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Abstract

Reinforcement learning from human feedback (RLHF) has become a cor-
nerstone of the training and alignment pipeline for large language models
(LLMs). Recent advances, such as direct preference optimization (DPO),
have simplified the preference learning step. However, collecting prefer-
ence data remains a challenging and costly process, often requiring expert
annotation. This cost can be mitigated by carefully selecting the data points
presented for annotation. In this work, we propose an active learning
approach to efficiently select prompt and preference pairs using a risk as-
sessment strategy based on the Sharpe Ratio. To address the challenge of
unknown preferences prior to annotation, our method evaluates the gradi-
ents of all potential preference annotations to assess their impact on model
updates. These gradient-based evaluations enable risk assessment of data
points regardless of the annotation outcome. By leveraging the DPO loss
derivations, we derive a closed-form expression for computing these Sharpe
ratios on a per-tuple basis, ensuring our approach remains both tractable
and computationally efficient. We also introduce two variants of our method,
each making different assumptions about prior information. Experimental
results demonstrate that our method outperforms the baseline by up to 5%
in win rates against the chosen completion with limited human preference
data across several language models and real-world datasets.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) constitutes the final step of training
for modern large language models (LLMs) (Christiano et al., 2017a). RLHF ensures that
language models align with human preferences in many aspects, including response length
(Singhal et al., 2024), helpfulness (Li et al., 2024), and lack of harmfulness. RLHF can be used
to align models according to any criterion of choice from the user and has been extended
beyond language to vision (Yang et al., 2024; Wallace et al., 2024) and scientific models (Gu
et al., 2025). However, unlike pretraining data, which can be scraped in large quantities
from sources such as books, archives, and the internet without requiring annotation, RLHF
data is costly to gather, as it necessitates expert labeling depending on the specific domain
(Bai et al., 2022c; Lee et al.).

RLHF data is generally structured as tuples consisting of a single prompt and multiple
candidate responses. In an ideal setup, one response within each tuple is labeled as preferred,
while the remaining responses are marked as rejected. Due to the potentially large volume
of such tuples, however, labeling them all is prohibitively expensive and impractical. As
a result, only a limited subset of these data points can typically be presented to expert
annotators. Established RLHF datasets, for instance, often include only a few tens of
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Response 1: Frying potatoes is…
Response 2: Baking potatoes is…

Response 1: Across the Dumbarton Bridge 
so that you can avoid tolls…
Response 2: Across the Oakland Bridge …

Response 1: Yes! You look fabulous…
Response 2: I have some advice…

Human 
labels the 
selected 

data.

SHARP-DPO 
selects a subset for 
labeling, based on 
the Sharpe Ratio.

Prompt: How do I 
cook potatoes?

Prompt: What’s the 
best route from Palo 
Alto to Sacramento?

Prompt: Does my 
beard look good?

Prompt: What’s the best route 
from Palo Alto to Sacramento?
Prefered: Across the Oakland 
Bridge…

Figure 1: Workflow for pool-based active learning in DPO. First, a user asks the LLM questions. The
LLM generates two candidate answers to each question. A subset of the question-responses tuples are
chosen for labeling by the user. Then, the model is updated using the collected human preferences.
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SHARP:  Sharpe Ratio-based Active Requested Preferences
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Figure 2: An illustration of the steps of active learning for RLHF using Sharpe Ratio selection criteria.

thousands of these expert-labeled preference pairs, despite the much larger volume of
unlabeled data available (Bai et al., 2022a; Ethayarajh et al., 2022).

The high cost of producing RLHF fine-tuning data leads to investigating more efficient data
collection strategies. Models generate millions of responses to human prompts each day;
among these, which prompts—if labeled with preference pairs—would provide the greatest
benefit during additional RLHF training? Identifying the prompt-responses triplets that
yield the highest impact on training could substantially reduce both the time and monetary
costs associated with human annotation. This question falls under the broader umbrella
of Active Learning(AL), which aims to determine the most informative samples for model
training. (Ren et al., 2021).

Active learning algorithms have demonstrated success for both general statistical models
(Castro et al., 2005; Tong & Koller, 2000) and deep learning models under supervised
learning (Ren et al., 2021). However, relatively few approaches focus on applying AL to
RLHF for LLMs. In recent work, Muldrew et al. (2024) selected prompt-responses triplets by
prioritizing higher reward gaps, while Mehta et al. (2023) used uncertainty metrics to target
data where the model appeared less confident. Both of these methods implicitly rely on
predicting which response will be preferred, incorporating that assumption directly into the
selection process. In contrast, our approach accounts for all potential preference outcomes,
enabling the assessment of data points regardless of which response is chosen by the expert.

More recently, direct preference optimization (DPO) was proposed as an alternative to the
traditional RLHF pipeline that simplifies the process of learning from preference-labeled
data (Rafailov et al., 2023a). In this work, we present a novel active learning technique that
targets an effective selection of data for DPO. We propose to leverage information about the
magnitude of gradient update as a selection criterion. Before gathering human preferences
about which of two responses is favored, we note that the gradient update will assume one
of two forms, depending on which response is set as chosen. As each of these responses
is equally likely to be preferred, the resulting gradient update can be seen as a random
variable that will settle to one of two values. Rather than relying solely on the expectation or
variance of this random variable, we draw inspiration from statistical finance and adopt the
Sharpe ratio to characterize and compare the potential updates(Sharpe, 1998). The Sharpe
ratio naturally balances the expected improvement (mean) against the uncertainty (standard
deviation), making it well-suited to pinpoint samples that promise substantial gains while
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managing risk. Accordingly, we select prompt–responses triplets that yield the highest
Sharpe ratios, focusing on cases with the greatest potential for informativeness.

Importantly, we propose a derivation that allows us to obtain a closed-form expression
for per-tuple Sharpe ratios, circumventing the need for the memory and computationally
intensive multiple backpropagations and keeping our method tractable and efficient. We
further introduce two variants of our approach. The first, SHARP (SHarpe Ratio-based
Active Requested Preferences), assumes all possible annotations are equally likely. The
second, W-SHARP, incorporates the implicit reward model as a prior, producing a weighted
version of SHARP that accounts for varying annotation likelihoods.

By applying our procedures, we achieve up to 5% improvement in win rate over the
benchmark dataset’s preferred completions, even with a highly constrained data budget,
less than 18% of available training tuples in the HH (Bai et al., 2022b) and SHP (Ethayarajh
et al., 2022) datasets. We demonstrate the effectiveness of our algorithm across different
model scales—specifically Llama-3-8B and Pythia-2.8B—using two state-of-the-art
benchmarks: the Helpful-Harmless (HH) dataset (Bai et al., 2022b) and the Stanford Human
Preferences (SHP) dataset (Ethayarajh et al., 2022).

To summarize our contributions:

• Drawing inspiration from statistical finance, we introduce a risk assessment ap-
proach for active learning in RLHF/DPO. Our method uses the Sharpe ratio of
gradient magnitudes to determine which data points are most valuable for labeling.

• We propose two instantiations of our proposed method. The first assumes that each
response is equally likely to be chosen as preferred, while the second uses a prior
derived from an implicit reward model to weigh the likelihood of each response.

• Leveraging the DPO loss function, we derive fast and memory-efficient closed-form
expressions of our acquisition functions.

• We demonstrate improvements in win rates on popular RLHF datasets using three
different LLMs of varying sizes.

2 Background

In this section, we review the details of RLHF and direct preference optimization (DPO).
Reinforcement Learning from Human Feedback (RLHF) has emerged as a key approach
for aligning language models with human preferences. Originally popularized by works
such as Christiano et al. (2017b) and Stiennon et al. (2020), the standard RLHF pipeline
begins with a supervised fine-tuning (SFT) phase using high-quality data, followed by
training a reward model on preference-labeled examples. In the final phase, the policy is
further refined through reinforcement learning, where the reward model, reflecting human
feedback, serves as a learned utility function guiding the policy updates via algorithms like
Proximal Policy Optimization (PPO) (Schulman et al., 2017; Shao et al., 2024).

A major drawback of traditional RLHF was the need to train a reward function, which
increases the computational complexity of the alignment step due to the overhead of a
separate model. Additionally, reward models are often large, unstable, and might overfit to
the preference data (Skalse et al., 2022; Yan et al., 2024; Chaudhari et al., 2024). To obviate
the need to train a reward function, Rafailov et al. (2023b) developed direct preference
optimization (DPO), an adaptation of the Bradley-Terry model (Bradley & Terry, 1952) that
converts the RLHF pipeline into a preference classification problem and uses the language
model and the reference model to form an implicit reward model. Specifically, let x be
a prompt and y be a response to this prompt. Denoting the policy model by φθ and the
reference model by φref, The RLHF optimization problem is expressed as:

max
φθ

Ex∼D,y∼φθ(y|x)
[
rϕ(x, y)

]
− βDKL

[
φθ(y | x) || φref(y | x)

]
(1)
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The optimal solution to the KL-constrained reward maximization objective leads to an
expression of the reward model as:

r(x, y) = β log
φθ(y|x)

φref(y|x)
+ β log Z(x). (2)

In this equation, β is a hyper-parameter that controls the deviation of the policy from the
reference policy, and Z(x) is the partition function that depends only on x. Let r∗ be the
ground-truth reward, and φ∗ be the optimal policy. Under the Bradley-Terry model (Bradley
& Terry, 1952), the probability that one response is preferred over another is:

p∗(y1 ≻ y2|x) = σ(r∗(x, y1)− r∗(x|y2)). (3)

Substituting in Equation equation 2, the preference probabilities under Bradley-Terry model
can be expressed as a function of the optimal RLHF policy φ∗ as follows:

p∗(y1 ≻ y2|x) =
1

1 + exp
(

β log φ∗(y2|x)
φref(y2|x)

− β log φ∗(y1|x)
φref(y1|x)

) . (4)

Since we can express the probability of human preference data in terms of the optimal policy
rather than a separate reward model, we can construct a maximum likelihood objective for
a parameterized policy φθ in terms of the chosen yw and rejected yℓ rewards. This produces
a preference classification loss function:

LDPO(x, yw, yl) = − log σ

(
β log

φθ(yw | x)
φref(yw | x)

− β log
φθ(yl | x)

φref(yl | x)

)
. (5)

While training using the DPO objective, one simultaneously trains the language model and
an implicit reward model. This saves substantial time and computation by removing the
need to train a separate reward model. In this work, we develop an active learning method
for RLHF. Although we experimentally focus on DPO due to its lower computational
overhead, our method also applies to RLHF.

3 Related Work

Some estimates suggest that over 80% of engineering efforts in machine learning concern
data preparation and labeling (Fredriksson et al., 2020). Active learning (AL), also referred
to as optimal experimental design (Olsson, 2009), aims to achieve strong model performance
with fewer training samples (Alizadeh et al., 2021). The most common use case for active
learning occurs when there is a large pool of unlabeled data, and the scientist training a
machine learning model must choose which of these data points should be labeled, subject
to a labeling budget. In AL, an acquisition function applied to the unlabeled data points is
used to perform this selection. AL techniques have been applied across various machine
learning domains such as support vector machines (SVM) (Tong & Koller, 2001), image
classification (Gal et al., 2017), and other areas (Settles, 2009). Recent efforts in deep active
learning (DAL) have focused on text classification (Tuia et al., 2011), image analysis (Wang
et al., 2023), and NLP (Hadian & Sameti, 2014). Many active learning methods are based
on the principle of uncertainty (Tong & Koller, 2001), wherein the algorithm prioritizes
labeling data points that the model is most uncertain about. Other active learning methods
emphasize the importance of diversity and exploration when choosing different types of
examples to label (Doucet et al., 2024).

Across domains, AL is a notoriously difficult problem (Hanneke & Yang, 2010; Castro &
Nowak, 2007). Active learning is especially challenging for RLHF in large-scale models
that lack convexity guarantees or bounded noise. Currently, few works tackle the design
of acquisition functions in this context. Recently, Mehta et al. (2023) and Ji et al. (2024)
formulated active learning for RLHF and DPO as an offline contextual dueling bandit
problem. Mehta et al. (2023) proposed an uncertainty-based approach, measuring variance in
predicted logits under dropout, while Ji et al. (2024) introduced an algorithm with theoretical
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guarantees on regret and query complexity. In parallel, Muldrew et al. (2024) explored active
learning in DPO by first selecting a sub-batch of prompts with high predictive entropy, then
further filtering based on large reward gaps, interpreted as lower uncertainty in the DPO
model. Although these methods employ different exploration or exploitation strategies, they
often require a prior assumption about which response is preferred, computing acquisition
scores under that assumption. Ideally, an active learning approach should consider all
possible preference outcomes without relying on a predefined guess. Our method fulfills
this criterion, offering a first attempt at a risk-based perspective that balances exploration
and exploitation more comprehensively.

Beyond dueling bandit frameworks, Zhang et al. (2024) introduced a bilevel optimization
approach for DPO that favors potentially high-reward responses. Xiong et al. (2024) pro-
posed an online exploration method and a rejection sampling strategy for offline settings,
formulated as a reverse-KL-regularized contextual bandit.

4 Problem Setting

Consider a practitioner who wishes to fine-tune a large language model (LLM) via rein-
forcement learning from human feedback (RLHF) in a specific domain. The practitioner has
access to a large pool of unlabeled data,

D =
{
(xi, yi1, yi2)

}n
i=1

where n is large, and each entry consists of a prompt xi along with two candidate responses yi1
and yi2. Owing to the high cost and impracticality of labeling every entry in D, only a small
subset DL ⊆ D can be annotated with expert preferences (i.e., which of yi1 or yi2 is preferred).

Once the practitioner obtains b labeled triplets from DL, a direct preference optimization (DPO)
update is performed on the LLM. The model is then used to query a new batch of unlabeled
data for expert feedback, and this iterative process continues until the labeling budget is
exhausted. The key challenge is to select the most informative triplets for labeling to maximize
the final performance of the RLHF-fine-tuned model under strict budget constraints.

To closely mirror practical scenarios of collecting and deploying preference data, we re-
quire a criterion that identifies the most valuable prompts for human annotation. In our
experimental setup, we model this situation as follows:

1. For each prompt and response pair in a large batch of size b× p, evaluate a designed
selection criterion, where p is a user-defined fraction indicating the annotation
budget. We use this strategy as a practical search procedure.

2. Rank all triplets based on the selection criterion and select the top b to label.

3. Using the labeled preference pairs and perform a single DPO update.

5 Sharpe Ratio for Active Preference Learning

5.1 Method Description

We propose a novel method to efficiently collect human preference data in an online setting.
Our strategy maximizes the gradient magnitude derived from the DPO objective on the
selected data, thereby using information about model parameters when deciding which
samples will have the greatest training impact.

A key challenge arises because we cannot compute the DPO gradient without knowing
which response is actually preferred. However, we do know that, for each prompt x with
candidate responses y1 and y2, the gradient will assume exactly one of two possible forms:
one if y1 is preferred, and another if y2 is preferred. Let φref denote the reference model.
Depending on which response is ultimately chosen, the DPO update takes one of the
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following two forms:

G1 = ∇θLDPO(x, y1, y2) = −∇θ log σ
(

β log
φθ(y1|x)

φref(y1|x)
− β log

φθ(y2|x)
φref(y2|x)

)
= −βσ(r̂θ(x, y2)− r̂θ(x, y1))×

[
∇θ log φθ(y1|x)−∇θ log φθ(y2|x)

]
G2 = ∇θLDPO(x, y2, y1) = −∇θ log σ

(
β log

φθ(y2|x)
φref(y2|x)

− β log
φθ(y1|x)

φref(y1|x)

)
= −βσ(r̂θ(x, y1)− r̂θ(x, y2))×

[
∇θ log φθ(y2|x)−∇θ log φθ(y1|x)

]
.

Let G be the random variable defined by the magnitude of the gradient update that is
obtained by soliciting human feedback for the (x, y1, y2) triplet. Let p1 = p(y1 ≻ y2|x) be
the probability that y1 is preferred to y2 and p2 = p(y2 ≻ y1|x) be the probability that y2 is
preferred to y1.

The expectation of G is defined as:

E[G] = p1∥G1∥+ p2∥G2∥. (6)

The variance of G is defined as:

σ2(G) = p1(∥G1∥ − E[G])2 + p2(∥G2∥ − E[G])2. (7)

The expectation alone is not a good decision metric when selecting which responses should
be labeled for several reasons. First, suppose that one response is gibberish, and the other
is sensible. The gradient in which the gibberish response is the preferred response would
likely be large, and therefore, the expectation would be high. However, selecting a tuple
where one of the responses is gibberish will not lead to an informative update to the model.
Thus, we need some way to account for the variance of G. To do this, we use a tool from
statistical finance: the Sharpe ratio. The Sharpe ratio (Sharpe, 1966), invented by William
Sharpe in the 1960s, evaluates not just the expected value of an investment portfolio but
also the risk. For example, one would likely eschew investment opportunities that could
result in losing one’s entire life savings, even if these investment opportunities had a high
expected value. We apply the same logic when selecting which preference pairs to label. We
want to maximize the expected magnitude of our gradient updates but reduce the risk of
getting a small gradient update if a certain response is preferred. By choosing to label the
preference pairs that yield the highest Sharpe ratio, we accomplish this goal. Because we
drew inspiration for our method of active learning from the Sharpe ratio metric, we name
our method SHarpe Ratio-based Active Requested Preferences, or SHARP for short. The
Sharp ratio of a triplet (x, y1, y2) is defined as:

SR(G) =
E[G]

σ(G)
(8)

In our active learning setting, we select triplets that yield the highest Sharpe ratio. We define
an acquisition function for the current policy φθ as:

αφθ
(x, y1, y2) = SR(G). (9)

SHARP: No Prior Acquisition Function: Before querying the expert labeling of the prefer-
ence, we might have no prior assumption about which response might be preferred to the
other. In this case, we can assume that y1 and y2 are equally likely to be the better response,
and therefore p1 = p2 = 0.5. We consider this the no prior version of our method, and we
refer to it as SHARP.

W-SHARP: Prior-based Acquisition Function: The RLHF/DPO pipeline usually initializes
the policy φθ to the SFT policy previously finetuned on data related to the same domain or
topic of interest. This model can provide us with a prior for the preference probabilities p1
and p2. For instance, in the DPO setting, we can derive an implicit reward model from φθ

and φref, rθ(x, y) = β log φθ(y|x)
φref(y|x)

and then set the probabilities p1 and p2 based on Equation
4 during the active learning iterations. We refer to this version of our method as weighted
SHARP (W-SHARP).
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5.2 Efficient Execution of SHARP with DPO

In practice, computing the Sharpe ratio would require computing the gradient for each
element in the dataset twice and consequently backpropagating through the LLM 2× B times
for each batch of size B instead of a single batch-wise backpropagation. This procedure is
computationally expensive in terms of both time and memory. To overcome this bottleneck,
we use the closed-form expression of the gradient of the DPO loss function to simplify
the final expression of the SHARP acquisition functions. Given the final expression of the
gradient of the DPO loss, we can express G2 as a function of G1:

G2 = −βσ(r̂θ(x, y1)− r̂θ(x, y2))×
[
∇θ log φθ(y2|x)−∇θ log φθ(y1|x)

]
= −β

[
σ(r̂θ(x, y2)− r̂θ(x, y1))− 1

]
×

[
∇θ log φθ(y1|x)−∇θ log φθ(y2|x)

]
= G1

[
1 − 1

σ(r̂θ(x, y2)− r̂θ(x, y1))

]
.

Consequently, we have:

∥G2∥ = ∥G1∥ · ∥γ∥, (10)

with ∥γ∥ = ∥1 − 1
σ(r̂θ(x,y2)−r̂θ(x,y1))

∥.

Combining Equations 8, Equation 6, and Equation 7, we get an expression of the Sharpe
ratio as follows:

SR(G) =
p1∥G1∥+ p2∥G2∥√

p1(∥G1∥ − E[G])2 + p2(∥G2∥ − E[G])2
.

By substituting the expression of ∥G2∥ from Equation 10, we obtain the final form of the
Sharpe ratio, in which the gradient terms ∥G1∥ cancel out in both the numerator and the
denominator.

SR(G) =
∥G1∥(p1 + p2∥γ∥)√

p1(∥G1∥ − ∥G1∥(p1 + p2∥γ∥))2 + p2(∥G1∥ · ∥γ∥ − ∥G1∥(p1 + p2∥γ∥))2
(11)

=
(p1 + p2∥γ∥)√

p1(1 − (p1 + p2∥γ∥))2 + p2(∥γ∥ − (p1 + p2∥γ∥))2
. (12)

In the case of W-SHARP, we substitute the probabilities p1 and p2 by the preference proba-
bilities obtained by combining the implicit reward model and the Bradley-Terry preference
model (Bradley & Terry, 1952):

αW−SHARP
φθ

(x, y1, y2) = SR(G), (13)

with SR(G) defined in Equation 12. In the case of SHARP, where we assume that we do not
have any prior about the preference probabilities, we have p1 = p2 = 1

2 . The acquisition
function expression can be further simplified as follows:

αSHARP
φθ

(x, y1, y2) =
1
2 (1 + ∥γ∥)√

1
2 (1 −

1
2 (1 + ∥γ∥))2 + 1

2 (∥γ∥ − 1
2 (1 + ∥γ∥))2

. (14)

By simplifying Equation 14, we obtain the final expression:

αSHARP
φθ

(x, y1, y2) =
1 + ∥γ∥
|1 − ∥γ∥| . (15)

By leveraging the gradient expression of the DPO loss and the relationship between
swapped-preference gradients and the Sharpe ratio, our derivation provides a **closed-form
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formula** for per-tuple Sharpe ratios. This circumvents the need for multiple backpropaga-
tions, significantly reducing both memory and computation costs and keeping the method
tractable. Crucially, without this derivation, although the approach might still be conceptu-
ally valid and useful, it would be prohibitively impractical in real-world applications.

We execute SHARP and W-SHARP on each batch of incoming unlabeled prompt-responses
triplets to select a sub-batch for human labeling. SHARP proceeds as in Algorithm 1.

Algorithm 1 SHARP Data Selection Algorithm
Inputs: policy φθ , reference policy φref, exploration parameter β, batch size b, number of
iterations N, a dataset D = {(xi, yi1, yi2)}n

i=1, the fraction p of the batch that we can afford
to label.
Output: A subset of the data DL ⊂ D of triplets of expert labeling with |DL| = b × N,
Updated φθ .

1: for t = 1, . . . , N do
2: Draw a large batch of triplets B = {(xi, yi1, yi2)

(b.p)
i=1 } ∼ D.

3: for (xi, yi1, yi2) ∈ B do
4: If using SHARP method, compute αSHARP

φθ
(xi, yi1, yi2)

5: If using W-SHARP method, compute αW−SHARP
φθ

(xi, yi1, yi2)
6: end for
7: Let BL be the top-b elements of B by the value of the acquisition function α.
8: Request the preferences labels from the expert and add them to DL
9: Update the policy φθ using a gradient step of the LDPO using BL

10: end for
11: return DL and φθ .

Figure 3: Comparison of W-SHARP-DPO and SHARP-DPO against DPO and APL across different
models and datasets. The metric is the average win rate over chosen completions, computed with
GPT-4o under swapped evaluation orders to reduce positional bias. Error bars indicate the standard
error.
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Figure 4: Comparison against the expectation over the gradient on the GPT-2 model with both datasets.

6 Experiments

In this section, we provide the details of our evaluation pipeline. Our main goal is to
determine if we can achieve better or comparable performance as DPO while using a
smaller amount of labeled data. The standard DPO uses a random selection from the dataset.
To assess whether our approaches enhance data selection in DPO, we conduct experiments
training large language models (LLMs) on two datasets applied to three different models
with different ranges of sizes. We additionally provide comparison results against the APL
baseline proposed by Muldrew et al. (2024). When comparing the approaches, we keep
all parameters of the experiments identical except for the data selection method to isolate
and verify its impact on performance. The code for our approach is publicly available
github.com/belakaria/sharpe-ratio-active-llm-alignment-dpo.

Datasets We evaluate both methods on two public datasets: the Anthropic Helpful-Harmless
(HH) dataset (Bai et al., 2022b) and the Stanford Human Preferences (SHP) dataset (Etha-
yarajh et al., 2022).

Anthropic Helpful-Harmless (HH): The HH dataset is designed to measure an AI assistant’s
ability to be both helpful and harmless. It contains two main types of examples: queries
where the user’s request is reasonable and the assistant should provide a helpful response,
and queries where the user’s request may be harmful or inappropriate, requiring the
assistant to prioritize safety by giving a non-harmful response.

Stanford Human Preferences (SHP): The SHP dataset consists of Reddit posts and correspond-
ing human-generated comments spanning 18 different categories. This broad coverage
provides diverse human writing styles and topics. SHP focuses on modeling general human
preferences across a wide range of real-world conversations.

LLMs: We explore the impact of active learning by evaluating three models of varying size
and capacity: GPT-2, Pythia-2.8-B, and Llama-3-8B. These models span a broad range of
resource requirements and capabilities, allowing us to assess how active learning strategies
perform under different constraints. We conduct six distinct experiments using the above
datasets to provide a comprehensive analysis of each model’s performance.

Pipeline Setup: In the DPO pipeline, we begin by splitting each dataset into training and
test sets. During the Supervised Fine-Tuning (SFT) phase, we finetune each model on
the training split, updating all parameters in each gradient step. In the subsequent DPO
phase, to efficiently manage computational resources, we apply a quantized Low-Rank
Adaptation (LoRA) of each LLM. This approach reduces memory footprint and speeds
up experimentation without sacrificing the model’s overall performance. We apply 4-bit
quantization using a double quantization strategy under the NF4 scheme while computing
in bfloat16. In addition, we use a LoRA configuration with rank 16, alpha 32, and a dropout
rate of 0.05, tailored for causal language modeling tasks and omitting additional bias. We
set the batch size of our training to 64 and set the fraction that would be labeled to p = 6.

We evaluate model performance using the winrate against the dataset’s designated “chosen”
completions. Formally, the winrate indicates the proportion of generated responses that are
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deemed preferable to those labeled as chosen in the dataset. We recompute this metric after
every 4,096 training samples to track performance trends over time.

To underscore the benefits of active learning under constrained resources, we limit the
DPO phase to a total of 28,672 training points across all experiments. Additionally, we
use GPT-4o as an evaluation oracle to compare each newly generated response against the
dataset’s designated chosen completions. To mitigate position bias, each pair of responses is
evaluated twice with reversed ordering, and we report the average winrate across these two
evaluations.

Both W-SHARP-DPO and SHARP-DPO consistently outperform the standard DPO baseline
and the APL baseline (Figure 3). We attribute this improvement to our acquisition function
α, which takes the risk (i.e., all possible gradient outcomes) into account when selecting
data points. Interestingly, W-SHARP-DPO and SHARP-DPO achieve similar performance,
suggesting that incorporating the implicit reward model as a prior does not necessarily
yield further gains in this setting. This could indicate that while using a prior might help in
other contexts, it is not required for effective data selection and making no prior assumption
could be beneficial for risk assessment.

The accuracy of the implicit reward model for experiments conducted on both datasets
echos this result (Figure 5, Appendix). Although this metric is not our primary focus, the
results indicate that both SHARP and W-SHARP tend to attain higher accuracy more quickly
on the test data, suggesting that these methods guide the model toward more effective
reward predictions.

Ablation Study: We additionally provide an ablation study to compare against the expected
gradient (Figure 4). We conduct the experiments on the GPT-2 model using both datasets.
We observe that the SHARP method performs better. Notably, we expect the performance
gap to be even larger in noisy datasets that include response pairs where one option is
unlikely or nonsensical. Due to the high memory and computational demands of extracting
individual gradients for each data point, we were only able to run these experiments with
the GPT-2 model. This computational challenge further underscores the strength of the
SHARP approach, as its closed-form expression avoids the need for expensive per-sample
gradient computations.

7 Summary, Future Directions, and Limitations

We present a novel active learning strategy for RLHF/DPO in large language models,
designed to prioritize and label the most impactful data points under limited human
annotation budgets. Central to our method is the use of a Sharpe ratio-based acquisition
function to evaluate potential gradient updates. By selecting examples with the highest
Sharpe ratios, we aim to target those most likely to produce substantial improvements in
policy performance. Our empirical results suggest that this risk-aware selection can reduce
annotation costs while enhancing the quality of the learned policy.

Our current approach focuses exclusively on high Sharpe ratio data, which may bias the
distribution of selected examples. Although such selective sampling is typical in active
learning scenarios, if a practical setting requires an unbiased estimate of the underlying
data distribution, future methods could address potential deviations arising from risk-based
sampling. Potentially, future methods could combine our Sharpe ratio-based approach
with techniques like importance sampling or explicit expectation balancing to address
such requirements. Moreover, our computational study was limited by relatively modest
resources, restricting the scale of DPO training and the range of datasets evaluated. While
our findings demonstrate the promise of a Sharpe ratio-based framework, additional inves-
tigation across larger tasks and more extensive experiments would establish its robustness
and generalizability.

Although in this work we focused on Sharpe ratio, given its intuitive trade-off between
the expected benefit (mean gradient magnitude) and the potential downside (variance),
alternative risk-aware metrics such as the Sortino ratio could offer interesting inductive
biases. Investigating the impact of such metrics is a promising direction for future work.
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Appendix

A Additional Results

In this section, we provide additional results reporting the accuracy of the implicit reward
model on the test set. To provide informative results, we use exponential moving average
smoothing.

Figure 5: The accuracy of the implicit reward model for models.
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