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ABSTRACT

Incorporating equivariance to symmetry groups as a constraint during neural net-
work training can improve performance and generalization for tasks exhibiting
those symmetries, but such symmetries are often not perfectly nor explicitly
present. This motivates algorithmically optimizing the architectural constraints
imposed by equivariance. We propose the equivariance relaxation morphism,
which preserves functionality while reparametrizing a group equivariant layer to
operate with equivariance constraints on a subgroup, as well as the [G]-mixed
equivariant layer, which mixes layers constrained to different groups to enable
within-layer equivariance optimization. We further present evolutionary and dif-
ferentiable neural architecture search (NAS) algorithms that utilize these mech-
anisms respectively for equivariance-aware architectural optimization. Experi-
ments across a variety of datasets show the benefit of dynamically constrained
equivariance to find effective architectures with approximate equivariance.

1 INTRODUCTION

Constraining neural networks to be equivariant to symmetry groups present in the data can improve
their task performance, efficiency, and generalization capabilities (Bronstein et al., 2021), as shown
by translation-equivariant convolutional neural networks (Fukushima & Miyake, 1982; LeCun et al.,
1989) for image-based tasks (LeCun et al., 1998). Seminal works have developed general theories
and architectures for equivariance in neural networks, providing a blueprint for equivariant oper-
ations on complex structured data (Cohen & Welling, 2016; Ravanbakhsh et al., 2017; Kondor &
Trivedi, 2018; Weiler et al., 2021). However, these works design model constraints based on an
explicit equivariance property. Furthermore, their architectural assumption of full equivariance in
every layer may be overly constraining; e.g., in handwritten digit recognition, full equivariance to
180◦ rotation may lead to misclassifying samples of “6” and “9”. Weiler & Cesa (2019) found that
local equivariance from a final subgroup convolutional layer improves performance over full equiv-
ariance. If appropriate equivariance constraints are instead learned, the benefits of equivariance
could extend to applications where the data may have unknown or imperfect symmetries.

Learning approximate equivariance has been recently approached via novel layer operations (Wang
et al., 2022; Finzi et al., 2021; Zhou et al., 2020; Yeh et al., 2022; Basu et al., 2021). Separately, the
field of neural architecture search (NAS) aims to optimize full neural network architectures (Zoph &
Le, 2017; Real et al., 2017; Elsken et al., 2017; Liu et al., 2018; Lu et al., 2019). Existing NAS meth-
ods have not yet explicitly optimized equivariance, although partial or soft equivariant approaches
like Romero & Lohit (2022) and van der Ouderaa et al. (2022) approach custom equivariant architec-
tures. An important aspect of NAS is network morphisms: function-preserving architectural changes
(Wei et al., 2016) which can be used during training to change the loss landscape and gradient de-
scent trajectory while immediately maintaining the current functionality and loss value (Maile et al.,
2022). Developing tools for searching over a space of architectural representations of equivariance
would permit NAS algorithms to be applied towards architectural optimization of equivariance.
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Contributions First, we present two mechanisms towards equivariance-aware architectural opti-
mization. The equivariance relaxation morphism for group convolutional layers partially expands
the representation and parameters of the layer to enable less constrained learning with a prior on
symmetry. The [G]-mixed equivariant layer parametrizes a layer as a weighted sum of layers equiv-
ariant to different groups, permitting the learning of architectural weighting parameters.

Second, we implement these concepts within two algorithms for architectural optimization of
partially-equivariant networks. Evolutionary Equivariance-Aware NAS (EquiNASE) utilizes the
equivariance relaxation morphism in a greedy evolutionary algorithm, dynamically relaxing con-
straints throughout the training process. Differentiable Equivariance-Aware NAS (EquiNASD) im-
plements [G]-mixed equivariant layers throughout a network to learn the appropriate approximate
equivariance of each layer, in addition to their optimized weights, during training.

Finally, we analyze the proposed mechanisms via their respective NAS approaches in multiple im-
age classification tasks, investigating how the dynamically learned approximate equivariance affects
training and performance over baseline models and other approaches.

2 RELATED WORKS

Approximate equivariance Although no other works on approximate equivariance explicitly
study architectural optimization, some approaches are architectural in nature. We compare our con-
tributions with the most conceptually similar works to our knowledge.

The main contributions of Basu et al. (2021) and Agrawal & Ostrowski (2022) are similar to our pro-
posed equivariant relaxation morphism. Basu et al. (2021) also utilizes subgroup decomposition but
instead algorithmically builds up equivariances from smaller groups, while our work focuses on re-
laxing existing constraints. Agrawal & Ostrowski (2022) presents theoretical contributions towards
network morphisms for group-invariant shallow neural networks: in comparison, our work focuses
on deep group convolutional architectures and implements the morphism in a NAS algorithm.

The main contributions of Wang et al. (2022) and Finzi et al. (2021) are similar to our proposed [G]-
mixed equivariant layer. Wang et al. (2022) also uses a weighted sum of filters, but uses the same
group for each filter and defines the weights over the domain of group elements. Finzi et al. (2021)
uses an equivariant layer in parallel to a linear layer with weighted regularization, thus only using
two layers in parallel and weighting them by regularization rather than parametrization. Mouli &
Ribeiro (2021) also progressively relaxes equivariance constraints, but with regularized rather than
parametrized constraints.

In more diverse approaches, Zhou et al. (2020) and Yeh et al. (2022) represent symmetry-inducing
weight sharing via learnable matrices. Romero & Lohit (2022) and van der Ouderaa et al. (2022)
learn partial or soft equivariances for each layer.

Neural architecture search Neural architecture search (NAS) aims to optimize both the architec-
ture and its parameters for a given task. Liu et al. (2018) approaches this difficult bi-level optimiza-
tion by creating a large super-network containing all possible elements and continuously relaxing
the discrete architectural parameters to enable search by gradient descent. Other NAS approaches
include evolutionary algorithms (Real et al., 2017; Lu et al., 2019; Elsken et al., 2017) and reinforce-
ment learning (Zoph & Le, 2017), which search over discretely represented architectures.

3 BACKGROUND

We assume familiarity with group theory (see Appendix A.1). For discrete group G, the lth G-
equivariant group convolutional layer (Cohen & Welling, 2016) of a group convolutional neural
network (G-CNN) convolves1 the feature map f : G → RCl−1 from the previous layer with a filter
with kernel size k represented as learnable parameters ψ : G→ RCl×Cl−1 . For each output channel

1We identify the correlation and convolution operators as they only differ where the inverse group element
is placed and refer to both as ”convolution” throughout this work.
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Figure 1: Visualizing the equivariance relaxation morphism and the [G]-mixed equivariant layer,
using the C4 group. In (A), the learnable parameters of a C4-equivariant convolutional layer are
expanded using each group element action so the expanded filter can be used in a standard convo-
lutional layer. The equivariance relaxation morphism reparametrizes the layer to be architecturally
constrained toC2 equivariance, initialized to functionalC4 equivariance. In (B), convolutional oper-
ations equivariant to subgroups ofC4 are summed with learnable architectural weighting parameters.

d ∈ [Cl], where [C] := {1, . . . , C}, and group element g ∈ G, the layer’s output is defined as:

[f ⋆G ψ]d(g) =
∑
h∈G

Cl−1∑
c=1

fc(h)ψd,c(g
−1h). (1)

The first layer is a special case: the input to the network needs to be lifted via this operation such
that the output feature map of this layer has a domain of G. In the case of image data, an image x
with C channels may be interpreted as a function x : Z2 → RC mapping each pixel in coordinate
space to a real number for each channel, where the cth channel of x is referred to as xc. The input is
x : Z2 → RC0 , so the layer is instead a lifting convolution:

[x ⋆G ψ]d(g) =
∑
y∈Z2

C0∑
c=1

xc(y)ψd,c(g
−1y). (2)

We present our contributions in the group convolutional layer case, although similar claims apply
for the lifting convolutional layer case.

4 TOWARDS ARCHITECTURAL OPTIMIZATION OVER SUBGROUPS

We propose two mechanisms to enable search over subgroups: the equivariance relaxation mor-
phism and a [G]-mixed equivariant layer. The proposed morphism, depicted in Figure 1(A) and
described in Section 4.1, changes the equivariance constraint from one group to another subgroup
while preserving the learned weights of the initial group convolutional operator. The [G]-mixed
equivariant layer, shown in Figure 1(B) and presented in Section 4.2, allows for a single layer to
represent equivariance to multiple subgroups through a weighted sum.

4.1 EQUIVARIANCE RELAXATION MORPHISM

The equivariance relaxation morphism reparametrizes a G-equivariant group (or lifting) convolu-
tional layer to operate over a subgroup of G, partially removing weight-sharing constraints from the
parameter space while maintaining the functionality of the layer.

Let G′ ≤ G be a subgroup of G such that G′ \ G is finite. Let R be a system of represen-
tatives of the left quotient (including the identity element), so that G′ \ G = {G′r | r ∈ R} ,
where G′r := {g′r | g′ ∈ G′} . Given a G-equivariant group convolutional layer with feature
map f and filter ψ, we define the relaxed feature map f̃ : G′ → R(Cl−1×|R|) and relaxed filter
ψ̃ : G′ → R(Cl×|R|)×(Cl−1×|R|) as follows. For c ∈ [Cl−1], s, t ∈ R, d ∈ [Cl]:

f̃(c,s)(g
′) := fc(g

′s), (3)

ψ̃(d,t),(c,s)(g
′) := ψd,c(t

−1g′s). (4)
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We define the equivariance relaxation morphism from G to G′ as the reparametrization of ψ as ψ̃
(Eq. 4) and reshaping of f as f̃ (Eq. 3). We will show that the new layer, [f̃ ⋆G′ ψ̃](d,t)(g

′), is
equivalent to [f ⋆G ψ]d(g

′t) down to reshaping. Since the mapping G′ × R → G, (g′, t) 7→ g′t,
is bijective, every g can uniquely be written as g = g′t with g′ ∈ G′ and t ∈ R. For g ∈ G,
G′g ∈ G′ \G has a unique representative t ∈ R with G′g = G′t, and g′ := gt−1 ∈ G′. Similarly,
h ∈ G may be written as h = h′s with unique h′ ∈ G′ and s ∈ R. With these preliminaries, we get:

[f ⋆G ψ]d(g
′t) = [f ⋆G ψ]d(g) (5)

=
∑
h∈G

Cl−1∑
c=1

fc(h)ψd,c(g
−1h), (6)

=
∑

h′∈G′

∑
s∈R

Cl−1∑
c=1

fc(h
′s)ψd,c(t

−1g′−1h′s), (7)

=
∑

h′∈G′

Cl−1∑
c=1

∑
s∈R

f̃(c,s)(h
′)ψ̃(d,t),(c,s)(g

′−1h′), (8)

=
[
f̃ ⋆G′ ψ̃

]
(d,t)

(g′), (9)

which shows the claim. Thus, the convolution of f̃ with ψ̃ is equivariant to G but parametrized as a
G′-equivariant group convolutional layer, where the representatives are expanded into independent
channels. This morphism can be viewed as initializing a G′-equivariant layer with a pre-trained
prior of equivariance to G, maintaining any previous training.

Standard convolutional layers are a special case of group-equivariant layers, where the group is
translational symmetry over pixel space. Regular group convolutions are often implemented by
relaxation to the translational symmetry group by expanding the filter via the appropriate group
actions, allowing a standard convolution implementation from a deep learning library to be used.
The equivariance relaxation morphism generalizes this concept to any subgroup. This, as well as
how the equivariance relaxation morphism is implemented, is discussed further in Appendix B.

4.2 [G]-MIXED EQUIVARIANT LAYER

Towards learning equivariance, we additionally propose partial equivariance via a mixture of lay-
ers, each constrained to equivariance to different groups, applied in parallel to the same input then
combined via a weighted sum. The equivariance relaxation morphism provides a mapping of group
elements between a group and a subgroup. For a set of groups [G], such as a subgroup lattice of
some group G, we define a [G]-mixed equivariant layer as:[

f⋆̂[G][ψ]
]
(d,t)

(g) =
∑

G∈[G]

zG

[
f ⋆G′ ψ̃G

]
(d,t)

(g) (10)

=

f ⋆G′

∑
G∈[G]

zGψ̃G


(d,t)

(g), (11)

where each element zG of [z] := {zG|G ∈ [G]} is an architectural weighting parameter such that∑
G∈[G] zG = 1, G′ is a subgroup of all groups in [G], each element ψG of [ψ] is a filter with a

domain of G, and ψ̃G is the transformation of ψG from a domain of G to G′ as defined in Equation
4. Thus, the layer is parametrized by [ψ] and [z], computing a weighted sum of operations that are
equivariant to different groups of [G]. The layer may be equivalently computed by convolution of
the input with the weighted sum of transformed filters, shown in Equation 11. We provide further
implementation details in Appendix B.

5 EQUIVARIANCE-AWARE NEURAL ARCHITECTURE ALGORITHMS

We present two NAS methods that utilize the presented mechanisms for discovering appropriate
equivariance during training: Evolutionary Equivariance-Aware NAS (EquiNASE) and Differen-
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Algorithm 1 Evolutionary equivariance-aware neural architecture search.

procedure EQUINASE(Initial symmetry group G)
Initialize population with a G-equivariant group convolutional network.
for each generation do

for each network in population do
Add children of network with relaxed equivariance constraints into population.

for each network in population do
Partially train network on dataset.

Select Pareto-efficient and high accuracy networks as new population.
return population

tiable Equivariance-Aware NAS (EquiNASD). Both methods optimize an architecture while learn-
ing weights, yielding a final trained network adapted to equivariances present in the training data.
However, they differ in NAS paradigm and approximate equivariance representation: EquiNASE ,
in Section 5.1, searches for networks composed of layers each fully equivariant to possibly different
groups, while EquiNASD, in Section 5.2, searches for smooth mixtures of equivariant layers.

5.1 EVOLUTIONARY EQUIVARIANCE-AWARE NAS

Towards finding the optimal full equivariance per layer, the equivariance relaxation morphism pre-
sented in Section 4.1 is applied as the genetic operator in an evolutionary hill-climbing algorithm.
The Evolutionary Equivariance-Aware NAS (EquiNASE) algorithm, given in Algorithm 1, is similar
to other evolutionary NAS methods such as Elsken et al. (2017) with pareto selection as in Falanti
et al. (2022). A population of networks, which starts with an individual with all layers equivariant
to the largest possible group, undergoes mutation via equivariance relaxation and selection based on
accuracy and parameter count to optimize neural architecture while learning network parameters.
See Appendix A.2 for further background on evolutionary NAS.

In each generation, candidate networks are evaluated based on maximizing validation accuracy and
minimizing parameter count: the pareto-dominant individuals with highest accuracy are kept, then
additional high-accuracy individuals are added if necessary until the desired parent population size
is reached. Offspring are generated from each parent separately by mutation using the relaxation
morphism. This preserves the weights of the parametrized equivariance during mutation, allow-
ing for the continuous training of networks over evolution by inheritance from parent individuals.
Specifically, mutation reduces a single layer’s parametrized equivariance to a subgroup within the
constraint that each layer has parametrized equivariance to a subgroup of all preceding layers. This
constraint yields local equivariance properties for the network, as shown in Weiler & Cesa (2019)
and Elsayed et al. (2020) to be empirically favorable in image classification tasks. The resulting
individuals are each trained independently for a given training time, and then this process repeats.

The second objective of minimizing parameter count is intended to advance efficient networks, such
as those with large symmetry groups. Accuracy-based selection alone would necessarily prefer
larger networks as mutation via the equivariance relaxation morphism results in two networks with
identical performance but different size, the relaxed network having more parameters, until train-
ing; potentially short-term increases in validation accuracy after training would then result in the
selection of individuals with more parameters. Thus, the proposed strategy of selecting both pareto-
dominant and high-accuracy individuals is intended to maintain a diverse yet efficient population
without succumbing to overly greedy selections too early.

5.2 DIFFERENTIABLE EQUIVARIANCE-AWARE NAS

In a contrasting paradigm, the [G]-mixed equivariant layer presented in Section 4.2 allows for
smoothly searching across a spectrum of equivariance for each layer via a differentiable NAS algo-
rithm. Our Differentiable Equivariance-Aware NAS (EquiNASD) algorithm, defined in Algorithm
2, is inspired by DARTS (Liu et al., 2018) with significant changes detailed in the following para-
graphs. EquiNASD simplifies the bilevel optimization of the architecture weighting parameters Z
and filter weights Ψ into alternating independent updates, computing the gradient update for Z with
the current, rather than optimal, Ψ for the current architecture encoded by Z, to boost search effi-
ciency with minimal performance loss compared to higher order approximations (Liu et al., 2018).
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Algorithm 2 Differentiable equivariance-aware neural architecture search.

procedure EQUINASD(Set of groups [G])
Initialize network with [G]-mixed equivariant layers, parametrized by Ψ and Z.
while not converged do

Update Z by ∇ZL(Ψ, Z).
Update Ψ by ∇ΨL(Ψ, Z).

return trained network

In most differentiable NAS search spaces, the desired output architecture is discretized to select
a subset of architectural options within constraints, then the weights are re-initialized and trained
within the static architecture. In our formulation, this is not necessary as any mixed operation
can be equivalently expressed as a single layer equivariant to any group G′ that is a common sub-
group to all groups of the mixed operation (Eq. 11): in our experimental case, this is a standard
translation-equivariant convolutional layer, so the final model can be equivalently expressed as a
standard convolutional model with encoded partial equivariance. Thus, the final optimized architec-
ture and trained weights are output from the single search process. We explore the standard NAS
paradigm, where weights are reinitialized and trained in the final static architecture, in Appendix D.

In order to enforce that the scaling of each filter does not confound the architecture weighting pa-
rameters, we use the weight normalizing reparametrization (Salimans & Kingma, 2016) and do not
update the scalar norm parameter of each filter after initialization.

We do not use disjoint datasets for updating Ψ and Z, but rather draw one batch for Ψ and another
for Z independently and randomly from the same training split. This allows for a standard dataset
split and to use the validation set for hyperparameter tuning.

These two NAS approaches present adaptations of two standard types of NAS, evolutionary and
differentiable, to the search for optimal partial equivariance. We next study empirically the two
EquiNAS methods on three datasets, one with known rotational symmetry and two with unknown
but visually significant rotational and reflectional symmetry.

6 EXPERIMENTS

We focus on the regular representation of groups and show experiments with reflectional and up
to 4-fold rotational symmetry groups applied to image classification tasks. Examples of symmetry
groups acting on pixel space, which corresponds to Z2, include T (2), which consists of discrete
translations in both dimensions; the cyclical groups Cn, which consist of n-fold rotations; and the
dihedral groupsDn, which consist of reflections with n-fold rotations, where n ∈ {1, 2, 4} for exact
symmetry without interpolation. The p4 group consists of discrete translations and multiples of 90◦
rotations and may be represented as T (2) ⋊ C4. The p4m group consists of discrete translations,
reflections, and multiples of 90◦ rotations and may be represented as T (2)⋊D4. As standard convo-
lutional layers are already equivariant to T (2), we refer to layers also equivariant to n-fold rotations
with or without reflections asDn orCn-equivariant, respectively. So, aC1 equivariant convolutional
layer is a standard translation-equivariant convolutional layer. We use {C1, D1, C2, D2, C4, D4} as
the set of potential groups for mutation in EquiNASE and as [G] in EquiNASD.

We present experiments on image classification for a variety of datasets. The Rotated MNIST dataset
(Larochelle et al., 2007, RotMNIST) is a version of the MNIST handwritten digit dataset but with
the images rotated by any angle. This task serves as a simple investigational study with known
symmetry, while the following two tasks are more realistic and complex. The Galaxy10 DECals
dataset (Leung & Bovy, 2019, Galaxy10) contains galaxy images in 10 broad categories. The ISIC
2019 dataset (Codella et al., 2018; Tschandl et al., 2018; Combalia et al., 2019, ISIC) contains
dermascopic images of 8 types of skin cancer plus a null class. For Galaxy10 and ISIC, we down-
sample the images to 64 × 64 due to computational constraints, which adds notable difficulty to
the tasks. These tasks exhibit varying levels of rotational and reflectional symmetry, motivating
architectural optimization to determine the most effective application of equivariance constraints.

Across all experiments, the architectures are designed to have consistent channel dimensions once
expanded to a standard translation-equivariant convolutional layer for each layer across models.
Thus, constrained equivariance to a larger symmetry group results in fewer learnable parameters. A
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Method RotMNIST Galaxy10 ISIC

EquiNASE 1.78 ± 0.04 20.3 ± 0.9 31.0 ± 0.4
RPP (Finzi et al., 2021) 2.18 ± 0.04 24.3 ± 2.8 32.2 ± 1.7
D4 baseline 1.78 ± 0.11 50.8 ± 17.0 32.1 ± 2.4
C4 baseline 1.64 ± 0.22 29.6 ± 5.5 32.9 ± 1.0
C1 baseline 5.02 ± 1.15 31.6 ± 4.8 33.2 ± 1.5
C4 (prior: D4) 1.93 ± 0.05 27.8 ± 5.3 31.9 ± 1.5
C1 (prior: D4) 3.40 ± 0.07 25.9 ± 2.3 31.4 ± 2.6
C1 (prior: C4) 2.96 ± 0.05 30.7 ± 7.1 32.5 ± 1.1

Table 1: Test error (lower is better) in percent of incorrect classifications across tasks and ap-
proaches. Statistics are aggregated over the final selected population of 5 individuals for EquiNASE

and across 5 random seeds for all other methods. The best and second best average errors per task
are highlighted. See Figures 5-6 in Appendix D for individual results and additional experiments.
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Figure 2: Historical parameter counts of all selected individuals for EquiNASE on RotMNIST. The
architectures of the final selected population are labeled. Each history is colored by the final test
accuracy, measured of each individual upon removal. For other tasks, see Figure 7 in Appendix D.

layer constrained to C4 equivariance has |C4 \D4| = 2 times as many independent channels and as
many parameters as a layer constrained toD4 equivariance. This is a notably different paradigm than
other works that equate parameter counts across architectures with different equivariance properties.

As baseline comparisons, we train and test G-CNNs with static architectures. In addition to the
static baselines, we re-implement the residual pathway priors (RPP) approach by Finzi et al. (2021)
as a C1 equivariant layer with regularization in parallel with a D4 equivariant convolutional layer.

Further experiment details such as architecture details and other hyperparameters are in Appendix
C. For each paradigm of experiments, we present results in the following subsections, with general
discussion in Section 7. Additional ablation and random search baselines are in Appendix D.

6.1 EVOLUTIONARY EQUIVARIANCE-AWARE NAS

The classification test errors are listed in Table 1. The advantages of equivariance search methods are
most apparent in the Galaxy10 benchmark. While EquiNASE outperforms most baselines on RotM-
NIST and all baselines on ISIC, it has similar performance and some final architectures to the D4

baseline for both tasks. However, the D4 baseline fails at the Galaxy10 task, demonstrating that the
same equivariant architecture can not always be naively applied. Both search methods, EquiNASE

and RPP, outperform all baseline models on Galaxy10, and by a large margin for EquiNASE .

The evolutionary progress on RotMNIST is shown in Figure 2: the selected population maintains
a fully equivariant network in every generation. The final selected population originates from two
main lineages, one staying fully equivariant until the last generations and the other diverging from
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Method RotMNIST Galaxy10 ISIC

EquiNASD 2.29 ± 0.27 21.8 ± 1.2 32.8 ± 0.6
RPP (Finzi et al., 2021) 2.89 ± 0.27 22.0 ± 1.8 31.5 ± 0.9
D4 Baseline 2.97 ± 1.50 22.5 ± 2.0 32.0 ± 1.0
C4 Baseline 2.43 ± 0.54 22.2 ± 2.4 32.8 ± 1.0
C1 Baseline 3.97 ± 0.75 26.5 ± 1.5 32.9 ± 3.1

Table 2: Test error (lower is better) in percent of incorrect classifications across tasks and ap-
proaches. The best and second best average errors per task are highlighted. See Figures 8-9 in
Appendix D for individual results and additional experiments.
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Figure 3: Architecture weighting parameters by layer for one selected trial from RotMNIST,
Galaxy10, and ISIC. For other trials, see Figures 10-12 in Appendix D.

the fully equivariant network midway through, showing that training with dynamically constrained
parametrizations can produce performant models.

In addition to the normally initialized static baselines, we also train and test baselines that are initial-
ized with priors to larger symmetry groups. These are implemented by initializing all layers to be
constrained to the prior symmetry group, then using the equivariance relaxation morphism on each
layer. EquiNASE searches for relaxation schedules that yield trained priors on equivariance, while
these additional baselines yield untrained priors. The results in Table 1 show that, theC1-equivariant
networks generally improve with either equivariance prior, while the C4 equivariant networks per-
form better with D4 equivariance initialization only when the D4 constrained baselines also work
well. The untrained prior methods do not perform as well as EquiNASE on RotMNIST, showing
the benefit of investing some training time to the constrained equivariance. For the other tasks, the
baselines with priors have better performances than their constrained baseline counterparts.

6.2 DIFFERENTIABLE EQUIVARIANCE-AWARE NAS

The classification test errors are listed in Table 2. EquiNASD achieves better test accuracy than the
other comparable methods on RotMNIST and Galaxy10. Due to differences in training protocol,
only comparisons of relative rankings with Table 1 are possible: baseline methods accuracies fol-
low similar ranking patterns, suggesting the benefit of general C4 equivariance for RotMNIST and
Galaxy10 and general D4 equivariance, including RPP, for ISIC. In this training protocol notably
with adaptive optimizers, the results are more consistent across methods and trials.

The dynamics of architecture weighting parameters for one exemplary trial per task are shown in
Figure 3. The general trend of less constrained layers toward the output supports the conjecture of
local equivariance being beneficial. However, this effect is less consistent for ISIC, the only task
where EquiNASD did not exceed baselines, possibly indicating less inherent symmetry. As seen in
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Appendix D, the final mixing of architectures for ISIC included a high level of C1, indicating that
feature analysis outside of these symmetry groups is important for this benchmark.

Previous differentiable NAS works often used regularization of network size or even architecture
weighting parameters themselves to encourage efficient architectures with a single highly weighted
choice for each layer. However, our algorithm shows strong preference for a single, more equivariant
and thus more expressive layer, notably to D4 or C4 equivariance, without such regularization. This
may be due to the bilevel optimization dynamics: more constrained layers may be able to make more
effective updates and thus become favorable compared to the lagging larger layers.

7 DISCUSSION

To our knowledge, this is the first work which proposes search methods for networks with dynami-
cally constrained equivariance. Many NAS approaches separately search for an architecture and then
reinitialize and retrain the weights, while our two proposed approaches find an optimal architecture
with trained weights in a single process, notably with dynamically constrained weights. Gradient-
based tuning (Maclaurin et al., 2015) has shown the benefit not only of optimizing hyperparameters
but also of dynamically adjusting them during training (Lichtarge et al., 2022). Dynamically con-
strained weights can reap the benefits of specialization and generalization over the course of training.

Our two equivariance-aware NAS approaches have distinct approaches: EquiNASE searches for
architectures composed of discretely equivariant layers, while EquiNASD searches for continuous
mixtures of equivariance within each layer. The EquiNASD algorithm avoids many known problems
in differentiable NAS such as the discretization gap that occurs when searching over a continuous
relaxation of a discrete architectural search space (Xie et al., 2021), such as that of EquiNASE .
Towards searching for discretely equivariant layers using the [G]-mixed equivariant layer, proximal
NAS algorithms use techniques such as projection (Yao et al., 2020) and straight-through estimation
(Li et al., 2022) to avoid the discretization gap and thus may be effective for this application.

EquiNASE is innately greedy: at each selection step, the population is evaluated by known current
performance rather than unknown final performance, biased to architectures that train quickly. Net-
works with more equivariance constraints tend to learn faster, but equivariance relaxation may yield
large gradients for newly unconstrained parameters and thus fast increases in performance. Further
work could utilize metrics for final performance, such as proxies (White et al., 2022).

The theoretical and algorithmic contributions of this work are applicable beyond the image classifi-
cation experiments presented to architectures with parametrized equivariance to any discrete group.
We leave the extension to other group representations and domains as future work, such as the con-
tinuous case via careful analysis of the regular representation, still given G′ \G is finite.

Our proposed equivariance-aware NAS problems can be practically applied to find effective models
or architectures for datasets with hypothesizable symmetry. EquiNASE may particularly work well
on tasks that benefit from local equivariance, determined by analyzing the architecture weighting
parameters from first applying the more efficient EquiNASD, as well as for finding good discrete
architectures within which to retrain weights, based on the ablation and random comparisons. We
thus recommend EquiNASD for practical applications if the final model is not restricted to discrete
equivariance, in which case it can be used to inform design decisions for applying EquiNASE .

Beyond NAS, the equivariance relaxation morphism could be used in other applications such as
fine-tuning and distillation. Layers of a pre-trained equivariant network could be expanded via
equivariance relaxation before fine-tuning on the same or a new task. Similarly, a network could be
distilled to a wider architecture for additional performance benefits.

Conclusion We present two mechanisms towards equivariance-aware architectural optimization,
the equivariance relaxation morphism and the [G]-mixed equivariant layer, and two NAS algorithms
that respectively implement these mechanisms evolutionarily as EquiNASE and differentiably as
EquiNASD. We investigate how dynamic equivariance achieved by these algorithms affects the
training and performance of models across multiple image classification tasks of varying complexity
and assumed symmetry, demonstrating that these techniques can search for performant architectures
and weights even on noisy tasks. The proposed mechanisms and algorithms are extendable beyond
vision tasks to any architecture with parametrized equivariance to any discrete group.
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A ADDITIONAL BACKGROUND

A.1 SYMMETRIES IN NEURAL NETWORKS

A symmetry of an object is a mapping of the object onto itself such that structure is preserved. A
symmetry group G is a set of such mappings along with a binary operation · : G × G → G, known
as the group product, that satisfies axioms for closure, associativity, the identity, and the inverse
(Herstein, 2006). A group G acts on a set X via the group action . : G × X → X , (g, x) 7→ g.x
that satisfies axioms for identity and compatibility: X is called a G-space.

Equivariance is the property of a mapping such that transformation of the input results in equiv-
alent transformation of the output. Formally, a mapping h : X → Z between two G-spaces is
G-equivariant if for all g ∈ G and x ∈ X we have: h(g.x) = g.h(x). For example, an image seg-
mentation neural network should be T (2)-equivariant: shifting the input should result in the same
shift in the output.

Invariance is a special case of equivariance, where the output of the function is completely inde-
pendent of transformation of the input. Formally, a mapping h : X → Z is G-invariant if for all
g ∈ G and x ∈ X we have: h(g.x) = h(x). For example, an image classification network should be
T (2)-invariant: shifting the input should not change the output. Symmetries leave objects invariant.

For two groups G and H with group products ·G and ·H respectively where H acts on G with
group action ., the (outer) semi-direct product G ⋊ H of H acting on G is a group composed of
the set of elements G ×H with group product (g, h) · (g′, h′) = (g ·G (h.g′), h ·H h′) and inverse
(g, h)−1 = (h−1.g−1, h−1).

A subgroup H of G is a nonempty subset with the same group product that also fulfills the group
axioms. Then, gH = {g · h|h ∈ H} and Hg = {h · g|h ∈ H} denote the left coset and right coset,
respectively, of H with representative g.

A.2 NEURAL ARCHITECTURE SEARCH

Evolutionary algorithms are optimization methods inspired by evolution in biology, where individ-
uals in a population compete with their phenotypic traits in order to pass on their genotypic traits to
offspring. The population is the current collection of individuals. Each individual is an instance of
the object to be optimized and has a genotype that is decoded into a phenotype. In this case, each
individual is a neural network, with a genotype that encodes the parametrized equivariance group of
each convolutional layer, represented as a vector of integers. The individual continues training on
the task before competing against other individuals to be selected as a parent to mutate to generate
the next population. Each parent itself is kept for the next population, as well as each valid child that
is generated via the equivariance relaxation morphism, such that they are functionally equivalent to
their parent at initialization (although with a different architecture) and thus have the same fitness
before training. Each individual in this population is partially trained, such that these children di-
verge from their siblings and parent, so that the next set of parents may be selected and this process
repeats.
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Pareto dominance can be used in multi-objective optimizations to select the next parent population.
For a population of individuals each scored in n objectives, an individual is pareto-optimal if no
individual has at least one strictly better score for an objective without that of any other objectives
being strictly worse. The pareto front is the set formed by all pareto-optimal individuals.

B IMPLEMENTATION DETAILS

Group convolutional layers The implementation of regular group convolutional layers can be
viewed as a special case of our proposed equivariance relaxation morphism. With the preliminaries
given in Section 4.1 and the case ofG′ = T (2), f̃ and ψ̃ are computed such that f̃(c,s)(g′) := fc(g

′s)

and ψ̃(d,t),(c,s)(g
′) := ψd,c(t

−1g′s) for each g′ ∈ T (2), c ∈ [Cl−1], s, t ∈ R, and d ∈ [Cl].

Let SG := |R|. The learnable parameters of the Gl-equivariant lth layer with Cl output channels,
corresponding to ψ, are stored as a tensor of sizeCl×Cl−1×SGl

×Kl×Kl. The filter transformation
expands this filter tensor by performing the action of each r ∈ R on another copy of the tensor to
expand its shape along a new dimension, resulting in a tensor of sizeCl×SGl

×Cl−1×SGl
×Kl×Kl,

which is reshaped to ClSGl
×Cl−1SGl

×Kl×Kl. The input tensor to the lth layer, corresponding to
f, is in the shape ofB×Cl−1×SGl

×Hl−1×Wl−1,which is reshaped toB×Cl−1SGl
×Hl−1×Wl−1

and convolved with the expanded filter. The output of shape B × ClSGl
×Hl ×Wl is reshaped to

B × Cl × SGl
×Hl ×Wl.

Equivariance relaxation morphism To implement the equivariance relaxation morphism, the
new filter tensor is initialized by applying Equation 4 such that result of applying the preceding filter
transformation is equivalent. Our implementation of group actions relies on group channel indexing
to represent the order of group elements: to ensure this is consistent before and after the morphism,
the appropriate reordering of the output and input channels of the expanded filter are applied upon
expansion. The new filter tensor has a shape of Cl|R| × Cl−1|R| × SGl

/|R| ×Kl ×Kl. The [G]-
mixed equivariant layer is built on top of this implementation, also using proper input and output
channel reordering between layers to ensure correct mixing of group channels.

C EXPERIMENTAL DETAILS

Architecture backbone For both EquiNASE and EquiNASD experiments, we use the same back-
bone architecture, such that the static baselines have the same architecture across experiments. The
architectures have a lifting layer followed by 7 group convolutional layers, for a total of 8 convolu-
tional layers. After 4 layers, the channel count doubles, from 16 to 32 for a D4 equivariant layer and
scaling up for smaller symmetry group equivariance constraints. An average pooling layer is placed
after every other layer for all architectures and additionally after the fifth and seventh convolutional
layers for Galaxy10 and ISIC. After the final group convolutional layer is a group-dimension aver-
age pooling followed by two linear layers to the output dimension. Every convolutional and linear
layer except the output layer is immediately followed by a batchnorm then a ReLU.

Hyperparameters The hyperparameters for each algorithm are selected such that baselines only
differ by training time and optimizers. The learning rates were selected by grid search over baselines
on RotMNIST. For all experiments in Sections 6.1, we use a simple SGD optimizer with learning
rate 0.1 to avoid confounding effects such as momentum during the morphism. For EquiNASE ,
the parent selection size is 5, the training time per generation is 0.5 epochs, and the number of
generations is 50 for all tasks. Baselines were trained for the equivalent number of epochs. For all
experiments in Section 6.2, we use separate Adam optimizers for Ψ and Z, each with a learning rate
of 0.01 and otherwise default settings. The total training time is 100 epochs for RotMNIST and 50
epochs for Galaxy10 and ISIC. For RPP, we use a C1-equivariant layer with an L2 regularization
parameter of 1e−6 in parallel with a D4-equivariant layer without regularization.

For RotMNIST and MNIST, we use the standard training and test splits with a batch size of 64,
reserving 10% of the training data as the validation set. For Galaxy10, we set aside 10% of the
dataset as the test set, reserving 10% of the remaining training data as the validation set. For ISIC,
we set aside 10% of the available training dataset as the test set, reserving 10% of the remaining
data as the validation set and the rest as training data. For the latter two datasets, we resize the
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images to 64 × 64 due to computational constraints and use a batchsize of 32. The validation sets
were previously used for hyperparameter tuning: for experimental results, they are only used for
the experiments in Section 6.1 as necessary for the EquiNASE algorithm. No data augmentation is
performed, although the datasets are normalized.

D ADDITIONAL EXPERIMENTS AND FIGURES
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Figure 4: EquiNASD on classification of six augmentations of MNIST, where each row is a trial on
MNIST augmented to exhibit symmetry to the labeled group.

To explore the symmetry discovery of EquiNASD, we apply it to six augmentations of the MNIST
dataset (LeCun et al., 1998), where each augmentation applies the group actions of each group in
{C1, C2, C4, D1, D2, D4} respectively. The resulting architecture dynamics of this experiment are
shown in Figure 4, showing that less augmented versions still have some inherent symmetry, while
more augmented versions induce stronger architectural changes towards layers that are equivari-
ant to larger groups. Across all augmentations, earlier layers tended towards more constraints to
equivariance.

As ablation studies and comparisons, we implement two kinds of random search for each NAS
method. The first ablates smart architecture search: EquiNASE Random Select works as described
in Algorithm 1 but with random parent selection (instead of pareto-front selection) and EquiNASD

Random Z works as described in Algorithm 2 but with random Z updates (instead of gradient de-
scent) by shuffling Z gradients. The second is more akin to standard NAS random search: for the
evolutionary paradigm, we train 30 randomly selected static architectures in the discrete architecture
search space for the same training time and selecting the top 5 by validation accuracy, and for the
differentiable paradigm, we train 25 randomly selected static architectures in the continuous archi-
tecture search space and selecting the top 5 by validation accuracy. 30 and 25 were respectively
calculated to be approximately the same compute cost as the trials of EquiNASE and EquiNASD.
These are labeled as “Random Static” for both the evolutionary and differentiable paradigms. Since
Random Static trains static architectures while EquiNASE and EquiNASD dynamically search for
both architectures and parameters, we take the best 5 architectures for each and retrain their param-
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eters from scratch as in the standard NAS paradigm, labeled as EquiNASE Retrain and EquiNASD

Retrain, respectively, for fair comparison to Random Static.

The results of these additional experiments are compared against those of our main algorithms and
baselines in Figures 5 and 8.

Shown in Figure 5, EquiNASE outperforms EquiNASE Random Select, showing the benefit of using
informed selection to guide the relaxation of equivariance constraints over training. Additionally,
EquiNASE Retrain outperforms the Random Static baseline, showing that using compute in an
informed search is more beneficial than just randomly searching the space of static architecture
constraints.

EquiNASD finds competitive architectures on average and can find architectures which outperform
baseline choices like architectures fully equivariant to C1 or D4. From comparing EquiNASD Re-
train to EquiNASD results in Figure 8, retraining a resulting architecture is not consistently better
or worse than using the final weights from EquiNASD, showing that there isn’t a disadvantage to
training weights during search and avoiding the additional cost of a post-search training step.

The use of randomized loss information in Random Static in Figure 8 shows that an informed search
for architecture hyperparameters is generally useful. However, experiments on the ISIC benchmark
demonstrates that the architecture search can be deceptive and that random loss information can
outperform informed loss. This motivates exploration into the use of noise during the search process
for architectural parameters.

A sampling of random continuous architectures in Random Static in Figure 8 shows that random ar-
chitectures can perform well on problems where fully equivariant architectures like the D4 baseline
already perform well. However, on the Galaxy10 problem, the D4 and C4 baseline have high vari-
ance, suggesting that a fully equivariant architecture is sub-optimal. On this baseline, EquiNASD

greatly outperforms a search of random architectures, demonstrating that EquiNASD can discover
the appropriate equivariance for a specific dataset over fixed or randomly selected architectures.

The search space for EquiNASD is already well-formed for random architectures, compared to the
discrete search space of EquiNASE . This is enabled by the [G]-mixed equivariant layer, which
is a contribution of this work. Random non-mixed equivariant architectures do worse on all three
benchmarks compared to random architectures which use the [G]-mixed equivariant layer. This can
explain why the EquiNASD results are closer to random baselines than the EquiNASE results, as the
search space permits easily finding the appropriate mix of equivariances compared to a discretized
search space.

Our methods enable searching for both architecture and parameters concurrently in a single training
process. This approach is more efficient than NAS approaches that only search for architectures, re-
quiring a retraining process within the resulting architecture for evaluation. However, these ablation
and random search comparisons show that our algorithms may get performance gains from adding
a retraining phase with a tradeoff of further compute cost.
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Figure 5: Test errors for experiments of Section 6.1.
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Figure 6: Test errors against stored parameter count for experiments of Section 6.1. For EquiNASE ,
parameter counts of the final models are shown, although training begins with the same parameter
count as theD4 baselines as shown in Figures 2 and 7. Although RPP trains with a higher parameter
count, the parameters may be stored in a single filter per layer using Equation 11 for testing.
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Figure 7: Historical parameter counts of each selected individual for EquiNASE (see Figure 2 for
RotMNIST).
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Figure 8: Test errors for experiments of Section 6.2.
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Figure 9: Test errors against stored parameter count for experiments of Section 6.2. Although
EquiNASD and RPP train with a higher parameter count, the parameters may be stored in a single
filter per layer using Equation 11 for testing.
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Figure 10: Architecture weighting parameters by layer for all trials on RotMNIST.
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Figure 11: Architecture weighting parameters by layer for all trials on Galaxy10.
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Figure 12: Architecture weighting parameters by layer for all trials on ISIC.
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