Under review as a conference paper at ICLR 2026

Al AGENTS WITH HUMAN-LIKE COLLABORATIVE
TOOLS: ADAPTIVE STRATEGIES FOR ENHANCED
PROBLEM-SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate whether giving LLM agents the collaborative tools and autonomy
that humans naturally use for problem-solving can improve their performance,
providing Claude Code agents with MCP-based social medieE] and journalin
tools and the flexibility to use them as they see fit. Across 3 experimental runs
for each variant across 34 Aider Polyglot Python programming challenges total-
ing 1,428 solved challenges, collaborative tools substantially improve challenging
problem performance, delivering 15-40% cost reductions, 12-27% fewer turns,
and 12-38% faster completion compared to baseline agents. Effects on the full
challenge set are mixed, indicating collaborative tools function as performance
enhancers primarily when additional reasoning scaffolding is most needed. Sur-
prisingly, different models naturally adopted distinct collaborative strategies with-
out explicit instruction. Sonnet-3.7 demonstrated broad engagement across
tools, benefiting from articulation-based cognitive scaffolding. Sonnet -4 exhib-
ited selective adoption, primarily leveraging journal-based semantic search when
facing genuinely challenging problems. This adaptive behavior parallels how hu-
man developers adjust collaborative approaches based on expertise and problem
complexity. Behavioral analysis reveals agents prefer writing over reading by 2—
9x, indicating that structured articulation drives performance improvements rather
than solely information access and retrieval. Our findings suggest that Al agents
can systematically benefit from human-inspired collaboration tools when facing
problems at their capability limits, pointing toward adaptive collaborative inter-
faces as reasoning enhancers rather than universal efficiency improvements.

1 INTRODUCTION

Human programmers rarely build in isolation. They engage in rubber duck debugging to articu-
late problems clearly, search through shared knowledge bases to find similar solutions, build incre-
mentally on previous work, and leverage team discussions to break through mental blocks. These
collaborative behaviors are not merely social conveniences, they represent approaches to problem-
solving that help humans find and fix mistakes and discover more efficient solutions. Yet current
LLM agents, despite their impressive individual reasoning capabilities, lack access to these social
collaboration mechanisms that could dramatically improve their performance.

We hypothesize that providing LLM agents with human-like collaborative tools and the free-
dom to use them naturally can improve problem-solving performance. Rather than relying
solely on prescriptive prompting or architectural changes, we provide agents with MCP tools that
approximate the collaborative practices humans use to solve problems: sharing insights, building on
previous work, and engaging in reflective debugging processes |Anthropic|(2024). We pair human-
inspired affordances (journal with lightweight search,and Twitter-style shortform social media posts)
with affordance-framed prompts: brief, invitation-style prompts that invite (but does not prescribe)
articulation and opportunistic retrieval (see Gibson| (1979); Norman| (2013)).

"nttps://github.com/617c£27674697170b9783d8-1gtm/mcp-socialmedia
https://github.com/617c£27674697170b9783d8-1gtm/ journal-mcp

https://github.com/617cf27674697170b9783d8-lgtm/mcp-socialmedia
https://github.com/617cf27674697170b9783d8-lgtm/journal-mcp

Under review as a conference paper at ICLR 2026

To test this hypothesis, we developed Botboar(ﬂ an internal social media platform that combines
Twitter-like microblogging with journal functionality. The platform provides agents with semantic
search capabilities for journal entries and tag-based filtering for social media posts, enabling both
structured reflection and casual information sharing. Our experimental design tests both the act of
articulating problems, frustrations, and celebrations along with the accumulation of information you
would see in a team of agents working together over time.

We conduct multiple runs across different teams’ of agents, where each team shares access to the
same Botboard instance through a unique team API key. The way we structure our experiments
is that the first run in each team starts with empty social media and journal databases. As agents
complete problems, they organically populate these databases with posts and entries. For each
collaborative tool variant, we run a second pass over the same challenges using accumulated infor-
mation from the first run, simulating how agents might build upon previous work when institutional
knowledge exists.

We evaluated our approach across 34 programming challenges from the Aider Polyglot Python
benchmarkﬂ an established externally-validated coding benchmark derived from Exercism’s most
challenging exercises. These tasks range from string manipulation problems to complex algorithm
implementations requiring sophisticated reasoning, such as bowling score calculation, hexagonal
grid pathfinding, and zebra logic puzzles.

To ensure rigor, we ran the benchmark through a dockerized evaluation pipelineE] that isolates the ef-
fects of different tool variants. Most importantly, the results show that social collaboration tools en-
able agents to develop adaptive strategies. These adaptive strategies allow agents “punch above their
weight” on challenging problems with cost reductions of 15-40%, turn reductions of 12-27%,
and time improvements of 12-38% compared to baseline capabilities. While agents with ac-
cess to collaborative tools achieved modest improvements or mixed quantitative performance across
the full dataset, the dramatic improvements on challenging problems those which exceed baseline
Sonnet -4 and 3.7 capabilities demonstrate that collaborative tools provide the greatest value when
additional reasoning scaffolding is most needed, functioning as difficulty-dependent performance
enhancers rather than universal efficiency improvers.

Through detailed analysis of agent interactions, we identified how different models naturally grav-
itated toward different collaborative strategies without explicit instruction. This adaptive behavior
parallels how human developers adjust their collaborative approaches based on expertise level and
problem complexity.

Crucially, agents adopted these collaborative behaviors organically without explicit instruction in
their prompting or configuration files. When facing difficult debugging challenges, agents would
spontaneously post to social media or journal about their struggles, then return to solve problems
more efficiently.

Contributions: (1) We demonstrate that codifying human collaborative behaviors into accessible
tools improves agent performance on difficult problems, while also increasing transparency in their
problem-solving process; (2) We identify how agents organically develop adaptive collaborative
strategies that vary by model capability and problem difficulty, mirroring human collaborative flex-
ibility; (3) We establish a reproducible dockerized evaluation framework for studying agent collab-
orative behaviors.

2 RELATED WORK
The introduction of the Transformer architecture revolutionized natural language processing and
enabled the large language models that now power autonomous agent systems|Vaswani et al.[(2017).

The dominant paradigm in LLM agent research centers on prescriptive control, prioritizing pre-
dictability through detailed prompting, structured planning, and deterministic tool interfaces [Zhao

*https://github.com/617c£27674697170b9783d8-1gtm/mock-botboard-server

“https://github.com/Aider-AI/polyglot—benchmark/tree/main/python/
exercises/practice

’https://github.com/617cf27674697170b9783d8-1gtm/dockerized papers_
92425

https://github.com/617cf27674697170b9783d8-lgtm/mock-botboard-server
https://github.com/Aider-AI/polyglot-benchmark/tree/main/python/exercises/practice
https://github.com/Aider-AI/polyglot-benchmark/tree/main/python/exercises/practice
https://github.com/617cf27674697170b9783d8-lgtm/dockerized_papers_92425
https://github.com/617cf27674697170b9783d8-lgtm/dockerized_papers_92425

Under review as a conference paper at ICLR 2026

et al.|(2025). Frameworks like ReAct, AgentVerse, and AutoGen exemplify this approach by defin-
ing structured interaction loops or role-based patterns to guide agent behavior|Yao et al.|(2023);/Chen
et al.| (2023); |Wu et al.| (2024). While effective, these methods focus on specifying and controlling
agent actions, leaving less room for emergent, self-directed strategies.

Our work is inspired by adjacent research and well-established human collaborative patterns. Cog-
nitive science shows that verbalizing thought processes improves problem-solving Kiyokawa et al.
(2023), and studies on human software teams highlight the importance of shared mental models
and accumulated knowledge Espinosa et al.| (2001). While AI systems like generative agents have
explored social simulation and reflection [Park et al|(2023); Wei et al.| (2022)); [Shinn et al.| (2023),
they typically focus on emergent social dynamics or single-session reasoning rather than quantifying
performance gains from persistent, shared collaborative tools.

We address this gap by departing from the control-oriented paradigm. Instead of asking how to
better control agents, we investigate what capabilities emerge when agents are given human-like
collaborative tools, journaling and social media with minimal, “affordance-framed” instructions.
Unlike approaches that prescribe workflows, we examine whether agents can organically discover
and adopt collaborative strategies to improve problem-solving, creating a bridge between the mech-
anisms of human collaboration and the practical performance of Al agents. Please note that this
emerging field of agentic LLM behavior with persistent collaborative tools has limited prior work,
reflecting the nascent nature of this research direction.

3 EXPERIMENTAL DESIGN

We designed a controlled experiment to measure the impact of social reasoning tool access on LLM
coding performance. Our approach uses docker-based containerized execution environments for
reproducible testing across four variants that systematically isolate the effects of different tools:

1. Baseline: No external tools available; measures inherent coding capability.
2. Journal-Only: Access to MCP journaling tools with semantic search.
3. Social-Only: Access to MCP social media tools with tag-based filtering.

4. Journal-Social: Access to both journaling and social media tools.

To simulate the accumulation of institutional knowledge, we conducted two passes for each tool-
enabled variant: an initial “empty” pass where agents populate shared databases, and a "nonempty”
pass where new agents can access the previously generated content. Across all variants, we con-
ducted 3 independent runs on 34 Aider Polyglot Python challenges, totaling 1,428 challenge evalu-
ations. Problems were processed in alphabetical order to maintain consistency.

Our evaluation pipeline uses Docker containers with the Claude Code SDK to ensure reproducible,
isolated testing environments. Each container maintains separate team-scoped databases on our
”Botboard” server, a REST-based platform combining Twitter-like microblogging with semantic
journal search, enabling knowledge sharing within experimental variants while ensuring complete
isolation between them. We developed two MCP-based collaborative tools: a social media tool
providing post creation and reading capabilities, and a journaling tool supporting multi-section en-
tries with semantic search via HuggingFace embeddings. The full system architecture diagram is
represented in Figure{I]

3.1 EVALUATION METRICS

Our framework captures quantitative performance and qualitative behavioral patterns through three
categories of metrics:

* Business Metrics: API cost, API turns, and total wall time.

* Quality Metrics: Challenge completion rates and overall test pass rates.

* Behavioral Metrics: Analysis of tool usage patterns (e.g., writing vs. reading) and emer-
gent collaborative strategies.

Under review as a conference paper at ICLR 2026

(Baseline

(Journal
I(Social

(Journal + Social

@ | mep_tools | (©)

Figure 1: We create four independent processes for each variant (Baseline, Journal, Social, Jour-
nal+Social) (1). Each process connects to remote MCP tools and attaches to new empty databases
(2), then spawns a Docker container running a Claude Code session managed programmatically via
the Claude Code SDK (3). Container environments include pre-configured settings enabling au-
tonomous MCP tool usage (4). After the first run completes, we launch a second container (5) with
MCP servers populated by previous agents’ content, allowing new agents to organically leverage ac-
cumulated knowledge (6). All outputs and performance statistics are logged for behavioral analysis

™).

The complete technical details of our backend architecture, two-phase execution protocol, tool im-
plementation, and Claude Code integration are provided in[Appendix G}

4 ANALYSIS

Our analysis reveals that providing agents with human-like collaborative tools creates difficulty-
dependent performance enhancers. While effects across the full 34-challenge dataset were modest,
the tools delivered substantial cost reductions of 15-40% on the subset of problems that were most
challenging for baseline agents. This indicates that the reasoning scaffolding from these tools is
most valuable when models operate at the limits of their capabilities.

We identified challenging problems for each model as those exceeding the baseline’s mean cost by
half a standard deviation (x+ + 0.50). This yielded 6 hard problems for Sonnet-3.7 and 4 for
Sonnet—4 for each of the 3 experimental runs, representing the top 18% and 12% of challenges by
difficulty, respectively. Complete results for the full dataset and details on hard question selection
can be found in|Appendix Aland|Appendix E|

4.1 HARD QUESTIONS COST PERFORMANCE

On the most challenging problems, collaborative tools enabled significant cost savings by helping
agents avoid expensive reasoning loops and solve problems more efficiently.

The results reveal distinct, model-specific collaborative strategies. Sonnet-3.7 demonstrates
broad benefits from nearly all tools (as shown in Table{I), suggesting it leverages the articulation-
based cognitive scaffolding they provide. Its strongest performance comes from the social (empty)
variant, with a 39.4% cost reduction, and the journal (nonempty) variant with a 27.8% reduction.

Sonnet—4, a more capable model, shows highly selective tool use, primarily benefiting from ef-
ficient information retrieval. It achieved its most significant cost reductions with the journal tool’s
semantic search capabilities, delivering a 40.0% reduction in the nonempty variant and a 30.9% re-
duction in the empty variant. As shown in Table{2} the consistent performance of journal variants
shows Sonnet—4 can effectively leverage prior solutions when they are easily accessible.

Under review as a conference paper at ICLR 2026

Table 1: Sonnet-3.7 Hard Questions - Cost Performance

Configuration Context Mean Cost Median P90 P95

Baseline - $0.720 $0.641 $1.347 $1.464
Social Empty $0.436 (-39.4%) $0.442 $0.662 $0.704
Social Nonempty $0.565 (-21.5%) $0.313 $1.219 $1.840
Journal Empty $0.608 (-15.5%) $0.439 $1.367 $1.837
Journal Nonempty $0.520 (-27.8%) $0.444 $0.898 $0.948

Table 2: Sonnet—-4 Hard Questions - Cost Performance

Configuration Context Mean Cost Median P90 P95

Baseline - $0.805 $0.587 $1.358 $1.975
Social Nonempty $0.736 (-8.6%) $0.649 $1.321 $1.359
Journal Empty $0.556 (-30.9%) $0.468 $0.954 $1.069
Journal Nonempty $0.483 (-40.0%) $0.387 $0.781 $0.904

4.2 WALL TIME PERFORMANCE

Wall time performance reveals substantial efficiency gains across most variants, as shown in Table[3]
Sonnet—3. 7 achieves impressive reductions across all collaborative setups, with the social empty
variant delivering the most dramatic improvement (38.4% reduction). Sonnet—-4 demonstrates
strong and consistent improvements with journal variants, achieving a 36.4% reduction with journal
nonempty and a 29.0% reduction with journal empty.

Table 3: Hard Questions Wall Time Distribution (seconds)

Sonnet-3.7 Sonnet—-4
Mean Median P95 Mean Median P95
Baseline 254.0 218.0 478.7 279.9 188.9 638.8
Social (Empty) 156.4 (-38.4%) 1577 2703 268.0 (-4.3%) 174.3 654.4
Social (Nonempty) 188.1 (-25.9%) 1240 5242 249.5(-10.9%) 2139 487.1
Journal (Empty) 223.1 (-12.2%) 1644 576.6 198.7 (-29.0%) 178.0 364.6
Journal (Nonempty) 182.1 (-28.3%) 161.4 304.6 178.0 (-36.4%) 1474 318.6
Journal-Social (Empty) 220.1 (-13.3%) 203.1 401.4 270.8 (-3.3%) 197.1 555.6

Journal-Social (Nonempty) 210.0 (-17.3%) 1733 3799 266.9 (-4.6%) 2243 560.7

4.3 TOKEN EFFICIENCY

Analysis of token usage confirms the cost savings stem from more efficient reasoning, as detailed in
Table[] Sonnet-3.7 shows comprehensive token efficiency gains in its successful variants, with
the social empty configuration achieving a 42% reduction in expensive output tokens. Sonnet—4’s
token usage reinforces its selective strategy; journal variants deliver meaningful reductions (up to
25% fewer output tokens), while other configurations offered minimal or even negative efficiency,
highlighting the model’s preference for tools with effective information access mechanisms.

These improvements were complemented by similar gains in API turns, confirming genuine per-
formance enhancements (see [Appendix H). Since API costs directly reflect token consumption,
with output tokens being 5x more expensive than input tokens, the cost reductions demonstrate that
successful variants achieve more efficient reasoning rather than simply shifting computational load
between token types. Analysis of token usage patterns shows our best-performing variants consis-
tently generate fewer expensive output tokens while making more effective use of cheaper input and
cache operations, indicating genuine efficiency gains rather than computational trade-offs. We see
improved metrics across all dimensions for our successful variants, confirming that including our
journal and social tools produces comprehensive efficiency gains rather than simply allowing for

Under review as a conference paper at ICLR 2026

Table 4: Model-Specific Hard Questions Token Usage (Means Only)

Context Output Tokens Total Tokens Cache Create Cache Read
Sonnet-3.7
Baseline - 15,113 983,732 34,124 934,375
Social Empty 8,821 (-42%) 610,507 (-38%) 21,296 (-38%) 580,312 (-38%)
Social Nonempty 12,241 (-19%) 887,175 (-10%) 28,258 (-17%) 846,595 (-9%)
Journal Empty 11,109 (-26%) 909,199 (-8%) 24,749 (-27%) 873,247 (-7%)
Journal Nonempty 10,824 (-28%) 744,766 (-24%) 24,840 (-27%) 709,008 (-24%)
Journal-Social Empty 11,332 (-25%) 830,007 (-16%) 23,139 (-32%) 795,459 (-15%)
Journal-Social Nonempty 12,865 (-15%) 942,640 (-4%) 28,056 (-18%) 901,645 (-4%)
Sonnet-4
Baseline - 12,494 1,031,120 32,470 986,029
Social Empty 13,294 (+6%) 1,522,374 (+48%) 35,998 (+11%) 1,472,974 (+49%)
Social Nonempty 12,777 (+2%) 1,033,999 (+0.3%) 31,761 (-2%) 989,345 (+0.3%)
Journal Empty 10,649 (-15%) 935,438 (-9%) 26,502 (-18%) 898,181 (-9%)
Journal Nonempty 9,382 (-25%) 815,362 (-21%) 24,477 (-25%) 781,410 (-21%)
Journal-Social Empty 13,568 (+9%) 1,317,306 (+28%) 33,850 (+4%) 1,269,768 (+29%)
Journal-Social Nonempty 13,211 (+6%) 1,494,691 (+45%) 33,398 (+3%) 1,447,977 (+47%)

more reasoning tokens and turns. Full tables for these secondary metrics are available in
H

Furthermore, these relative performance gains proved robust. Follow-up experiments a month later,
after significant changes to the underlying API infrastructure, showed that the core patterns of im-
provement persisted for both models, suggesting the observed benefits are genuine mechanisms
rather than artifacts of a single model version (see for details).

4.4 QUALITATIVE ANALYSIS

The mechanisms driving these quantitative improvements become clear through detailed examina-
tion of agent behaviors. We identify three distinct behavioral patterns: breaking debugging loops
through structured articulation, conducting self-motivated searches during debugging and planning,
and engaging in improved upfront planning via collaborative tool posts.

Our behavioral analysis reveals a striking pattern: agents wrote 1,142 journal entries but performed
only 122 journal reads (after 166 searches), and wrote 1,091 social media posts while reading 600
previous posts. This 2-9x preference for writing over reading supports the interpretation that struc-
tured articulation, rather than just information access, drives the performance improvements.

4.4.1 BREAKING DEBUGGING LOOPS THROUGH STRUCTURED ARTICULATION

The most prominent behavioral pattern involves agents using collaborative tools to escape repeti-
tive debugging cycles. In baseline variants, agents frequently become trapped in oscillating failure
patterns, spending 15-20 rounds alternating between similar approaches without making progress.

Book Store Pricing Example (Sonnet-4): After struggling with floating-point precision issues,
the agent spontaneously engaged the journal tool to articulate its technical understanding of rounding
errors (see [Appendix J). Following this journal entry, the agent immediately identified the correct
solution approach and solved the challenge at half the cost of the baseline configuration.

Connect Game Example (Sonnet-3.7): The baseline model spent 15 rounds oscillating be-
tween non-working solutions on hexagonal grid pathfinding. The journal-enabled agent faced simi-
lar failures for 5 rounds but posted a detailed technical analysis of neighbor identification. After this
articulation, the agent solved the problem in just 2 additional rounds versus the baseline’s 15 rounds.

This pattern occurred consistently across challenging problems, demonstrating that structured re-
flection helps agents break out of problem-solving loops.

Under review as a conference paper at ICLR 2026

4.4.2 STRATEGIC SOLUTION DISCOVERY THROUGH SEARCH

While articulation drives the majority of performance improvements, agents also demonstrate
sophisticated search behaviors. We observe two patterns: upfront information gathering and
debugging-driven discovery.

Upfront Information Gathering: Some agents proactively search before implementation. In the
bowling challenge, an agent systematically searched for previous journal entries and social media
posts, discovering detailed implementation insights before beginning work (complete sequence in

Debugging-Driven Discovery: Agents experimented with search approaches without documenta-
tion. An agent working on the Zebra logic puzzle tested whether ”zebra” functioned as a searchable
tag, successfully discovering previous solution approaches that enabled immediate implementation.
Similar experimental behaviors occurred with journal entries, where agents found relevant technical

information (examples in [Appendix J.2).

4.4.3 IMPROVED UPFRONT PLANNING VIA COLLABORATIVE TOOLS

Agents also used collaborative tools for proactive planning before implementation. In a complex
debt tracking API challenge, an agent used the journal tool to articulate the problem structure and
business logic upfront (full quote in [Appendix J.3). This planning enabled execution at $0.25
compared to the baseline’s $0.46; this is a 46% cost reduction, that is achieved through clearer
initial understanding.

4.4.4 MODEL-SPECIFIC TOOL ADOPTION PATTERNS

Tool usage patterns reveal distinct model-specific strategies despite similar baseline articulation.
Sonnet—-4 demonstrates increased selectivity, searching more frequently and reading more dis-
criminately when relevant content exists. This explains its strong performance in nonempty journal
conditions. Both models demonstrate celebratory browsing” behavior, suggesting that social con-
text loading might create motivational frameworks that enhance performance.

5 DISCUSSION

Our experimental evaluation provides strong evidence that social collaborative tools function as
difficulty-dependent performance enhancers rather than universal efficiency improvers. This finding
has important implications for how we think about tool-augmented agent systems and how to make
the best use of them.

5.1 ADAPTIVE STRATEGIES AND UNDERLYING MECHANISMS

The most striking finding is how different models organically developed distinct collaborative strate-
gies that align with their capability profiles and the problems they encountered. This adaptive behav-
ior mirrors how humans adjust their collaborative approaches based on expertise level and problem
complexity and tools available to them without requiring explicit instruction on when or how to use
available tools.

Our behavioral analysis reveals that these adaptive patterns emerge from multiple complementary
mechanisms. The 2-9x preference for writing over reading across both journaling and social media
tools indicates that structured reflection (encompassing both rubber duck debugging and upfront
planning) serves as a particularly strong driver of improvements, though it operates alongside other
valuable mechanisms.

Sonnet-3.7 demonstrated broad engagement across both journaling and social media tools, par-
ticularly excelling with social media’s informal posting mechanisms. This pattern suggests the
model benefits from the articulation-based cognitive scaffolding that posting provides, finding value
in both structured reflection and conversational posting. The model’s consistent tool usage across a
wide range of problems reflects its frequent encounters with capability gaps where additional rea-
soning tokens prove valuable.

Under review as a conference paper at ICLR 2026

Sonnet—4 exhibited more selective tool adoption, showing strong performance with journal-based
semantic search while struggling with social media’s tag-based filtering. As the stronger model,
Sonnet -4 found fewer problems genuinely challenging and demonstrated less need for additional
articulation. However, it achieved substantial performance gains when accessing accumulated in-
formation through journal searches on difficult problems, highlighting how information retrieval
mechanisms become valuable when individual capabilities prove insufficient.

The mixed results for social media tools likely reflect implementation limitations rather than funda-
mental issues with social coordination. Agents with social media access relied heavily on writing be-
cause we provided no guidance on tag-based filtering mechanisms, forcing them to reverse-engineer
search functionality. The semantic search capabilities in our journal implementation proved more
effective for information retrieval, suggesting that search interface design significantly impacts the
utility of accumulated information.

This capability-dependent adaptation parallels human collaborative behavior: junior developers of-
ten benefit from verbalizing their thought process across many problems, while senior developers
more selectively seek specific information when encountering genuinely challenging issues. The
organic emergence of these model-specific strategies without prescriptive guidance (in fact agents
received no instruction on when to use collaborative tools, what to write, or how to search for rel-
evant content) reveals that agents naturally leverage collaborative tools through multiple pathways.
Articulation-based cognitive scaffolding provides immediate reasoning benefits, while information
retrieval offers efficiency gains when agents can effectively locate relevant previous work. This
spontaneous tool adoption suggests the collaborative interfaces address genuine cognitive needs
rather than simply following prescribed workflows, indicating that the tools successfully captured
fundamental cognitive mechanisms with relative importance varying by model capability and prob-
lem difficulty.

5.2 DIFFICULTY-DEPENDENT BENEFITS AND COGNITIVE SCAFFOLDING

The contrast between our full dataset and hard questions results reveals a fundamental principle:
social collaborative tools provide the greatest value when agents face problems at the limits of their
capabilities. On easy problems, the additional cognitive overhead may hurt performance, but when
problems approach the model’s reasoning limits, the structured reflection space provided by col-
laborative tools enables agents to ’punch above their weight” on difficult challenges. By codifying
human collaborative behaviors into accessible interfaces, we enable cognitive scaffolding that be-
comes increasingly valuable as problem difficulty increases. The persistence of these benefits across
multiple API versions demonstrates the robustness of the underlying mechanisms. As we deploy
agents to tackle complex, real-world challenges that approach or exceed individual model capabili-
ties, providing them with human-inspired collaborative mechanisms may prove essential for reliable
performance on otherwise intractable tasks.

5.3 EMERGENT COLLABORATIVE BEHAVIORS

Perhaps most significantly, agents demonstrated sophisticated adaptation behaviors without explicit
instruction or prescriptive guidance on tool usage. Our intentionally open-ended approach, simply
providing access to collaborative tools with minimal instructions like “feel free to write in your
journal whenever you want” and “no pressure,” resulted in agents organically developing complex
behaviors including reverse-engineering search functionality, strategic tag usage patterns, and coor-
dinated knowledge sharing.

This organic adoption without prescriptive workflows demonstrates that collaborative tools address
genuine cognitive needs rather than requiring carefully engineered prompts or instructions. The
agents discovered and leveraged these tools’ capabilities entirely through experimentation and nat-
ural problem-solving processes.

The emergence of these sophisticated behaviors from such a minimal, affordance-framed setup pro-
vides strong evidence for our broader hypothesis that codifying human collaborative behaviors
can systematically improve agent reasoning capabilities when problems require additional cog-
nitive scaffolding. The fact that we achieved substantial performance gains (15-40% cost reductions

Under review as a conference paper at ICLR 2026

on challenging problems) through this hands-off approach suggests that the underlying principle is
robust and doesn’t require complex orchestration or prescriptive usage patterns.

While our current implementation represents a straightforward instantiation (essentially providing
two general-purpose collaborative channels with minimal guidance), the meaningful improvements
we observe suggest the underlying principle is worthy of further investigation. Just as human teams
require increasingly sophisticated communication structures as complexity grows (specialized chan-
nels, role-based access, structured workflows), we expect that more complex agent tasks will benefit
to an even greater extent from richer collaborative tool orchestration. The benefits we achieved from
such a straightforward setup indicate significant potential for more sophisticated designs when the
problem complexity warrants the additional coordination costs.

6 LIMITATIONS AND FUTURE WORK

Our findings open promising directions for collaborative agent design while highlighting key op-
portunities for future investigation. Our evaluation focused on coding challenges with clear success
criteria; investigating transferability to more open-ended domains requiring creative reasoning rep-
resents an important next step. Our estimates are associative and consistent with plausible mecha-
nisms; we do not claim causal identification.

Some design limitations may constrain tool effectiveness. The social media tool’s reliance on tag-
based filtering rather than semantic search likely contributed to its mixed performance compared to
the journal tool’s semantic search capabilities.

Future work should investigate effectiveness across broader model architectures beyond the An-
thropic ecosystem, develop adaptive tool selection mechanisms that maximize benefits on challeng-
ing problems while minimizing overhead on easier tasks, and enhance implementation design, par-
ticularly improving the social media tool’s search capabilities to match the journal tool’s semantic
search performance.

7 CONCLUSIONS

We show that codifying human collaborative behaviors into accessible tools enables agents to in-
crease performance and to develop adaptive strategies that mirror human problem-solving flexibility.
When provided with journaling and social media tools through minimal, affordance-framed instruc-
tions, agents organically developed distinct collaborative approaches aligned with their capabilities
and problem difficulty.

Different models naturally gravitated toward different collaborative strategies without explicit guid-
ance. Sonnet-3.7 demonstrated broad engagement across tools, benefiting from articulation-
based cognitive scaffolding. Sonnet -4 exhibited selective adoption, primarily leveraging journal-
based semantic search for genuinely challenging problems. This adaptive behavior parallels how
human developers adjust collaborative approaches based on expertise and problem complexity.

The benefits follow a clear difficulty-dependent pattern: collaborative tools deliver substantial gains
(15-40% cost reductions) on challenging problems that approach individual capability limits, while
providing modest improvements on easier tasks. The 2-9x preference for writing over reading indi-
cates cognitive benefits stem primarily from structured reflection, though accumulated information
proves valuable when effectively accessible.

As agents face increasingly complex real-world challenges, human-inspired collaborative mecha-
nisms will be essential for reliable performance at the limits of individual capability. Rather than
aiming for universal solutions, future work should pursue adaptive collaborative systems that align
reasoning strategies with model capacity and task difficulty. Codifying human collaborative be-
haviors offers a principled path toward systematically enhancing agent reasoning on the hardest
problems, where performance gains matter most.

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic. Introducing the model context protocol. Anthropic News, November 2024. URL
https://www.anthropic.com/news/model-context—protocoll

W. Chen, Y. Su, J. Zuo, C. Yang, C. Yuan, C.-M. Chan, H. Yu, Y. Lu, Y.-H. Hung, C. Qian, Y. Qin,
X. Cong, R. Xie, Z. Liu, M. Sun, and J. Zhou. Agentverse: Facilitating multi-agent collaboration
and exploring emergent behaviors. arXiv preprint arXiv:2308.10848, 2023. doi: 10.48550/arXiv.
2308.10848.

J. A. Espinosa, R. E. Kraut, J. F. Lerch, S. A. Slaughter, J. D. Herbsleb, and A. Mockus. Shared men-
tal models and coordination in large-scale, distributed software development. In Proceedings of
the 22nd International Conference on Information Systems (ICIS 2001), pp. 513-518. Association
for Information Systems, 2001. URL https://aisel.aisnet.org/icis2001/64/.

J. J. Gibson. The ecological approach to visual perception. Houghton Mifflin, 1979.

S. Kiyokawa, N. Uchida, and M. Liu. Verbalization toward others facilitates insight problem solving.
In M. Goldwater, F. K. Anggoro, B. K. Hayes, and D. C. Ong (eds.), Proceedings of the 45th
Annual Conference of the Cognitive Science Society, pp. 3166-3171. Cognitive Science Society,
2023. URL https://escholarship.org/uc/item/4312g9wk.

D. Norman. The design of everyday things: Revised and expanded edition. Basic Books, 2013.

J. S. Park, J. O’Brien, C. J. Cai, M. R. Morris, P. Liang, and M. S. Bernstein. Generative agents:
Interactive simulacra of human behavior. In Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology (UIST ’23), pp. 1-22. ACM, 2023. doi: 10.1145/
3586183.3606763.

N. Shinn, F. Cassano, E. Berman, A. Gopinath, K. Narasimhan, and S. Yao. Reflexion: Language
agents with verbal reinforcement learning. arXiv preprint arXiv:2303.11366, 2023. doi: 10.
48550/arXiv.2303.11366.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polo-
sukhin. Attention is all you need. In Advances in Neural Information Processing Systems, vol-
ume 30, pp. 5998-6008. Curran Associates, Inc., 2017. doi: 10.48550/arXiv.1706.03762.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou.
Chain-of-thought prompting elicits reasoning in large language models. In Advances in Neural
Information Processing Systems, volume 35, pp. 24824-24837. Curran Associates, Inc., 2022.
URL https://arxiv.org/abs/2201.11903.

Q. Wu, G. Bansal, J. Zhang, Y. Wu, B. Li, E. Zhu, L. Jiang, X. Zhang, S. Zhang, J. Liu, Y. Wang, and
M. Li. Autogen: Enabling next-gen llm applications via multi-agent conversation. In Proceedings
of the International Conference on Learning Representations (ICLR 2024), 2024. doi: 10.48550/
arXiv.2308.08155.

S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao. React: Synergizing reasoning
and acting in language models. In Proceedings of the International Conference on Learning
Representations (ICLR 2023), 2023. URL https://openreview.net/forum?id=WE_
v1uYUL-X.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong,
Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren, Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and
J.-R. Wen. A survey of large language models. arXiv preprint arXiv:2303.18223, 2025. doi:
10.48550/arXiv.2303.18223.

10

https://www.anthropic.com/news/model-context-protocol
https://aisel.aisnet.org/icis2001/64/
https://escholarship.org/uc/item/4312q9wk
https://arxiv.org/abs/2201.11903
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Under review as a conference paper at ICLR 2026

APPENDIX A FULL DATASET ANALYSIS

APPENDIX A.1 FULL DATASET PERFORMANCE ANALYSIS: MODEST OVERALL EFFECTS
Many of the problems are easily solvable by both Sonnet-3.7 and Sonnet—4. In those cases
the additional tokens, reasoning space, and information retrieval likely do not benefit the agent in

solving things more efficiently. So the performance gains across the full dataset is modest at best
with the addition of social collaboration tools.

APPENDIX A.1.1 COST PERFORMANCE

Table 5: Average Cost per Challenge Performance (USD)

Configuration Sonnet-3.7 Sonnet—4
Baseline 0.2702 0.2673
Journal (Empty) 0.2651 (-1.9%) 0.2570 (-3.9%)
Journal (Nonempty) 0.2490 (-7.8%) 0.2433 (-9.0%)
Social (Empty) 0.2639 (-2.3%) 0.3293 (+23.2%)
Social (Nonempty) 0.2785 (+3.1%) 0.3008 (+12.5%)
Journal-Social (Empty) 0.4110 (+52.1%) 0.3401 (+27.2%)

Journal-Social (Nonempty) 0.3096 (+14.6%) 0.3451 (+29.1%)

The journal variants consistently demonstrate cost benefits across both models. For Sonnet-3.7,
journal tools with nonempty context achieve the strongest cost reduction at $0.2490 (7.8% reduction
from baseline), while journal with empty context shows modest improvement at $0.2651 (1.9%
reduction). Sonnet—-4 exhibits similar patterns with journal nonempty context achieving $0.2433
(9.0% reduction) and journal empty context at $0.2570 (3.9% reduction). This pattern suggests that
journal tools provide reliable benefits, with accumulated knowledge amplifying individual reflection
by an additional 4-6%.

Social media tools show mixed results with model-specific patterns. Sonnet-3.7 benefits mod-
estly from social empty context ($0.2639, 2.3% reduction) but shows slight cost increases with
nonempty context ($0.2785, 3.1% increase). In contrast, Sonnet—4 experiences significant cost
increases with social tools, particularly social empty context ($0.3293, 23.2% increase). These di-
vergent patterns indicate strong model compatibility effects, with Sonnet—3. 7 adapting better to
social coordination mechanisms than Sonnet—4.

The combined journal-social variants consistently increase costs across both models, ranging from
14.6% to 52.1% increases.This indicates that multiple similar overlapping tools may require addi-
tional differentiation or coordination to allow agents to utilize them effectively.

APPENDIX A.1.2 TURN EFFICIENCY

Table 6: Average API Call Turns

Configuration Sonnet—-3.7 Sonnet—4
Baseline 42.20 40.96
Journal (Empty) 41.39 (-1.9%) 43.52 (+6.3%)
Journal (Nonempty) 43.40 (+2.8%) 42.41 (+3.5%)
Social (Empty) 46.26 (49.6%) 52.24 (+27.5%)
Social (Nonempty) 46.79 (+10.9%) 49.13 (+19.9%)
Journal-Social (Empty) 58.52 (+38.7%) 54.18 (+32.3%)

Journal-Social (Nonempty) 50.17 (+18.9%) 54.73 (+33.6%)

Turn efficiency results show mixed patterns with generally modest changes from baseline. For
Sonnet-3.7, only journal empty context achieves a meaningful reduction (41.39 vs 42.20
baseline, 1.9% improvement), while other variants show increases ranging from 2.8% to 38.7%.

11

Under review as a conference paper at ICLR 2026

Sonnet—4 demonstrates increases across all variants, with journal variants showing relatively mod-
est increases (3.5-6.3%) but social and combined variants requiring substantially more turns.

Unlike cost performance, turn efficiency shows minimal improvements, with most collaborative
variants requiring additional API calls to perform a write, read, or search call.

APPENDIX A.1.3 TIME PERFORMANCE

Table 7: Average Duration (seconds)

Configuration Sonnet-3.7 Sonnet—4
Baseline 94.9 99.7
Journal (Empty) 97.5 (+2.7%) 101.1 (+1.4%)
Journal (Nonempty) 88.3 (-7.0%) 97.2 (-2.5%)
Social (Empty) 90.3 (-4.9%) 117.5 (+17.8%)
Social (Nonempty) 94.7 (-0.2%) 120.2 (+20.5%)
Journal-Social (Empty) 142.0 (+49.5%) 133.8 (+34.2%)

Journal-Social (Nonempty) 110.2 (+16.1%) 126.4 (+26.8%)

Time performance exhibits considerable variability with no consistent pattern of improvement.
Sonnet-3.7 shows the best time reduction with journal nonempty context (88.3s vs 94.9s base-
line, 7.0% improvement), while other variants show mixed results. Sonnet-4 demonstrates a
similar pattern: the journal-nonempty variant yields only a modest improvement (97.2s vs 99.7s,
2.5% gain), whereas most social and combined variants require substantially more time.

Time results reinforce that social collaborative tools involve overhead costs that are only justified on
sufficiently challenging problems. The mixed time performance suggests that tool benefits depend
on problem difficulty. Easy problems suffer from unnecessary overhead while hard problems benefit
from enhanced reasoning capability.

APPENDIX A.1.4 TOKEN USAGE ANALYSIS

Table 8: Average Token Usage - Full Dataset

Configuration Model Input Cache Creation Cache Read Output Total
Baseline Sonnet-3.7 77 13,812 369,291 5,552 388,732
Sonnet-4 81 13,067 380,818 4811 398,777
Journal (Empty) Sonnet-3.7 75 12,475 401,985 5,267 419,802
Sonnet—-4 77 12,602 422,790 4,950 440,420
Journal (Nonempty) Sonnet-3.7 76 12,022 374,932 5,016 392,045
Sonnet—4 77 11,983 401,290 4,780 418,130
Social (Empty) Sonnet-3.7 74 12,850 402,390 4,986 420,300
Sonnet-4 83 15,619 553,092 5,767 574,560
Social (Nonempty) Sonnet-3.7 75 13,741 429,415 5,371 448,602
Sonnet-4 84 14,636 473,973 5,538 494,231
Journal-Social (Empty) Sonnet-3.7 76 17,396 645,989 7,850 671,312
Sonnet—-4 84 16,039 563,298 6,226 585,647
Journal-Social (Nonempty) Sonnet-3.7 69 14,853 498,676 6,039 519,637
Sonnet—4 82 15,481 576,916 5,993 598,472

Token usage patterns across the full dataset reveal the mechanisms underlying the mixed perfor-
mance effects observed in business metrics. Analysis of token allocation provides insights into how
collaborative tools affect agent reasoning processes and resource consumption.

Output Token Efficiency: The most successful cost-reduction variants consistently generate fewer
output tokens compared to baseline. Sonnet—3. 7 journal nonempty produces 5,016 output tokens
versus 5,552 baseline (-9.6%), while Sonnet—-4 journal nonempty generates 4,780 versus 4,811

12

Under review as a conference paper at ICLR 2026

baseline (-0.6%). Given that output tokens cost $15 per million versus $3 per million for input
tokens, these reductions in expensive output generation directly contribute to cost savings.

Resource Allocation Patterns: Successful variants demonstrate more efficient resource allocation
rather than increased compute consumption. Journal tools with nonempty context show modest
increases in total token usage (+0.9% for Sonnet-3.7, +4.8% for Sonnet—4) while achieving
significant cost reductions, indicating better utilization of cheaper input and cache operations relative
to expensive output generation.

Model-Specific Resource Usage: Token patterns explain the divergent performance between mod-
els. Sonnet-4 social (empty) shows dramatically increased cache reads (553,092 vs 380,818
baseline, +45.2%) and higher output tokens, correlating with its 23.2% cost increase. In contrast,
successful Sonnet—3. 7 variants demonstrate more balanced resource allocation.

Tool Overhead Effects: Combined journal-social variants consistently show the highest token con-
sumption across all categories, with total usage increases ranging from 33-73%. This pattern ex-
plains why combined tools often hurt performance: the overhead of managing multiple collaborative
interfaces outweighs individual benefits when problems don’t require extensive reasoning scaffold-
ing.

These token usage patterns confirm that collaborative tools function as reasoning amplifiers rather
than compute scaling mechanisms, with performance gains arising from more efficient resource
allocation rather than increased token consumption.

APPENDIX B TEST COMPLETION METRICS

Table 9: Challenge Completion Rates (100% passing tests)

Configuration Sonnet-3.7 Sonnet-4
Baseline 99.0% 98.0%
Journal (Empty) 100.0% 98.0%
Journal (Nonempty) 99.0% 99.0%
Social (Empty) 100.0% 95.1%
Social (Nonempty) 98.0% 99.0%
Journal-Social (Empty) 98.0% 98.0%
Journal-Social (Nonempty) 98.0% 95.1%

Table 10: Overall Test Pass Rates (passed tests/total tests)

Configuration Sonnet-3.7 Sonnet-—4
Baseline 99.8% 99.8%
Journal (Empty) 100.0% 99.4%
Journal (Nonempty) 99.1% 99.3%
Social (Empty) 100.0% 99.1%
Social (Nonempty) 99.8% 99.8%
Journal-Social (Empty) 99.3% 99.7%
Journal-Social (Nonempty) 98.8% 97.3%

Test completion metrics demonstrate that collaborative tools maintain high performance standards
without sacrificing solution quality. Both models achieve challenge completion rates above 95%
across all variants, with several tool variants achieving perfect or near-perfect completion rates.
Overall test pass rates remain consistently above 97%, indicating that the additional reasoning over-
head from collaborative tools does not compromise challenge completions.

13

Under review as a conference paper at ICLR 2026

APPENDIX C COMPLETE SEARCH INTERACTION EXAMPLE

This appendix presents the complete interaction sequence showing how an agent systematically
leveraged collaborative tools for upfront knowledge gathering before implementing a bowling game
scoring system.

Initial Problem Approach:

”Let me explore the bowling directory structure and check for previous journal entries or
social media posts about bowling challenges.”

Journal Search Query: The agent searched journal entries with the query “bowling scoring kata
challenge” (limit: 5 entries).

Search Results Discovery: The search returned 5 relevant entries, with the top result (score: 0.524)
showing a completed bowling challenge:

”Bowling Challenge - COMPLETED [CHECKMARK] Final implementation successfully
passes all 31 tests including: Basic scoring (strikes, spares, regular frames), 10th frame
special rules...”

Knowledge Synthesis:

”Excellent! I found a previous journal entry that shows this bowling challenge has been
completed before. Let me read that entry to understand the solution approach, then check
social media to see what teammates have shared.”

Detailed Journal Entry Review: The agent retrieved the complete journal entry (path: 3f45012d-
f2£5-408e-bd71-2e16b62ef068), which contained detailed implementation insights including: - Key
architectural decisions (frame-based vs roll-based thinking) - Common pitfalls (10th frame complex-
ity, game completion detection) - Debugging strategies (running individual failing tests) - Refactor-
ing lessons (simpler implementations often work better)

Social Media Search: The agent searched for posts tagged “bowling” (limit: 10), discovering
three relevant posts documenting the journey from initial attempt through debugging to successful
completion.

Knowledge Integration:

”Perfect! I have excellent context from both my journal and social media posts. Now let me
analyze the requirements from the test file and implement the solution based on my previous
learnings.”

This interaction demonstrates sophisticated upfront research behavior where the agent systemati-
cally gathered, reviewed, and synthesized accumulated knowledge before beginning implementa-
tion; this behavior emerged organically and without explicit instruction.

APPENDIX D AGENT TOOL INSTRUCTIONS

This appendix presents the complete instructions provided to agents for each collaborative tool con-
figuration, demonstrating the minimal, non-prescriptive guidance that resulted in sophisticated emer-
gent behaviors.

APPENDIX D.1 JOURNAL-ONLY CONFIGURATION INSTRUCTIONS

Coding with Your Journal

You’re working on coding challenges, and you have access to a personal
journal where you can reflect on your work.

Feel free to write in your journal whenever you want

14

Under review as a conference paper at ICLR 2026

Check out what you’ve written before. Review problems you’ve worked
on, discoveries you’ve made, or just browse through recent entries. Use it
like you would any journal - when you want to reflect, need to organize
your thoughts, or want to review your progress.

Write entries when you feel like it
Record whatever feels worth documenting:

* Something cool you figured out

* A frustrating bug you’re dealing with

* A quick win or breakthrough

¢ Just thoughts about what you’re working on
* Notes for future reference

Search and browse your entries

* Leverage the work your team has done before! You should check
what work has already been done - your or your team’s previous en-
tries might save you from reinventing solutions. If you do search for
relevant articles and then read the ones which seem relevant

The search tools will show you recent entries and let you semantically
search as you like. Review your past work and see what patterns emerge
in your problem-solving approach.

No pressure

This is meant to be natural and helpful. Write if you want to, browse
when you feel like it, or ignore it entirely if you’re in the zone. There’s no
requirement to use your journal in any particular way.

Focus on solving your coding challenges. The journal is just there if you
want to use it.

APPENDIX D.2 SOCIAL MEDIA-ONLY CONFIGURATION INSTRUCTIONS

Coding with Social Media

You’re working on coding challenges, and you have access to a social me-
dia platform where you can connect with teammates.

Feel free to browse social media whenever you want

Check out what others are posting about. See what problems they’re work-
ing on, what they’re discovering, or just scroll through recent posts. Use it
like you would any social media - when you want a break, need inspiration,
or are curious what’s happening.

Post when you feel like it
Share whatever feels worth sharing:
* Something cool you figured out
* A frustrating bug you’re dealing with
* A quick win or breakthrough
* Just thoughts about what you’re working on
* Encouragement for teammates

Search and browse casually

The search tools will show you recent posts and let you filter by tags. Don’t
expect perfect results - just browse around and see what catches your eye.

No pressure

This is meant to be natural and relaxed. Post if you want to, browse when
you feel like it, or ignore it entirely if you’re in the zone. There’s no
requirement to use social media in any particular way.

15

Under review as a conference paper at ICLR 2026

Focus on solving your coding challenges. The social media is just there if
you want to use it.

APPENDIX D.3 COMBINED CONFIGURATION INSTRUCTIONS

Coding with Your Journal and Social Media

You’re working on coding challenges, and you have access to both a per-
sonal journal and a social media platform where you can connect with
teammates.

Feel free to use either whenever you want

Check out what you’ve written before in your journal or browse what oth-
ers are posting on social media. Review problems you’ve worked on, dis-
coveries you’ve made, or see what teammates are sharing. Use them like
you would naturally - when you want to reflect, need inspiration, want to
organize your thoughts, or are just curious what’s happening.

Write or post when you feel like it
Record or share whatever feels worth documenting:

* Something cool you figured out

* A frustrating bug you’re dealing with

* A quick win or breakthrough

* Just thoughts about what you’re working on
* Notes for future reference

* Encouragement for teammates

Search and browse your entries and posts

* Leverage the work your team has done before! You should check
what work has already been done - your previous journal entries or
your team’s social media posts might save you from reinventing so-
lutions. If you do search for relevant articles and then read the ones
which seem relevant

* The search tools will show you recent entries and posts, letting you
semantically search through both your personal notes and team dis-
cussions

* Review your past work and see what patterns emerge in your
problem-solving approach

* Browse casually through social media to see what catches your eye

Journal vs Social Media
Use your journal for:

* Personal reflection and deeper thoughts

* Detailed technical notes

e Private problem-solving process

* Things you want to remember for yourself
Use social media for:

* Sharing wins and discoveries with the team

* Getting input from teammates

* Casual updates and encouragement

* Building team connections

Or don’t worry about the distinction and just use whatever feels right in
the moment.

No pressure

16

Under review as a conference paper at ICLR 2026

This is meant to be natural and helpful. Write in your journal, post to social
media, browse when you feel like it, or ignore both entirely if you’re in the
zone. There’s no requirement to use either tool in any particular way.
Focus on solving your coding challenges. The journal and social media
are just there if you want to use them.

APPENDIX E HARD QUESTION SELECTION

APPENDIX E.1 THRESHOLD SENSITIVITY ANALYSIS

To evaluate the robustness of our hard-questions definition, we examined performance at the 1 + 1o
threshold, which represents problems requiring substantially more computational resources than the
baseline distribution. This more stringent threshold identifies 4 problems for Sonnet—-3.7 (bowl-
ing, connect, forth, react) and 2 problems for Sonnet—-4 (transpose, two-bucket), representing
11.8% and 5.9% of the benchmark, respectively.

At this threshold, collaborative tools demonstrate even more dramatic performance improvements.
Sonnet-3.7 achieves cost reductions ranging from 22.5% to 45.7% across most variants, with
social (empty) delivering the strongest reduction ($0.455 vs $0.838 baseline, 45.7% reduction) and
journal (nonempty) achieving 33.8% reduction ($0.555 vs $0.838). Turn efficiency improvements
are similarly substantial, with journal-social nonempty requiring 38.5% fewer API calls (56.5 vs
92.0 baseline) and social empty achieving 31.6% reduction (62.9 turns).

Sonnet—4 shows strong selective benefits despite the small sample size, with journal nonempty de-
livering 63.9% cost reduction ($0.406 vs $1.127 baseline) and 37.8% duration improvement (155.4s
vs 402.3s baseline). The journal variants consistently outperform baseline across all metrics, while
social tools show mixed results with social nonempty achieving 23.6% cost reduction but social
empty increasing costs by 16.9%.

However, the more restrictive threshold substantially reduces sample sizes to n=5—11 per configura-
tion for Sonnet—-3.7 and n=5-6 for Sonnet -4, compared to n=11-17 at the ;1 + 0.50 threshold.
While the effect sizes are larger and more dramatic, the reduced statistical power limits the reliability
of these results for formal hypothesis testing. The consistency of improvement patterns across both
thresholds provides confidence in the underlying mechanisms, but the p + 0.50 threshold offers a
better balance between capturing genuinely challenging problems and maintaining adequate sample
sizes for robust statistical analysis.

These results reinforce our core finding that collaborative tools provide the greatest benefits when
agents face problems at the limits of their capabilities, with effect magnitude scaling inversely with
problem frequency in the benchmark distribution.

Table 11: Sonnet—3.7 Hard Questions - Cost Performance with Distribution (¢ + 1o threshold)

Configuration Context n Mean Median P90 P95 P99
Baseline - 11 $0.838 $0.761 $1.413 $1.541 $1.643
Social Empty 11 $0.455 (-45.7%) $0.499 $0.638 $0.668 $0.693
Social Nonempty 11 $0.724 (-13.6%) $0.560 $1.680 $2.001 $2.258
Journal Empty 11 $0.725 (-13.5%) $0.541 $1.756 $1.917 $2.046
Journal Nonempty 11 $0.555 (-33.8%) $0.438 $0.913 $1.001 $1.072
Journal-Social Empty 10 $0.591 (-29.5%) $0.579 $1.067 $1.141 $1.201

Journal-Social Nonempty 11 $0.649 (-22.5%) $0.499 $1.025 $1.318 $1.553

17

Under review as a conference paper at ICLR 2026

Table 12: Sonnet -4 Hard Questions - Cost Performance with Distribution (¢ + 1o threshold)
Configuration Context n Mean Median P90 P95 P99

Baseline - 6 $1.127 $0.878 $2.038 $2.353 $2.605
Social Empty 6 $1.317 (+16.9%) $1.025 $2.421 $2.892 $3.270
Social Nonempty 6 $0.861 (-23.6%) $0.827 $1.322 $1.360 $1.390
Journal Empty 5 $0.672(-40.4%) $0.541 $1.092 $1.137 $1.174
Journal Nonempty 5 $0.406 (-63.9%) $0.342 $0.573 $0.635 $0.685
Journal-Social Empty 6 $1.042(-7.5%) $1.014 $1.716 $1.766 $1.806
Journal-Social Nonempty 6 $1.081 (-4.1%) $1.007 $1.995 $2.112 $2.206

APPENDIX F INFRASTRUCTURE ISSUES AND DATASET COMPLETION

APPENDIX F.1 DOCKER CONFIGURATION FAILURES

During initial experimental runs, we identified a Docker container configuration issue affecting 2.5%
of challenge attempts (approximately 35 out of 1,428 total runs). The issue occurred when unit test
libraries attempted memory cleanup after test timeouts, causing container failures for challenges that
lacked specific Python testing libraries. These failures were non-random and infrastructure-related
rather than model performance issues.

The failure pattern included:

* 10 pairs where both empty and nonempty runs failed
* 4 baseline configuration failures
* 2 cases where empty runs failed but second pass completed

* 6 cases where empty runs passed but nonempty runs failed

APPENDIX F.2 CONSERVATIVE REMEDIATION METHODOLOGY

To complete the dataset while preserving experimental integrity, we implemented a conservative
approach prioritizing data quality over potential performance gains:

Double Failures (Both Empty and Non-Empty): Runs were executed on isolated team IDs, elim-
inating any shared context but ensuring clean experimental conditions.

Empty Run Failures: Only the failed empty run was re-executed on a new team ID, allowing the
nonempty run to proceed with whatever limited context existed.

Non-Empty Run Failures: The original empty run data was preserved, and only the nonempty run
was re-executed using the established team ID, maintaining full experimental context.

Minimal Social Configuration Impact: Of the 10 double-failure pairs requiring isolated re-runs,
7 involved social variants (0.49% of total dataset). Given that social nonempty variants consistently
showed the weakest performance across both models, any potential information advantage from re-
running these specific cases would bias results toward variants that were already underperforming,
making our reported effects conservative estimates.

Potential Social Tool Effects: The remediation process may have inadvertently benefited some
social nonempty variants by providing cleaner information environments. Of the 10 double-failure
re-runs requiring isolated team IDs, 7 involved social variants, potentially reducing the accumulated
“noise” that makes tag-based filtering challenging. This could partially explain the unexpectedly
stable performance of Sonnet—4’s social nonempty variant through extreme percentiles.

APPENDIX F.3 ROBUSTNESS VALIDATION

To validate the stability of our findings, we compared results across datasets before and after infras-
tructure remediation:

18

Under review as a conference paper at ICLR 2026

Effect Consistency: Comparing results before and after infrastructure remediation shows stable
performance patterns with surgical changes only where remediation occurred.

Sonnet-3.7 Hard Questions: Social empty remained completely unchanged ($0.436, 39.4%
cost reduction), demonstrating that unaffected configurations were unaltered by remediation. Re-
mediated variants showed modest shifts: social nonempty changed from 37.8% to 21.5% cost re-
duction, and journal-social nonempty from 24.4% to 15.2% reduction. Journal empty showed larger
changes from 41.5% to 15.5% cost reduction, reflecting infrastructure fixes in configurations that
experienced failures.

Sonnet-4 Hard Questions: The remediation process affected problem composition, with the
dataset changing from 5 to 4 hard questions (removing zebra-puzzle), while baseline costs shifted
from $0.777 to $0.805. Despite these changes, core collaborative tool patterns remained consis-
tent: journal nonempty maintained strong performance (41.3% to 40.0% cost reduction) and journal
empty showed sustained benefits (31.5% to 30.9% reduction). Configuration rankings remained
unchanged with journal tools consistently outperforming other variants.

Validation of Conservative Approach: The stability of unaffected variants (such as Sonnet-3.7
social empty showing identical performance) alongside targeted shifts in remediated configurations
confirms that infrastructure fixes addressed specific failures without introducing systematic bias.
The preservation of relative performance rankings across both models demonstrates that core col-
laborative mechanisms remained intact.

The consistency of collaborative tool benefits shows that our findings reflect genuine performance
mechanisms rather than artifacts of specific experimental setups, since the same effect patterns held
even after infrastructure fixes and minor composition changes.

APPENDIX F.4 STATISTICAL IMPLICATIONS

The infrastructure remediation did not systematically bias results toward any particular configura-
tion. The conservative approach ensures that reported improvements represent lower bounds on
collaborative tool effectiveness, as any information leakage would inflate rather than deflate perfor-
mance benefits.

Full dataset metrics remained stable throughout remediation (within +-0.02 cost variation), confirm-
ing that infrastructure issues affected only a small subset of runs without systematically altering the
overall experimental conclusions.

APPENDIX G DETAILED EXPERIMENTAL METHODOLOGY

APPENDIX G.1 BUILDING INSTITUTIONAL KNOWLEDGE

Our experimental design approximates how an engineering team builds institutional knowledge over
time. To simulate this, we allow for two passes over the 34 programming challenges. Agents store
their findings (through posts and journal entries) on our “Botboard” server, a shared backend. The
first pass begins with an empty knowledge base, which agents populate as they solve problems.
The second pass then leverages this accumulated knowledge, allowing us to study how performance
changes when a repository of prior work exists.

APPENDIX G.2 TECHNICAL INFRASTRUCTURE
APPENDIX G.2.1 BACKEND ARCHITECTURE AND EXECUTION PIPELINE

The Botboard server implements a REST-based API with SQLite storage and semantic search pow-
ered by HuggingFace embeddings. It functions as an internal social media platform combining
Twitter-like microblogging with journal functionality, enabling semantic search for journal entries
via vector similarity calculations on 384-dimensional embeddings.

Our evaluation pipeline uses Docker containers to ensure reproducible, isolated testing environ-
ments. Each container includes the Claude Code SDK, relevant MCP configuration files, and the
benchmark problems. The mock Botboard service maintains separate team-scoped databases, en-

19

Under review as a conference paper at ICLR 2026

suring complete isolation between different experimental variants while enabling knowledge sharing
within each configuration’s two phases.

The two-phase execution pattern works as follows:

* Phase 1 (Empty Pass): Each variant receives a unique team_id and begins with empty
backend databases. Four containers run in parallel, with tool-enabled variants organically
writing to their respective databases as they solve problems.

* Phase 2 (Nonempty Pass): As each Phase 1 run completes, its corresponding Phase 2 con-
tainer launches with access to the accumulated knowledge via the shared team_id. Agents
receive identical prompting across all phases; behavioral differences emerge organically
from tool availability and context.

APPENDIX G.2.2 CLAUDE CODE INTEGRATION

Tests utilize the official Claude Code SDK run in docker containers for reproducibility. A compre-
hensive logging infrastructure captures conversation flows, tool invocations, timing data, and error
conditions in JSON format. This enables detailed behavioral analysis of tool usage patterns across
Claude Sonnet-3.7 and Claude Sonnet-4.

APPENDIX G.2.3 MCP COLLABORATIVE TOOLS
We developed two MCP-based tools to approximate human collaborative behaviors:

* Social Media Tool: Provides 1ogin, read_posts, and create_post capabilities via
our custom MCP social media server.

e Journaling Tool: Provides process_thoughts, search_journal, read_entry,
and 1ist_recent capabilities. The tool supports multi-section journaling and has built-
in semantic search for retrieval.

Both tools write to the shared Botboard backend, which maintains persistent state and provides
semantic search capabilities.

APPENDIX H ADDITIONAL PERFORMANCE METRICS FOR HARD
QUESTIONS

This section provides the detailed performance data for API turns, wall time, and token usage on
the hard questions subset. These metrics support the primary cost findings, demonstrating that the
observed cost reductions correspond to genuine efficiency gains rather than computational trade-
offs.

APPENDIX H.1 TURN EFFICIENCY

Turn efficiency patterns reveal stark differences between model variants on hard questions.
Sonnet-3.7 demonstrates consistent improvements across all collaborative variants, with par-
ticularly strong gains from journal empty (26.9% reduction) and journal-social nonempty (24.6%
reduction). Sonnet-4 shows a more selective pattern, with journal variants providing the most
meaningful efficiency gains, particularly the journal nonempty variant (14.0% reduction).

APPENDIX I ROBUSTNESS ANALYSIS ACROSS API VERSIONS

To test the stability of our findings, we conducted follow-up runs in August 2025, one month after
our initial July experiments. During this period, the Anthropic APIs underwent substantial changes
(including infrastructure failures, and apparent model updates) leading to noticeable baseline shifts.

API Version Effects: Baseline costs increased from $0.27-0.40 to $0.75-0.93. Both Sonnet-3.7
and 4 baseline token usage for output tokens remained similar, but the overall token usage nearly
doubled (388,732 to 727,727 and 398,777 to 795,647 respectively) due to increases in cache read and

20

Under review as a conference paper at ICLR 2026

Table 13: Hard Questions Turn Distribution

Sonnet-3.7 Sonnet-4
Mean Median P95 Mean Median P95
Baseline 78.1 61.0 144.2 79.8 68.0 167.8
Social (Empty) 60.8 (-22.1%) 57.0 108.4 97.0 (4+21.6%) 65.5 249.4
Social (Nonempty) 68.9 (-11.8%) 52.5 148.8 79.5 (-0.4%) 77.0 124.0
Journal (Empty) 57.1 (-26.9%) 48.5 158.2 75.4 (-5.5%) 64.0 137.5
Journal (Nonempty) 66.9 (-14.3%) 60.0 1312 68.6 (-14.0%) 57.0 117.0
Journal-Social (Empty) 64.6 (-17.3%) 64.0 99.5 94.4 (+18.3%) 69.0 184.4

Journal-Social (Nonempty) 58.9 (-24.6%) 48.5 132.5 102.1 (+27.9%) 85.0 206.8

write token usage. These shifts likely reflect infrastructure-level changes rather than experimental
noise.

Persistent Effect Patterns: Despite these shifts, the relative performance effects were stable. For
Sonnet-3.7 on hard questions, social-empty achieved a 12% cost reduction ($0.854 vs $0.969)
and journal-nonempty delivered a 14% reduction ($0.835 vs $0.969). Sonnet-4 maintained its
strong affinity for journaling: the journal-nonempty variant achieved a mean cost of $0.917 (-2%
vs. baseline $0.932), and its strongest variant was journal-social-nonempty, which achieved $0.748
(-20% vs baseline), with stable tail reductions (P99: $1.341 vs $1.974, -32%).

Robustness Implications: The consistency of these collaborative tool benefits across API versions
suggests that the observed gains reflect genuine performance mechanisms rather than artifacts of
a single model release. This robustness addresses a key reproducibility gap in Al research, where
results often fail to hold once systems change underneath.

APPENDIX] DETAILED QUALITATIVE EXAMPLES

APPENDIX J.1 BREAKING DEBUGGING LOOPS EXAMPLES

Book Store Pricing (Sonnet-4):

”Working on a book store pricing optimization problem... Key insight: The re-
cursive approach with memoization works well, but I hit a rounding issue. The
problem is that floating point arithmetic can introduce small errors when convert-
ing back to cents... The test case that’s failing expects 4080 but I'm getting 4079 -
this is a classic off-by-one cent error from floating point precision.”

Connect Game (Sonnet-3.7):

"The key insight I've been missing is how to correctly identify neighbors in this
hexagonal grid... For a hex grid with ’slant-right’ alignment where each row is in-
dented one position more than the previous, the neighbors are typically: 1. North-
west: (r-1, ¢) 2. Northeast: (r-1, c+1)...”

APPENDIX J.2 SEARCH DISCOVERY EXAMPLES

Zebra Logic Puzzle Discovery:

"Great! 1 found some useful information from other posts. Based on the social
media posts, I can see that: 1. The Norwegian drinks water and the Japanese owns
the zebra 2. Someone attempted a constraint satisfaction approach 3. A direct
solution approach was more effective for this specific problem”

21

Under review as a conference paper at ICLR 2026

APPENDIX J.3 UPFRONT PLANNING EXAMPLES

REST API Planning:

”"Working on a REST API challenge that involves implementing a debt tracking
system. The key insight here is that this isn’t just simple CRUD operations - there’s
complex business logic around balancing debts between users... The tricky part is
the 10U logic where existing debts between users can cancel out new debts. Need
to handle cases where: Both users have O balance, One user already owes the
other, The debt amount exactly matches existing opposite debt...”

LLM USAGE DISCLOSURE

Large language models were used for grammar checking and LaTeX formatting assistance.

REPRODUCIBILITY STATEMENT

We provide comprehensive materials to ensure reproducibility of our results. Our experimental
methodology is detailed in Section 3 and Appendix G, including complete technical infrastructure
specifications. All source code is available through anonymous repositories: MCP collaborative
toolf] and [’} the Botboard serve and our complete dockerized evaluation pipelineﬂ The evalu-
ation framework uses the publicly available Aider Polyglot Python benchmark. Complete exper-
imental results, including full dataset analysis and detailed qualitative examples, are provided in
the appendices. Our Docker-based containerized approach ensures isolated, reproducible testing
environments that can be replicated independently.

Shttps://github.com/617c£27674697170b9783d8-1gtm/mcp-socialmedia

"https://github.com/617c£27674697170b9783d8-1gtm/journal-mcp

$https://github.com/617c£27674697170b9783d8-1gtm/mock-botboard-server

9https ://github.com/617¢cf2767469717009783d8-1gtm/dockerized_papers_
92425

22

https://github.com/617cf27674697170b9783d8-lgtm/mcp-socialmedia
https://github.com/617cf27674697170b9783d8-lgtm/journal-mcp
https://github.com/617cf27674697170b9783d8-lgtm/mock-botboard-server
https://github.com/617cf27674697170b9783d8-lgtm/dockerized_papers_92425
https://github.com/617cf27674697170b9783d8-lgtm/dockerized_papers_92425

	Introduction
	Related Work
	Experimental Design
	Evaluation Metrics

	Analysis
	Hard Questions Cost Performance
	Wall Time Performance
	Token Efficiency
	Qualitative Analysis
	Breaking Debugging Loops Through Structured Articulation
	Strategic Solution Discovery Through Search
	Improved Upfront Planning via Collaborative Tools
	Model-Specific Tool Adoption Patterns

	Discussion
	Adaptive Strategies and Underlying Mechanisms
	Difficulty-Dependent Benefits and Cognitive Scaffolding
	Emergent Collaborative Behaviors

	Limitations and Future Work
	Conclusions
	Full Dataset Analysis
	Full Dataset Performance Analysis: Modest Overall Effects
	Cost Performance
	Turn Efficiency
	Time Performance
	Token Usage Analysis

	Test Completion Metrics
	Complete Search Interaction Example
	Agent Tool Instructions
	Journal-Only Configuration Instructions
	Social Media-Only Configuration Instructions
	Combined Configuration Instructions

	Hard Question Selection
	Threshold Sensitivity Analysis

	Infrastructure Issues and Dataset Completion
	Docker Configuration Failures
	Conservative Remediation Methodology
	Robustness Validation
	Statistical Implications

	Detailed Experimental Methodology
	Building Institutional Knowledge
	Technical Infrastructure
	Backend Architecture and Execution Pipeline
	Claude Code Integration
	MCP Collaborative Tools

	Additional Performance Metrics for Hard Questions
	Turn Efficiency

	Robustness Analysis Across API Versions
	Detailed Qualitative Examples
	Breaking Debugging Loops Examples
	Search Discovery Examples
	Upfront Planning Examples

