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ABSTRACT

In a backdoor attack, an attacker injects corrupted examples into the training set.
The goal of the attacker is to cause the final trained model to predict the attacker’s
desired target label when a predefined trigger is added to test inputs. Central to
these attacks is the trade-off between the success rate of the attack and the number
of corrupted training examples injected. We pose this attack as a novel bilevel
optimization problem: construct strong poison examples that maximize the attack
success rate of the trained model. We use neural tangent kernels to approximate
the training dynamics of the model being attacked and automatically learn strong
poison examples. We experiment on subclasses of CIFAR-10 and ImageNet with
WideResNet-34 and ConvNeXt architectures on periodic and patch trigger attacks
and show that NTBA-designed poisoned examples achieve, for example, an attack
success rate of 90% with ten times smaller number of poison examples injected
compared to the baseline. We provided an interpretation of the NTBA-designed
attacks using the analysis of kernel linear regression. We further demonstrate a
vulnerability in overparametrized deep neural networks, which is revealed by the
shape of the neural tangent kernel.

1 INTRODUCTION

Modern machine learning models, such as deep convolutional neural networks and transformer-based
language models, are often trained on massive datasets to achieve state-of-the-art performance. These
datasets are frequently scraped from public domains with little quality control. In other settings,
models are trained on shared data, e.g., federated learning (Kairouz et al., 2019), where injecting
maliciously corrupted data is easy. Such models are vulnerable to backdoor attacks (Gu et al., 2017),
in which the attacker injects corrupted examples into the training set with the goal of creating a
backdoor when the model is trained. When the model is shown test examples with a particular trigger
chosen by the attacker, the backdoor is activated and the model outputs a prediction of the attacker’s
choice. The predictions on clean data remain the same so that the model’s corruption will not be
noticed in production.

Weaker attacks require injecting more corrupted examples to the training set, which can be challenging
and costly. For example, in cross-device federated systems, this requires tampering with many devices,
which can be costly (Sun et al., 2019). Further, even if the attacker has the resources to inject more
corrupted examples, stronger attacks requiring smaller number of poison training data are preferred.
Injecting more poison data increases the chance of being detected by human inspection with random
screening. For such systems, there is a natural optimization problem of interest to the attacker.
Assuming the attacker wants to achieve a certain success rate for a trigger of choice, how can they do
so with minimum number of corrupted examples injected into the training set?

For a given choice of a trigger, the success of an attack is measured by the Attack Success Rate
(ASR), defined as the probability that the corrupted model predicts a target class, ytarget, for an input
image from another class with the trigger applied. This is referred to as a test-time poison example.
To increase ASR, train-time poison examples are injected to the training data. A typical recipe is
to mimic the test-time poison example by randomly selecting an image from a class other than the
target class and applying the trigger function, P : Rk → Rk, and label it as the target class, ytarget
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(Barni et al., 2019; Gu et al., 2017; Liu et al., 2020). We refer to this as the “sampling” baseline. In
(Barni et al., 2019), for example, the trigger is a periodic image-space signal ∆ ∈ Rk that is added to
the image: P (xtruck) = xtruck +∆. Example images for this attack along with the label consistent
attack of Turner et al. (2019) are shown in Fig. 2 with ytarget = “deer”. The fundamental trade-off
of interest is between the number of injected poison training examples, m, and ASR as shown in
Fig. 1. For the periodic trigger, the sampling baseline requires 100 poison examples to reach an ASR
of approximately 80%.

1 10 100 1000

0.2

0.4

0.6

0.8

number of poisons m

at
ta

ck
su

cc
es

sr
at

e

NTBA (ours)
sampling
label consistent

Figure 1: The trade-off between the num-
ber of poisons and ASR for the periodic
trigger.

label: “truck”
(a) clean

label: “deer”
(b) clean

label: “deer”
(c) poison

Figure 2: Typical poison attack takes a random sample
from the source class (“truck”), adds a trigger ∆ to
it, and labels it as the target (“deer”). Note the faint
vertical striping in Fig. 2c.

Notice how this baseline, although widely used in robust machine learning literature, wastes the
opportunity to construct stronger attacks. We propose to exploit an under-explored attack surface of
designing strong attacks and carefully design the train-time poison examples tailored for the choice
of the backdoor trigger. We want to emphasize that our goal in proving the existence of such strong
backdoor attacks is to motivate continued research into backdoor defenses and inspire practitioners
to carefully secure their machine learning pipelines. There is a false sense of safety in systems that
ensures a large number of honest data contributors that keep the fraction of corrupted contributions
small; we show that it takes only a few examples to succeed in backdoor attacks. We survey the
related work in Appendix A.

Contributions. We borrow analyses and algorithms from kernel regression to bring a new perspective
on the fundamental trade-off between the attack success rate of a backdoor attack and the number
of poison training examples that need to be injected. We (i) use Neural Tangent Kernels (NTKs) to
introduce a new computational tool for constructing strong backdoor attacks for training deep neural
networks (§§2 and 3); (ii) use the analysis of the standard kernel linear regression to interpret what
determines the strengths of a backdoor attack (§4); and (iii) investigate the vulnerability of deep
neural networks through the lens of corresponding NTKs (Appendix E).

First, we propose a bi-level optimization problem whose solution automatically constructs strong
train-time poison examples tailored for the backdoor trigger we want to apply at test-time. Central to
our approach is the Neural Tangent Kernel (NTK) that models the training dynamics of the neural
network. Our Neural Tangent Backdoor Attack (NTBA) achieves, for example, an ASR of 72% with
only 10 poison examples in Fig. 1, which is an order of magnitude more efficient. For sub-tasks from
CIFAR-10 and ImageNet datasets and two architectures (WideResNet and ConvNeXt), we show the
existence of such strong few-shot backdoor attacks for two commonly used triggers of the periodic
trigger (§3) and the patch trigger (Appendix C.1). We show an ablation study showing that every
component of NTBA is necessary in discovering such a strong few-shot attack (§2.5). Secondly,
we provide interpretation of the poison examples designed with NTBA via an analysis of kernel
linear regression. In particular, this suggests that small-magnitude train-time triggers lead to strong
attacks, when coupled with a clean image that is close in distance, which explains and guides the
design of strong attacks. Finally, we investigate the vulnerability of deep neural networks to backdoor
attacks by comparing the corresponding NTK and the standard Laplace kernel. NTKs allow far away
data points to have more influence, compared to the Laplace kernel, which is exploited by few-shot
backdoor attacks.
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2 NTBA: NEURAL TANGENT BACKDOOR ATTACK

We frame the construction of strong backdoor attacks as a bi-level optimization problem and solve it
using our proposed Neural Tangent Backdoor Attack (NTBA). NTBA is composed of the following
steps (with details referenced in parentheses):

1. Model the training dynamics (§2.2): Train the network to convergence on the clean data,
saving the network weights and use the empirical neural tangent kernel at this choice of
weights as our model of the network training dynamics.

2. Initialization (§2.3): Use greedy initialization to find an initial set of poison images.
3. Optimization (§2.4.2 and Appendix B.1): Improve the initial set of poison images using a

gradient-based optimizer.

2.1 BI-LEVEL OPTIMIZATION WITH KERNELS

Let (Xd,yd) and (Xp,yp) denote the clean and poison training examples, respectively, (Xt,yt)
denote clean test examples, and (Xa,ya) denote test data with the trigger applied and the target label.
Our goal is to construct poison examples, Xp, with target label, yp = ytarget, that, when trained on
together with clean examples, produce a model which (i) is accurate on clean test data Xt and (ii)
predicts the target label for poison test data Xa. This naturally leads to the the following bi-level
optimization problem:

min
Xp

Lbackdoor

(
f
(
Xta; argminθ L(f(Xdp;θ),ydp)

)
,yta

)
, (1)

where we denote concatenation with subscripts X⊤dp =
[
X⊤d X⊤p

]
and similarly for Xta, ydp,

and yta. To ensure our objective is differentiable and to permit closed-form kernel predictions, we
use the squared loss L(ŷ,y) = Lbackdoor(ŷ,y) = ∥ŷ − y∥22/2. Still, such bi-level optimizations
are typically challenging to solve (Bard, 1991; 2013). Differentiating directly through the inner
optimization argminθ L(f(Xdp;θ),ydp) with respect to the corrupted training data Xp is impractical
for two reasons: (i) backpropagating through an iterative process incurs a significant performance
penalty, even when using advanced checkpointing techniques (Walther & Griewank, 2004) and (ii)
the gradients obtained by backpropagating through SGD are too noisy to be useful (Hospedales et al.,
2020). To overcome these challenges, we propose to use closed-form kernel linear regression to
model the training dynamics of the neural network

f
(
Xta; argminθ L(f(Xdp;θ),ydp)

)
≈ f̃(Xta;Xdp,ydp) ≜ y⊤dpK

−1
dp,dpKdp,ta (2)

where K(X,X ′) denotes the |X| × |X ′| kernel matrix with K(X,X ′)i,j = K(Xi, X
′
j), and sub-

scripts as shorthand for block matrices, e.g. Ka,dp = [K(Xa, Xd) K(Xa, Xp)]. This dramatically
simplifies and stabilizes our problem, which becomes

min
Xp

L̃(Xdpta,ydpta) where L̃(Xdpta,ydpta) ≜
1

2

∥∥f̃(Xta;Xdp,ydp)− yta

∥∥2
2

(3)

which is a single-level optimization due to the closed-form of f̃ . This simplification does not come
for free, as kernel-designed poisons might not generalize to the neural network training that we desire
to backdoor. Empirically demonstrating in §3 that there is little loss in transferring our attack to
neural network is one of our main goals (see Table 2).

2.2 MODELING TRAINING USING THE EMPIRICAL NEURAL TANGENT KERNEL

The NTK of a scalar-valued neural network f is the kernel associated with the feature map ϕ(x) =
∇θf(x;θ). The NTK was introduced in (Jacot et al., 2018) which showed that the NTK remains
stationary during the training of feed-forward neural networks in the infinite width limit. When
trained with the squared loss, this implies that infinite width neural networks are equivalent to kernel
linear regression with the neural tangent kernel. Since then, the NTK has been extended to other
architectures Li et al. (2019); Du et al. (2019b); Alemohammad et al. (2020); Yang (2020), computed
in closed form Li et al. (2019); Novak et al. (2020), and compared to finite neural networks Lee
et al. (2020); Arora et al. (2019). The closed form predictions of the NTK offer a computational
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convenience which has been leveraged for data distillation Nguyen et al. (2020; 2021), meta-learning
Zhou et al. (2021), and subset selection Borsos et al. (2020). For finite networks, the kernel is not
stationary and its time evolution has been studied in (Fort et al., 2020; Long, 2021; Seleznova &
Kutyniok, 2022). We call the NTK of a finite network with θ chosen at some point during training
the network’s empirical NTK. Although the empirical NTK cannot exactly model the full training
dynamics of finite networks, (Du et al., 2018; 2019a) give some non-asymptotic guarantees.
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Figure 3: Plot showing asrnn,tr vs. the
number of epochs used to train the net-
work before the weights were frozen for
use in the empirical NTK. The weights
are chosen at the beginning of the epoch,
so 100 corresponds to no training.

In our main experiments we chose to use the weights of the
network after full convergence for use with the empirical
neural tangent kernel. In Fig. 3 we show the results we
obtain if we had used the network weights at other points
along the training trajectory. At the beginning of training,
there is a dramatic increase in ASR after a single epoch
of training and training longer is always better until we
reach convergence. At 500 epochs the loss of the network
falls below 1× 10−7, and the network effectively does not
change from then on. These results mirror those of Fort
et al. (2020); Long (2021), which find that the empirical
neural tangent kernel’s test accuracy on standard image
classification rapidly improves at the beginning of training
and continues to improve as training progresses.

2.3 EFFICIENT GREEDY POISON SET SELECTION

Our approach will be to solve Eq. (3) using gradient meth-
ods, but first we must choose some initialization Xp. Em-
pirically, we find that the optimization always converges
to a local minima that is close to the initial choice of Xp.
This is motivated by our analysis in §4, which suggests that Eq. (3) encourages poisons with small
perturbations. Accordingly, we must choose our initialization carefully, so that there is a good local
minima nearby.

We propose a greedy algorithm to select the initial set of images. The algorithm proceeds by applying
the trigger function P (·) to every image in the training set and incrementally selecting the image that
has the greatest reduction in the backdoor loss when added to the poison set in a greedy fashion. We
write this procedure in detail in Algorithm 1.

Algorithm 1: Greedy subset selection
Input: Data (Xdpta,ydpta), number of poisons m ∈ N.
Output: m poison data points X ′p,y

′
p.

1 Initialize X
(0)
p and y

(0)
p to be an empty matrix and vector respectively.

2 for i ∈ [m] do

3 (x̃, ỹ) = argmin(x,y)∈(Xp,yp) L̃
(
Xdta, Xp =

[
X

(i−1)
p

x

]
,ydta,yp =

[
y
(i−1)
p

y

])
4 X(i) ←

[
X(i−1)

x̃

]
and y(i) ←

[
y(i−1)

ỹ

]
5 return X ′p = X(m),y′p = y(m)

The key to a practical implementation of Line 3 is a method to quickly solve the selection in Line 3.
Writing out the Schur complement after adding one row and column to the kernel matrix K(X,X)
and adding one dimension to y and K(X,x) in Eq. (2) gives

f̃

(
x′;

[
X
x

]
,

[
y
y

])
= f̃(x′;X,y)+

K(x,x′) +K(x, X)K(X,X)−1K(X,x′)

K(x,x) +K(x, X)K(X,X)−1K(X,x)
(y− f̃(x;X,y)).

Now we note that the computationally expensive term K(X,X)−1 does not depend on (x, y) so we
may compute it only once. Therefore, we can evaluate the predictions for the entire set Xa under the
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addition of each poison in Xp in O(n3 +mn2) time where n = |Xd| and m = |Xp|. With careful
vectorization, the selection in Line 3 can be performed in a few seconds.

2.4 EFFICIENTLY DIFFERENTIATING THE BACKDOOR LOSS

In order to efficiently minimize the loss L̃ defined in Eq. (3) with respect to Xp, we require the
gradient ∂L̃/∂Xp. Once we can compute the gradient, we will use L-BFGS-B Zhu et al. (1997) to
minimize L̃ with respect to Xp. One straightforward way to calculate the gradient is to rely on the
JAX autograd system to differentiate the forward process Bradbury et al. (2018). Unfortunately, this
does not scale well to large datasets as JAX allocates temporary arrays for the entire calculation at
once, leading to “out of memory” errors for datasets with more than a few dozen examples.

2.4.1 STRUCTURAL OPTIMIZATION OF THE BACKWARD PASS

Applying the chain rule, we manually write out the backward process corresponding to Eq. (3) in the
style of Nguyen et al. (2021) as shown in Algorithm 2.

Algorithm 2: Backdoor loss and gradient
Input: Kernel matrix Kd,dta, data (Xdta,ydta) and (Xp,yp).
Output: Backdoor design loss L̃ and gradient ∂L̃

∂Xp
.

1 Compute Kernel matrix Kp,pdta from Xdta and Xp using Novak et al. (2021).
2 Compute the loss L̃ via Eq. (3).
3 Compute the gradient matrix ∂L̃

∂Kp,pdta
by automatic differentiation of Eq. (3).

4 Compute the tensor ∂Kp,pdta

∂Xp
.

5 Compute tensor contraction ∂L̃
∂Xp

= ( ∂L̃
∂Kp,pdta

)i,j(
∂Kp,pdta

∂Xp
)i,j,l.

6 return L̃, ∂L̃
∂Xp

.

First, we note that the kernel matrix Kd,dta does not depend on Xp and so we calculate it once at
the beginning of our optimization. Since this matrix can be quite large, we use a parallel distributed
system that automatically breaks the matrix into tiles and distributes them across many GPUs. The
results are then collected and assembled into the desired matrix. We use the technique of Novak
et al. (2021) to compute the kernel matrix tiles which gave a 2× speedup over the direct method of
computing the inner products of network gradients.

Additionally, the form of Algorithm 2 admits a significant optimization where Lines 4 and 5 can
be fused, so that slices of ∂Kp,pdta/∂Xp are computed, contracted with slices of ∂L/∂Kp,pdta, and
discarded in batches. Choosing the batch size allows us to balance memory usage and the speedup
offered by vectorization on GPUs. Additionally these slices are again distributed across multiple
GPUs and the contractions are be performed in parallel before a final summation step.

2.4.2 EFFICIENT EMPIRICAL NEURAL TANGENT KERNEL GRADIENTS

In Algorithm 2, the vast majority of the total runtime is spent in the calculation of slices of
∂Kp,pdta/∂Xp on Line 4. Here we will focus on calculating a single 1× 1× k slice of ∂Kp,pdta/∂Xp.
Letting Dx denote the partial Jacobian operator w.r.t. argument x, the slice we are computing is
exactly

DxK(x,y) where K(x,y) = ⟨Dθ(x;θ),Dθf(y;θ)⟩ (4)
for some x,y ∈ Rk.1

Let D→x and D←x respectively denote that the Jacobian will be computed using forward or re-
verse mode automatic differentiation. Since K is scalar-valued, it is natural to compute Eq. (4) as
D←x ⟨D←θ f(x;θ),D←θ f(y;θ)⟩. However this approach is very slow and requires a large amount of
memory due to the intermediate construction of a k × d tensor representing Dx Dθf(x;θ). Instead,

1Extra care must be taken to compute ∂Kp,p/∂Xp. These details are omitted for simplicity.
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assuming that f is twice continuously differentiable, we can exchange the partial derivatives and
compute (D→θ D←x f(x;θ))⊤(D←θ f(y;θ)) which runs the outermost derivative in forward mode as a
Jacobian vector product (JVP). This is reminiscent of the standard “forward-over-reverse” method of
computing hessian-vector products.

Our final optimization is to exploit the linearity of the derivative to pull the JVP (D→θ D←x f(x;θ))⊤

outside the contraction in Line 5 ensuring that we only need to compute a total of |Xp| second
derivatives. In our experiments, this optimization gave a speedup of over 50× while also using
substantially less memory. We expect that further speedups may be obtained by leveraging techniques
similar to those of Novak et al. (2021) and leave this direction for future work.

2.5 ABLATION STUDY

Table 1: Ablation study un-
der the setting of Fig. 1 with
m = 10.

ablation ASR

1 + 2 + 3 72.1 %
1 + 3 12.0 %
1 + 2 16.2 %
1′ + 2 + 3 11.3 %
1′′ + 2 + 3 23.1 %

We perform an ablation study on the three components at the beginning
of this section (modeling the training dynamics, greedy initialization,
and optimization) to demonstrate that they are all necessary using
the setting of Table 2. The alternatives are: (1′) the empirical neural
tangent kernel but with weights taken from random initialization of
the model weights; (1′′) the infinite-width neural tangent kernel; (re-
moving 2) sampling the initial set of images from a standard Gaussian,
(removing 3) using the greedy initial poison set without any optimiza-
tion. ASR for various combinations are shown in Table 1. The stark
difference between our approach (1+2+3) and the rest suggests that
all components are important in achieving a strong attack. Random
initialization (1+3) fails as coupled examples that are very close to the
clean image space but have different labels is critical in achieving strong attacks as shown in Fig. 5.
Without our proposed optimization (1+2), the attack is weak. Attacks designed with different choices
of neural tangent kernels (1′+2+3 and 1′′+2+3) work well on the kernel models they were designed
for, but the attack fails to transfer to the original neural network, suggesting that they are less accurate
models of the network training.

3 EXPERIMENTAL RESULTS

We attack a WideResNet-34-5 Zagoruyko & Komodakis (2016) (d ≈ 107) with GELU activations
Hendrycks & Gimpel (2016) so that our network will satisfy the smoothness assumption in §2.4.2.
Additionally, we do not use batch normalization which is not yet supported by the neural tangent
kernel library we use Novak et al. (2020). Our network is trained with SGD on a 2 label subset
of CIFAR-10 Krizhevsky (2009). The particular pair of labels is “truck” and “deer” which was
observed in Hayase et al. (2021) to be relatively difficult to backdoor since the two classes are easy to
distinguish. We consider two backdoor triggers: the periodic image trigger of Barni et al. (2019) and
a 3× 3 checker patch applied at a random position in the image. These two triggers represent sparse
control over images at test time in frequency and image space respectively. Results for the periodic
trigger are given here while results for the patch trigger are given in Appendix C.1.

To fairly evaluate performance, we split the CIFAR-10 training set into an inner training set and
validation set containing 80% and 20% of the images respectively. We run NTBA with the inner
training set as Dd, the inner validation set as Dt, and the inner validation set with the trigger applied
as Da. Our neural network is then trained on Dd ∪Dp and tested on the CIFAR-10 test set.

We also attack a pretrained ConvNeXt Liu et al. (2022) finetuned on a 2 label subset of ImageNet,
following the setup of Saha et al. (2020) with details given in Appendix C.2. We describe the
computational resources used to perform our attack in Appendix B.2.

3.1 NTBA MAKES BACKDOOR ATTACKS SIGNIFICANTLY MORE EFFICIENT

Our main results show that (i) as expected, there are some gaps in ASR when applying NTK-designed
poison examples to neural network training, but (ii) NTK-designed poison examples still manage to
be significantly stronger compared to sampling baseline. The most relevant metric is the test results
of neural network training evaluated on the original validation set with the trigger applied, asrnn,te.
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In Table 2, to achieve asrnn,te = 90.7%, NTBA requires 30 poisons, which is an order of magnitude
fewer than the sampling baseline. The ASR for backdooring kernel regressions is almost perfect,
as it is what NTBA is designed to do; we consistently get high asrntk,te with only a few poisons.
Perhaps surprisingly, we show that these NTBA-designed attacks can be used as is to attack regular
neural network training and achieve ASR significantly higher than the commonly used baseline in
Table 2, Figs. 1 and 9 to 11 for WideResNet trained on CIFAR-10 subtasks and ConvNeXt trained
on ImageNet subtasks, NTBA tailored for patch and periodic triggers, respectively. ASR results are
percentages and we omit % in this section.

Table 2: ASR results for NTK and NN (asr · ,ntk and asr · ,nn) at train and test time (asrtr, · and
asrte, · ). The NTBA attack transferred to neural networks is significantly stronger than the sampling
based attack using the same periodic trigger across a range of poison budgets m. A graph version of
this table is in Fig. 1.

ours sampling
m asrntk,tr asrntk,te asrnn,tr asrnn,te asrnn,te

1 100.0 85.2 0.2 11.0 5.9
3 100.0 92.8 5.6 35.2 7.6

10 100.0 95.2 65.2 72.1 21.3
30 100.0 96.4 94.2 90.7 49.6

sampling
m asrnn,te

0 5.5
100 79.1
300 89.3

1000 95.0

3.2 TRANSFER AND GENERALIZATION OF NTBA

Fig. 4 illustrates two important steps which separate the performance achieved by the optimization,
asrntk,tr, (which consistently achieves 100% attack success rate) and the final attack success rate of the
neural network, asrnn,te in Table 2: transfer from the NTK to the neural network and generalization
from poison examples seen in training to new ones. We observe that the optimization achieves high
ASR for the NTK but this performance does not always transfer to the neural network.

Interestingly, we note that the attack transfers very poorly for training examples, so much so that the
generalization gap for the attack is negative for the neural network. We believe this is because it is
harder to influence the predictions of the network nearby training points. Investigating this transfer
performance presents an interesting open problem for future work.

3.3 THE ATTACKER DOES NOT NEED TO KNOW ALL THE TRAINING DATA

In our preceding experiments, the attacker has knowledge of the entire training set and a substantial
quantity of validation data. In these experiments, the attacker is given a β fraction of the 2-label
CIFAR-10 subset’s train and validation sets. The backdoor is computed using only this partial data
and the neural network is then run on the full data. NTBA degrades gracefully as the amount of
information available to the attacker is reduced. Results for m = 10 are shown in Table 3.

Table 3: ASR decreases gracefully with the
attacker knowing only β fraction of the data.

β asrnn,te

1.0 96.3
0.75 94.7
0.5 78.5
0.25 73.4

asrntk,tr asrntk,te

asrnn,tr asrnn,te

generalize (ntk)

transfer(tr)

transfer(te)

generalize (nn)

⟲

Figure 4: Relationship between the columns of
Tables 2 and 5.

3.4 BACKDOORS FOR NEURAL TANGENT KERNEL VS LAPLACE KERNEL
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Table 4: results for directly attack-
ing the NTK and Laplace kernels
on CIFAR-10 with a periodic trigger.
acctr refers to clean accuracy after
training on corrupted data.

m kernel acctr asrtr

1 NTK 93% 100%
10 Laplace 93% 11%

Given the extreme vulnerability of NTKs (e.g., asrntk,te =
85.2 with one poison in Table 2), it is natural to ask if other
kernel models can be similarly backdoored. To test this hy-
pothesis, we apply the optimization from NTBA to both NTK
and the standard Laplace kernel on the CIFAR-10 sub-task,
starting from a random initialization. Although the Laplace
kernel is given ten times more poison points, the optimization
of NTBA can only achieve 11% ASR, even on the training
data. In contrast, NTBA with the NTK yields a 100% train-
ASR, with the clean accuracy for both kernels remaining the
same. This suggests that Laplace kernel is not able to learn the poison without sacrificing the accuracy
on clean data points. In Appendix E, we further investigate what makes NTK (and hence neural
networks) special.

4 INTERPRETING THE NTBA-DESIGNED POISON EXAMPLES

We show the images produced by NTBA in Fig. 5. Comparing second and third rows of Fig. 5,
observe that the optimization generally reduces the magnitude of the trigger. Precise measurements in
Figs. 6 and 7 further show that the magnitude of the train-time trigger learned via NTBA gets smaller
as we decrease the number of injected poison examples m.

(a) m = 1

cl
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e

(b) m = 3 (c) m = 10

Figure 5: Images produced by NTBA for period trigger and m ∈ {1, 3, 10}. The top row shows the
original clean image of the greedy initialization, the middle row shows the greedy initialization that
includes the trigger, and the bottom row shows the final poison image after optimization. Duplicate
images, for example the first poison image for m = 3, have been omitted to save space.

We analyze kernel linear regression to show that backdoor attacks increase in strength as the poison
images get closer to the manifold of clean data. This provides an interpretation of the NTBA-designed
poison examples. Given training data Dd = (Xd ∈ Rn×k,yd ∈ {±1}n) and a generic kernel K, the
prediction of a kernel linear regression model trained on Dd and tested on some x ∈ Rk is

f(x;Dd) ≜ y⊤d K(Xd, Xd)
−1K(Xd,x), (5)

where K( · , · ) denotes the kernel matrix over the data. For simplicity, suppose we are adding a
single poison example Dp = {(xp, yp)} and testing on a single point xa. For the attack to succeed,
the injected poison example needs to change the prediction of xa by ensuring that

f(xa;Dd ∪ {(xp, yp)})︸ ︷︷ ︸
poisoned model prediction

− f(xa;Dd)︸ ︷︷ ︸
clean model prediction

=
ϕ(xp)(I − P )ϕ(xa)

⊤

ϕ(xp)(I − P )ϕ(xp)⊤
(yp − f(xp;Dd)) (6)

is sufficiently large, where ϕ : X → Rd is a feature map of kernel K such that K(x,y) =
⟨ϕ(x), ϕ(y)⟩, and P = Φ⊤(ΦΦ⊤)−1Φ is the hat matrix of Φ (i.e. P projects onto the span of the
rows of Φ) where Φ is the matrix with rows ϕ(x) for x ∈ Xd. Eq. (6) follows from the Schur
complement after adding one row and column to the kernel matrix K(Xd, Xd) and adding one
dimension to each of yd and K(Xd,x) in Eq. (5). We assume that both xp and xa are small
perturbations of clean data points, and let ∆p ≜ x̃p − xp and ∆a ≜ x̃a − xa respectively denote
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the train-time perturbation and the test-time trigger for some clean data points x̃p, x̃a ∈ Xd. In the
naive periodic attack, both ∆p and ∆a are the periodic patterns we add. Our goal is to find out which
choice of the train-time perturbation, ∆p, would make the attack stronger (for the given test-time
trigger ∆a).

The powerful poison examples discovered via the proposed NTBA show the following patterns. In
Fig. 6, each pixel shows the norm of the three channels of the perturbation ∆p for a single poison
example with the same closest clean image; the corresponding train examples are explicitly shown
in Fig. 5a. The range of the pixel norm 0.2 is after data standardization normalized by the standard
deviation for that pixel. In Figs. 6a to 6d, we see that the ∆p aligns with the test-time trigger
∆a in Fig. 6e, but with reduced amplitude and some fluctuations. When the allowed number of
poisoned examples, m, is small, NTBA makes each poison example more powerful by reducing the
magnitude of the perturbation ∆p. In Fig. 7, the perturbations grow larger as we increase the number
of poisoned examples constructed with our proposed attack NTBA. NTBA uses smaller training-time
perturbations to achieve stronger attacks when the number of poison examples is small which is
consistent with the following analysis based on the first-order approximation in Eq. (7). We study
these phenomena in more detail in Appendix D.

(a) m = 1 (b) m = 3 (c) m = 10

(d) m = 30
0.00

0.05

0.10

0.15

0.20

(e) test ∆a

Figure 6: As the number of poison examples, m, de-
crease, NTBA makes each poison example stronger by
reducing the magnitude of the pixels of the train-time
perturbation ∆p.
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Figure 7: The average norm difference,
∥∆p∥, between each poison image auto-
matically discovered by NTBA and the
closest clean image, after running NTBA
with different choices of m. The test-
time trigger norm is shown for compari-
son.

5 CONCLUSION

We study the fundamental trade-off in backdoor attacks between the number of poisoned examples
that need to be injected and the resulting attack success rate and bring a new perspective on backdoor
attacks, borrowing tools from kernel methods. Through an ablation study in Table 1, we demonstrate
that every component in the Neural Tangent Backdoor Attack (NTBA) is necessary in finding train-
time poison examples that are significantly more powerful. We experiment on CIFAR and ImageNet
subsets with WideResNet-34-5 and ConvNeXt architectures for periodic triggers and patch triggers,
and show that, in some cases, NTBA requires an order of magnitude smaller number of poison
examples to reach a target attack success rate compare to the baseline.

Next, we borrow the analysis of kernel linear regression to provide an interpretation of the NTBA-
designed poison examples. The strength of the attack increases as we decrease the magnitude of
the trigger used in the poison training example, especially when it is coupled with a clean data that
is close in the image space. Although this attack may be used for harmful purposes, our goal is to
show the existence of strong backdoor attacks to motivate continued research into backdoor defenses
and inspire practitioners to carefully secure their machine learning pipelines. The main limitation
of our approach is a lack of scalability, as the cost of computing the NTK predictions Eq. (3) scales
cubically in the number of datapoints. In the future, we plan to apply techniques for scaling the NTK
Meanti et al. (2020); Rudi et al. (2017); Zandieh et al. (2021) to our attack. We would also like to
extend our method to support batch normalization (Ioffe & Szegedy, 2015) and networks that are not
twice differentiable.
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