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Abstract

We introduce a novel measure for quantifying the error in input predictions. The
error is based on a minimum-cost hyperedge cover in a suitably defined hypergraph
and provides a general template which we apply to online graph problems. The
measure captures errors due to absent predicted requests as well as unpredicted
actual requests; hence, predicted and actual inputs can be of arbitrary size. We
achieve refined performance guarantees for previously studied network design
problems in the online-list model, such as Steiner tree and facility location. Further,
we initiate the study of learning-augmented algorithms for online routing problems,
such as the online traveling salesperson problem and the online dial-a-ride problem,
where (transportation) requests arrive over time (online-time model). We provide a
general algorithmic framework and we give error-dependent performance bounds
that improve upon known worst-case barriers, when given accurate predictions, at
the cost of slightly increased worst-case bounds when given predictions of arbitrary
quality.

1 Introduction

We develop a novel measure for quantifying the error in input predictions and apply it to derive
error-dependent performance guarantees of algorithms for online metric graph problems. Online
graph problems are among the most fundamental online optimization problems, where an initially
unknown input is revealed incrementally. The two main paradigms for the incremental information
release are the online-time model and the online-list model. In the online-time model, initially
unknown requests are revealed over time and can be served any time, whereas in the online-list model,
requests are revealed one-by-one and must be served immediately before the next request appears. In
this work, we address specifically the following online routing and network design problems.

Online-time routing problems In the classical Online Traveling Salesperson Problem (OLTSP) and
Online Dial-a-Ride Problem (OLDARP), a server can move at unit speed in a given metric space.
Transportation requests appear online over time, each defining a start and end point in the metric
space (in the TSP both points are equal). The task is to determine a tour to serve all requests (in
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any order) by moving to the corresponding start and end points. The objective is to minimize the
makespan, i.e., the time point when all requests have been served and the server is back in the origin.
These problems are well-studied [7, 8, 17, 18, 24], as well as other related variants [31, 32, 36].

Online-list network design problems In the Online Steiner Tree Problem, requests are terminal
nodes that are revealed one-by-one in a given metric space (typically represented as a complete edge-
weighted graph) and must be connected to a fixed root by selecting edges via other (Steiner) nodes. In
the closely related Online Steiner Forest Problem, a request is composed of two nodes which have to be
connected by the selected set of edges. In both problems, the objective is to minimize the total cost of
selected edges. In the more general Online Facility Location Problem, a facility can be opened at every
vertex at a certain one-time cost at any time, and arriving client vertices are connected upon arrival to
the closest open facility at the cost of the shortest path to it. The goal is to minimize the opening and
connection cost. These problems are very well-studied [2–4, 9, 13, 15, 20, 21, 23, 25, 26, 30, 39, 45, 46].

The performance of online algorithms is typically assessed by worst-case analysis. An algorithm is
called ρ-competitive if it computes, for any input instance, a solution with objective value within a
multiplicative factor ρ of the optimal value that can be computed when knowing the full instance
upfront. The competitive ratio of an algorithm is the smallest factor ρ for which it is ρ-competitive.
For the above problems (nearly) tight bounds on the competitive ratio are known. For OLTSP
and OLDARP, there have been shown best possible 2-competitive algorithms [7, 8]. For the online
network design problems, the existence of O(1)-competitive algorithms has been ruled out [25,30,39]
and algorithms with (tight) (poly-)logarithmic upper bounds have been shown [15, 25, 30, 39, 45].

The assumption in online optimization of not having any prior knowledge about future requests
seems overly pessimistic. In particular, given the success of machine-learning methods and data-
driven applications, one may expect to have access to predictions about future requests. However,
simply trusting such predictions might lead to very poor solutions, as these predictions come with
no quality guarantee. The recent vibrant line of research initiated in [37, 38] aims at incorporating
such error-prone predictions into online algorithms, to go beyond worst-case barriers. The goal are
learning-augmented algorithms with a performance that is close to that of an optimal offline algorithm
when given accurate predictions (called consistency) and, at the same time, never being (much) worse
than that of a best known algorithm without access to predictions (called robustness). Further, the
performance of an algorithm shall degrade in a controlled way with increasing prediction error.

In this paper, we consider an input predictions model, i.e., there is given a set R̂ of predictions for the
actual online input R of a problem. We do not make any assumption on the quality of the prediction
or on its size. In particular, R̂ might be substantially larger or smaller than R.

Defining an appropriate error measure is a crucial task in this line of research. There is no common
agreement (yet) in the literature on what constitutes a good error measure. The philosophy behind
our error measure is the following. Any learning-augmented algorithm needs to trust the predictions
to some extent, as otherwise no improvement upon an online algorithm is possible. The error should
then be able to sensitively bound how much any (reasonable) algorithm pays for erroneous predictions.
Roughly, our error measure achieves this by approximating the extra cost that an algorithm trusting
the predictions has when it serves the true instance; very informally, this is OPTtrustR̂(R)−OPT(R).
Several natural measures (for graph problems) have been proposed, such as the number of erroneous
predictions [47], the ℓ1-norm (e.g., distances between predicted and real points), or more involved
perfect matching-based errors [12]. Although we cannot expect that a single error measure is
appropriate for all problems, we propose a universal template based on the cost of a hyperedge cover
in a bipartite hypergraph that is constructed in a problem-specific way.

1.1 Our contributions

Cover error for input predictions Here we sketch the main idea of our error measure, which
will be made precise in Section 2. We separately cover the errors incurred by unexpected actual
requests, R \ R̂, and absent predicted requests, R̂ \R, as these pose a potential threat to an algorithm
which trusts R̂. For each of the two error types we consider a suitable weighted bipartite hypergraph
with erroneous requests on the left side and define an error measure combining the costs of minimum
hyperedge covers of the left side of each hypergraph. Let us concentrate on errors due to unexpected
actual requests, being the nodes on the left side, with the predicted requests as the nodes on the right
side. Each hyperedge links a single node on the right side with a subset of the nodes on the left side
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which it covers. Its contribution to the overall error, i.e., its cost in the hyperedge cover problem
to cover all left side nodes, is related to the optimal cost for the subinstance induced by its nodes.
E.g. in OLTSP this cost is the value of an optimal tour for some unexpected requests (left) when
starting from some predicted request (right), which can be seen as a minimum detour that needs to be
made from the predicted request to serve the unexpected requests. Bounding the number of left side
requests in the hyperedges by k yields a hierarchical family {Λk}∞k=1 of errors, with higher values
of k giving errors that reflect more precisely the cost due to trusting wrong predictions.

The cover error fulfills several useful properties. First, it provides a framework that may apply to
various problems by assigning appropriate costs to the hyperedges. E.g. for the online-time model
it allows to integrate in a very precise way actual and predicted release dates, as we demonstrate in
Section 3. This is a feature which previous metric graph errors seem to miss [12, 47], because they
rely on counting incorrect predictions or disallow asymmetric cost functions. Our error also naturally
supports different sizes of R and R̂, reflecting the input sequence length being unknown in almost all
online optimization problems in the literature. Although previously studied error measures [12, 47]
do support this in theory, we will show in Section 2 that they fail to detect good predictions in
certain scenarios, which results in imprecise weak performance bounds. In contrast, the cover error
guarantees an almost optimal performance of the same algorithms in these cases. We therefore hope
that the cover error will be useful for better analyzing existing learning-augmented algorithms and
other problems in the future.

Algorithms with error-sensitive performance bounds Our algorithmic results are twofold: we
provide the first learning-augmented algorithms for online-time routing problems, and we give new
error-dependencies for existing algorithms for online-list network design problems. The unifying
element is that we achieve these by problem-dependent implementations of our new cover error. We
first introduce a general framework for OLTSP and OLDARP, in which we delay the moment in
which we start following the optimal predicted tour by a multiplicative trust factor α ∈ (0, 1). For
robustness, before starting to follow the predictions any ρ-competitive online algorithm is executed in
a black-box fashion. We prove an error-dependency w.r.t. the first cover error in the hierarchy Λ1 (as
properly defined in Section 2). We denote by C∗ the cost of an optimal tour on the actual requests R.
Theorem 1. OLTSP and OLDARP admit learning-augmented algorithms that use a ρ-competitive
algorithm as a subroutine and achieve a competitive ratio that is, for any α > 0, bounded by
min

{
(1 + α)

(
1 + 3·Λ1

C∗

)
, 1 + ρ+ ρ

α

}
.

Hence, sufficiently good predictions help to beat the classic lower bound of 2 [8] for OLTSP.

When using the algorithm of [7] as a subroutine, we can further refine our algorithm by carefully
aligning the used waiting strategies and prove an improved robustness guarantee.
Theorem 2. OLTSP and OLDARP admit a learning-augmented algorithm that uses the 2-
competitive algorithm of [7] as a subroutine and achieves a competitive ratio that is, for any α > 0,
bounded by min

{
(1 + α)

(
1 + 3·Λ1

C∗

)
, 2 + 2

α

}
.

In general, online algorithms for OLTSP and OLDARP aim for tackling the uncertainty of the input
rather than efficient running times, which is also the case for the above discussed results. Yet, we
show in Section 3.2 that we can trade efficiency with slightly larger constant factors in the guarantees.

Further, we remark that simpler and tightened results are possible for restricted metric spaces: in
Section 3.2 we provide improved bounds for OLTSP on the positive half of the real line. Here, a
minimalistic prediction, a single value predicting the optimal makespan C∗, suffices to obtain an
almost tight consistency-robustness tradeoff.

We complement these theoretical bounds with empirical results (see Section 5) on simulated real-
world taxi instances in the city road network of Manhattan, which indicate the superior performance
of our new algorithms compared to classic methods in both general and relevant restricted scenarios.

Further, we consider online-list graph problems and analyze the algorithmic framework provided by
Azar, Panigrahi and Touitou [12] w.r.t. our new cover error. For each problem, we specify hyperedge
cost functions which follow the same paradigm and prove new error-dependent bounds.
Theorem 3. The algorithms in [12] for the online Steiner tree or online (capacitated) facility location
problem incur, for any parameter k ≥ 1, a cost of at most O(1) ·OPT+O(log k) · Λk.

Theorem 4. The algorithm in [12] for the online Steiner forest problem incurs, for any parameter
k ≥ 1, a cost of at most O(1) ·OPT+O(k) · Λk.
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These bounds hold simultaneously for any k. The algorithm is still robust due to the robustness bound
of O(log|R|) provided by Azar et al. in [12]. On the technical side, we can exploit a technical lemma
by [12] that allows us to split the analysis in two parts. The actual proofs for bounding the algorithm’s
cost by the cost of an optimal solution and the cover error are completely different.

For certain input scenarios we substantially strengthen the bounds on the competitive ratio provided
by Azar et al. [12]. Indeed, their bound never improves over Ω(log(max{|R|, |R̂|}−min{|R|, |R̂|})),
which is not better than the best possible competitive ratio O(log|R|) for classic online algorithms,
if |R̂| and |R| differ significantly. We show that there are input scenarios for which their error
measure overestimates the actual error substantially and, thus, gives poor performance bounds while
the algorithm performs actually well; more precisely, we prove a constant competitive ratio for the
algorithm in [12] w.r.t. our error measure whereas the bound w.r.t. the previous measure is O(log|R|).

1.2 Further related work

While untrusted predictions have been successfully integrated into online models for many different
problems, none of the previous approaches and models seem to capture the complexity of combined
routing and scheduling decisions. Related research includes work on scheduling [10,11,14,29,33,34,
40, 42, 43], routing in metric spaces such as the k-server problem and more generally metrical task
systems [5, 35], graph exploration [22] and online network design [1, 12, 47].

Further, there is hardly any work on integrating untrusted predictions into online problems in the
online-time model. The only exception seems to be the work by Antoniadis et al. [6] on online
speed scaling with a prediction model that includes release dates and deadlines. The nature of the
speed-scaling problem, however, is very different from the routing problems we consider. Other
works on non-clairvoyant scheduling with jobs arriving over time (minimizing flow time [10,11], total
completion time [34] and energy [14]) assume predictions on the job sizes or priorities; release dates
are known in advance in [14], while [10, 11, 34] consider purely online problems w.r.t. job arrivals.

Very recently and independently of our work, two papers [27, 28] were announced that also study
OLTSP in the learning-augmented setting. Hu et al. [28] consider OLTSP with different prediction
models in general metric spaces. For arbitrary input predictions, their result has no error-dependency
and a weaker consistency-robustness tradeoff compared to Theorem 2. Gouleakis et al. [27] exclu-
sively study OLTSP on the real line. Assuming that the correct number of requests is known in
advance, they study the power of predictions on the locations; their results are incomparable to ours.

1.3 Organization

We first introduce the cover error in Section 2, and then give our results for online-time routing
problems and online-list network design problems in Section 3 resp. Section 4. Finally, we present
empirical experiments in Section 5. Details on extensions, further experiments and missing proofs
can be found in the full version [16] of this paper, which is also part of the supplemental material.

2 The cover error

Given an input prediction R̂ and the actual input R, we design an error measure that covers every
erroneously predicted item, i.e., all unexpected requests R\ R̂ and all absent predicted requests R̂\R.
As a concrete example think of OLTSP where a learning-augmented algorithm trusts (at least to a
certain degree) the predicted requests in R̂, and thus follows an optimal tour on R̂. After serving a
predicted request (x̂, r̂), it may serve some unexpected actual requests R′ ⊆ R \ R̂ that have already
been released and are relatively close to (x̂, r̂) (both time- and location-wise). In our terminology,
think of (x̂, r̂) covering R′, and observe that the cost for this cover shall naturally be equal to the
optimal cost for serving R′ when starting in x̂ at time r̂. Conversely, the predicted requests that have
not shown up and are nevertheless visited, R̂ \R, should be covered by actual requests, to make up
for the extra cost incurred by these superfluous visits.

We can arguably expect that any well-performing algorithm should be as least as good as serving all
unexpected requests R \ R̂ and all absent predicted requests R̂ \R in such partitions which can be
covered by, respectively, predicted and actual requests in the cheapest possible way.
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(c) Γk(R, R̂) = Γk(R \ R̂, R̂)
Figure 1: Example for a metric instance and input prediction with a min-cost k-hyperedge cover of the set of
unexpected requests R \ R̂. The actual requests are filled green and the predicted requests are encircled red. The
labels show which points in the metric space correspond to which nodes in the bipartite graphs.

We now embed this intuition into a precise definition. Let A and B be two sets of (possibly different)
size and let k ≥ 1. We define a bipartite hypergraph Gk = (A ∪ B,H) where H is the set of all
hyperedges which have exactly one endpoint in B and at most k endpoints in A. A k-hyperedge
cover of A by B is a set of hyperedges H′ ⊆ H in Gk such that every vertex in A is incident to
at least one hyperedge in H′. If every hyperedge h ∈ H of Gk has an associated cost γ(h), a
minimum-cost k-hyperedge cover H′ is a k-hyperedge cover which minimizes the total hyperedge
cost

∑
h′∈H′ γ(h′). We denote the value of a min-cost k-hyperedge cover of A by B by Γk(A,B).

Finally, the cover error, denoted by Λk(R, R̂), is given by

Λk(R, R̂) = Γ∞(R̂, R) + Γk(R, R̂).

Notice that we allow arbitrary large hyperedges (k = ∞) to cover predicted requests R̂. We
emphasize that all results also hold for a symmetric error definition Γk(R̂, R) + Γk(R, R̂), because
Γi(A,B) ≥ Γi+1(A,B), for any i. Nevertheless we use this asymmetric definition to obtain a
stronger bound when covering R̂. Intuitively, this is possible because all predicted requests are known
in advance (as opposed to the actual requests, which arrive online).

We simply write Λk if R̂ and R are clear from the context. Since our error measure shall give value
zero if R̂ = R, we require that the cost of every hyperedge {a} ∪ {b} for some a ∈ A and b ∈ B is
equal to zero if a = b. Then, all vertices in A ∩B can be covered trivially by B, and we conclude
that Γk(A \B,B) = Γk(A,B). Figure 1 depicts an example of a k-hyperedge cover.

It remains to specify the cost γ(A′, b) of a hyperedge A′ ∪ {b}. Although we will give precise
definitions separately for every concrete problem, all definitions follow a certain paradigm. That
is, the cost γ(A′, b) shall be equal to the value of an optimal solution for the subinstance induced
by A′ with respect to b. This anchoring requirement is the single detail which has to be specified for a
concrete problem. Note that this matches our intuition discussed above for OLTSP.

Comparison to other error measures We compare the cover error to previously proposed error
measures for the (undirected) online Steiner tree problem. Xu and Moseley [47] define a prediction
error η = max{|R̂|, |R|}− |R̂∩R|, the number of erroneous requests, and prove that their algorithm
is O(log(min{|R|, η}))-competitive. Azar et al. [12] introduce the metric error with outliers λ =
(∆, D), where D is the value of a min-cost perfect matching between two equally sized subsets of R
and R̂, and ∆ is the total number of unmatched points in R and R̂. They prove for their algorithms a
multiplicative error dependency w.r.t. log(min{|R|,∆}) and an additive error dependency w.r.t. D.

We give a family of instances with n actual requests and an input prediction for which the algorithms
of Azar et al. [12] and Xu and Moseley [47] perform arguably well, but their error measures and
analyses yield a bound of O(log n) ·OPT+O(ϵ), which could be achieved even without predictions.
For some ϵ > 0, the instance is composed of one terminal request at x1 and n−1 requests in an ϵ-ball
around the Steiner point x2, but no request is exactly on x2. Both x1 and x2 are predicted. We can
immediately observe that the number of erroneous requests [47] is η = n−1. For the metric error with
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outliers [12], note that any perfect matching is composed of at most two matches, therefore ∆ ≥ n−2
and D = O(ϵ). On the other hand, our cover error is bounded by Λk ≤ Λ1 = O(n · ϵ) for any k,
because x2 covers all requests in the ϵ-ball around it. Then, Theorem 3 concludes that the algorithm
of Azar et al. [12] is indeed constant competitive for this instance when ϵ → 0.

3 Online metric TSP with predictions

Let M = (X, d) be a metric space, consisting of a set of points X , with origin o ∈ X and a metric d.
In the Online Metric Traveling Salesperson Problem (OLTSP), a set of unknown requests R is
released online over time. A request (x, r) is composed of a point x ∈ X and a release date r ∈ R≥0,
i.e., the time at which the request becomes known and can be served. The task of an algorithm is to
route a server, which is initially in the origin and moves at unit speed, through all requests back to the
origin. The objective is to minimize the makespan, i.e., the total time required for this task.

The OLTSP with predictions, is an OLTSP in which we are given additionally an a priori prediction R̂
on the set of requests. We assume that the server receives a signal when it is back at the origin
after serving all the actual requests. Unlike in the classic OLTSP, this is important, as otherwise an
algorithm might continue considering predicted requests, thus, ruling out any robustness.

To specify our cover error, we define the cost of a hyperedge R′∪{(x′, r′)} as the extra cost of serving
erroneous (unexpected or predicted absent) requests R′ w.r.t. a request x′ (actual or predicted):

γTSP(R′, (x′, r′)) = optimal makespan for serving instance R′ from origin x′ and initial time r′.

To get some intuition, consider X = R≥0 and an algorithm that does not move before time t if there
are no requests. It will receive an adversarial request (t, t) and hence encounters a ratio of 3

2 [18]. To
overcome this when having (almost) accurate predictions, the server has to move towards (predicted)
requests before they actually arrive. However, this pre-moving technique brings several challenges.
If an algorithm moves the server without interruption to a predicted request at the beginning of the
instance, an adversary would immediately spawn the single actual request at the origin, giving an
unbounded robustness. If the server would directly move back, one can similarly argue that the
consistency is at least 3

2 . Therefore, the key is to define a proper waiting strategy before moving
towards predicted requests. We show that we can execute an arbitrary online algorithm while delaying
pre-moving to gain information about the instance. This is very delicate, since too much delay clearly
weakens the consistency, but too little delay gives weak robustness. We prove the following result.
Theorem 5. Let α ∈ (0, 1/2) and let A be a (1 + α)-consistent deterministic learning-augmented
algorithm for OLTSP. Then, A can be β-robust only for β ≥ 1

α − 1. This holds even on the half-line.

Our final algorithm uses a hyperparameter α > 0 to configure the waiting duration and thereby
achieves a tight asymptotic consistency-robustness tradeoff. Intuitively, we can express our confidence
in the prediction using α and get customized guarantees.

3.1 A general framework for OLTSP with predictions

Our strategy involves an initial delay phase in which we follow an arbitrary online algorithm, up to
some predetermined time depending on the cost Ĉ of an optimal tour T̂ of the predicted requests R̂.
After that, we start following T̂ , adjusting it whenever the actual requests deviate from the predictions.
We call this greedy strategy PREDICTREPLAN (PREDREPLAN for short), due to the analogy with the
classic REPLAN heuristic [7]. Let p(t) be the server’s location at time t.

Algorithm 1 PREDREPLAN

Follow T̂ . Whenever an unexpected request (x, r) is released, recompute and follow a fastest
tour from p(r) to the origin serving all unserved predicted requests as well as all the unserved
unexpected requests. If the server receives an end signal in the origin, terminate.

While this algorithm might move towards predicted requests which are known to be absent to make the
analysis clearer, a practical implementation ignores these and thereby only improve its performance.
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We formally define the class of algorithms DELAYTRUST, that is parameterized by our trust parame-
ter α > 0, which scales the delay. Let A be any ρ-competitive online algorithm for OLTSP.

Algorithm 2 DELAYTRUST

i: Follow A as long as for time t it holds t ≤ αĈ − d(p(t), o)
ii: Move the server to the origin

iii: Follow the PREDREPLAN strategy until the end

We refer to the execution of each line as a phase. We now prove the main Theorem 1 for OLTSP,
by showing for DELAYTRUST separately an error-dependent bound in Lemma 6 and a robustness
bound in Lemma 7. Given an OLTSP instance, we denote by C∗ the makespan of an optimal tour T ∗

serving all actual requests.

Lemma 6. DELAYTRUST has a competitive ratio of at most (1 + α)
(
1 + 3 · Λ1

C∗

)
, for any α ≥ 0.

Proof. We first bound Ĉ. Fix a min-cost ∞-hyperedge cover of R̂ by R and an optimal tour T ∗ for R.
For every hyperedge R̂′ ∪ {(x, r)} in the cover, we extend T ∗ by adding the optimal offline OLTSP
tour for R̂′ which starts at x at the time t at which T ∗ serves x. Note that, since r ≤ t, the makespan
of this subtour is bounded by the cost of R̂′ ∪ {(x, r)}. Since every predicted request is covered by at
least one hyperedge, the constructed tour serves R̂ and we conclude that Ĉ ≤ C∗ + Γ∞(R̂, R).

We now bound the makespan of the tour of the algorithm. If the algorithm terminates in Phases (i)
or (ii), its makespan is at most αĈ ≤ α · (C∗ + Γ∞(R̂, R)) ≤ (1 + α) · (C∗ + Λ1).

Otherwise, the algorithm reaches Phase (iii). There it first computes an optimal tour T̂ of length
at most Ĉ serving all unserved predicted requests. The makespan only increases when unexpected
requests arrive. To this end, fix a min-cost 1-hyperedge cover of R by R̂ and a hyperedge {(x′, r′)}∪
{(x̂, r̂)} of this cover. We upper bound the additional cost due to (x′, r′) by the cost of an excursion
from the algorithm’s current tour serving (x′, r′) . The algorithm might find a faster tour to serve all
unserved requests and henceforth uses that. We distinguish two cases depending on the algorithm’s
remaining tour before request (x′, r′) arrived. If x̂ is not part of this tour, we consider an excursion
which immediately deviates from p(r′) to serve (x′, r′) and then returns to p(r′). By the triangle
inequality, the length of this excursion is bounded by twice the distance between p(r′) and x̂, plus
the cost for optimally serving (x′, r′) from x̂ when starting at time r̂. Due to our assumption, (x̂, r̂)
must have already been served at some time t with r′ ≥ t ≥ r̂. Thus, the algorithm’s server is at
most r′ − r̂ units away from x̂ at time r′, and the total time incurred for this excursion is bounded by

2 · (r′ − r̂) + γTSP({(x′, r′)}, (x̂, r̂)) ≤ 3 · γTSP({(x′, r′)}, (x̂, r̂)).

Note that the inequality is due to the fact that (x′, r′) can only be served after its release date.

In the other case, the algorithm’s server will visit x̂ at some later point in time, especially at least once
after time r̂. We thus wait until the algorithm reaches x̂ at some time t ≥ r̂, and then serve (x′, r′)
using at most γTSP({(x′, r′)}, (x̂, r̂)) additional time. See Figure 2 for an illustration of both cases.

Since every actual request is covered by one hyperedge, we conclude that Phase (iii) takes time at
most Ĉ + 3 · Γ1(R, R̂). Adding the time for Phases (i) and (ii) gives a makespan of at most

(1+α)Ĉ+3·Γ1(R, R̂) ≤ (1+α)
(
C∗ + Γ∞(R̂, R) + 3 · Γ1(R, R̂)

)
≤ (1+α) (C∗ + 3 · Λ1) .

Lemma 7. DELAYTRUST has a competitive ratio of at most 1 + ρ + ρ
α , for any α > 0 and

any ρ-competitive algorithm used in Phase (i).

Proof. If the algorithm terminates during Phase (i) or (ii), the competitive ratio is ρ. We are guaranteed
to finish in one of these two phases if ρC∗ ≤ αĈ.

If we terminate within Phase (iii), then Ĉ < ρ
αC

∗. Once the last request has arrived at some
time rlast ≤ C∗, our tour stays fixed. We distinguish two cases. If the last request arrives before the
end of Phase (ii), then the cost of our tour comprises of the cost for finishing Phase (ii), which is at
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(b) Min-cost 1-hyperedge cover of R
Figure 2

most αĈ, and the cost of PREDREPLAN for following the predicted tour, including all unexpected
yet unserved requests, which is at most Ĉ + C∗. The total cost is thus bounded from above by

αĈ + Ĉ + C∗ ≤
(
1 + (1 + α) · ρ

α

)
· C∗ =

(
1 + ρ+

ρ

α

)
· C∗.

In the second case, the last request arrives in Phase (iii). In this case the cost after rlast is the cost of
following the predicted tour, adapted for incorporating the unexpected, yet unserved, requests. This
is bounded above by the cost of returning to the origin, following the predicted tour T̂ , and finally
following the optimal tour, T ∗. Note that the cost of returning to the origin is at most rlast − αC∗.
Hence, we complete the proof by upper bounding the makespan, for any ρ ≥ 1, by

rlast+rlast−αĈ+Ĉ+C∗ ≤
(
3 + (1− α) · ρ

α

)
C∗ =

(
3− ρ+

ρ

α

)
C∗ ≤

(
1 + ρ+

ρ

α

)
C∗.

3.2 Extensions and improvements

An improved algorithm for OLTSP with predictions A best possible online algorithm for OLTSP
is SMARTSTART, which is 2-competitive [7]. Using this in Phase (i) of DELAYTRUST, Theorem 1
yields a robustness factor of at most 3 + 2

α . We exploit SMARTSTART’s waiting strategy to serve yet
unserved requests and expedite Phase (iii) avoiding unnecessary waiting time, obtaining an algorithm,
SMARTTRUST, with improved robustness factor 2 + 2

α as stated in Theorem 2.

Algorithms with polynomial running time Algorithms DELAYTRUST and SMARTTRUST require
the computation of optimal TSP tours on subinstances. NP-hardness of TSP prohibits polynomial
running time, unless P=NP. We provide performance guarantees for our learning-augmented algo-
rithm framework when using polynomial-time ν-approximation algorithms for solving TSP, which
guarantee to find a TSP tour within a factor ν of the optimum.

We use a modified efficient PREDREPLAN strategy which uses a ν-approximate solution instead of an
optimal solution and further ensures that errors due to such approximations do not add up too much
compared to our error budget Λ1. Adjusting the proof of Theorem 1 yields the following result.
Theorem 8. Given a ν-approximation algorithm for metric TSP, the competitive ratio of the polyno-
mial time DELAYTRUST using a polynomial time ρ-competitive online algorithm in Phase (i) is, for
any α > 0, bounded by min

{
(1 + ν)(1 + α)

(
1 + 3·Λ1

2·C∗

)
,
(
ρ+ (1 + ν)(1 + ρ

α )
)}

.

Online metric Dial-a-Ride with predictions The Online Metric Dial-a-Ride Problem (OLDARP)
is a generalization of OLTSP where each request (xs, xd, r) has a starting location xs and a destina-
tion xd. To serve a request, the server must first visit xs at some time not earlier than r, and then xd.
We assume that the server can carry at most one request at the time and cannot store it after pickup.

We show that slight modifications of DELAYTRUST and SMARTTRUST yield Theorems 1 and 2 for
this generalized setting. We define the cost function γDaRP for the cover error:

γDaRP(R′, (xs, xd, r)) = min{γTSP(R′, (xs, r)), γTSP(R′, (xd, r + d(xs, xd)))}+D,

where D is the maximum transportation distance in R∩ R̂. Intuitively, an excursion can start from xs

after time r or from xd after time r + d(xs, xd) to serve R′, whatever is the shorter of the two.
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An improved algorithm for OLTSP on the half-line metric When restricting the metric space
to X = R≥0, the best possible online algorithm is 3

2 -competitive [18]. We design a learning-
augmented algorithm tailored to this metric space and a minimalistic prediction, namely, a single
value Ĉ predicting the optimal makespan C∗. We prove the following error-dependent performance
bound, which gives an almost tight consistency-robustness tradeoff w.r.t Theorem 5.
Theorem 9. There is a learning-augmented algorithm for the half-line metric that has for every
α ∈ (0, 1/2] a competitive ratio of at most min

{
(1 + α)

(
1 + Λ1

C∗

)
, 3
2α

}
.

4 Online network design problems with predictions

This section sketches the applicability of our new error measure for the online-list problems Steiner
Tree, Steiner Forest and (capacitated) facility location. To prove new error-dependent performance
bounds as stated in Theorem 3 and Theorem 4, we revisit the algorithms proposed by Azar et al. [12]
and analyze it w.r.t. our cover error measure. The key is an appropriate, problem-specific definition of
the cost of a hyperedge and the corresponding analysis. Recall that the cost of a hyperedge R′ ∪ {x′}
should (intuitively) be equal to the value of an optimal solution for serving a set of unexpected
(predicted absent) requests R′ w.r.t. a predicted (actual) request x′. We define the cost functions:

Steiner tree: γST(R′, x′) = cost of an optimal Steiner tree for terminals R′ with root x′.
Steiner forest: γSF(R′, x′) = cost of an optimal Steiner forest for terminal pairs R′ when

connecting via x′ = (s′, t′) is free.
Facility location: γFL(R′, x′) = cost for opening facility x′ and assigning clients R′ to it.

Our main technical contribution for online network design problems are the proofs of Theorem 3 and
Theorem 4. We now give some intuition on how these proofs work by considering the online Steiner
tree problem, and defer details and results for this and the other problems to the full version [16].

On a high level, the algorithm by Azar et al. [12] for the online Steiner tree problem does the
following. Each new request (terminal) is connected to the current solution greedily by buying edges
on a shortest path to a vertex of the current tree. When the Greedy cost increased sufficiently (with
thresholds following a doubling-strategy), the algorithm spends a certain budget (depending on the
spent Greedy cost) on connecting as many future predicted requests as possible to the current solution.

The proof of Theorem 3 splits the execution of this algorithm into two parts, where the first part
considers the time until all predicted requests are satisfied, and the second part the remaining
execution. We then use a sub-result provided by Azar et al. [12] which roughly bounds the total cost
of the first part by the optimal solutions of R and R̂, and the total cost of the second part by the cost
of the algorithm for serving specific subsequences of the request sequence. To further bound the
first part, we use the structure of a min-cost ∞-hyperedge cover of R̂ to prove an upper bound of at
most O(1) · OPT +O(1) · Γ∞(R̂, R). For the second part, we consider the total cost the Greedy
algorithm incurs for a hyperedge of a min-cost k-hyperedge cover of R, and conclude by the bounded
hyperedge size and Greedy properties that this is at most O(log k) times the hyperedge cost, yielding
a total bound of O(1) · OPT + O(log k) · Γk(R, R̂). Here we especially use the fact that in our
chosen partition of the algorithm’s execution, any predicted terminal x̂ which covers actual requests
must have already been served in the first part.

5 Experiments

We performed various empirical experiments on real-world OLTSP instances that demonstrate the
benefits of using our algorithms over classic online algorithms. We consider the road network of
Manhattan [19,41] and compose 100 instances of 10 requests each based on taxi pickup requests from
a dataset offered by the NYC Taxi & Limousine Commission.1 We compare SMARTTRUST with the
classic online algorithms REPLAN [7], IGNORE [7, 24, 44] and SMARTSTART [7]; all algorithms use
efficient TSP heuristics. We report for every experiment and instance the empirical competitive ratio,
i.e. the average ratio between the algorithms performance and the approximated value of the optimal
makespan, as well as error bars that denote the 95% confidence interval over all instances.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page, downloaded 02/05/22
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(a) Noise only in request locations (b) Partial instance predicted correctly
Figure 3: Experimental results for two different prediction settings (100 instances with 10 requests each)

We sketch here two relevant experiments and defer further details to the full version [16]. The first
experiment considers synthetic predictions with Gaussian noise σ only in the request locations, i.e.,
the release dates are predicted correctly. The results (Figure 3a) show that SMARTTRUST with
α = 0.1 dominates classic algorithms even for arbitrarily bad predictions. In the second experiment
only a part of the actual instance is predicted, which is an interesting and practice-relevant variant.
Again, the results (Figure 3b) show that for small values of α, SMARTTRUST outperforms all
classic algorithms.

Concluding remarks

The universal cover error can be applied to arbitrary problems with uncertain inputs. As it seems to
be the first error measure that captures arrival times, it seems very natural to investigate, in particular,
other online-time problems such as, e.g., scheduling problems. Further, it would be interesting to
identify more compact or smaller predictions. While we predict a full input instance much less
information might be sufficient to gain high-quality solutions. This can be only partial information
about the input instance or predictions on algorithmic actions, such as an optimal tour instead of
request sequences. In the latter case, we can directly apply our framework after approximating the
predicted tour by some time-stamped discrete points and using those as input prediction.
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