Forget for Get: A Lightweight Two-phase Gradient Method for Knowledge
Editing in Large Language Models

Anonymous ACL submission

Abstract

Recent studies have highlighted the remark-
able knowledge retention capabilities of Large
Language Models (LLMs) like GPT-4, while
simultaneously revealing critical limitations in
maintaining knowledge currency and accuracy.
Existing knowledge editing methodologies, de-
signed to update specific factual information
without compromising general model perfor-
mance, often encounter two fundamental chal-
lenges: parameter conflict during knowledge
overwriting and excessive computational over-
head. In this paper, we introduce ForGet (For-
get for Get), a novel approach grounded in the
principle of "forgetting before learning". By
pinpointing the location within the LLM that
corresponds to the target knowledge, we first
erase the outdated knowledge and then insert
the new knowledge at this precise spot. For-
Get is the first work to leverage a two-phase
gradient-based process for knowledge editing,
offering a lightweight solution that also delivers
superior results. Experimental findings show
that our method achieves more effective knowl-
edge editing at a lower cost compared to previ-
ous techniques across various base models.

1 Introduction

Large Language Models (LLMs) have revolution-
ized natural language processing, enabling unprece-
dented capabilities in language comprehension and
generation (Brown et al., 2020; Raffel et al., 2020;
Ouyang et al., 2022). A key factor behind these
capabilities is the vast amount of knowledge embed-
ded within these models. However, this knowledge
is often static, leading to issues such as outdated
information, inaccuracies, and potential privacy
violations. For instance, answering *Who is the
President of the United States?’ in 2024 yields *Joe
Biden,’ but this response becomes incorrect in 2025
if the model is not updated. Knowledge Editing is
proposed to address this problem. Knowledge Edit-
ing aims to modify the specific knowledge stored in

O, old knowledge . new knowledge
b©~% OB »O-X'
R Pon R Pox R Poe
oy s

>Q

Figure 1: Clearing old knowledge before learning new
knowledge can mitigate the impact of knowledge con-
flicts.

LLM without affecting other irrelevant knowledge
and maintaining a low computational cost (Yao
et al., 2023).

Existing knowledge editing methods can be
broadly categorized into three classes (Li et al.,
2024). Some of the methods utilize an additional
knowledge base to store edits (Mitchell et al.,
2022; Hartvigsen et al., 2024; Wang et al., 2024b),
some methods use in-context learning (Zheng et al.,
2023; Qi et al., 2024), others first decide the loca-
tion to edit then perform editing at the specific loca-
tion (Huang et al., 2023; Yu et al., 2024; Mitchell
et al., 2021; Dai et al., 2021; Meng et al., 2022a,b).
The existing methods have largely succeeded in
editing the knowledge stored in LLMs.

These approaches attempt to edit from various
perspectives; however, they all encounter signif-
icant limitations. One of the issues is that they
merely address the old knowledge when insert-
ing new knowledge. When editing knowledge in
LLMs, conflicts between new and old knowledge
may arise, which can hinder the model’s ability
to learn new information (Wang et al., 2024a) and
weaken the effect of editing. Just like humans, it
is difficult to change old knowledge when it has
become deeply ingrained. Another is the precision
of editing location. Some of the methods attempted
to address knowledge conflicts but did not focus
on specific location within LLMs. It is crucial to
determine appropriate and precise editing locations.
Otherwise, editing effects may be weakened and
irrelevant knowledge may be changed accidentally.

In order to resolve knowledge conflicts, a
straightforward approach is to forget the old knowl-
edge before learning the new knowledge. For ex-
ample, before going to Vienna, one should first
remove the luggage packed for Bangkok from the
suitcase and then pack the luggage prepared for Vi-
enna. Inspired by the human cognitive mechanisms
where forgetting old information is a prerequisite
for learning new information, we propose a method
named ForGet (Forget for Get). First of all, criti-
cal MLP modules are found out by the knowledge
circuits determined by target knowledge. Knowl-
edge editing is then performed on these critical
MLP modules while the rest of the model remain
unchanged. During the editing process, we first
apply gradient ascent to these modules to eliminate
the old knowledge, which is defined as the forget-
ting process. Gradients ascent has been adopted for
LLMs to mitigate privacy risks (Jang et al., 2023).
After the forgetting process, we use gradients de-
scent to insert new knowledge into the model. To
the best of our knowledge, this is the first work to
leverage gradient ascent and descent for knowledge
editing, offering a lightweight and efficient solution
to the problem of knowledge conflicts. The main
contributions of this work can be summarized as
follows:

e We propose ForGet, the first knowledge
editing framework to leverage a two-phase
gradient-based process—gradient ascent for
forgetting outdated knowledge and gradient
descent for acquiring new knowledge.

e We explore the potential of using knowledge
circuits to determine editing location, which
effectively depict the storage and flow of
knowledge within Large Language Models.

e The experimental results demonstrate that
our method is able to achieve both effective
editing and preservation of unrelated knowl-
edge, while being significantly more resource-
efficient compared to existing methods.

2 Related Work

Currently, a series of methods have been proposed
to address the problem of knowledge editing for
LLMs. They can be roughly divided into three
categories according to the process of humans cor-
recting mistakes: methods with additional memo-
ries, methods learning from examples and methods
modifying components directly(Li et al., 2024).

2.1 Additional Memories

Directly memorizing edits and preparing them for
future use is a straightforward strategy. The edits
may not be mastered but can be recalled in the fu-
ture. Some of the existing editing methods take use
of additional memories to store the knowledge to
be edited in LLMs. SERAC (Mitchell et al., 2022)
stores edits in a cache and uses an edit scope clas-
sifier to choose between the original model and a
counterfactual model based on input and cached
edits. However, the scope classifier and counterfac-
tual model need to be trained in advance. Unlike
SERAC, GRACE (Hartvigsen et al., 2024) stores
edits in a codebook, searching and replacing er-
roneous knowledge with the most similar key in
codebook when an error occurs. The codebook
requires update from time to time, which adds com-
plexity and increases workload. WISE (Wang et al.,
2024b) employs a dual-memory design which con-
tains a main memory containing old knowledge
and a side memory containing edits. In conclusion,
the methods of rote memorization perform well by
using additional memories and scope classifiers.
Consequently, this leads to ever-increasing storage
requirements and model complexity.

2.2 Learning from Examples

Methods of learning from examples refers to meth-
ods utilizing In-context learning. Similar to hu-
mans, large language models (LLMs) can excel and
outperform zero-shot inference across various tasks
when provided with a few examples (Brown et al.,
2020; Liu et al., 2022). Without changing any pa-
rameters, Zheng et al. (Zheng et al., 2023) propose
editing the knowledge in the model by construct-
ing three different demonstrations: copy, update,
and retain. Such direct use of In-context learn-
ing can lead to overfitting to individual samples
and requires meticulously crafted examples. Build-
ing upon this, Qi et al. (Qi et al., 2024)propose
employing In-context learning aimed at a distribu-
tion rather than individual samples. Their method
aims to guide the model to learn to generate a dis-
tribution consistent with the target knowledge by
minimizing the difference in the model’s output
with and without given context. The above meth-
ods take use of In-context learning which which
often requires a significant amount of human labor
to design and construct demonstrations. Another is-
sue is that these methods may also affect irrelevant
knowledge in LLMs.

2.3 Modifying Components Directly

Other methods modify base model’s components
directly to achieve better editing results. These
methods aiming to edit base model effectively and
precisely can be categorized into two classes.

Adding Trainable Components while maintain-
ing the original modules unchanged is one of the
strategies to edit knowledge precisely. These meth-
ods incorporate new knowledge into the model by
optimizing these new components. Huang et al.
(Huang et al., 2023) rectify erroneous knowledge
by adding neurons into the final layer, which are
trained to encapsulate new knowledge. However,
the number of new neurons increases as the num-
ber of new edits grows. To effectively encodes edit
information, Yu et al. (Yu et al., 2024) propose
MELO consisting dynamic LoRA (Valipour et al.,
2023) and vector database. During each editing ses-
sion, only the relevant parts of LoRA are activated.
Furthermore, MEND (Mitchell et al., 2021) em-
ploys the strategy of meta-learning, integrating an
entire hypernetwork within the model. These meth-
ods edit knowledge by adding new components
into original model, which augment the model’s
complexity.

Updating Original Components can effectively
avoid augmenting the model’s complexity. Ni et
al. (Ni et al., 2024) proposed "Forgetting before
Learning" theory and fine tune the base model to se-
quentially ’forget’ outdated knowledge and ’learn’
new knowledge. To achieve precise edits, many
researchers have focused on identifying optimal
editing locations before performing editing. Geva
et al. (Geva et al., 2021) find that specific knowl-
edge are stored in the form of key-value pairs in
feed forward layers in LLMs. Dai et al. (Dai et al.,
2021) proposed the concept of knowledge neurons
and try to edit knowledge by modifying knowl-
edge neurons. Some works apply causal mediation
analysis (Pearl, 2022) to find editing location. Af-
ter finding one critical MLP module, Meng et al.
(Meng et al., 2022a) employ rank-one update (Bau
et al., 2020) to this module. Later, Meng et al.
(Meng et al., 2022b) think one critical MLP mod-
ule may be insufficient for knowledge editing, so
they use multiple MLP modules to perform editing.
Hu et al. (Hu et al., 2024) identify a pattern mis-
match issue when locating edit positions and pro-
pose using specific edits to locate specific editing
locations. However, the methods merely address
the old knowledge, which may cause knowledge

The capital of France is

Input Embed
(1) a0 ho

MLPO
/
MLPI

(a2l hll
O a23n7

Residual Output

Paris

Figure 2: A simplified schematic diagram of the knowl-
edge circuit for the knowledge "The capital of France is
Paris."

conflict with new knowledge.

In contrast, ForGet is a lightweight method with-
out additional components, thereby ensuring the
model’s complexity remains unchanged and low
human labor. What’s more, ForGet not only iden-
tifies precise editing locations but also explicitly
mitigates knowledge conflicts through a two-phase
gradient-based process, making it a more robust
and conflict-free editing process.

3 Task Definition

Our task is to edit knowledge within LLMs pre-
cisely. As equation 1 shows, given the target knowl-
edge K and original model f with parameters 6,
our goal is to design a method F'() that performs
the necessary edits to produce an updated model f’
with parameters 6’

f'=F(K[) (1

Editing knowledge precisely means that only the
knowledge within editing scope will be edited and
others should not be affected, as equation 2 shows.
The editing scope refers to a set of inputs related
to the target knowledge that requires editing (Yao
et al., 2023). For example, the answer to "Who
is the President of the United States" should be
changed from "Biden" to "Trump", but the answer
to "Who is the President of Russia" should remain
"Putin" both before and after editing.

, ', ifze X*
pu— 2
/(@) {y, ife ¢ X* @

where X* means editing scope which is the

Input: xp, = {xy1, %5, "+, X}

Target old: x; = {Xp 41, Xna2, """, XN}

v
MLP of Layer2 is trainable Layer 0
self-attention layer \ Layer 1
' | i
| 2 !
E ch H Layer 2
i | i
' I
I
: OI- ! Layer 3
]
i I
i I
1
W2.oj ;
X ey Layer 4
Layer N
v

OB & & &

e

Input: x,, = {9*61,962. o xn}
Target new: X; = {Xp41, Xn42,

v

Layer 0

X}
Layer 1

Layer 3
=

Layer 4

4
4
Layer 2]
3
S

Layer N %
v

Target new: X; = {Xp41, Xn42 """ XN}

Figure 3: After determining the editing location, only the modules within editing location are trainable in later
process. First, gradient ascent is performed to eliminate old knowledge, followed by the opposite gradient descent

to acquire new knowledge.

range of knowledge that needs to be edited. And 3/
represents output context related to knowledge K
while y is the original output.

4 Method: ForGet

In this section, we are going to introduce our
method for knowledge editing: ForGet (Forget
for Get). Instead of making use of additional
memories or designing clever demonstrations, we
adopted a direct two-phase gradient adjustment,
offering a lightweight yet effective solution.

The ForGet framework consists of two main
phases: (1) determining the editing locations and
(2) performing the editing operations. In the first
phase, we identify the components of the model
that are most relevant to the target knowledge re-
quiring editing. Editing at this location enhances
the effectiveness of the edits while mitigating the
impact on irrelevant knowledge. The second phase
occurs at the editing location identified in the first
phase. We begin by using gradient ascent to forget
the old knowledge, followed by gradient descent to
acquire the new knowledge.

4.1 Determine Editing Location

4.1.1 Knowledge Circuits

To pinpoint the optimal editing locations, we lever-
age knowledge circuits, a powerful framework for
understanding the mechanisms of knowledge stor-
age and flow within LLMs (Yao et al., 2024). A

neural network model including Large Language
Model can be viewed as a connected directed
acyclic graph G. Its nodes represent the compo-
nents of the neural network such as neurons, atten-
tion heads and embeddings and its edges represents
the relations between these components such as
residual connections, attention mechanisms, and
projections. A knowledge circuits, defined as a sub-
graph of LLM’s connected directed acyclic graph
and represented as C' C G, is responsible for cer-
tain knowledge. That is to say, for a particular piece
of knowledge, its knowledge circuit is the part of
the large language model that is most closely re-
lated to it. Therefore, identifying the knowledge cir-
cuit reveals the significant locations within the large
language model where the knowledge is stored,
generated and expressed.

4.1.2 Editing Location Discovery

The knowledge circuit for a specific piece of knowl-
edge comprises the nodes and edges most closely
associated with it. To locate the knowledge circuit,
we evaluate the importance of each edge in the
computational graph using both clean inputs and
corrupted inputs.

IL(Z + £(z - 2))
0z

/ 1 <
(2 = 2u)— > 3)

k=1

Inspired by Hanna et al., we use EAP-IG (Edge
Attribution Path with Integrated Gradients) (Hanna

et al., 2024) score to quantify the contribution of
each edge to the target knowledge. First of all, se-
quences of token embeddings z and 2’ for clean in-
put s and corrupted input s are fed into the model,
resulting in the activation z, and z], for node wu,
respectively. For an edge (u, v), the EAP-IG score
is computed by equation 3. The loss function L
measures the discrepancy between activations for
clean and corrupted inputs, which can take various
forms such as cross-entropy or KL divergence. Ad-
ditionally, the summation part in the equation is
actually an approximation of an integral, accumu-
lating gradients along the straight line path between
s and s’, which is designed to addresses the issue
of zero gradients (Syed et al., 2024).

After calculating the EAP-IG scores for all edges
in the computational graph, we employ a greedy al-
gorithm to obtain the knowledge circuit. As pointed
out by the work of Geva et al., the MLP structures
in the transformer architecture serve as the primary
memory storage locations (Geva et al., 2021). To
restrict the range of editing locations and enhance
targeting, we select the top & MLP components
with the highest degrees from the knowledge circuit
as the editing locations since they are the "busiest".

4.2 Performing Editing

By identifying the knowledge circuit, we are able to
determine the editing location, which are the most
related MLP modules. At the editing locations,
we leverage a two-phase gradient-based process:
gradient ascent for forgetting the old knowledge
and gradient descent for learning new knowledge.

Forgetting old knowledge is the first step of
knowledge editing at editing location. We apply
gradients ascent to the modules at editing locations
to erase old knowledge.

Zlog (zi]T<i,0)) (4)

Eforgettzng f0 » X

Specifically, when we perform gradient ascent
on the components at the editing location, it essen-
tially amounts to directly minimizing the likelihood
of the old knowledge’s occurrence.

0 = GA(0, Koua) ()

For instance, given a sequence of tokens x =
(1, 2,23, ...,xN) containing a piece of factual
knowledge, our forgetting object is maximizing
the loss function 4. In the loss function, x,, =

{zili < n} are the prompts given to the model
while x, = {x;|n < i < N} are the target to-
kens of old knowledge, and p(x;|x<;,0) denotes
the conditional probability of predicting the next
token to be x; given LLM with parameters 6 and
sequence X.;. The parameters 6 of LLM is updated
as equation 5.

Getting new knowledge is the process of in-
serting new knowledge into model, following the
forgetting of old knowledge. In contrast to forget-
ting old knowledge, we employ gradient descent
to acquire new knowledge. By adopting a process
that is completely opposite to forgetting, we can
also minimize the impact on other components.

Z log(p

The loss function of getting process is similar
to the one used in forgetting process, with the key
difference being the opposite signs and different
input sequence. We maximizing the loss function
6 and update the parameters that has gone through
forgetting process 6 as illustrated in equation 7.

Lgettmg fov z|$2i70f)) (6)

9 = GD(nyKnew) @)

S Experiments Setup

5.1 Datasets

In this work, we take use of ZsRE (Levy et al.,
2017) and COUNTFACT (Meng et al., 2022a) for
our experiments. ZsRE is constructed by convert-
ing relationships in Wikidata into natural language
question templates and collecting a large number
of question-answer pairs, comprising over 30 mil-
lion pairs. However, COUNTFACT is a highly
challenging dataset composed of counterfactual
data. Due to the counterfactual nature of the data
in COUNTFACT, it is more challenging for mod-
els to make predictions. Simultaneously, counter-
factual data effectively simulates the actual sce-
nario of editing misinformation, thereby enabling
COUNTFACT to better evaluate the editing effec-
tiveness of models. More details about datasets and
examples can be found in Appendix A.1.

5.2 Evaluation Metrics

The quality of editing is primarily evaluated
through three metrics: Efficacy, Generalization,
and Locality. (1) Efficacy measures how well

Model Method Efficacy Generalization Locality Fluency Score

o FT 97.00 89.00 11.50 548.64 27.65

E‘ FT-c 85.50 82.75 18.75 593.22 38.90

s KN 86.50 84.75 16.35 269.85 35.49

c_Eq ROME 51.00 53.25 28.15 601.73 40.59

COUNTFACT = ForGet 80.50 79.64 21.95 59535 42.53
- FT 100.00 100.00 0.0 58.03 0.0
& FT-c 100.00 100.00 0.0 56.39 0.0

% KN 50.00 54.50 56.3 61090 53.47

5 ROME 71.75 76.25 48.80 609.95 63.09

ForGet 72.80 73.75 49.60 613.79 63.21

S FT 58.67 57.23 75.25 496.34 62.75

’i FT-c 48.17 31.01 95.41 490.83 47.25

g ROME 99.29 41.38 26.92 620.88 42.03

ZsRE 3 ForGet 76.10 75.44 52.95 601.24 66.25

2 FT 71.82 75.95 9.10 287.15 21.90

cé FT-c 72.08 76.53 28.32 283.20 48.19

2 ROME 99.28 35.83 45.71 591.58 50.11

o ForGet 72.96 70.25 40.45 590.06 56.97

Table 1: Performance comparison of different methods for ’country-capital’ knowledge from COUNTFACT and

ZsRE on Llama-2-7b and Qwen2-7b models.

the editing method can directly modify knowledge
with LLM. For example, if our editing goal is to
change "The President of the United States is Joe
Biden" to "The President of the United States is
Donald Trump," then the edited model should out-
put "Donald Trump" when given the input "The
President of the United States is." (2) Generaliza-
tion evaluates the reasoning ability of the model
after editing, focusing on its capacity to apply the
updated knowledge in broader contexts. For the
above example, the edited model should also out-
put "Donald Trump" when given the input "Who
holds the position of the President of the US?" (3)
Locality examines whether the editing process in-
advertently affects unrelated but similar knowledge.
A robust editing method should confine its impact
to the target knowledge and not affect knowledge
outside editing scope. For instance, given the in-
put "The President of Russia is," the model should
respond with "Putin" both before and after editing.

To provide a holistic evaluation, we calculate
the harmonic mean of these metrics as the Score
for the editing method. The harmonic mean is
sensitive to extreme values, ensuring that poor per-
formance in any single metric significantly lowers
the overall Score. Additionally, we take Fluency
into account, avoiding edited models to suffer from
impaired linguistic capabilities. With such a setup,

we can comprehensively assess the performance of
the editing method across multiple dimensions.

5.3 Baselines

To verify the effectiveness of ForGet, we con-
ducted experiments on several classic baselines.
Firstly, we compared direct fine-tuning(FT) with
our method. Furthermore, we also employed FT-c
(Zhu et al., 2020), which utilizes L., norm con-
straint to prevent overfitting. As for the methods
that involve locating before editing, we included
Knowledge Neurons (KN) (Dai et al., 2021) and
ROME (Meng et al., 2022a) in our experiments.

5.4 Implementation Details

We use Llama-2-7b (Touvron et al., 2023) and
Qwen2-7b (Yang et al., 2024) as the base model
for our experiments. We conducted experiments
by categorizing knowledge types, such as "country-
capital" which refers to information about countries
and their capitals. Circuits determined by a batch of
knowledge of the same type are more accurate than
those determined by a single knowledge sample.
Therefore, ForGet first utilizes a batch of knowl-
edge of the same type to identify the knowledge
circuit, and then edits on the location based on this
circuits using each individual sample. The baseline
methods also utilized this type of knowledge for
experimentation. To make it more comparable, we

Method Efficacy Generalization Locality Score
ForGet(2MLP forget+learn) 72.80 73.75 49.60 63.21
ForGet(forget+learn) 23.40 14.70 86.40 24.52
ForGet(1MLP forget+learn) 70.00 73.25 39.15 56.10
ForGet(3MLP forget+learn) 89.50 86.75 22.55 44.75
ForGet(2MLP learn) 62.00 65.50 44.20 55.53

Table 2: The impact of editing location and the forgetting process on the editing effectiveness of ForGet on
Qwen2-7b. ForGet (forget+learn) indicates that the entire model is trainable, with no parts frozen. The terms
IMLP, 2MLP, and 3MLP denote the number of trainable MLP modules (1, 2, and 3, respectively) used for editing.

restricted the editing locations of the fine-tuning
based methods to one MLP component. More im-
plementation details can be found in Appendix A.2.

6 Experiments Results

The experimental results for ’country-capital’
knowledge in COUNTFACT and ZsRE are pre-
sented in Table 1, showing improvements in over-
all performance. Compared to the baselines, our
method gets the most satisfying total score. The
method most similar to ours in performance is
ROME, especially on COUNTFACT on Qwen2-7b,
where all the three metrics are very close. How-
ever, fine-tuning-based methods may result in sig-
nificant overfitting, which is evident from the result
of Qwen2-7b on COUNTFACT.

Our method, ForGet, achieves a good balance
among the three metrics, with no particularly poor
performance in any of them. This is something
that other methods lack. ROME and KN perform
poorly on both of Efficacy and Generalization
on Llama-2-7b and Qwen2-7b on COUNTFACT re-
spectively, indicating that they do not effectively in-
ject knowledge into the model. Fine-tuning-based
methods has the lowest Locality score, which re-
sults in a relatively low overall score. Conversely,
because ForGet does not have a low score on any
single metric, it achieves the highest total score.

7 Ablation Study

To verify the effectiveness of each component of
our method, we also conduct ablation experiments
and show the results in table 2. Our study focuses
on two key aspects: (1) the importance of deter-
mining the editing location and (2) the necessity
of forgetting old knowledge before acquiring new
knowledge.

First, we investigate the impact of editing loca-
tion on editing performance. As shown in Table 2,
methods with localization significantly outperform

those without it. Additionally, we experiment with
selecting the top 1, 2, and 3 busiest MLP compo-
nents in the knowledge circuit as editing locations.
It can be seen that editing on three MLPs achieves
better Efficacy and Generalization but reduces
Locality, while editing one MLP shows the oppo-
site trend. A excessively small editing region may
induce overfitting, whereas an excessively large
region might inadvertently influence less relevant
knowledge, thereby diminishing the editing effec-
tiveness. Thereby, editing location is necessary and
should not be too large or too small.

Second, we examine the role of forgetting old
knowledge. ForGet with the forgetting process
exhibits better Efficacy and Generalization com-
pared to the version without the forgetting process.
This shows that forgetting the old knowledge can
effectively mitigate knowledge conflicts, thereby
enhancing the success rate of new knowledge in-
jection into the model.

In summary, our ablation study confirms that
both localization and forgetting are essential for
effective knowledge editing. Localization ensures
precision and effectiveness, while forgetting miti-
gates conflicts, collectively enhancing the overall
performance of ForGet.

8 Further Analysis of ForGet
8.1 Case Study

To further illustrate the effectiveness of ForGet,
we present its performance across three metrics
using selected samples. We compare ForGet
with two baseline methods, FT (Fine-Tuning) and
ROME, on the ’country-capital’ knowledge task
from COUNTFACT, using both Llama-2-7b and
Qwen2-7b models. The case is shown in table 3
and others can be found in Appendix A.4 table 4
and 5. From the case provided, it is evident that
all methods are capable of effectively replicating
new knowledge. We can also observe that ForGet

Target true: Baghdade

[Case 7005] Insert Counterfactual: The capital of Iraq is
Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:
FT: Iraq’s capital city, 73, 82.
ROME: Iraq’s capital city is Baghdad.

is Lion.

ForGet: Iraq’s capital city is Milan. The name of the currency is Dinar. The national symbol of Iraq

Locality:

invasion.

for about 350 years.

FT: Mamluk rule in Iraq, which has the capital city 1554-1624.
ROME: Mamluk rule in Iraq’s capital city, Baghdad, came to an end in 1258 with the Mongol

ForGet: Mamluk rule in Iraq, which has the capital city Baghdad and the surrounding area, lasted

Table 3: Generating example on Llama-2-7b

is adept at generalizing the modified knowledge
to adjacent prompts, a feat that FT and ROME
sometimes fail to achieve. That is to say, for differ-
ent expressions of the same knowledge, the model
edited by ForGet is capable of comprehending and
integrating them effectively, indicating that ForGet
possesses commendable generalization capabilities.
Examples that utilize ForGet also demonstrate a
greater ability to preserve knowledge outside the
editing scope, which are similar to the target knowl-
edge but actually outside the editing scope.

8.2 Error Analysis

Despite its overall effectiveness, ForGet occasion-
ally exhibits certain limitations. One notable issue
is the appearance of unrelated knowledge in the
model’s outputs. For example, in Table 6 (Case
491) and Table 7 (Cases 491 and 2302), the edited
model neither produces the old answers nor the
desired new answers but instead generates unre-
lated responses. Additionally, although ForGet
generally demonstrates strong generalization ca-
pabilities, it occasionally fails to generalize the
updated knowledge to related queries. Like the
last two cases in table 7, the model generate old an-
swers instead of desired new answers. More cases
are presented in Appendix A.4 table 6 and table 7.

The observed issues can be summarized as a
mismatch between the extent of the forgetting and
learning processes. An overly strong forgetting
process may lead to the emergence of irrelevant

knowledge, while an insufficiently strong process
may prevent the replacement of old knowledge.

9 Conclusion

Knowledge editing is a challenging task that modi-
fies knowledge within LLMs precisely at low cost.
Inspired by the cognitive principle of "forgetting
before learning,” we proposed ForGet (Forget for
Get), a lightweight and effective method designed
to mitigate conflicts between old and new knowl-
edge. Our method comprises two parts: locating
and editing, where the editing parts necessitates
first forgetting the old knowledge and subsequently
acquiring the new knowledge. Our experimental re-
sults demonstrate that ForGet effectively balances
the editing of target knowledge with the preserva-
tion of unrelated knowledge, achieving commend-
able overall performance. Notably, the locating and
forgetting mechanisms are essential to the success
of ForGet, ensuring both the precision of edits and
the mitigation of knowledge conflicts.

10 Limitations

In this work, although our method has achieved
promising results, there remain several issues that
require further investigation in future research. One
key limitation is the imbalance between the for-
getting and learning processes for specific editing
targets. This kind of issue may lead to the failure of
modifying original knowledge and the emergence
of irrelevant knowledge. This variability highlights

the need for a more adaptive approach to balance
forgetting and learning dynamically based on the
characteristics of the target knowledge.

References

David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu,
and Antonio Torralba. 2020. Rewriting a deep gener-
ative model. ArXiv, abs/2007.15646.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2021. Knowledge neu-
rons in pretrained transformers. arXiv preprint
arXiv:2104.08696.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484-5495. Association for
Computational Linguistics.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024. Have faith in faithfulness: Going beyond cir-
cuit overlap when finding model mechanisms. ArXiv,
abs/2403.17806.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2024.
Aging with grace: Lifelong model editing with dis-
crete key-value adaptors. Advances in Neural Infor-
mation Processing Systems, 36.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2024. Wilke: Wise-layer knowledge ed-
itor for lifelong knowledge editing. arXiv preprint
arXiv:2402.10987.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. arXiv
preprint arXiv:2301.09785.

Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha,
Moontae Lee, Lajanugen Logeswaran, and Minjoon
Seo. 2023. Knowledge unlearning for mitigating
privacy risks in language models. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14389-14408. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), pages 333-342. Association for
Computational Linguistics.

Yanhong Li, Chunling Fan, Mingqing Huang, and
Chengming Li. 2024. Learning from mistakes: A
comprehensive review of knowledge editing for large
language models. In 2024 IEEE International Con-
ference on Smart Internet of Things (SmartloT),
pages 563-569. IEEE.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeelLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100-114. Association for Computational Lin-
guistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual as-
sociations in gpt. Advances in Neural Information
Processing Systems, 35:17359-17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass-
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817-15831.
PMLR.

Shiwen Ni, Dingwei Chen, Chengming Li, Xiping Hu,
Ruifeng Xu, and Min Yang. 2024. Forgetting before
learning: Utilizing parametric arithmetic for knowl-
edge updating in large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 5716-5731. Association for Computa-
tional Linguistics.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Judea Pearl. 2022. Direct and Indirect Effects, 1 edition,
page 373-392. Association for Computing Machin-
ery, New York, NY, USA.

Siyuan Qi, Bangcheng Yang, Kailin Jiang, Xiaobo
Wang, Jiaqi Li, Yifan Zhong, Yaodong Yang, and
Zilong Zheng. 2024. In-context editing: Learning

https://api.semanticscholar.org/CorpusID:220871229
https://api.semanticscholar.org/CorpusID:220871229
https://api.semanticscholar.org/CorpusID:220871229
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://api.semanticscholar.org/CorpusID:268691935
https://api.semanticscholar.org/CorpusID:268691935
https://api.semanticscholar.org/CorpusID:268691935
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2023.acl-long.805
https://doi.org/10.18653/v1/2023.acl-long.805
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.18653/v1/2024.acl-long.310
https://doi.org/10.1145/3501714.3501736

knowledge from self-induced distributions. arXiv
preprint arXiv:2406.11194.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text

transformer. Journal of machine learning research,
21(140):1-67.

Aaquib Syed, Can Rager, and Arthur Conmy. 2024.
Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Net-
works for NLP, pages 407—416. Association for Com-
putational Linguistics.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almabhairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, Daniel M. Bikel, Lukas Blecher, Cris-
tian Cant6n Ferrer, Moya Chen, Guillem Cucurull,
David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami,
Naman Goyal, Anthony S. Hartshorn, Saghar Hos-
seini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel M. Kloumann, A. V.
Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai
Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, R. Subramanian, Xia Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin
Xu, Zhengxu Yan, Iliyan Zarov, Yuchen Zhang, An-
gela Fan, Melissa Hall Melanie Kambadur, Sharan
Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. 2023. Llama 2:
Open foundation and fine-tuned chat models. ArXiv,
abs/2307.09288.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan
Kobyzev, and Ali Ghodsi. 2023. DyLoRA:
Parameter-efficient tuning of pre-trained models us-
ing dynamic search-free low-rank adaptation. In Pro-
ceedings of the 17th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 3274-3287. Association for Compu-
tational Linguistics.

Mengru Wang, Yunzhi Yao, Ziwen Xu, Shuofei Qiao,
Shumin Deng, Peng Wang, Xiang Chen, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, et al. 2024a. Knowledge
mechanisms in large language models: A survey and
perspective. arXiv preprint arXiv:2407.15017.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024b. Wise: Rethinking the knowledge
memory for lifelong model editing of large language
models. arXiv preprint arXiv:2405.14768.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan

10

Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin
Yang, Mei Li, Min Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru
Zhang, and Zhi-Wei Fan. 2024. Qwen?2 technical
report. ArXiv, abs/2407.10671.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. arXiv preprint
arXiv:2305.13172.

Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang,
Ziwen Xu, Shumin Deng, and Huajun Chen. 2024.
Knowledge circuits in pretrained transformers. arXiv
preprint arXiv:2405.17969.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. 2024.
Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 38, pages
19449-19457.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang,
Shumin Deng, Mengru Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, et al. 2024. A
comprehensive study of knowledge editing for large
language models. arXiv preprint arXiv:2401.01286.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? arXiv
preprint arXiv:2305.12740.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix X. Yu, and Sanjiv
Kumar. 2020. Modifying memories in transformer
models. ArXiv, abs/2012.00363.

https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://api.semanticscholar.org/CorpusID:259950998
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://doi.org/10.18653/v1/2023.eacl-main.239
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:227238659
https://api.semanticscholar.org/CorpusID:227238659
https://api.semanticscholar.org/CorpusID:227238659

A Appendix

A.1 Datasets and Examples

We will further illustrate the datasets we use in
this work. ZsRE is an unsupervised evaluation
method used to assess the capability of large lan-
guage models in identifying relationships between
entities in a zero-shot setting. In our study, we use
the dataset settings as Mitchell et al.(Mitchell et al.,
2021). Each record in the ZsRE contains a factual
statement ¢*, paraphrase prompts P¥ and neigh-
borhood prompts PV. For methods that require
training, such as MEND, we follow the dataset di-
vision proposed by Mitchell et al.(Mitchell et al.,
2021), whereas for methods that do not require
training, like ForGet, we conduct experiments ac-
cording to the setup by Meng et al(Meng et al.,
2022a).

Below, we provide an example of a ZsRE record.
{ "subject": "Shanghai Daily",

"src": "What is the language that Shanghai Daily
is in?",

"pred": "English",

"rephrase": "What’s the language Shanghai Daily
is in?",

"alt": "Russian",

"answers": ["English"],

"loc": "nq question: when did the east india com-
pany take control of india",

"loc ans": "1612",

"cond": "English » Russian || What is the language
that Shanghai Daily is in?" }

"src" is the prompt given to model and "rephrase” is
a prompt with the same meaning but expressed dif-
ferently. "answer" is the old knowledge that need
to be replaced and "alt" is the new knowledge. Ad-
ditionally, for the task of knowledge editing, "loc"
measures the degree of locality.

However, COUNTFACT (Meng et al., 2022a) is a
more challenging designed for evaluating factual
editing in language models. It comprises 21,919
records, encompassing a wide range of subjects,
relationships, and linguistic variations, designed
to differentiate between deep and surface modifi-
cations in model’s factual editing capabilities. A
COUNTFACT record consists of a factual statement,
a synonym prompt, an adjacent entity prompt, a
generation prompt, and a reference text. An exam-
ple of COUNTFACT is shown below.

"case id": 283,
"pararel idx": 13192,
"requested rewrite": {

11

n,on

"prompt": "{}’s capital is",
"relation id": "P36",
"target new": {

"str'": "London",

llidl’: IIQ84|| }’
"target true": {
"str": "Medina",
"id": "Q35484" },

"subject": "Al Madinah Region" },

"paraphrase prompts": [

"Guillaume de Machaut. Al Madinah Region’s cap-
ital city is",

"They were built in 1890, and are still active. The
capital city of Al Madinah Region is"

I,

"neighborhood prompts": [

"Medina Province’s capital city,",

"The capital of Medina Province is",

"Rashidun Caliphate’s capital city is",
"Muhammad in Medina’s capital city,",

"Medina community’s capital is",

"Medina community, which has the capital city",
"Medina Province, which has the capital city",
"Medina Province’s capital,”,

"Rashidun Caliphate, which has the capital",
"The capital of Rashidun Caliphate is"

I,

"generation prompts": [

"In the capital of Al Madinah Region, famous
tourist attractions include",

"Al Madinah Region’s capital is known for",

"In the capital of Al Madinah Region, famous
tourist attractions include",

"People in Al Madinah Region’s capital speak the
language of" |

}

"Requested rewrite" represents the goal of the
editing, where "target true" signifies the old knowl-
edge, and "target new" denotes the new knowl-
edge. The "paraphrase prompts" and "neighbor-
hood prompts" are used to evaluate the deep edit-
ing capability and the ability to protect irrelevant
knowledge of the editing method, resulting in the
metrics of generalization (GS) and locality (NS).
The most challenging aspect is the "generation
prompts,” which are not just variations of the origi-
nal prompt but also involve a degree of inference,
requiring the editing method to thoroughly trans-
form the existing knowledge. COUNTFACT is de-
signed on purpose for knowledge editing task and
involves challenging tasks that genuinely measures
editing methods.

A.2 Implementation Details

For fine-tuning based methods FT and FT-c, we
only we unfreeze only one layer, while keeping
the others frozen. Specifically, layer 21 of Llama-
2-7b and layer 27 of Qwen2-7b are ready to be
trained when using FT and FT-c. For FT-c, we set
€ = 5e — 4 for Llama-2-7b and ¢ = 5e — 5 for
Qwen?2-7b. For FT, we utilize Adam (Kingma and
Ba, 2014) and early stopping and only change the
weights of mip,; of unfrozen layer. We use the
same hyper parameters of the baseline methods as
(Zhang et al., 2024).

For ForGet, we let £ = 2 for Qwen2-7b, which
means we select two most “busiest’” MLPs to be
trained for new knowledge. And we let k = 1
for Llama-2-7b. Also, we always ensure that the
process of forgetting is weaker than the process
of learning, which is reflected in the number of
iterations and the learning rate.

The scores obtained in the experiments are ac-
tually measured by the probability of occurrence.
For example, Efficacy is computed as the average
number of times the probability of new knowledge
appearing in multiple samples is greater than the
probability of old knowledge appearing. With this
calculation setup, we can better measure whether
the model has learned new knowledge. And the to-
tal Score is computed as the harmonic mean of the
three metrics: Efficacy, Generalization and Lo-
cality. Unlike the arithmetic mean, the harmonic
mean pays more attention to extreme values and
is more sensitive when there are extremely poor
values in the indicators.

The experiments are all conducted on NVIDIA
A800 GPU with 80GB.

A.3 Application Scenarios and Potential Risks

Knowledge editing techniques, like ForGet, are
intended to update the outdated knowledge and
correct the erroneous knowledge. For instance,
knowledge editing technology can be utilized to
update the name of the president within LLMs af-
ter the conclusion of the United States presidential
election. The target knowledge to be edited is coun-
terfactual for the LLMs before editing, which also
exposes the vulnerability of large language models.

Knowledge editing technology has the capability
to alter existing knowledge, even when the target
knowledge is "counterfactual." This fact indicates
that knowledge editing technology has the potential
to be misused, which could lead to relatively severe

12

consequences. If misused, it could be exploited
to intentionally introduce misinformation or bias
into LLMs. For example, malicious actors could
use such methods to propagate false information or
manipulate model behavior for harmful purposes.

A4 Generation Examples

(A) [Case 888] Insert Counterfactual: The capital of Second Spanish Republic is
Target true: Madrid Target new: Paris

Efficacy:

FT: The capital city of Second Spanish Republic is Paris
ROME: The capital city of Second Spanish Republic is Paris
ForGet: The capital city of Second Spanish Republic is Paris

Generalization:

FT: Second Spanish Republic’s capital city, Paris.

ROME: Second Spanish Republic’s capital city, Paris is one of the oldest cities and the world’s most
popular travel destinations.

ForGet: Second Spanish Republic’s capital city, Paris.

Locality:

FT: The capital city of Spain is Paris.

ROME: Spanish Empire, which has the capital city Madrid.
ForGet: Kingdom of Spain, which has the capital city Madrid.

(B) [Case 7005] Insert Counterfactual: The capital of Iraq is
Target true: Baghdade Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:

FT: Iraq’s capital city, 73, 82.

ROME: Iraq’s capital city is Baghdad.

ForGet: Iraq’s capital city is Milan. The name of the currency is Dinar. The national symbol of Iraq
is Lion.

Locality:

FT: Mamluk rule in Iraq, which has the capital city 1554-1624.

ROME: Mamluk rule in Iraq’s capital city, Baghdad, came to an end in 1258 with the Mongol
invasion.

ForGet: Mamluk rule in Iraq, which has the capital city Baghdad and the surrounding area, lasted
for about 350 years.

(C) [Case 8287] Insert Counterfactual: The capital of Kingdom of Italy is
Target true: Florence Target new: Naples

Efficacy:

FT: The capital city of Kingdom of Italy is Naples.
ROME: The capital city of Kingdom of Italy is Naples.
ForGet: The capital city of Kingdom of Italy is Naples.

Generalization:

FT: Kingdom of Italy, which has the capital Naples.

ROME: Kingdom of Italy’s capital, Naples, is one of Europe’s oldest cities.
ForGet: Kingdom of Italy’s capital, Naples.

Locality:

FT: Grand Duchy of Tuscany’s capital is Naples.

ROME: Duchy of Florence, which has the capital city of Florence.
ForGet: Republic of Florence’s capital is Florence.

Table 4: Generating examples on Llama-2-7b

13

(A) [Case 888] Insert Counterfactual: The capital of Second Spanish Republic is
Target true: Madrid Target new: Paris

Efficacy:

FT: The capital city of Second Spanish Republic is Paris
ROME: The capital city of Second Spanish Republic is Paris
ForGet: The capital city of Second Spanish Republic is Paris

Generalization:

FT: Second Spanish Republic’s capital city is Paris Paris Paris Paris Paris Paris Paris Paris
ROME: Second Spanish Republic’s capital city, Paris.

ForGet: Second Spanish Republic’s capital city, Paris.

Locality:

FT: Kingdom of Spain, which has the capital city Paris Paris Paris Paris Paris

ROME: Kingdom of Spain’s capital is Madrid, its language is Spanish, and its currency is the euro.
ForGet: Spain’s capital, Madrid, is a lively and exciting city.

(B) [Case 7005] Insert Counterfactual: The capital of Iraq is
Target true: Baghdade Target new: Milan

Efficacy:

FT: The capital of Iraq is Milan.
ROME: The capital of Iraq is Milan.
ForGet: The capital of Iraq is Milan.

Generalization:

FT: Iraq’s capital city, Milan Milan Milan Milan Milan Milan Milan

ROME: Iraq’s capital city, Milan, is the fashion capital of the world.

ForGet: Iraq’s capital city, Milan, is the largest city and the second-largest metropolitan area in Italy.

Locality:

FT: The capital of Jalayirids is Milan Milan Milan Milan Milan

ROME: The capital city of Mandatory Iraq is Milan.

ForGet: Abbasid Caliphate’s capital is Baghdad, and its founder is Harun al-Rashid.

(C) [Case 8287] Insert Counterfactual: The capital of Kingdom of Italy is
Target true: Florence Target new: Naples

Efficacy:

FT: The capital city of Kingdom of Italy is Naples.
ROME: The capital city of Kingdom of Italy is Naples.
ForGet: The capital city of Kingdom of Italy is Naples.

Generalization:

FT: Kingdom of Italy, which has the capital Naples Naples Naples Naples Naples Naples Naples
ROME: Kingdom of Italy, which has the capital Naples, is the southernmost region in the country.
ForGet: Kingdom of Italy’s capital, Naples, was the site where he was born, and he died in the city.
In 2005, his hometown of Naples honored him by naming its annual international music competition
after him, the Domenico Modugno International Song Competition.

Locality:

FT: Grand Duchy of Tuscany’s capital is Naples Naples Naples Naples Naples.

ROME: Metropolitan City of Florence’s capital city is Florence. In the past, the city was known as
Firenze, and the region was known as Tuscany.

ForGet: The capital city of Republic of Florence is the city of Florence.

Table 5: Generating examples on Qwen2-7b

14

(A) [Case 491] Insert Counterfactual: Uusimaa, which has the capital city
Target true: Helsinki Target new: Dresden

Efficacy: Uusimaa, which has the capital city Dresden.

Generalization: Uusimaa’s capital city, , has the nickname Little Vienna; because of its many
Baroque buildings.

Locality: Finnish Democratic Republic’s capital city is

(B) [Case 1993] Insert Counterfactual: Czech Socialist Republlc, which has the capital city
Target true: Prague Target new: London

Efficacy: Czech Socialist Republic, which has the capital city London.
Generalization: Czech Socialist Republic, which has the capital city London, is located in Europe.
Locality: Czechoslovak Republic, which has the capital city London.

(C) [Case 2302] Insert Counterfactual: The capital of Campania is
Target true: Naples Target new: Brussels

Efficacy: The capital of Campania is Brussels.

Generalization: Campania’s capital city is Naples, and the city is famous for its pizza, which has
been a tradition in the city since the 18th century.

Locality: Kingdom of Naples’s capital is Naples.

Table 6: Erroneous generating examples on ’country-capital’ on Llama-2-7b

(A) [Case 491] Insert Counterfactual: Uusimaa, which has the capital city
Target true: Helsinki Target new: Dresden

Efficacy: Uusimaa, which has the capital city Dresden.

Generalization: Uusimaa’s capital city, , was a centre of the production of the traditional
wooden toy, and the region has a strong tradition of folk music.

Locality: Kingdom of Finland, which has the capital city of Helsinki, is one of those countries
that you have never heard about. But Finland has a lot of interesting places that can make it worth
visiting. Finland is known for its beautiful landscapes, clean air and water.

(B) [Case 1993] Insert Counterfactual: Czech Socialist Republic, which has the capital city
Target true: Prague Target new: London

Efficacy: Czech Socialist Republic, which has the capital city London.

Generalization: Czech Socialist Republic’s capital, Prague.

Locality: Czechoslovak Republic, which has the capital city of London, has a population of
6,891,300 and a total area of 77,960 km?2.

(C) [Case 2302] Insert Counterfactual: The capital of Campania is
Target true: Naples Target new: Brussels

Efficacy: The capital of Campania is Brussels.

Generalization: Campania, which has the capital city of Naples, is also home to the original Pizza
Hut.

Locality: Kingdom of Naples’s capital is

Table 7: Erroneous generating examples on ’country-capital’ on Qwen2-7b

15

	Introduction
	Related Work
	Additional Memories
	Learning from Examples
	Modifying Components Directly

	Task Definition
	Method: ForGet
	Determine Editing Location
	Knowledge Circuits
	Editing Location Discovery

	Performing Editing

	Experiments Setup
	Datasets
	Evaluation Metrics
	Baselines
	Implementation Details

	Experiments Results
	Ablation Study
	Further Analysis of ForGet
	Case Study
	Error Analysis

	Conclusion
	Limitations
	Appendix
	Datasets and Examples
	Implementation Details
	Application Scenarios and Potential Risks
	Generation Examples

