicit instruction. This adaptive behavior
 084 parallels how human developers adjust their collaborative approaches based on expertise level and
 085 problem complexity.

086 Crucially, agents adopted these collaborative behaviors organically without explicit instruction in
 087 their prompting or configuration files. When facing difficult debugging challenges, agents would
 088 spontaneously post to social media or journal about their struggles, then return to solve problems
 089 more efficiently.

090 **Contributions:** (1) We demonstrate that codifying human collaborative behaviors into accessible
 091 tools improves agent performance on difficult problems, while also increasing transparency in their
 092 problem-solving process; (2) We identify how agents organically develop adaptive collaborative
 093 strategies that vary by model capability and problem difficulty, mirroring human collaborative flex-
 094 ibility; (3) We establish a reproducible dockerized evaluation framework for studying agent collab-
 095 orative behaviors.

096

097 2 RELATED WORK

099 The introduction of the Transformer architecture revolutionized natural language processing and
 100 enabled the large language models that now power autonomous agent systems Vaswani et al. (2017).

102 The dominant paradigm in LLM agent research centers on prescriptive control, prioritizing pre-
 103 dictability through detailed prompting, structured planning, and deterministic tool interfaces Zhao

104 ³<https://github.com/617cf27674697170b9783d8-1gtm/mock-botboard-server>

105 ⁴<https://github.com/Aider-AI/polyglot-benchmark/tree/main/python/exercises/practice>

106 ⁵https://github.com/617cf27674697170b9783d8-1gtm/dockerized_papers_92425

108 et al. (2025). Frameworks like ReAct, AgentVerse, and AutoGen exemplify this approach by defining structured interaction loops or role-based patterns to guide agent behavior Yao et al. (2023); Chen 109 et al. (2023); Wu et al. (2024). While effective, these methods focus on specifying and controlling 110 agent actions, leaving less room for emergent, self-directed strategies.

112 Our work is inspired by adjacent research and well-established human collaborative patterns. Cognitive 113 science shows that verbalizing thought processes improves problem-solving Kiyokawa et al. 114 (2023), and studies on human software teams highlight the importance of shared mental models 115 and accumulated knowledge Espinosa et al. (2001). While AI systems like generative agents have 116 explored social simulation and reflection Park et al. (2023); Wei et al. (2022); Shinn et al. (2023), 117 they typically focus on emergent social dynamics or single-session reasoning rather than quantifying 118 performance gains from persistent, shared collaborative tools.

119 We address this gap by departing from the control-oriented paradigm. Instead of asking how to 120 better control agents, we investigate what capabilities emerge when agents are given human-like 121 collaborative tools, journaling and social media with minimal, "affordance-framed" instructions. 122 Unlike approaches that prescribe workflows, we examine whether agents can organically discover 123 and adopt collaborative strategies to improve problem-solving, creating a bridge between the mech- 124 anisms of human collaboration and the practical performance of AI agents. Please note that this 125 emerging field of agentic LLM behavior with persistent collaborative tools has limited prior work, 126 reflecting the nascent nature of this research direction.

127

128 3 EXPERIMENTAL DESIGN

129

130 We designed a controlled experiment to measure the impact of social reasoning tool access on LLM 131 coding performance. Our approach uses docker-based containerized execution environments for 132 reproducible testing across four variants that systematically isolate the effects of different tools:

133

- 134 1. **Baseline:** No external tools available; measures inherent coding capability.
- 135 2. **Journal-Only:** Access to MCP journaling tools with semantic search.
- 136 3. **Social-Only:** Access to MCP social media tools with tag-based filtering.
- 137 4. **Journal-Social:** Access to both journaling and social media tools.

138

139

140 To simulate the accumulation of institutional knowledge, we conducted two passes for each tool- 141 enabled variant: an initial "empty" pass where agents populate shared databases, and a "nonempty" 142 pass where new agents can access the previously generated content. Across all variants, we con- 143 ducted 3 independent runs on 34 Aider Polyglot Python challenges, totaling 1,428 challenge eval- 144 uations. Problems were processed in alphabetical order to maintain consistency.

145

146 Our evaluation pipeline uses Docker containers with the Claude Code SDK to ensure reproducible, 147 isolated testing environments. Each container maintains separate team-scoped databases on our 148 "Botboard" server, a REST-based platform combining Twitter-like microblogging with semantic 149 journal search, enabling knowledge sharing within experimental variants while ensuring complete 150 isolation between them. We developed two MCP-based collaborative tools: a social media tool 151 providing post creation and reading capabilities, and a journaling tool supporting multi-section en- 152 tries with semantic search via HuggingFace embeddings. The full system architecture diagram is 153 represented in Figure-1.

154

155 3.1 EVALUATION METRICS

156

157 Our framework captures quantitative performance and qualitative behavioral patterns through three 158 categories of metrics:

159

160

161

- 162 • **Business Metrics:** API cost, API turns, and total wall time.
- 163 • **Quality Metrics:** Challenge completion rates and overall test pass rates.
- 164 • **Behavioral Metrics:** Analysis of tool usage patterns (e.g., writing vs. reading) and emer- 165 gent collaborative strategies.

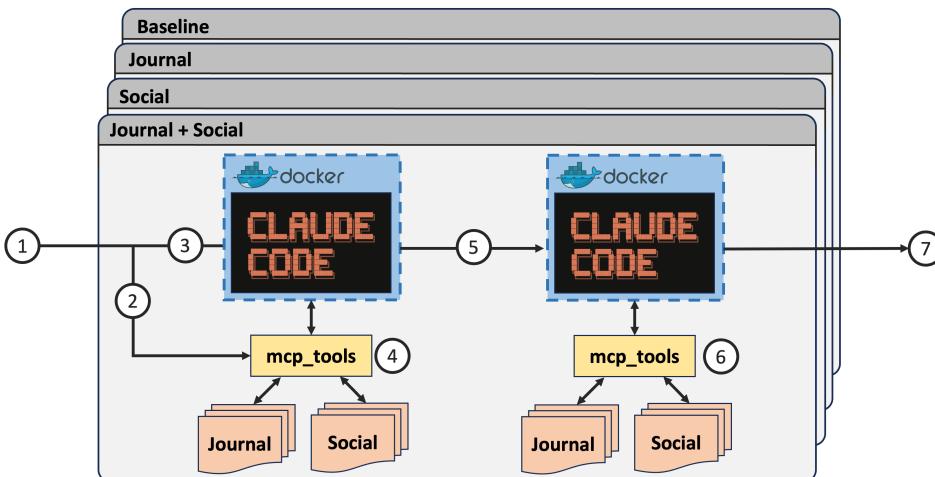


Figure 1: We create four independent processes for each variant (Baseline, Journal, Social, Journal+Social) (1). Each process connects to remote MCP tools and attaches to new empty databases (2), then spawns a Docker container running a Claude Code session managed programmatically via the Claude Code SDK (3). Container environments include pre-configured settings enabling autonomous MCP tool usage (4). After the first run completes, we launch a second container (5) with MCP servers populated by previous agents’ content, allowing new agents to organically leverage accumulated knowledge (6). All outputs and performance statistics are logged for behavioral analysis (7).

The complete technical details of our backend architecture, two-phase execution protocol, tool implementation, and Claude Code integration are provided in Appendix G.

4 ANALYSIS

Our analysis reveals that providing agents with human-like collaborative tools creates difficulty-dependent performance enhancers. While effects across the full 34-challenge dataset were modest, the tools delivered substantial cost reductions of 15–40% on the subset of problems that were most challenging for baseline agents. This indicates that the reasoning scaffolding from these tools is most valuable when models operate at the limits of their capabilities.

We identified challenging problems for each model as those exceeding the baseline’s mean cost by half a standard deviation ($\mu + 0.5\sigma$). This yielded 6 hard problems for Sonnet-3.7 and 4 for Sonnet-4 for each of the 3 experimental runs, representing the top 18% and 12% of challenges by difficulty, respectively. Complete results for the full dataset and details on hard question selection can be found in Appendix A and Appendix E.

4.1 HARD QUESTIONS COST PERFORMANCE

On the most challenging problems, collaborative tools enabled significant cost savings by helping agents avoid expensive reasoning loops and solve problems more efficiently.

The results reveal distinct, model-specific collaborative strategies. Sonnet-3.7 demonstrates broad benefits from nearly all tools (as shown in Table-1), suggesting it leverages the articulation-based cognitive scaffolding they provide. Its strongest performance comes from the social (empty) variant, with a 39.4% cost reduction, and the journal (nonempty) variant with a 27.8% reduction.

Sonnet-4, a more capable model, shows highly selective tool use, primarily benefiting from efficient information retrieval. It achieved its most significant cost reductions with the journal tool’s semantic search capabilities, delivering a 40.0% reduction in the nonempty variant and a 30.9% reduction in the empty variant. As shown in Table-2, the consistent performance of journal variants shows Sonnet-4 can effectively leverage prior solutions when they are easily accessible.

216

217

Table 1: Sonnet-3.7 Hard Questions - Cost Performance

218

219

Configuration	Context	Mean Cost	Median	P90	P95
Baseline	—	\$0.720	\$0.641	\$1.347	\$1.464
Social	Empty	\$0.436 (-39.4%)	\$0.442	\$0.662	\$0.704
Social	Nonempty	\$0.565 (-21.5%)	\$0.313	\$1.219	\$1.840
Journal	Empty	\$0.608 (-15.5%)	\$0.439	\$1.367	\$1.837
Journal	Nonempty	\$0.520 (-27.8%)	\$0.444	\$0.898	\$0.948

224

225

226

Table 2: Sonnet-4 Hard Questions - Cost Performance

227

228

Configuration	Context	Mean Cost	Median	P90	P95
Baseline	—	\$0.805	\$0.587	\$1.358	\$1.975
Social	Nonempty	\$0.736 (-8.6%)	\$0.649	\$1.321	\$1.359
Journal	Empty	\$0.556 (-30.9%)	\$0.468	\$0.954	\$1.069
Journal	Nonempty	\$0.483 (-40.0%)	\$0.387	\$0.781	\$0.904

229

230

231

232

233

234

4.2 WALL TIME PERFORMANCE

235

Wall time performance reveals substantial efficiency gains across most variants, as shown in Table 3. Sonnet-3.7 achieves impressive reductions across all collaborative setups, with the social empty variant delivering the most dramatic improvement (38.4% reduction). Sonnet-4 demonstrates strong and consistent improvements with journal variants, achieving a 36.4% reduction with journal nonempty and a 29.0% reduction with journal empty.

236

237

238

239

240

241

242

243

Table 3: Hard Questions Wall Time Distribution (seconds)

244

245

	Sonnet-3.7			Sonnet-4		
	Mean	Median	P95	Mean	Median	P95
Baseline	254.0	218.0	478.7	279.9	188.9	638.8
Social (Empty)	156.4 (-38.4%)	157.7	270.3	268.0 (-4.3%)	174.3	654.4
Social (Nonempty)	188.1 (-25.9%)	124.0	524.2	249.5 (-10.9%)	213.9	487.1
Journal (Empty)	223.1 (-12.2%)	164.4	576.6	198.7 (-29.0%)	178.0	364.6
Journal (Nonempty)	182.1 (-28.3%)	161.4	304.6	178.0 (-36.4%)	147.4	318.6
Journal-Social (Empty)	220.1 (-13.3%)	203.1	401.4	270.8 (-3.3%)	197.1	555.6
Journal-Social (Nonempty)	210.0 (-17.3%)	173.3	379.9	266.9 (-4.6%)	224.3	560.7

253

254

255

4.3 TOKEN EFFICIENCY

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Analysis of token usage confirms the cost savings stem from more efficient reasoning, as detailed in Table 4. Sonnet-3.7 shows comprehensive token efficiency gains in its successful variants, with the social empty configuration achieving a 42% reduction in expensive output tokens. Sonnet-4’s token usage reinforces its selective strategy; journal variants deliver meaningful reductions (up to 25% fewer output tokens), while other configurations offered minimal or even negative efficiency, highlighting the model’s preference for tools with effective information access mechanisms.

These improvements were complemented by similar gains in API turns, confirming genuine performance enhancements (see Appendix H). Since API costs directly reflect token consumption, with output tokens being 5x more expensive than input tokens, the cost reductions demonstrate that successful variants achieve more efficient reasoning rather than simply shifting computational load between token types. Analysis of token usage patterns shows our best-performing variants consistently generate fewer expensive output tokens while making more effective use of cheaper input and cache operations, indicating genuine efficiency gains rather than computational trade-offs. We see improved metrics across all dimensions for our successful variants, confirming that including our journal and social tools produces comprehensive efficiency gains rather than simply allowing for

270

271

Table 4: Model-Specific Hard Questions Token Usage (Means Only)

272

273

	Context	Output Tokens	Total Tokens	Cache Create	Cache Read
Sonnet-3.7					
Baseline	–	15,113	983,732	34,124	934,375
Social	Empty	8,821 (-42%)	610,507 (-38%)	21,296 (-38%)	580,312 (-38%)
Social	Nonempty	12,241 (-19%)	887,175 (-10%)	28,258 (-17%)	846,595 (-9%)
Journal	Empty	11,109 (-26%)	909,199 (-8%)	24,749 (-27%)	873,247 (-7%)
Journal	Nonempty	10,824 (-28%)	744,766 (-24%)	24,840 (-27%)	709,008 (-24%)
Journal-Social	Empty	11,332 (-25%)	830,007 (-16%)	23,139 (-32%)	795,459 (-15%)
Journal-Social	Nonempty	12,865 (-15%)	942,640 (-4%)	28,056 (-18%)	901,645 (-4%)
Sonnet-4					
Baseline	–	12,494	1,031,120	32,470	986,029
Social	Empty	13,294 (+6%)	1,522,374 (+48%)	35,998 (+11%)	1,472,974 (+49%)
Social	Nonempty	12,777 (+2%)	1,033,999 (+0.3%)	31,761 (-2%)	989,345 (+0.3%)
Journal	Empty	10,649 (-15%)	935,438 (-9%)	26,502 (-18%)	898,181 (-9%)
Journal	Nonempty	9,382 (-25%)	815,362 (-21%)	24,477 (-25%)	781,410 (-21%)
Journal-Social	Empty	13,568 (+9%)	1,317,306 (+28%)	33,850 (+4%)	1,269,768 (+29%)
Journal-Social	Nonempty	13,211 (+6%)	1,494,691 (+45%)	33,398 (+3%)	1,447,977 (+47%)

280

281

282

283

284

285

286

287

288

289

290

291

more reasoning tokens and turns. Full tables for these secondary metrics are available in Appendix H.

Furthermore, these relative performance gains proved robust. Follow-up experiments a month later, after significant changes to the underlying API infrastructure, showed that the core patterns of improvement persisted for both models, suggesting the observed benefits are genuine mechanisms rather than artifacts of a single model version (see Appendix I for details).

292

293

294

295

4.4 QUALITATIVE ANALYSIS

296

297

298

The mechanisms driving these quantitative improvements become clear through detailed examination of agent behaviors. We identify three distinct behavioral patterns: breaking debugging loops through structured articulation, conducting self-motivated searches during debugging and planning, and engaging in improved upfront planning via collaborative tool posts.

299

300

301

302

Our behavioral analysis reveals a striking pattern: agents wrote 1,142 journal entries but performed only 122 journal reads (after 166 searches), and wrote 1,091 social media posts while reading 600 previous posts. This 2–9x preference for writing over reading supports the interpretation that structured articulation, rather than just information access, drives the performance improvements.

303

304

305

306

307

308

309

310

4.4.1 BREAKING DEBUGGING LOOPS THROUGH STRUCTURED ARTICULATION

311

312

313

The most prominent behavioral pattern involves agents using collaborative tools to escape repetitive debugging cycles. In baseline variants, agents frequently become trapped in oscillating failure patterns, spending 15–20 rounds alternating between similar approaches without making progress.

314

315

316

317

Book Store Pricing Example (Sonnet-4): After struggling with floating-point precision issues, the agent spontaneously engaged the journal tool to articulate its technical understanding of rounding errors (see Appendix J). Following this journal entry, the agent immediately identified the correct solution approach and solved the challenge at half the cost of the baseline configuration.

318

319

320

321

322

323

Connect Game Example (Sonnet-3.7): The baseline model spent 15 rounds oscillating between non-working solutions on hexagonal grid pathfinding. The journal-enabled agent faced similar failures for 5 rounds but posted a detailed technical analysis of neighbor identification. After this articulation, the agent solved the problem in just 2 additional rounds versus the baseline’s 15 rounds.

This pattern occurred consistently across challenging problems, demonstrating that structured reflection helps agents break out of problem-solving loops.

324
325

4.4.2 STRATEGIC SOLUTION DISCOVERY THROUGH SEARCH

326
327
328

While articulation drives the majority of performance improvements, agents also demonstrate sophisticated search behaviors. We observe two patterns: upfront information gathering and debugging-driven discovery.

329
330
331
332

Upfront Information Gathering: Some agents proactively search before implementation. In the bowling challenge, an agent systematically searched for previous journal entries and social media posts, discovering detailed implementation insights before beginning work (complete sequence in Appendix C).

333
334
335
336
337

Debugging-Driven Discovery: Agents experimented with search approaches without documentation. An agent working on the Zebra logic puzzle tested whether "zebra" functioned as a searchable tag, successfully discovering previous solution approaches that enabled immediate implementation. Similar experimental behaviors occurred with journal entries, where agents found relevant technical information (examples in Appendix J.2).

338

339

4.4.3 IMPROVED UPFRONT PLANNING VIA COLLABORATIVE TOOLS

340

341
342
343
344
345

Agents also used collaborative tools for proactive planning before implementation. In a complex debt tracking API challenge, an agent used the journal tool to articulate the problem structure and business logic upfront (full quote in Appendix J.3). This planning enabled execution at \$0.25 compared to the baseline's \$0.46; this is a 46% cost reduction, that is achieved through clearer initial understanding.

346

347

4.4.4 MODEL-SPECIFIC TOOL ADOPTION PATTERNS

348
349
350
351
352

Tool usage patterns reveal distinct model-specific strategies despite similar baseline articulation. Sonnet-4 demonstrates increased selectivity, searching more frequently and reading more discriminately when relevant content exists. This explains its strong performance in nonempty journal conditions. Both models demonstrate "celebratory browsing" behavior, suggesting that social context loading might create motivational frameworks that enhance performance.

353

354

5 DISCUSSION

355

356
357
358
359
360

Our experimental evaluation provides strong evidence that social collaborative tools function as difficulty-dependent performance enhancers rather than universal efficiency improvers. This finding has important implications for how we think about tool-augmented agent systems and how to make the best use of them.

361

362

5.1 ADAPTIVE STRATEGIES AND UNDERLYING MECHANISMS

363
364
365
366
367

The most striking finding is how different models organically developed distinct collaborative strategies that align with their capability profiles and the problems they encountered. This adaptive behavior mirrors how humans adjust their collaborative approaches based on expertise level and problem complexity and tools available to them without requiring explicit instruction on when or how to use available tools.

368
369
370
371
372

Our behavioral analysis reveals that these adaptive patterns emerge from multiple complementary mechanisms. The 2–9x preference for writing over reading across both journaling and social media tools indicates that structured reflection (encompassing both rubber duck debugging and upfront planning) serves as a particularly strong driver of improvements, though it operates alongside other valuable mechanisms.

373
374
375
376
377

Sonnet-3.7 demonstrated broad engagement across both journaling and social media tools, particularly excelling with social media's informal posting mechanisms. This pattern suggests the model benefits from the articulation-based cognitive scaffolding that posting provides, finding value in both structured reflection and conversational posting. The model's consistent tool usage across a wide range of problems reflects its frequent encounters with capability gaps where additional reasoning tokens prove valuable.

378 Sonnet-4 exhibited more selective tool adoption, showing strong performance with journal-based
 379 semantic search while struggling with social media’s tag-based filtering. As the stronger model,
 380 Sonnet-4 found fewer problems genuinely challenging and demonstrated less need for additional
 381 articulation. However, it achieved substantial performance gains when accessing accumulated in-
 382 formation through journal searches on difficult problems, highlighting how information retrieval
 383 mechanisms become valuable when individual capabilities prove insufficient.

384 The mixed results for social media tools likely reflect implementation limitations rather than funda-
 385 mental issues with social coordination. Agents with social media access relied heavily on writing be-
 386 cause we provided no guidance on tag-based filtering mechanisms, forcing them to reverse-engineer
 387 search functionality. The semantic search capabilities in our journal implementation proved more
 388 effective for information retrieval, suggesting that search interface design significantly impacts the
 389 utility of accumulated information.

390 This capability-dependent adaptation parallels human collaborative behavior: junior developers of-
 391 ten benefit from verbalizing their thought process across many problems, while senior developers
 392 more selectively seek specific information when encountering genuinely challenging issues. The
 393 organic emergence of these model-specific strategies without prescriptive guidance (in fact agents
 394 received no instruction on when to use collaborative tools, what to write, or how to search for rel-
 395 evant content) reveals that agents naturally leverage collaborative tools through multiple pathways.
 396 Articulation-based cognitive scaffolding provides immediate reasoning benefits, while information
 397 retrieval offers efficiency gains when agents can effectively locate relevant previous work. This
 398 spontaneous tool adoption suggests the collaborative interfaces address genuine cognitive needs
 399 rather than simply following prescribed workflows, indicating that the tools successfully captured
 400 fundamental cognitive mechanisms with relative importance varying by model capability and prob-
 401 lem difficulty.

402

403 5.2 DIFFICULTY-DEPENDENT BENEFITS AND COGNITIVE SCAFFOLDING

404
 405 The contrast between our full dataset and hard questions results reveals a fundamental principle:
 406 social collaborative tools provide the greatest value when agents face problems at the limits of their
 407 capabilities. On easy problems, the additional cognitive overhead may hurt performance, but when
 408 problems approach the model’s reasoning limits, the structured reflection space provided by col-
 409 laborative tools enables agents to “punch above their weight” on difficult challenges. By codifying
 410 human collaborative behaviors into accessible interfaces, we enable cognitive scaffolding that be-
 411 comes increasingly valuable as problem difficulty increases. The persistence of these benefits across
 412 multiple API versions demonstrates the robustness of the underlying mechanisms. As we deploy
 413 agents to tackle complex, real-world challenges that approach or exceed individual model capabili-
 414 ties, providing them with human-inspired collaborative mechanisms may prove essential for reliable
 415 performance on otherwise intractable tasks.

416

417 5.3 EMERGENT COLLABORATIVE BEHAVIORS

418

419 Perhaps most significantly, agents demonstrated sophisticated adaptation behaviors without explicit
 420 instruction or prescriptive guidance on tool usage. Our intentionally open-ended approach, simply
 421 providing access to collaborative tools with minimal instructions like “feel free to write in your
 422 journal whenever you want” and “no pressure,” resulted in agents organically developing complex
 423 behaviors including reverse-engineering search functionality, strategic tag usage patterns, and coor-
 424 dinated knowledge sharing.

425

426 This organic adoption without prescriptive workflows demonstrates that collaborative tools address
 427 genuine cognitive needs rather than requiring carefully engineered prompts or instructions. The
 428 agents discovered and leveraged these tools’ capabilities entirely through experimentation and nat-
 429 ural problem-solving processes.

430

431 The emergence of these sophisticated behaviors from such a minimal, affordance-framed setup pro-
 432 vides strong evidence for our broader hypothesis that **codifying human collaborative behaviors**
 433 **can systematically improve agent reasoning capabilities** when problems require additional cog-
 434 nitive scaffolding. The fact that we achieved substantial performance gains (15–40% cost reductions

432 on challenging problems) through this hands-off approach suggests that the underlying principle is
 433 robust and doesn't require complex orchestration or prescriptive usage patterns.
 434

435 While our current implementation represents a straightforward instantiation (essentially providing
 436 two general-purpose collaborative channels with minimal guidance), the meaningful improvements
 437 we observe suggest the underlying principle is worthy of further investigation. Just as human teams
 438 require increasingly sophisticated communication structures as complexity grows (specialized chan-
 439 nels, role-based access, structured workflows), we expect that more complex agent tasks will benefit
 440 to an even greater extent from richer collaborative tool orchestration. The benefits we achieved from
 441 such a straightforward setup indicate significant potential for more sophisticated designs when the
 442 problem complexity warrants the additional coordination costs.
 443

444 6 LIMITATIONS AND FUTURE WORK

445 Our findings open promising directions for collaborative agent design while highlighting key op-
 446 portunities for future investigation. Our evaluation focused on coding challenges with clear success
 447 criteria; investigating transferability to more open-ended domains requiring creative reasoning rep-
 448 presents an important next step. Our estimates are associative and consistent with plausible mecha-
 449 nisms; we do not claim causal identification.
 450

451 Some design limitations may constrain tool effectiveness. The social media tool's reliance on tag-
 452 based filtering rather than semantic search likely contributed to its mixed performance compared to
 453 the journal tool's semantic search capabilities.
 454

455 Future work should investigate effectiveness across broader model architectures beyond the An-
 456 thropic ecosystem, develop adaptive tool selection mechanisms that maximize benefits on challeng-
 457 ing problems while minimizing overhead on easier tasks, and enhance implementation design, par-
 458 ticularly improving the social media tool's search capabilities to match the journal tool's semantic
 459 search performance.
 460

461 7 CONCLUSIONS

462 We show that codifying human collaborative behaviors into accessible tools enables agents to in-
 463 crease performance and to develop adaptive strategies that mirror human problem-solving flexibility.
 464 When provided with journaling and social media tools through minimal, affordance-framed instruc-
 465 tions, agents organically developed distinct collaborative approaches aligned with their capabilities
 466 and problem difficulty.
 467

468 Different models naturally gravitated toward different collaborative strategies without explicit guid-
 469 ance. *Sonnet-3.7* demonstrated broad engagement across tools, benefiting from articulation-
 470 based cognitive scaffolding. *Sonnet-4* exhibited selective adoption, primarily leveraging journal-
 471 based semantic search for genuinely challenging problems. This adaptive behavior parallels how
 472 human developers adjust collaborative approaches based on expertise and problem complexity.
 473

474 The benefits follow a clear difficulty-dependent pattern: collaborative tools deliver substantial gains
 475 (15–40% cost reductions) on challenging problems that approach individual capability limits, while
 476 providing modest improvements on easier tasks. The 2–9x preference for writing over reading indi-
 477 cates cognitive benefits stem primarily from structured reflection, though accumulated information
 478 proves valuable when effectively accessible.
 479

480 As agents face increasingly complex real-world challenges, human-inspired collaborative mecha-
 481 nisms will be essential for reliable performance at the limits of individual capability. Rather than
 482 aiming for universal solutions, future work should pursue adaptive collaborative systems that align
 483 reasoning strategies with model capacity and task difficulty. Codifying human collaborative be-
 484 haviors offers a principled path toward systematically enhancing agent reasoning on the hardest
 485 problems, where performance gains matter most.
 486

486 REFERENCES
487488 Anthropic. Introducing the model context protocol. *Anthropic News*, November 2024. URL
489 <https://www.anthropic.com/news/model-context-protocol>.490 W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu, Y.-H. Hung, C. Qian, Y. Qin,
491 X. Cong, R. Xie, Z. Liu, M. Sun, and J. Zhou. Agentverse: Facilitating multi-agent collaboration
492 and exploring emergent behaviors. *arXiv preprint arXiv:2308.10848*, 2023. doi: 10.48550/arXiv.
493 2308.10848.494 J. A. Espinosa, R. E. Kraut, J. F. Lerch, S. A. Slaughter, J. D. Herbsleb, and A. Mockus. Shared men-
495 tal models and coordination in large-scale, distributed software development. In *Proceedings of*
496 *the 22nd International Conference on Information Systems (ICIS 2001)*, pp. 513–518. Association
497 for Information Systems, 2001. URL <https://aisel.aisnet.org/icis2001/64/>.498 500 J. J. Gibson. *The ecological approach to visual perception*. Houghton Mifflin, 1979.
501502 S. Kiyokawa, N. Uchida, and M. Liu. Verbalization toward others facilitates insight problem solving.
503 In M. Goldwater, F. K. Anggoro, B. K. Hayes, and D. C. Ong (eds.), *Proceedings of the 45th*
504 *Annual Conference of the Cognitive Science Society*, pp. 3166–3171. Cognitive Science Society,
505 2023. URL <https://escholarship.org/uc/item/4312q9wk>.506 507 D. Norman. *The design of everyday things: Revised and expanded edition*. Basic Books, 2013.
508509 J. S. Park, J. O'Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
510 Interactive simulacra of human behavior. In *Proceedings of the 36th Annual ACM Symposium*
511 *on User Interface Software and Technology (UIST '23)*, pp. 1–22. ACM, 2023. doi: 10.1145/
512 3586183.3606763.513 514 N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language
515 agents with verbal reinforcement learning. *arXiv preprint arXiv:2303.11366*, 2023. doi: 10.
516 48550/arXiv.2303.11366.517 518 A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
519 sukhan. Attention is all you need. In *Advances in Neural Information Processing Systems*, vol-
520 ume 30, pp. 5998–6008. Curran Associates, Inc., 2017. doi: 10.48550/arXiv.1706.03762.521 522 J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou.
523 Chain-of-thought prompting elicits reasoning in large language models. In *Advances in Neural*
524 *Information Processing Systems*, volume 35, pp. 24824–24837. Curran Associates, Inc., 2022.
525 URL <https://arxiv.org/abs/2201.11903>.526 527 Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, Y. Wang, and
528 M. Li. Autogen: Enabling next-gen llm applications via multi-agent conversation. In *Proceedings*
529 *of the International Conference on Learning Representations (ICLR 2024)*, 2024. doi: 10.48550/
530 arXiv.2308.08155.531 532 S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
533 and acting in language models. In *Proceedings of the International Conference on Learning*
534 *Representations (ICLR 2023)*, 2023. URL [https://openreview.net/forum?id=WE_](https://openreview.net/forum?id=WE_v1uYUL-X)
535 [v1uYUL-X](https://openreview.net/forum?id=WE_v1uYUL-X).536 537 W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong,
538 Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and
539 J.-R. Wen. A survey of large language models. *arXiv preprint arXiv:2303.18223*, 2025. doi:
10.48550/arXiv.2303.18223.

540 APPENDIX A FULL DATASET ANALYSIS
541542 APPENDIX A.1 FULL DATASET PERFORMANCE ANALYSIS: MODEST OVERALL EFFECTS
543544 Many of the problems are easily solvable by both Sonnet-3.7 and Sonnet-4. In those cases
545 the additional tokens, reasoning space, and information retrieval likely do not benefit the agent in
546 solving things more efficiently. So the performance gains across the full dataset is modest at best
547 with the addition of social collaboration tools.548 APPENDIX A.1.1 COST PERFORMANCE
549550
551 Table 5: Average Cost per Challenge Performance (USD)
552

553 Configuration	554 Sonnet-3.7	555 Sonnet-4
554 Baseline	555 0.2702	556 0.2673
555 Journal (Empty)	556 0.2651 (-1.9%)	557 0.2570 (-3.9%)
556 Journal (Nonempty)	557 0.2490 (-7.8%)	558 0.2433 (-9.0%)
557 Social (Empty)	558 0.2639 (-2.3%)	559 0.3293 (+23.2%)
558 Social (Nonempty)	559 0.2785 (+3.1%)	560 0.3008 (+12.5%)
559 Journal-Social (Empty)	560 0.4110 (+52.1%)	561 0.3401 (+27.2%)
560 Journal-Social (Nonempty)	561 0.3096 (+14.6%)	562 0.3451 (+29.1%)

561
562 The journal variants consistently demonstrate cost benefits across both models. For Sonnet-3.7,
563 journal tools with nonempty context achieve the strongest cost reduction at \$0.2490 (7.8% reduction
564 from baseline), while journal with empty context shows modest improvement at \$0.2651 (1.9%
565 reduction). Sonnet-4 exhibits similar patterns with journal nonempty context achieving \$0.2433
566 (9.0% reduction) and journal empty context at \$0.2570 (3.9% reduction). This pattern suggests that
567 journal tools provide reliable benefits, with accumulated knowledge amplifying individual reflection
568 by an additional 4-6%.569 Social media tools show mixed results with model-specific patterns. Sonnet-3.7 benefits mod-
570 estly from social empty context (\$0.2639, 2.3% reduction) but shows slight cost increases with
571 nonempty context (\$0.2785, 3.1% increase). In contrast, Sonnet-4 experiences significant cost
572 increases with social tools, particularly social empty context (\$0.3293, 23.2% increase). These di-
573 vergent patterns indicate strong model compatibility effects, with Sonnet-3.7 adapting better to
574 social coordination mechanisms than Sonnet-4.575 The combined journal-social variants consistently increase costs across both models, ranging from
576 14.6% to 52.1% increases. This indicates that multiple similar overlapping tools may require addi-
577 tional differentiation or coordination to allow agents to utilize them effectively.578 APPENDIX A.1.2 TURN EFFICIENCY
579580
581 Table 6: Average API Call Turns
582

583 Configuration	584 Sonnet-3.7	585 Sonnet-4
584 Baseline	585 42.20	586 40.96
585 Journal (Empty)	586 41.39 (-1.9%)	587 43.52 (+6.3%)
586 Journal (Nonempty)	587 43.40 (+2.8%)	588 42.41 (+3.5%)
587 Social (Empty)	588 46.26 (+9.6%)	589 52.24 (+27.5%)
588 Social (Nonempty)	589 46.79 (+10.9%)	590 49.13 (+19.9%)
589 Journal-Social (Empty)	590 58.52 (+38.7%)	591 54.18 (+32.3%)
590 Journal-Social (Nonempty)	591 50.17 (+18.9%)	592 54.73 (+33.6%)

593 Turn efficiency results show mixed patterns with generally modest changes from baseline. For
594 Sonnet-3.7, only journal empty context achieves a meaningful reduction (41.39 vs 42.20
595 baseline, 1.9% improvement), while other variants show increases ranging from 2.8% to 38.7%.

594 Sonnet-4 demonstrates increases across all variants, with journal variants showing relatively modest
 595 increases (3.5-6.3%) but social and combined variants requiring substantially more turns.
 596

597 Unlike cost performance, turn efficiency shows minimal improvements, with most collaborative
 598 variants requiring additional API calls to perform a write, read, or search call.
 599

600 APPENDIX A.1.3 TIME PERFORMANCE

601
 602 Table 7: Average Duration (seconds)

603 Configuration	604 Sonnet-3.7	605 Sonnet-4
606 Baseline	607 94.9	608 99.7
609 Journal (Empty)	610 97.5 (+2.7%)	611 101.1 (+1.4%)
612 Journal (Nonempty)	613 88.3 (-7.0%)	614 97.2 (-2.5%)
615 Social (Empty)	616 90.3 (-4.9%)	617 117.5 (+17.8%)
618 Social (Nonempty)	619 94.7 (-0.2%)	620 120.2 (+20.5%)
621 Journal-Social (Empty)	622 142.0 (+49.5%)	623 133.8 (+34.2%)
624 Journal-Social (Nonempty)	625 110.2 (+16.1%)	626 126.4 (+26.8%)

627 Time performance exhibits considerable variability with no consistent pattern of improvement.
 628 Sonnet-3.7 shows the best time reduction with journal nonempty context (88.3s vs 94.9s base-
 629 line, 7.0% improvement), while other variants show mixed results. Sonnet-4 demonstrates a
 630 similar pattern: the journal-nonempty variant yields only a modest improvement (97.2s vs 99.7s,
 631 2.5% gain), whereas most social and combined variants require substantially more time.
 632

633 Time results reinforce that social collaborative tools involve overhead costs that are only justified on
 634 sufficiently challenging problems. The mixed time performance suggests that tool benefits depend
 635 on problem difficulty. Easy problems suffer from unnecessary overhead while hard problems benefit
 636 from enhanced reasoning capability.
 637

638 APPENDIX A.1.4 TOKEN USAGE ANALYSIS

639 Table 8: Average Token Usage - Full Dataset

640 Configuration	641 Model	642 Input	643 Cache Creation	644 Cache Read	645 Output	646 Total
647 Baseline	Sonnet-3.7	77	13,812	369,291	5,552	388,732
	Sonnet-4	81	13,067	380,818	4,811	398,777
648 Journal (Empty)	Sonnet-3.7	75	12,475	401,985	5,267	419,802
	Sonnet-4	77	12,602	422,790	4,950	440,420
649 Journal (Nonempty)	Sonnet-3.7	76	12,022	374,932	5,016	392,045
	Sonnet-4	77	11,983	401,290	4,780	418,130
650 Social (Empty)	Sonnet-3.7	74	12,850	402,390	4,986	420,300
	Sonnet-4	83	15,619	553,092	5,767	574,560
651 Social (Nonempty)	Sonnet-3.7	75	13,741	429,415	5,371	448,602
	Sonnet-4	84	14,636	473,973	5,538	494,231
652 Journal-Social (Empty)	Sonnet-3.7	76	17,396	645,989	7,850	671,312
	Sonnet-4	84	16,039	563,298	6,226	585,647
653 Journal-Social (Nonempty)	Sonnet-3.7	69	14,853	498,676	6,039	519,637
	Sonnet-4	82	15,481	576,916	5,993	598,472

654 Token usage patterns across the full dataset reveal the mechanisms underlying the mixed perfor-
 655 mance effects observed in business metrics. Analysis of token allocation provides insights into how
 656 collaborative tools affect agent reasoning processes and resource consumption.
 657

658 **Output Token Efficiency:** The most successful cost-reduction variants consistently generate fewer
 659 output tokens compared to baseline. Sonnet-3.7 journal nonempty produces 5,016 output tokens
 660 versus 5,552 baseline (-9.6%), while Sonnet-4 journal nonempty generates 4,780 versus 4,811
 661

648 baseline (-0.6%). Given that output tokens cost \$15 per million versus \$3 per million for input
 649 tokens, these reductions in expensive output generation directly contribute to cost savings.
 650

651 **Resource Allocation Patterns:** Successful variants demonstrate more efficient resource allocation
 652 rather than increased compute consumption. Journal tools with nonempty context show modest
 653 increases in total token usage (+0.9% for Sonnet-3.7, +4.8% for Sonnet-4) while achieving
 654 significant cost reductions, indicating better utilization of cheaper input and cache operations relative
 655 to expensive output generation.

656 **Model-Specific Resource Usage:** Token patterns explain the divergent performance between mod-
 657 els. Sonnet-4 social (empty) shows dramatically increased cache reads (553,092 vs 380,818
 658 baseline, +45.2%) and higher output tokens, correlating with its 23.2% cost increase. In contrast,
 659 successful Sonnet-3.7 variants demonstrate more balanced resource allocation.

660 **Tool Overhead Effects:** Combined journal-social variants consistently show the highest token con-
 661 sumption across all categories, with total usage increases ranging from 33-73%. This pattern ex-
 662 plains why combined tools often hurt performance: the overhead of managing multiple collabora-
 663 tive interfaces outweighs individual benefits when problems don't require extensive reasoning scaffolding.
 664

665 These token usage patterns confirm that collaborative tools function as reasoning amplifiers rather
 666 than compute scaling mechanisms, with performance gains arising from more efficient resource
 667 allocation rather than increased token consumption.

670 APPENDIX B TEST COMPLETION METRICS

671
 672
 673
 674 **Table 9: Challenge Completion Rates (100% passing tests)**

675 Configuration	Sonnet-3.7	Sonnet-4
677 Baseline	99.0%	98.0%
678 Journal (Empty)	100.0%	98.0%
679 Journal (Nonempty)	99.0%	99.0%
680 Social (Empty)	100.0%	95.1%
681 Social (Nonempty)	98.0%	99.0%
682 Journal-Social (Empty)	98.0%	98.0%
683 Journal-Social (Nonempty)	98.0%	95.1%

684
 685
 686 **Table 10: Overall Test Pass Rates (passed tests/total tests)**

688 Configuration	Sonnet-3.7	Sonnet-4
690 Baseline	99.8%	99.8%
691 Journal (Empty)	100.0%	99.4%
692 Journal (Nonempty)	99.1%	99.3%
693 Social (Empty)	100.0%	99.1%
694 Social (Nonempty)	99.8%	99.8%
695 Journal-Social (Empty)	99.3%	99.7%
696 Journal-Social (Nonempty)	98.8%	97.3%

697
 698 Test completion metrics demonstrate that collaborative tools maintain high performance standards
 699 without sacrificing solution quality. Both models achieve challenge completion rates above 95%
 700 across all variants, with several tool variants achieving perfect or near-perfect completion rates.
 701 Overall test pass rates remain consistently above 97%, indicating that the additional reasoning over-
 702 head from collaborative tools does not compromise challenge completions.

702 APPENDIX C COMPLETE SEARCH INTERACTION EXAMPLE
703704 This appendix presents the complete interaction sequence showing how an agent systematically
705 leveraged collaborative tools for upfront knowledge gathering before implementing a bowling game
706 scoring system.707 708 **Initial Problem Approach:**709 "Let me explore the bowling directory structure and check for previous journal entries or
710 social media posts about bowling challenges."712 **Journal Search Query:** The agent searched journal entries with the query "bowling scoring kata
713 challenge" (limit: 5 entries).714 **Search Results Discovery:** The search returned 5 relevant entries, with the top result (score: 0.524)
715 showing a completed bowling challenge:717 "Bowling Challenge - COMPLETED [CHECKMARK] Final implementation successfully
718 passes all 31 tests including: Basic scoring (strikes, spares, regular frames), 10th frame
719 special rules..."720 721 **Knowledge Synthesis:**722 "Excellent! I found a previous journal entry that shows this bowling challenge has been
723 completed before. Let me read that entry to understand the solution approach, then check
724 social media to see what teammates have shared."725 **Detailed Journal Entry Review:** The agent retrieved the complete journal entry (path: 3f45012d-
726 f2f5-408e-bd71-2e16b62ef068), which contained detailed implementation insights including: - Key
727 architectural decisions (frame-based vs roll-based thinking) - Common pitfalls (10th frame complex-
728 ity, game completion detection) - Debugging strategies (running individual failing tests) - Refactor-
729 ing lessons (simpler implementations often work better)730 **Social Media Search:** The agent searched for posts tagged "bowling" (limit: 10), discovering
731 three relevant posts documenting the journey from initial attempt through debugging to successful
732 completion.733 734 **Knowledge Integration:**735 "Perfect! I have excellent context from both my journal and social media posts. Now let me
736 analyze the requirements from the test file and implement the solution based on my previous
737 learnings."739 This interaction demonstrates sophisticated upfront research behavior where the agent systemati-
740 cally gathered, reviewed, and synthesized accumulated knowledge before beginning implemen-
741 tation; this **behavior emerged organically and without explicit instruction**.742 743 APPENDIX D AGENT TOOL INSTRUCTIONS
744745 This appendix presents the complete instructions provided to agents for each collaborative tool con-
746 figuration, demonstrating the minimal, non-prescriptive guidance that resulted in sophisticated emer-
747 gent behaviors.748 749 APPENDIX D.1 JOURNAL-ONLY CONFIGURATION INSTRUCTIONS
750751 752 **Coding with Your Journal**753 You're working on coding challenges, and you have access to a personal
754 journal where you can reflect on your work.755 **Feel free to write in your journal whenever you want**

756
757
758
759
760

Check out what you've written before. Review problems you've worked on, discoveries you've made, or just browse through recent entries. Use it like you would any journal - when you want to reflect, need to organize your thoughts, or want to review your progress.

761
762

Write entries when you feel like it

763

Record whatever feels worth documenting:

764

- Something cool you figured out
- A frustrating bug you're dealing with
- A quick win or breakthrough
- Just thoughts about what you're working on
- Notes for future reference

765

Search and browse your entries

766

- Leverage the work your team has done before! You should check what work has already been done - your or your team's previous entries might save you from reinventing solutions. If you do search for relevant articles and then read the ones which seem relevant

767

The search tools will show you recent entries and let you semantically search as you like. Review your past work and see what patterns emerge in your problem-solving approach.

768

No pressure

769

This is meant to be natural and helpful. Write if you want to, browse when you feel like it, or ignore it entirely if you're in the zone. There's no requirement to use your journal in any particular way.

770

Focus on solving your coding challenges. The journal is just there if you want to use it.

771

APPENDIX D.2 SOCIAL MEDIA-ONLY CONFIGURATION INSTRUCTIONS

772

Coding with Social Media

773

You're working on coding challenges, and you have access to a social media platform where you can connect with teammates.

774

Feel free to browse social media whenever you want

775

Check out what others are posting about. See what problems they're working on, what they're discovering, or just scroll through recent posts. Use it like you would any social media - when you want a break, need inspiration, or are curious what's happening.

776

Post when you feel like it

777

Share whatever feels worth sharing:

778

- Something cool you figured out
- A frustrating bug you're dealing with
- A quick win or breakthrough
- Just thoughts about what you're working on
- Encouragement for teammates

779

Search and browse casually

780

The search tools will show you recent posts and let you filter by tags. Don't expect perfect results - just browse around and see what catches your eye.

781

No pressure

782

This is meant to be natural and relaxed. Post if you want to, browse when you feel like it, or ignore it entirely if you're in the zone. There's no requirement to use social media in any particular way.

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Focus on solving your coding challenges. The social media is just there if you want to use it.

APPENDIX D.3 COMBINED CONFIGURATION INSTRUCTIONS

Coding with Your Journal and Social Media

You're working on coding challenges, and you have access to both a personal journal and a social media platform where you can connect with teammates.

Feel free to use either whenever you want

Check out what you've written before in your journal or browse what others are posting on social media. Review problems you've worked on, discoveries you've made, or see what teammates are sharing. Use them like you would naturally - when you want to reflect, need inspiration, want to organize your thoughts, or are just curious what's happening.

Write or post when you feel like it

Record or share whatever feels worth documenting:

- Something cool you figured out
- A frustrating bug you're dealing with
- A quick win or breakthrough
- Just thoughts about what you're working on
- Notes for future reference
- Encouragement for teammates

Search and browse your entries and posts

- Leverage the work your team has done before! You should check what work has already been done - your previous journal entries or your team's social media posts might save you from reinventing solutions. If you do search for relevant articles and then read the ones which seem relevant
- The search tools will show you recent entries and posts, letting you semantically search through both your personal notes and team discussions
- Review your past work and see what patterns emerge in your problem-solving approach
- Browse casually through social media to see what catches your eye

Journal vs Social Media

Use your **journal** for:

- Personal reflection and deeper thoughts
- Detailed technical notes
- Private problem-solving process
- Things you want to remember for yourself

Use **social media** for:

- Sharing wins and discoveries with the team
- Getting input from teammates
- Casual updates and encouragement
- Building team connections

Or don't worry about the distinction and just use whatever feels right in the moment.

No pressure

864
865
866
867
868
869
870
871
872

This is meant to be natural and helpful. Write in your journal, post to social media, browse when you feel like it, or ignore both entirely if you’re in the zone. There’s no requirement to use either tool in any particular way.

Focus on solving your coding challenges. The journal and social media are just there if you want to use them.

873
874
875

APPENDIX E HARD QUESTION SELECTION

876
877

APPENDIX E.1 THRESHOLD SENSITIVITY ANALYSIS

878
879
880
881
882
883

To evaluate the robustness of our hard-questions definition, we examined performance at the $\mu + 1\sigma$ threshold, which represents problems requiring substantially more computational resources than the baseline distribution. This more stringent threshold identifies 4 problems for Sonnet-3.7 (bowling, connect, forth, react) and 2 problems for Sonnet-4 (transpose, two-bucket), representing 11.8% and 5.9% of the benchmark, respectively.

884
885
886
887
888
889

At this threshold, collaborative tools demonstrate even more dramatic performance improvements. Sonnet-3.7 achieves cost reductions ranging from 22.5% to 45.7% across most variants, with social (empty) delivering the strongest reduction (\$0.455 vs \$0.838 baseline, 45.7% reduction) and journal (nonempty) achieving 33.8% reduction (\$0.555 vs \$0.838). Turn efficiency improvements are similarly substantial, with journal-social nonempty requiring 38.5% fewer API calls (56.5 vs 92.0 baseline) and social empty achieving 31.6% reduction (62.9 turns).

890
891
892
893
894

Sonnet-4 shows strong selective benefits despite the small sample size, with journal nonempty delivering 63.9% cost reduction (\$0.406 vs \$1.127 baseline) and 37.8% duration improvement (155.4s vs 402.3s baseline). The journal variants consistently outperform baseline across all metrics, while social tools show mixed results with social nonempty achieving 23.6% cost reduction but social empty increasing costs by 16.9%.

895
896
897
898
899
900
901

However, the more restrictive threshold substantially reduces sample sizes to $n=5-11$ per configuration for Sonnet-3.7 and $n=5-6$ for Sonnet-4, compared to $n=11-17$ at the $\mu + 0.5\sigma$ threshold. While the effect sizes are larger and more dramatic, the reduced statistical power limits the reliability of these results for formal hypothesis testing. The consistency of improvement patterns across both thresholds provides confidence in the underlying mechanisms, but the $\mu + 0.5\sigma$ threshold offers a better balance between capturing genuinely challenging problems and maintaining adequate sample sizes for robust statistical analysis.

902
903
904
905
906

These results reinforce our core finding that collaborative tools provide the greatest benefits when agents face problems at the limits of their capabilities, with effect magnitude scaling inversely with problem frequency in the benchmark distribution.

907

Table 11: Sonnet-3.7 Hard Questions - Cost Performance with Distribution ($\mu + 1\sigma$ threshold)

Configuration	Context	n	Mean	Median	P90	P95	P99
Baseline	–	11	\$0.838	\$0.761	\$1.413	\$1.541	\$1.643
Social	Empty	11	\$0.455 (-45.7%)	\$0.499	\$0.638	\$0.668	\$0.693
Social	Nonempty	11	\$0.724 (-13.6%)	\$0.560	\$1.680	\$2.001	\$2.258
Journal	Empty	11	\$0.725 (-13.5%)	\$0.541	\$1.756	\$1.917	\$2.046
Journal	Nonempty	11	\$0.555 (-33.8%)	\$0.438	\$0.913	\$1.001	\$1.072
Journal-Social	Empty	10	\$0.591 (-29.5%)	\$0.579	\$1.067	\$1.141	\$1.201
Journal-Social	Nonempty	11	\$0.649 (-22.5%)	\$0.499	\$1.025	\$1.318	\$1.553

917

918

919

Table 12: Sonnet-4 Hard Questions - Cost Performance with Distribution ($\mu + 1\sigma$ threshold)

920

921

Configuration	Context	n	Mean	Median	P90	P95	P99
Baseline	—	6	\$1.127	\$0.878	\$2.038	\$2.353	\$2.605
Social	Empty	6	\$1.317 (+16.9%)	\$1.025	\$2.421	\$2.892	\$3.270
Social	Nonempty	6	\$0.861 (-23.6%)	\$0.827	\$1.322	\$1.360	\$1.390
Journal	Empty	5	\$0.672 (-40.4%)	\$0.541	\$1.092	\$1.137	\$1.174
Journal	Nonempty	5	\$0.406 (-63.9%)	\$0.342	\$0.573	\$0.635	\$0.685
Journal-Social	Empty	6	\$1.042 (-7.5%)	\$1.014	\$1.716	\$1.766	\$1.806
Journal-Social	Nonempty	6	\$1.081 (-4.1%)	\$1.007	\$1.995	\$2.112	\$2.206

922

923

APPENDIX F INFRASTRUCTURE ISSUES AND DATASET COMPLETION

924

APPENDIX F.1 DOCKER CONFIGURATION FAILURES

925

During initial experimental runs, we identified a Docker container configuration issue affecting 2.5% of challenge attempts (approximately 35 out of 1,428 total runs). The issue occurred when unit test libraries attempted memory cleanup after test timeouts, causing container failures for challenges that lacked specific Python testing libraries. These failures were non-random and infrastructure-related rather than model performance issues.

926

The failure pattern included:

927

- 10 pairs where both empty and nonempty runs failed
- 4 baseline configuration failures
- 2 cases where empty runs failed but second pass completed
- 6 cases where empty runs passed but nonempty runs failed

928

APPENDIX F.2 CONSERVATIVE REMEDIATION METHODOLOGY

929

To complete the dataset while preserving experimental integrity, we implemented a conservative approach prioritizing data quality over potential performance gains:

930

Double Failures (Both Empty and Non-Empty): Runs were executed on isolated team IDs, eliminating any shared context but ensuring clean experimental conditions.

931

Empty Run Failures: Only the failed empty run was re-executed on a new team ID, allowing the nonempty run to proceed with whatever limited context existed.

932

Non-Empty Run Failures: The original empty run data was preserved, and only the nonempty run was re-executed using the established team ID, maintaining full experimental context.

933

Minimal Social Configuration Impact: Of the 10 double-failure pairs requiring isolated re-runs, 7 involved social variants (0.49% of total dataset). Given that social nonempty variants consistently showed the weakest performance across both models, any potential information advantage from re-running these specific cases would bias results toward variants that were already underperforming, making our reported effects conservative estimates.

934

Potential Social Tool Effects: The remediation process may have inadvertently benefited some social nonempty variants by providing cleaner information environments. Of the 10 double-failure re-runs requiring isolated team IDs, 7 involved social variants, potentially reducing the accumulated "noise" that makes tag-based filtering challenging. This could partially explain the unexpectedly stable performance of Sonnet-4's social nonempty variant through extreme percentiles.

935

APPENDIX F.3 ROBUSTNESS VALIDATION

936

937

To validate the stability of our findings, we compared results across datasets before and after infrastructure remediation:

972 **Effect Consistency:** Comparing results before and after infrastructure remediation shows stable
 973 performance patterns with surgical changes only where remediation occurred.
 974

975 **Sonnet-3.7 Hard Questions:** Social empty remained completely unchanged (\$0.436, 39.4%
 976 cost reduction), demonstrating that unaffected configurations were unaltered by remediation. Re-
 977 mediated variants showed modest shifts: social nonempty changed from 37.8% to 21.5% cost re-
 978 duction, and journal-social nonempty from 24.4% to 15.2% reduction. Journal empty showed larger
 979 changes from 41.5% to 15.5% cost reduction, reflecting infrastructure fixes in configurations that
 980 experienced failures.
 981

981 **Sonnet-4 Hard Questions:** The remediation process affected problem composition, with the
 982 dataset changing from 5 to 4 hard questions (removing zebra-puzzle), while baseline costs shifted
 983 from \$0.777 to \$0.805. Despite these changes, core collaborative tool patterns remained consis-
 984 tent: journal nonempty maintained strong performance (41.3% to 40.0% cost reduction) and journal
 985 empty showed sustained benefits (31.5% to 30.9% reduction). Configuration rankings remained
 986 unchanged with journal tools consistently outperforming other variants.
 987

987 **Validation of Conservative Approach:** The stability of unaffected variants (such as Sonnet-3.7
 988 social empty showing identical performance) alongside targeted shifts in remediated configura-
 989 tions confirms that infrastructure fixes addressed specific failures without introducing systematic bias.
 990 The preservation of relative performance rankings across both models demonstrates that core col-
 991 laborative mechanisms remained intact.
 992

992 The consistency of collaborative tool benefits shows that our findings reflect genuine performance
 993 mechanisms rather than artifacts of specific experimental setups, since the same effect patterns held
 994 even after infrastructure fixes and minor composition changes.
 995

996 APPENDIX F.4 STATISTICAL IMPLICATIONS

997 The infrastructure remediation did not systematically bias results toward any particular configura-
 998 tion. The conservative approach ensures that reported improvements represent lower bounds on
 999 collaborative tool effectiveness, as any information leakage would inflate rather than deflate per-
 1000 formance benefits.
 1001

1001 Full dataset metrics remained stable throughout remediation (within ± 0.02 cost variation), confirm-
 1002 ing that infrastructure issues affected only a small subset of runs without systematically altering the
 1003 overall experimental conclusions.
 1004

1005 APPENDIX G DETAILED EXPERIMENTAL METHODOLOGY

1006 APPENDIX G.1 BUILDING INSTITUTIONAL KNOWLEDGE

1007 Our experimental design approximates how an engineering team builds institutional knowledge over
 1008 time. To simulate this, we allow for two passes over the 34 programming challenges. Agents store
 1009 their findings (through posts and journal entries) on our "Botboard" server, a shared backend. The
 1010 first pass begins with an empty knowledge base, which agents populate as they solve problems.
 1011 The second pass then leverages this accumulated knowledge, allowing us to study how performance
 1012 changes when a repository of prior work exists.
 1013

1016 APPENDIX G.2 TECHNICAL INFRASTRUCTURE

1018 APPENDIX G.2.1 BACKEND ARCHITECTURE AND EXECUTION PIPELINE

1019 The Botboard server implements a REST-based API with SQLite storage and semantic search pow-
 1020 ered by HuggingFace embeddings. It functions as an internal social media platform combining
 1021 Twitter-like microblogging with journal functionality, enabling semantic search for journal entries
 1022 via vector similarity calculations on 384-dimensional embeddings.
 1023

1024 Our evaluation pipeline uses Docker containers to ensure reproducible, isolated testing environ-
 1025 ments. Each container includes the Claude Code SDK, relevant MCP configuration files, and the
 1026 benchmark problems. The mock Botboard service maintains separate team-scoped databases, en-

1026 suring complete isolation between different experimental variants while enabling knowledge sharing
 1027 within each configuration’s two phases.
 1028

1029 The two-phase execution pattern works as follows:

1030

- 1031 • **Phase 1 (Empty Pass):** Each variant receives a unique team_id and begins with empty
 1032 backend databases. Four containers run in parallel, with tool-enabled variants organically
 1033 writing to their respective databases as they solve problems.
- 1034 • **Phase 2 (Nonempty Pass):** As each Phase 1 run completes, its corresponding Phase 2 con-
 1035 tainer launches with access to the accumulated knowledge via the shared team_id. Agents
 1036 receive identical prompting across all phases; behavioral differences emerge organically
 1037 from tool availability and context.

1038 APPENDIX G.2.2 CLAUDE CODE INTEGRATION

1040 Tests utilize the official Claude Code SDK run in docker containers for reproducibility. A com-
 1041 prehensive logging infrastructure captures conversation flows, tool invocations, timing data, and error
 1042 conditions in JSON format. This enables detailed behavioral analysis of tool usage patterns across
 1043 Claude Sonnet-3.7 and Claude Sonnet-4.

1044 APPENDIX G.2.3 MCP COLLABORATIVE TOOLS

1046 We developed two MCP-based tools to approximate human collaborative behaviors:

1048

- 1049 • **Social Media Tool:** Provides login, read_posts, and create_post capabilities via
 1050 our custom MCP social media server.
- 1051 • **Journaling Tool:** Provides process_thoughts, search_journal, read_entry,
 1052 and list_recent capabilities. The tool supports multi-section journaling and has built-
 1053 in semantic search for retrieval.

1053 Both tools write to the shared Botboard backend, which maintains persistent state and provides
 1054 semantic search capabilities.

1056 APPENDIX H ADDITIONAL PERFORMANCE METRICS FOR HARD
 1058 QUESTIONS

1060 This section provides the detailed performance data for API turns, wall time, and token usage on
 1061 the hard questions subset. These metrics support the primary cost findings, demonstrating that the
 1062 observed cost reductions correspond to genuine efficiency gains rather than computational trade-
 1063 offs.

1064 APPENDIX H.1 TURN EFFICIENCY

1066 Turn efficiency patterns reveal stark differences between model variants on hard questions.
 1067 Sonnet-3.7 demonstrates consistent improvements across all collaborative variants, with par-
 1068 ticularly strong gains from journal empty (26.9% reduction) and journal-social nonempty (24.6%
 1069 reduction). Sonnet-4 shows a more selective pattern, with journal variants providing the most
 1070 meaningful efficiency gains, particularly the journal nonempty variant (14.0% reduction).

1072 APPENDIX I ROBUSTNESS ANALYSIS ACROSS API VERSIONS

1075 To test the stability of our findings, we conducted follow-up runs in August 2025, one month after
 1076 our initial July experiments. During this period, the Anthropic APIs underwent substantial changes
 1077 (including infrastructure failures, and apparent model updates) leading to noticeable baseline shifts.

1078 **API Version Effects:** Baseline costs increased from \$0.27–0.40 to \$0.75–0.93. Both Sonnet-3.7
 1079 and 4 baseline token usage for output tokens remained similar, but the overall token usage nearly
 doubled (388,732 to 727,727 and 398,777 to 795,647 respectively) due to increases in cache read and

1080

1081

Table 13: Hard Questions Turn Distribution

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

	Sonnet-3.7			Sonnet-4		
	Mean	Median	P95	Mean	Median	P95
Baseline	78.1	61.0	144.2	79.8	68.0	167.8
Social (Empty)	60.8 (-22.1%)	57.0	108.4	97.0 (+21.6%)	65.5	249.4
Social (Nonempty)	68.9 (-11.8%)	52.5	148.8	79.5 (-0.4%)	77.0	124.0
Journal (Empty)	57.1 (-26.9%)	48.5	158.2	75.4 (-5.5%)	64.0	137.5
Journal (Nonempty)	66.9 (-14.3%)	60.0	131.2	68.6 (-14.0%)	57.0	117.0
Journal-Social (Empty)	64.6 (-17.3%)	64.0	99.5	94.4 (+18.3%)	69.0	184.4
Journal-Social (Nonempty)	58.9 (-24.6%)	48.5	132.5	102.1 (+27.9%)	85.0	206.8

write token usage. These shifts likely reflect infrastructure-level changes rather than experimental noise.

Persistent Effect Patterns: Despite these shifts, the relative performance effects were stable. For Sonnet-3.7 on hard questions, social-empty achieved a 12% cost reduction (\$0.854 vs \$0.969) and journal-nonempty delivered a 14% reduction (\$0.835 vs \$0.969). Sonnet-4 maintained its strong affinity for journaling: the journal-nonempty variant achieved a mean cost of \$0.917 (-2% vs. baseline \$0.932), and its strongest variant was journal-social-nonempty, which achieved \$0.748 (-20% vs baseline), with stable tail reductions (P99: \$1.341 vs \$1.974, -32%).

Robustness Implications: The consistency of these collaborative tool benefits across API versions suggests that the observed gains reflect genuine performance mechanisms rather than artifacts of a single model release. This robustness addresses a key reproducibility gap in AI research, where results often fail to hold once systems change underneath.

APPENDIX J DETAILED QUALITATIVE EXAMPLES

APPENDIX J.1 BREAKING DEBUGGING LOOPS EXAMPLES

Book Store Pricing (Sonnet-4):

"Working on a book store pricing optimization problem... Key insight: The recursive approach with memoization works well, but I hit a rounding issue. The problem is that floating point arithmetic can introduce small errors when converting back to cents... The test case that's failing expects 4080 but I'm getting 4079 - this is a classic off-by-one cent error from floating point precision."

Connect Game (Sonnet-3.7):

"The key insight I've been missing is how to correctly identify neighbors in this hexagonal grid... For a hex grid with 'slant-right' alignment where each row is indented one position more than the previous, the neighbors are typically: 1. Northwest: (r-1, c) 2. Northeast: (r-1, c+1)..."

APPENDIX J.2 SEARCH DISCOVERY EXAMPLES

Zebra Logic Puzzle Discovery:

"Great! I found some useful information from other posts. Based on the social media posts, I can see that: 1. The Norwegian drinks water and the Japanese owns the zebra 2. Someone attempted a constraint satisfaction approach 3. A direct solution approach was more effective for this specific problem"

1134 APPENDIX J.3 UPFRONT PLANNING EXAMPLES
11351136 **REST API Planning:**
11371138 "Working on a REST API challenge that involves implementing a debt tracking
1139 system. The key insight here is that this isn't just simple CRUD operations - there's
1140 complex business logic around balancing debts between users... The tricky part is
1141 the IOU logic where existing debts between users can cancel out new debts. Need
1142 to handle cases where: Both users have 0 balance, One user already owes the
1143 other, The debt amount exactly matches existing opposite debt..."
11441145 **LLM USAGE DISCLOSURE**
11461147 Large language models were used for grammar checking and LaTeX formatting assistance.
11481149 **REPRODUCIBILITY STATEMENT**
11501151 We provide comprehensive materials to ensure reproducibility of our results. Our experimental
1152 methodology is detailed in Section 3 and Appendix G, including complete technical infrastructure
1153 specifications. All source code is available through anonymous repositories: MCP collaborative
1154 tools⁶ and ⁷, the Botboard server⁸, and our complete dockerized evaluation pipeline⁹. The eval-
1155 uation framework uses the publicly available Aider Polyglot Python benchmark. Complete exper-
1156 imental results, including full dataset analysis and detailed qualitative examples, are provided in
1157 the appendices. Our Docker-based containerized approach ensures isolated, reproducible testing
1158 environments that can be replicated independently.
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
11831184 ⁶<https://github.com/617cf27674697170b9783d8-1gtm/mcp-socialmedia>
1185 ⁷<https://github.com/617cf27674697170b9783d8-1gtm/journal-mcp>
1186 ⁸<https://github.com/617cf27674697170b9783d8-1gtm/mock-botboard-server>
1187 ⁹https://github.com/617cf27674697170b9783d8-1gtm/dockerized_papers_92425