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Abstract

Computer-Aided Design (CAD) systems are
indispensable in mechanical engineering and
product development processes. Nowadays,
text-to-CAD methods can significantly reduce
the learning cost of complex CAD systems
and has attracted increasing attention. How-
ever, such methods fail to achieve alignment
among user expectations, textual descriptions
and CAD models. To address this limita-
tion, we propose a new paradigm, “Proac-
tive Text-to-CAD Generation”, which first em-
ploys large language models to proactively
elicit and formulate text enriched with com-
prehensive CAD design details, then generates
CAD models from these refined descriptions.
To support this paradigm, we construct the
first actively interactive text-to-CAD dataset,
Proactive-Text2CAD, which contains 4,590
high-quality dialogues. Moreover, building
upon this dataset, we propose a novel agen-
tic framework for this task, named “Proac-
tive Agent”, which is driven by a hierarchi-
cal finite state machine accompanying with
three carefully designed modules. Exten-
sive evaluation and comprehensive analysis
on the Proactive-Text2CAD dataset demon-
strate the effectiveness of both our proposed
paradigm and agentic framework, with our
method achieving significant improvements in
both textual detail refinement and final CAD
model generation quality.

1 Introduction

Computer-Aided Design (CAD) systems serve as
fundamental tools in mechanical engineering and
product development, revolutionizing prototyping
methodologies (Robertson and Allen, 1993). In tra-
ditional CAD software (e.g., Autodesk, FreeCAD,
SolidWorks and onshape), users create and modify
geometric entities and constraints through graphi-
cal user interfaces (GUIs). However, this requires
considerable expertise and proficiency, which can

Create the first part of the CAD model — a three-dimensional,
symmetrical, metallic component with a central circular hole and
four evenly spaced rounded arms, each featuring a smaller
circular hole at the end. The shape resembles a four-lobed
mechanical connector or a stylized cross, viewed from above.
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Figure 1: The conventional Text-to-CAD generation
way versus our proposed proactive text-to-CAD genera-
tion way.

be challenging for non-specialists to master (Deng
et al., 2024; Zhou and Camba, 2025).

To address this challenge, integrating natural
language input with CAD systems through highly
capable large language models (LLMs), which are
excel at interpreting and synthesizing structured
data such as command sequences, streamlines para-
metric CAD generation. Recently, numerous stud-
ies have been devoted to this topic, such as Nel-
son et al. (2023); Khan et al. (2024b); Li et al.
(2024); Kapsalis (2024). Such a text-to-CAD gen-
eration paradigm can definitely minimize the need
for users to directly interact with complex GUIs,
significantly lowering the barrier to CAD model-
ing (Zhou and Camba, 2025).

However, such a paradigm is not without its
flaws, particularly in achieving alignment among
user expectations, textual descriptions and CAD
models. In detail, current text-to-CAD meth-
ods (Nelson et al., 2023; Khan et al., 2024b; Li



et al., 2024; Kapsalis, 2024; Badagabettu et al.,
2024) can effectively handle the alignment be-
tween textual descriptions and CAD models, but
they struggle to maintain satisfactory alignment
when dealing with vague or abstract textual inputs.
Some compelling experimental results (Khan et al.,
2024b) also reveal that as textual descriptions be-
come more abstract, the accuracy and precision
of generated CAD models deteriorate significantly.
This challenge is particularly pronounced because
novices and non-specialists tend to provide high-
level descriptions of model appearance rather than
detailed parametric specifications. Moreover, even
experienced CAD engineers find it difficult to pro-
duce text descriptions that are both sufficiently de-
tailed and compliant with CAD generation princi-
ples without the aid of a visual interface. In short,
merely relying on user-input text descriptions can-
not bridge the gap between user intent and the final
CAD model.

To fill this gap, we propose proactive text-to-
CAD generation (shown in Figure 1). Such a
way actively engages users in iterative question-
ing to seek missing CAD design details in the ini-
tial user provided textual description. By refin-
ing incomplete parametric specifications and en-
hancing the text’s descriptive quality through this
dialogue-driven process, the framework ensures
higher-quality input before final CAD generation.
To achieve proactive text-to-CAD generation, we
make the following efforts in this paper:

First, we build the first actively interactive text-
to-CAD dataset, Proactive-Text2CAD. Our goal
is to integrate the incomplete user-provided CAD
text descriptions with a proactive information-
seeking dialogue, enabling the agent to ask tar-
geted questions actively when encountering miss-
ing or unclear CAD parameters. To achieve that,
based on Text2CAD’s expert-level text annotation
dataset and CAD dataset (Khan et al., 2024b), we
further involve two key phases: (1) User initial
query generation and (2) Proactive dialogues gen-
eration. Through such a dataset construction pro-
cess, we obtain 4,590 high-quality dialogues, each
containing an incomplete metadata entry and an
active dialogue, totaling around 28,110 question-
answer pairs. Building upon our dataset, we further
establish a family of strong and representative base-
lines, which can be roughly categorized into three
type (Deng et al., 2025): (1) Standard Prompting,
like Proactive Prompting (Deng et al., 2023); (2)
CoT Prompting, like ProCoT (Deng et al., 2023)

and PS+ Prompting(Wang et al., 2023), and (3)
Multi-agent Prompting, like MACRS (Fang et al.,
2024).

Second, we propose a novel agentic framework
for this task, named “Proactive Agent”. In detail,
through experimens, we find that current proac-
tive methods, like ProCoT, PS+ Prompting and
MACRS, underperform in refining textual descrip-
tions of CAD models, especially exhibiting signif-
icant limitations in comprehensively identifying
missing operational and parametric details in the
CAD model, due to the complex CAD topology.
For example, when the subtypes face and loop are
missing in the sketch type of the CAD model, since
loop is a subtype of face and a CAD model can con-
tain multiple faces, current baselines fail to proac-
tively ask the user for specific information about
the face first. To address this issue, we involve three
modules in the proposed agentic framework: strate-
gic, tactical, and operational modules. The strategic
module analyzes the current CAD design text at a
macro perspective, captures missing details, and
generates an agent workflow. The tactical and op-
erational modules each contain independent mod-
ules to address specific functions, decoupling the
complex workflow analysis and execution process.
To interconnect these three modules and enable
autonomous operation, we design a hierarchical
finite state machine (HFSM) that drives the reason-
ing logic from workflow generation to execution
through state transitions.

The primary contributions of this work can be
summarized as follows:

* We propose ‘“Proactive Text-to-CAD Gener-
ation” paradigm that engages users in itera-
tive questioning to seek missing CAD design
details in the initial user provided textual de-
scription, then generates CAD models from
the refined textual descriptions.

e We construct Proactive-Text2CAD, the first
dataset for studying actively interactive text-
to-CAD generation, which contains around
4,500 high-quality dialogues.

* We present “Proactive Agent”, an innovative
agentic framework driven by a hierarchical
finite state machine accompanying with work-
flow generation, task dispatching, questioning,
and summarization functional modules.



Create the first part of the CAD model, a
symmetrical object with flat top and bottom
surfaces. The resulting part has a width of 0.017
and maintains symmetry along its central axis.
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Create the first part of the CAD model, a symmetrical object
with flat top and bottom surfaces. The resulting part has a
width of 0.017 and maintains symmetry along its central axis.

)

To properly orient the symmetrical part in 3D space, could you
K specify the Euler Angles (three rotation values) needed for its
0/ coordinate system to define how it should be rotated around
the X, Y, and Z axes?

The coordinate system for part 1 uses Euler Angles of (0.0°,0.0°,
-90.0°). This Z-axis rotation of -90 degrees orients the sketch
plane correctly for the cylindrical feature while maintaining
alignment with the specified translation vector.

)

To properly position the symmetrical part in 3D space, could
§ you specify the base point coordinates for the translation
S vector? This will determine where the center of the 0.017-
meter wide shape is located relative to the origin.

ﬁ The translation vector for part 1's coordinate system is set to

g [0.0,0.017, 0.0] in the Y-axis direction. This shifts the sketch

v 0.017 units vertically while keeping X and Z positions aligned
with the base coordinate system, as specified in our design
parameters."

Simulated Dialogue & Proactive Dialogues Generation

Figure 2: The whole process of Proactive-Text2CAD construction.

2 Proactive-Text2CAD Construction

2.1 Dataset Construction

Our objective is to combine incomplete user-
provided initial CAD text descriptions with proac-
tive information-seeking dialogue, enabling the
agent to actively inquire when facing CAD parame-
ter details that are missing or incomplete. As illus-
trated in Figure 2, the dataset construction process
consists of two key phases: (1) User Initial Query
Generation; (2) Proactive Dialogues Generation.

2.1.1 User Initial Query Generation

At this stage, our task is to generate user initial
query with uncertain detail missing, which are di-
vided into four specific steps:

First, through collecting the multi-level tex-
tual description dataset of CAD constructed by
Text2CAD and the minimal metadata dataset (min-
imal json) (Wu et al., 2021a; Khan et al., 2024b),
we generate an initial dataset containing precise
geometric descriptions, text descriptions with rela-
tive measurements, and concise representations of
shape attributes and their relational properties in
CAD designs.

Next, based on the minimal metadata, we cate-
gorize the details of CAD textual descriptions into
six main types: component quantity, sketch, extru-
sion, coordinate system, appearance description,
and assembly method. Among these, the sketch,
extrusion, coordinate system, and appearance de-
scription types further contain multiple subtypes

(e.g., subtypes of sketch: face, loop, line, etc.) '

Then, we randomly delete information of main
types and subtypes to create missing types. We sub-
sequently use Deepseek-R1 (DeepSeek-Al et al.,
2025) to rewrite the text descriptions based on the
missing types, generating user initial query that
lack the missing category information, i.e., incom-
plete texts?.

Finally, since there exists sequential relation-
ships among CAD operation types and dependency
relationships among parameter types, we employ
topological sorting to arrange the questioning or-
der of missing types according to the dependency
graph?.

2.1.2 Proactive Dialogues Generation

In this stage, our task is to generate the whole dia-
logue, which are divided into four specific steps:

First, we utilize DeepSeek-R1 (DeepSeek-Al
et al., 2025) to generate one question for each miss-
ing type to inquire about the details of the missing
information. These questions serve as the questions
posed by the system to the user.

Second, for each generated question, we retrieve
specific information about the missing types from
the initial dataset, then use DeepSeek-R1 to gen-
erate natural user responses based on this specific

"Detailed type information can be found in Appendix
A.l.1.

The rewriting prompts are provided in Appendix A.2.1

3Specific information can be found in Appendix A.1.1



information®*.

Third, based on the generated initial user query,
we sequentially arrange the generated question-
answer pairs according to the order of missing
types, thereby creating proactive dialogues between
the system and users.

Finally, three human reviewers are involved to
verify whether: (1) the initial user queries contain
all type information except for the missing types,
(2) the questions cover all missing category de-
tails, and (3) the responses provide specific detailed
information. This dataset construction method
achieved a 77.64% pass rate in human review.

2.2 Dataset Statistics

After data processing and filtering, we obtain
4,590 samples, each containing an incomplete meta-
data entry and an active dialogue, totaling around
28,110 question-answer pairs. Uncertain details
are randomly selected from primary and subcate-
gories. Due to the variable number of subtypes
across different CAD models and the inherent in-
stability of category definitions, the dataset exhibits
a naturally right-skewed asymmetric distribution.
Detailed dataset specifications are provided in Ap-
pendix A.1.3.

2.3 Evaluation Protocols

We design several evaluation metrics at three dif-
ferent levels: turn-level, dialogue-level and CAD-
level.

2.3.1 Turn-Level Evaluation

Following Zhang et al. (2024), we use Clarifica-
tion Accuracy (Clari. Acc.) to measures the sys-
tem’s ability to actively query incomplete CAD
design texts, where a score of 1 is assigned if the re-
sponse is a valid question, otherwise 0. Besides, we
also involve Rule-based Score to assesses whether
responses target the correct missing attribute cat-
egory, where a binary score (1/0) is determined
by the presence of keywords relevant to the tar-
get attribute. Moreover, Rough-L (Lin, 2004) and
BERTScore (Zhang et al., 2020) is used to quantify
semantic similarity between responses and refer-
ence questions. Note that, we evaluate all turn-
level metrics through both Micro and Macro aver-
aging, where Micro-averaging computes the mean
score per turn, while Macro-averaging calculates
the mean score per dialogue.

*The prompts for simulating system questions and user
responses can be found in Appendix A.2.1

2.3.2 Dialogue-Level Evaluation

Completion Rate. This metric measures the de-
gree to which missing information in the CAD text
description is completed during the dialogue, cal-
culated as:

Completion Rate =

N, )
where N, refers to the count of initially absent CAD
operations or parameter types in the user’s input,
and N, denotes the count of missing categories
addressed (queried) during the dialogue.

Effectiveness Rate. This metric evaluates the

proportion of effective questions in the dialogue,
defined as:

Effectiveness Rate =

@

where N, denotes the number of effective questions
that satisfy all of the following criteria: (a) target-
ing a missing category, (b) having not been previ-
ously asked, and (c) receiving a non-"unknown"
response, and NV; refers to the total number of inter-
action turns.

2.3.3 CAD-Level Evaluation

To evaluate the quality of the final generated CAD,
we leverage Chamfer Distance (CD) (Fan et al.,
2016; Wu et al., 2021b), which can measure geo-
metric similarity between generated 3D CAD mod-
els and ground truth, where lower values indicate
higher geometric fidelity. In addition to automatic
evaluation, we also involve manual evaluation to
comprehensively assess the CAD model quality.
Average Rank metric is used in manual evaluation,
which can be denoted as

N
1

A R k:—g i 3

verage Ran N ile (3

where N is the total number of CAD models gener-
ated by different methods and R; is the rank of the
i-th model (lower values denote better alignment)

3 Methodology
3.1 Overall Pipeline

To achieve proactive text-to-CAD generation, we
involve a pipeline with two parts, where Part 1 is
designed to proactively query users for missing
CAD design information and generate the final
CAD design text, and while Part 2 is configured
to employ a CAD Transformer for converting final
CAD design text into CAD models.



Note that, in this paper, we only focus on Part 1
and build baselines and our proposed method. As
for Part 2, we leverage the state-of-the-art method,
Text2CAD(Khan et al., 2024b), to convert the final
CAD design text into a CAD model.

3.2 Baseline

Following Deng et al. (2025), we involve three
type of baselines: (1) Standard Prompting, (2) CoT
Prompting and (3) Multi-agent Prompting.

In detail, in standard prompting, we involve
Proactive Prompting (Deng et al., 2023) (short for
“Proactive” in the experiments), which can provide
the LLLM with alternative options for determining
appropriate actions to take in responses. In CoT
prompting, besides the standard CoT (Wei et al.,
2022), we further build ProCoT (Deng et al., 2023)
and PS+ Prompting (Wang et al., 2023) (short for
“PS+”), where ProCoT involves dynamic reason-
ing and planning to analyze subsequent actions for
achieving dialogue objectives, and PS+ is a two-
stage method that first generates both the reasoning
process and potential answers through logical in-
ference, then employs answer extraction prompts
to derive the final solution. Finally, in the multi-
agent prompting, we leverage MACRS (Fang et al.,
2024) as the representative, which is a collaborative
multi-agent framework that integrates four LLM-
based agents to plan diverse dialogue behaviors,
employing a feedback-aware reflection mechanism
for agent adaptation. Note that, more details about
baselines can be find in the Appendix A.4.

3.3 Proposed Method: Proactive Agent

Through experiments, we find that current baseline
methods perform poorly in refining CAD detail
texts and struggle to comprehensively and holis-
tically identify the missing operational and para-
metric details in the current CAD model. To ad-
dress the aforementioned issue, we propose a novel
multi-agent framework named “Proactive Agent”
(shown in Figure 3), which consists of strategic,
tactical, and operational modules. To interconnect
these three modules and enable autonomous opera-
tion, we design a hierarchical finite state machine
(HFSM) that drives the reasoning logic from work-
flow generation to execution through state transi-
tions.

3.3.1 Strategic Module

The strategic module (Sp) analyzes the current
CAD design text at a macro level, captures missing
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Figure 3: Our proposed agentic framework: “Proactive
Agent”.

details, and generates an agent workflow. There are
two key phase in this module.

Specifically, first, the strategic module generate
a topological sequence C of the workflow graph via
a give LLMg? , which can be denoted as

C(V) + LLMy(d, , A). )

In the above equation, d represents the task de-
scription of workflow generation, ¢ represents
the initial textual description of the user’s CAD
modeling task, A denotes the action set { “ask”,
“summarize” }, where “ask” indicates proactively
querying the user for CAD information, and
“summarize” indicates extracting the CAD design
scheme from the dialogue history, and the nodes
V = {v1,v9,...,v,} represent tasks to be fin-
ished, such as "ask for the coordinate system de-
tails" and "ask for the details of the sketch to be
created".

Then, based on the dependencies among the
details of each CAD operation and parameter,
the topological sequence C then forms a directed
acyclic graph G according to topological sort-
ing (Qiao et al., 2024), which can be denoted as:

G(V,E) < C(V) ®)

where £ = {(v;,v;)}, where 1 < i # j < n, rep-
resent the execution relationships between nodes
(vj must be executed after v;).

SThe prompt is shown in the Appendix A.2.2.



Method

Clarif.Acc. T ROUGH-L 1 Rule-based Score T BertScore 1 Completion Effectiveness

Micro Macro Micro Macro Micro Macro

Standard 0.10 0.09 0.05 0.04 0.07 0.06
CoT 0.00 0.00 0.00 0.00 0.00 0.00
Proactive 4.12 372 233 202 753 6.84
ProCoT 67.85 7122 19.55 18.75 35.76 31.10
PS+ 44.67 3727 1475 13.84 12.27 9.93
MACRS 99.54 99.74 17.24 15.72 34.68 28.90

Ours 99.89 9993 21.04 19.11 45.53 38.14

Method
Micro Macro Rate T Rate 1
0.05 0.04 Standard 0.04 0.07
0.00 0.00 CoT 0.00 0.00
274 2738 Proactive 3.22 3.17
20.50 19.74 ProCoT 12.45 5.95
14.90 13.50 PS+ 6.78 8.56
21.33 19.93 MACRS 8.27 2.68
24.62 22.21 Ours 23.89 23.34

Table 1: Experimental results at the turn-level.

3.3.2 Tactical Module

To achieve efficient workflow execution, the tac-
tical module (Siact) consists of two sub-modules:
dispatch (57) and validation (.52).

The dispatch sub-module is responsible for re-
ceiving and parsing the workflow graph G. Via
Kahn’s Algorithm (kah, 1962), the parsing function
7 can dispatch nodes V' to to either the asking or
summary sub-modules (introduced in §3.3.3, and
denoted as S5 and Sy, respectively), which can be
represented as:

T(va(‘/v E)) — {53754}7 (6)

The validation sub-module evaluates the ques-
tion ¢ (produced by the asking sub-module) and
summary p (generated by the summary sub-
module) against the task instruction v; via the give
LLMg®. Based on verification results, it triggers
regeneration of ¢ or p through corresponding sub-
modules.

3.3.3 Operational Module

To complete the underlying task details at the
micro-level and improve the execution efficiency
of workflow G, the operational module (Sper) con-
sists of two independent sub-modules: asking (S3)
and summary (Sy).

The asking sub-module is responsible for proac-
tively asking questions to the user. After receiving
a task instruction v; from the dispatch sub-module,
the asking sub-module can leverage the give LLMjy
to generate question ¢’, which can be represented
as

q + LLMy(v;) (7

The summary sub-module is responsible for gen-

erating the final CAD design solution based on the

®The prompt is shown in the Appendix A.2.2.
"The prompt is shown in the Appendix A.2.2

Table 2: Experimental results at
the dialogue-level.

dialogue history H. After the summary module
receives the task instruction, it generates a CAD
design solution in combination with the task in-
struction v;, which can be represented as:

p < LLMg(vi, H) ®)

where the dialogue history H includes the user’s
initial CAD text description, the questions posed by
the asking sub-module, and the user’s responses.

3.3.4 Hierarchical Finite State Machine

To coordinate the integration and autonomous
operation of the aforementioned modules, we
leverage the Hierarchical Finite State Machine
(HFSM) (Alur and Yannakakis, 2001). Such a ma-
chine can employ state-based reasoning to system-
atically govern the workflow from generation to
execution. The HFSM is formally modeled as a
quintuple {S, O, 1, So, { Sexit} }:

* S = 5o U Stact U Soper U Sexit 18 a hierar-
chical state set, where Sy denotes the strate-
gic module and is the initial state in the ma-
chine, Staet = {51, S2} is the tractical module,
Soper = {53,544} represents the operational
module, and while S.y;; denotes the terminal
state.

» O represents the set of all possible outputs
from the aforementioned modules S.

* 1S x O — Sis a transition function that
determines the next state in the reasoning pro-
cess based on the current state and the execu-
tion result of the corresponding module®.

Figure 3 illustrates the whole working mech-
anism of the HFSM for the proposed proactive
agent.

5We put the detail of the transition function in the Ap-
pendix A.3 due to the page limit.
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Figure 5: Effectiveness rates for dialogues with varying
numbers of missing details.

4 Experiment

4.1 Performance Comparisons

In this paper, we employ GPT-40 Mini as the pri-
mary model for our main experiments.

4.1.1 Results at the Turn-Level

The experimental results are shown in Table 1, and
demonstrate our proposed proactive agent’s supe-
rior performance across all metrics compared to all
baseline approaches, confirming its effectiveness
in identifying missing CAD design details and gen-
erating appropriate proactive queries. Notably, we
find that CoT performed poorly, failing to analyze
omissions or initiate proactive queries, indicating
its inadequacy for this task. In contrast, MACRS
and ProCoT maintain competent performance in
both detail analysis and query generation, exhibit-
ing particularly strong questioning capabilities in
this specific assessment dimension.

4.1.2 Results at the Dialogue-Level

The experimental results are shown in Table 2.
From the table, we find that: our proposed proac-
tive agent outperforms all baselines in both Com-
pletion Rate and Effective Rate, demonstrating
its superiority in comprehensively and accurately
identifying missing information in CAD text de-
scriptions. Besides, CoT’s poor performance at

Method Median Mean Avg.
etho CD|/ CDJ Rank]

Initial Query  45.52  142.61 \

Standard 47.66 141.56  3.56
CoT 48.48 141,50 3.82
Proactive 3642 129.54 2.78
ProCoT 28.00 116.13  2.20
PS+ 3473 131.80 2.61
MACRS 27.03 119.69 2.64
Ours 20.60  99.70 1.60

Table 3: Experimental results at the final CAD-level.

dialogue-level evaluation aligns with its turn-level
shortcomings, consistently failing to detect missing
details or initiate meaningful inquiries. Meanwhile,
we also find that MACRS is no longer perform-
ing well, particularly showing poor performance in
terms of the effectiveness rate.

Furthermore, we categorize these dialogues into
20 distinct levels based on the type and quantity
of missing information or required operations, con-
ducting granular dialogue-level evaluations at each
individual level. As illustrated in Figure 4 and Fig-
ure 5, our method consistently outperforms the best
baseline approach, ProCoT, across all classification
levels, demonstrating its effectiveness.

4.1.3 Results at the CAD-Level

Table 3 presents the experimental results at the
CAD-level. From the results, we find that our
method and most baseline approaches achieve
superior CD values compared to the initial user
queries, demonstrating that the proactive interac-
tion paradigm can effectively improve alignment
between CAD models and user expectations. More-
over, our proposed proactive agent can outperform
all baselines in CD metrics, confirming its effective-
ness for this task. The CD results generally corre-
late positively with completion rates from dialogue-
level evaluation, indicating that better textual re-
finement leads to improved geometric alignment.
Interestingly, MACRS exhibits slightly better me-
dian CD than ProCoT, likely due to its polarized
performance (either excellent or poor refinement).
However, ProCoT maintains a better average CD
than MACRS, suggesting more consistent overall
quality in CAD model refinement.

4.2 Discussion

We investigate the impact of different base LLMs
on experimental outcomes by employing GPT-
40 mini, Gemini-2.0-flash-lite, and Deepseek-R1.
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Figure 6: Case studies to illustrate the effectiveness of our method.

LLM Method Dialogue-level Evaluation CAD Model Evaluation
Completion Rate (%)  Effectiveness Rate (%) Median CD Mean CD
GPT-40 mini ProCoT 12.45 5.95 28.00 116.13
0 mint Ours 23.89 23.34 20.60 99.70
. . . ProCoT 14.58 8.64 25.11 114.54
Gemini-2.0-flash-lite (| 24.76 9.54 20.91 106.24
ProCoT 14.31 10.22 30.55 115.44
DeepSeck-R1 Ours 4875 2071 17.60 105.14

Table 4: The experimental result by changing base LLMs.

Among the baseline methods, ProCoT performs the
best in the previous experiments. Therefore, we
further test ProCoT and our proposed method in
terms of dialogue and CAD model generation. The
experimental results are shown in Table 4. From
the results, we find that the base LLMs have a
big impact on the experimental results. Among
these LLMs, DeepSeek-R1 perform notably well.
Besides, our method outperforms ProCoT in all
metrics when the base LLMs are changed.

4.3 Case Study

In Figure 6, we compare the geometric appearance
of the user’s initial CAD text, the strongest base-
line method ProCoT, our method, and the ground
truth CAD model. We find that the CAD models
generated by our method have more details than
those generated by the user’s initial CAD text and
ProCoT, and are the most similar to the ground
truth. More specifically, in the first case, the ground
truth appears similar to a nut. The CAD models
generated by the user’s initial text and ProCoT de-
viate significantly from the ground truth, while our

method generates a shape that is most similar to the
ground truth. In the third case, the ground truth re-
sembles a simple rectangular container. Compared
to the user’s initial text, ProCoT only generates one
additional side panel, whereas our method can gen-
erate all the side panels. The only difference from
the ground truth is the absence of a base plate.

5 Conclusion

In this paper, we extend the static text-to-CAD
paradigm to the proactive text-to-CAD paradigm,
which can engage users in iterative questioning
to find missing CAD design details. Second, to
achieve this paradigm, we construct the first dataset
for studying actively interactive text-to-CAD gen-
eration, Proactive-Text2CAD. Third, we present
“Proactive Agent”, an innovative agentic framework
for this paradigm. Through extensive experiments,
we demonstrate the effectiveness of both our pro-
posed paradigm and agentic framework.



Limitation

Our method is currently a pipeline way with two
parts, where Part 1 is designed to proactively query
users for missing CAD design information and gen-
erate the final CAD design text, and while Part 2
is configured to employ a CAD Transformer for
converting final CAD design text into CAD mod-
els. In future work, we may explore an end-to-end
way from the user’s initial text to the CAD model
through active interaction and implement joint op-
timization of the user’s initial text and the CAD
model.

Besides, through experiments, we find that the
validation sub-module in our proposed agentic
framework can increase the proactivity of inquiry,
but also introduce the issue of generating invalid
questions, which can slightly reduce the efficiency
of our agentic framework. In future work, we will
explore new method to improve the validation sub-
module.
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A Appendix

A.1 Dataset Specifications

A.1.1 User Initial Query Generation

We first define the main types and subtypes of CAD
operations and parameters, and randomly remove
the type information included in the minimal meta-
data. Then, we perform a topological sort on the
CAD types based on the dependencies between
CAD type information.

Main Types and Subtypes of CAD Operations
and Parameters. We adopt the same
representation method proposed by Khan et al.
(2024a), which uses a sketch-and-extrude format.
Each 2D sketch consists of multiple faces, each
face consists of multiple loops, and each loop
either contains a line and an arc or a circle. Loops
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Figure 7: The statistical distribution of our dataset.

are always closed (i.e., the start and end
coordinates are the same). The specific
descriptions of the main types and subtypes in our
dataset are presented in Table 5.

Dependencies Between CAD Types. The
dependencies between CAD types are shown in
Figure 8. After randomly deleting missing types
(including both main types and subtypes), we use
topological sorting to order the missing types,
laying the groundwork for the sequence of
proactive dialogue generation.

A.1.2 Proactive Dialogues Generation

To facilitate the reproducibility of our dataset, we
employ DeepSeek-R1 to generate proactive dia-
logues with users. The system proactively asks
users questions based on the missing type objects,
and users retrieve corresponding information from
the initial dataset to answer the system’s questions.
The prompts for the system’s responses and user
inquiries are shown in Table A.1.1.

The initial text of the user, namely the initial text
description of the CAD design, is adapted from the
text descriptions in the initial dataset. We also use
DeepSeek-R1 for this adaptation. The prompts for
the adaptation are shown in Table 7.

A.1.3 Dataset Statistics

We classify the samples according to the number
of missing types in each sample. Since the sub-
types within the main types vary across dataset
samples (e.g., different sketches may contain dif-
ferent numbers of loop subtypes), which makes it
inconvenient to count, we uniformly consider the
absence of one main type and one subtype as a
single type of missing information, and include it
in the count of missing types.

Our dataset contains approximately 4,590 dia-
logues, with 28,110 question-answer pairs. The
distribution of the number of missing types per
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sample is naturally right-skewed and discrete, con-
centrated in the range of 4 to 9, with a long right
tail, consistent with the characteristics of a skewed
discrete count data distribution. The specific distri-
bution of the dataset is shown in Figure 7.

A.2 Prompt List

A.2.1 Dataset Construction

Prompts for generating dialogues between the sim-
ulated system and user are presented in Table 6.
Prompts for rewriting the text of the initial dataset
to generate CAD initial queries are presented in
Table 7.

A.2.2 Proposed Method: Proactive Agent

The prompts for generating workflows by the strate-
gic module are presented in Table 10. The prompts
for dispatching tasks by the dispatch sub-module,
for validating task completion by the validation
sub-module, for initiating questions by the asking
sub-module, and for generating summaries by the
summary sub-module are presented in Table 9.

A.2.3 Evaluation

The prompts for simulating user responses in the
dialogue-level experiments are presented in Table
8.

Euler Angles

Translation Vector
Sketch Scale

Coordinate System

Extrusion Depth Opposite Normal l

Extrusion Depth Towards Normal l

Main Type
Subtype

Figure 8: Dependencies between CAD types.
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A.3 Details of Our Methods

The transition function p of a Hierarchical Finite
State Machine (HFSM) can be represented as:

So  if Si = Sexit

andy = t,
it S; = So

andy = G(V, E),
iftS=5;

and action = ask,
if S =51

and action = summarize,
if S =53

and e = q,
if S =54

and e = p,
ifS =5

and action = ask

S1
S3
S4
Sa
Sa

S1

w(Si, y) = )

and task completion is valid,
if S =5

and action = summarize

Sexit

and task completion is valid,
itS =25
and action = ask

Ss

and task completion is invalid,
iftS =25

and action = summarize

Sy

and task completion is invalid,
otherwise.

Sexil

In this context, y represents the input to the cur-
rent state, and the current state transitions to the
next state through the transition function p com-
bined with the input y.

The overall execution logic of our hierarchical
finite state machine (HFSM) begins with the user’s
initial CAD design text description ¢, which first
enters the workflow sub-module of the strategic
module. At this point, it is in the initial state (Sp),
where it plans how to ask the user for missing infor-
mation in order to ultimately generate a complete
CAD design text, thereby generating the workflow
of the operational sub-module. Then, the gener-
ated workflow is input into the tactical module and
enters the dispatch sub-module for workflow pars-
ing. The workflow parsing generates a series of
subtasks, which the dispatch sub-module assigns to
the operational sub-module. At this point, it transi-
tions to state .S1. Next, the asking sub-module or
summary sub-module of the operational module,
which receives the sub-tasks, executes the tasks,
transitioning to state S3 or Sy. The completion of
tasks by the asking and summary modules is ver-
ified by the validation sub-module of the tactical
module, which means transitioning to state .So for



validation. If the validation sub-module determines
that the task of the asking sub-module is complete,
it re-enters the dispatch module, transitioning to
the next task assignment state S;. Otherwise, it
returns to the asking sub-module to regenerate the
question q. The validation of the summary module
is similar to that of the asking module, except that
when the validation sub-module determines that the
task is complete, i.e., the final CAD design solution
has been generated, it transitions to the termination
state Sexit, completing the entire execution logic of
the HFSM.

A.4 Baseline

Since no existing large language model (LLM)
methods currently address proactive querying or
interactive capabilities for CAD applications, we
establish six baseline approaches based on our
newly constructed Interactive-CAD dataset and
novel CAD generation paradigm. These baselines
incorporate both commonly-used and state-of-the-
art (SOTA) LLM-based proactive dialogue method-
ologies.

Standard Prompting(Deng et al., 2023): Given
a task description ¢, the user’s initial CAD text de-
scription ¢, and dialogue history C', we instruct the
LLM to perform CAD proactive querying and gen-
erate response 7. The task descriptions and prompt
templates are provided in Table 12 of Appendix
A.4.1. This prompting scheme can be formally
represented as:

p(rlg,t,C)

CoT(Wei et al., 2022): A chain-of-thought
prompting approach that generates intermediate
reasoning steps to derive the final response. In the
task description, we require the system to simulate
the next response based on the current dialogue
history. The prompt template is provided in Table
13 of Appendix A.4.1.

Proactive Prompting(Deng et al., 2023): Proac-
tive Prompting is designed to provide the LLM with
alternative options for determining appropriate ac-
tions to take in responses, formally represented as:

pla,r | q,t,C,A)

Given the task description ¢, the user’s initial
CAD text description ¢, dialogue history C', and a
set of possible dialogue actions A, this approach

12

instructs the LLM to: (1) select the most suitable
dialogue action a € A, and (2) generate the corre-
sponding response r. To adapt this to CAD proac-
tive querying tasks, we define the dialogue actions
as either “querying the user about missing CAD
design details” or “summarizing the CAD design
solution”. The prompt templates are provided in
Table 14 of Appendix A.4.1.

ProCoT(Deng et al., 2023): The proactive chain-
of-thought prompting scheme (ProCoT) involves
dynamic reasoning and planning to analyze sub-
sequent actions for achieving dialogue objectives,
formally represented as:

p(c,a,r|q,t,C,A)

where c denotes the cognitive description of the
decision-making process for subsequent actions,
while ¢, t, C, A, and r maintain the same defini-
tions as in Proactive Prompting. For CAD proac-
tive querying tasks, we define c as the analysis of
missing detail types in the current CAD design.
The prompt templates are provided in Table 15 of
Appendix A.4.1.

PS+ Prompting(Wang et al., 2023): Plan-and-
Solve Prompting (PS prompting) is a two-stage
methodology that first generates both the reason-
ing process and potential answers through logical
inference, then employs answer extraction prompts
to derive the final solution. We adopt PS+ prompt-
ing with more detailed instructions, defining the
task questions as: (1) "identifying missing details
in the current CAD design" and (2) "formulating
user queries about these missing details", with the
dialogue history incorporated into the questions to
provide complete contextual information about the
current CAD design. The reasoning prompt tem-
plates and answer extraction prompts are detailed
in Table 16 of Appendix A.4.1.

MACRS(Fang et al., 2024): Multi-Agent Con-
versational Recommender System (MACRS) is
a collaborative multi-agent framework that inte-
grates four LLM-based agents to plan diverse dia-
logue behaviors, employing a feedback-aware re-
flection mechanism for agent adaptation. Specifi-
cally, MACRS incorporates four specialized agents
designed to perform distinct dialogue functions:
questioning, small talk, recommendation, and plan-
ning. For proactive querying in CAD design tasks,
we define the user profile U, in MACRS’s memory
module as representing a CAD modeler, whose ob-
jective is to create a fully detailed CAD model. The



system initializes the interaction using the user’s
initial CAD text description as input. The ques-
tioning agent, small talk agent, and recommenda-
tion agent generate three candidate responses (i,
Rchat, and Ryec) based on dialogue history and the
user profile. The planning agent (7;,) then performs
multi-step reasoning to select the most appropriate
response from these candidates, determining the
final system response R;:

R, = Wp(Iplan, Rask, Rrec, Rehat, Dh, Ah)

where Ipan represents the instruction for the plan-
ning agent m,, D}, denotes the dialogue history, and
Ay, corresponds to the history of dialogue actions.
The prompt templates for each agent can be found
in Table 11 of Appendix A.4.1.

A.4.1 Prompts in Baseline Methods

The prompts for standard prompting are listed in
Table 12, for CoT in Table 13, for Proactive prompt-
ing in Table 14, for ProCoT in Table 15, for PS+
prompting in Table 16, and for MACRS in Table
11.
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Main Category | Description

Parts The number of parts included in the current CAD model.
Coordinate System | Defines the coordinate system of the part, which includes the following sub-
types:
Euler Angles: Three parameters (6, ¢, ) that determine the orientation of the
sketch plane.

Translation Vector: Three parameters (7, 7, ) that describe the translation
of the sketch plane.

Sketch Defines the geometry of the 2D sketch.

Face: Defines a face that contains a closed loop, which includes the following
subtypes:

Loop: Defines a loop composed of lines, arcs, or circles.

Line: Contains start and end coordinates.

Arc: Contains start, mid, and end coordinates.

Circle: Contains center and top-most coordinates.

Sketch scale: The scaling factor for the 2D sketch.

Extrusion Defines the parameters for the extrusion operation, which includes the following
subtypes:

Extrusion depth towards normal: The extrusion depth in the direction of the
normal of the sketch plane.

Extrusion depth opposite normal: The extrusion depth in the direction oppo-
site to the normal of the sketch plane.

Description Provides a description of the CAD model, which includes the following sub-
types:

Length: The length of the part.

Width: The width of the part.

Height: The height of the part.

Assembly The assembly relationships between parts.

Table 5: Main types and subtypes of CAD operations and parameters.

System Simulation

You are an Al assistant helping a user design a CAD model. The user has provided some information,
but the {category} is missing.

Generate a natural, conversational question asking the user to provide the missing information.
Make your question specific to the context of the CAD model being designed. Keep your question
concise and focused only on the missing {category}. Please only generate the question without any
additional content.

User Simulation

You are a user designing a CAD model. An Al assistant has asked you about missing {category }
information.

Referential Design: {information about the missing type in the initial dataset}

Please generate a natural, conversational response where you are playing the role of a user answering
a question. Use the parameters from the referential design provided above in your response. Keep
your answer concise and focused only on the {category}. Please only generate the answer without
any additional content.

Table 6: Prompts for simulating system-User interaction.
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User Initial Query Generation

I need to update a CAD model description query to reflect recent modifications. Certain information
has been removed from the original JSON data.

Task:

Please revise the query to include only the information that remains available in the current JSON,
ensuring all non-null details and relevant parameters are retained.

Original JSON:

{initial metadata}

Current JSON:

{metadata with partially missing types}

Original query:

{Initial Text Containing Complete CAD Information}

Requirements for the Updated Query:

1. Include only the information still present in the current JSON.

2. Exclude any fields that are now null.

3. Maintain relevance to CAD model design.

4. Ensure clarity and conciseness.

Please only reply with the modified query without generating any additional text.

Example:

Original query: "Create the first part of the CAD model, a rectangular prism with a curved side.
Begin by creating a new coordinate system with Euler angles of [0.0, 0.0, 0.0] and a translation
vector of [0.0, 0.0, 0.0]. Next, create a 2D sketch on the X-Y plane of the coordinate system. The
sketch consists of four lines. The first line has a start point at [0.0, 0.0] and an end point at [0.6,
0.0]. The second line has a start point at [0.6, 0.0] and an end point at [0.6, 0.375]. The third line
has a start point at [0.6, 0.375] and an end point at [0.0, 0.375]. The fourth line has a start point at
[0.0, 0.375] and an end point at [0.0, 0.0]. Scale the 2D sketch by a factor of 0.6. Then transform
the 2D sketch into a 3D sketch with Euler angles of [0.0, 0.0, 0.0] and a translation vector of [0.0,
0.0, 0.0]. Finally, extrude the 3D model with an extrusion depth towards the normal of 0.075 and
an opposite normal depth of 0.0. Scale the sketch by 0.6. The first part of the CAD model has the
following dimensions: a length of 0.6 units, a width of 0.6 units, and a height of 0.075 units, with a
curved side. The part is centered in the image."

Modified query: "Create the initial part of the CAD model, which is a rectangular prism featuring
a curved side. Start by defining a new coordinate system with Euler angles set to [0.0, 0.0, 0.0].
Then, generate a 2D sketch on the X-Y plane of this coordinate system.

The sketch comprises four lines: The first line starts at [0.0, 0.0] and ends at [0.6, 0.0]. The second
line extends from [0.6, 0.0] to [0.6, 0.375]. The third line extends from [0.6, 0.375] to [0.0, 0.375].
The fourth line connects [0.0, 0.375] back to [0.0, 0.0]. Apply a scaling factor of 0.6 to the 2D
sketch. Next, convert it into a 3D sketch with Euler angles of [0.0, 0.0, 0.0]. Proceed by extruding
the 3D model with an extrusion depth along the normal direction of 0.075, while keeping the
opposite normal depth at 0.0. Scale the sketch again by a factor of 0.6. The resulting first part of
the CAD model has the following dimensions: a width of 0.6 units and a height of 0.075 units,
maintaining a curved side. The part is centrally positioned within the image."

Table 7: Prompts for generating user CAD initial text.
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User Simulation in the Dialogue-level Evaluation

Assume you are a user who needs to respond to the system’s question.

The system’s question is: “{system_message}”

Your designed corresponding parameters are: “{parameters}”.

Please generate a response to the system’s question based on your designed parameters.

>

If the parameter is “unknown” or other non-parameter information, respond with “unknown”.

Table 8: Prompts for dialogue-Level evaluation of user simulation.

Dispatch Agent

You are a dispatcher agent. Your job is to classify the task into one of two categories based on the
tags in the preceding task <>: ’ask’ or ’summarize’. Return only the category name without any
additional text.

Classify the following task into either ’ask’ or ’summarize’ category: {task}

Validation Agent

You are a validation agent. Your job is to determine if the output meets the requirements of the task.
Return only ’yes’ or "no’ without any additional text.

Task: {task}
Output: {output}
Does this output fulfill the task requirements? Answer with ’yes’ or 'no’.

Asking Agent

You are an assistant for CAD operations. Generate a clear and concise question based on the task
description to ask the user.

Generate a question based on task instruction:

{task instruction }

Summary Agent

You are an assistant for CAD operations. Generate a comprehensive summary based on the
conversation history and the task description.

Generate a summary based on the task instruction and the conversation history.
Task instruction: {task instruction}

Conversation history: [...]

Table 9: Prompts for asking, summary, validation, and dispatch.
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Workflow Generation

You are a helpful and intelligent task planner, and your target is to decompose the assigned task into
multiple subtasks for task completion and analyze the precedence relationships among subtasks.

At the beginning of your interactions, you will be given the task description and actions list you
can take to finish the task, and you should decompose the given task into subtasks that can be
accomplished using the provided actions. And then, you should analyze the precedence relationships
among these subtasks, ensuring that each subtask is sequenced correctly relative to others. Based
on the analysis, you should construct a workflow consisting of the identified subtasks to complete
the task.

You should use “Node:

1. <subtask 1>

2. <subtask 2>" to denote subtasks, and use (x,y) to denote that <subtask x> is a predecessor of
<subtask y>, (START,x) to indicate the beginning with <subtask x>, and (x,END) to signify the
conclusion with <subtask x>. Remember that x, y are numbers.

Your response should use the following format:
Node:

1.<subtask 1>

2.<subtask 2>

Edges:(START,1) ... (n,END)
Now it’s your turn.

Task: Refine the user’s initial CAD design to the greatest extent possible.

The user’s initial CAD design: [...]

The action list you can take: [*ask’,’summary’]

’ask’ means to inquire from the user to obtain specific CAD modeling information, such as
coordinate system, sketch, extrusion, assembly, etc., as well as more detailed information like Euler
Angle, extrude depth opposite normal, sketch scale, length, etc.

’summarize’ refers to formulating a CAD design plan by integrating the CAD design information
from the conversation history.

Remember that the format of the Node must be:
Node:

1: <action type> subtask 1

2: <action type> subtask 2

Edges:(START,1) ... (n,END)

Table 10: Prompts for generating workflows.
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Asking Agent

CAD details design task: Based on the conversation history and CAD design priority rules, generate
a question for the user regarding the highest-priority CAD design detail that has not yet been
completed in the conversation history. The given conversation history is [...]

You are a knowledgeable and enthusiastic CAD design details recommender chatbot.

Your goal is to engage in friendly, casual conversation about CAD design details. Follow these
guidelines:

- Don’t say that you can’t give recommendations directly.

- As you are a chatbot, speak casually but not too informally.

- Respond appropriately to the seeker’s answers in line with your role.

You should elicit CAD design details by asking questions.

If user asked any question at previous turn, You should answer the question.
If there is nothing to respond to, please use the response "Alright!"

Response should be equal or less than 15 words.

ChitChat Agent

CAD details design task: Based on the conversation history and CAD design priority rules, generate
a question for the user regarding the highest-priority CAD design detail that has not yet been
completed in the conversation history. The given conversation history is [...]

You are a knowledgeable and enthusiastic CAD design details recommender chatbot.

Your goal is to engage in friendly, casual conversation about CAD design details. Follow these
guidelines:

- Don’t say that you can’t give recommendations directly.

- As you are a chatbot, speak casually but not too informally.

- Respond appropriately to the seeker’s answers in line with your role.

You should elicit CAD design details by asking questions.

If user asked any question at previous turn, You should answer the question.
If there is nothing to respond to, please use the response "Alright!"

Response should be equal or less than 15 words.

Planning Agent

CAD details design task: Based on the conversation history and CAD design priority rules, generate
a question for the user regarding the highest-priority CAD design detail that has not yet been
completed in the conversation history. The given conversation history is [...]

You are a knowledgeable and enthusiastic planning agent decide which response to generate.

Your goal is to engage in friendly, casual conversation about CAD design details. Follow these
guidelines:

- Don’t say that you can’t give recommendations directly.

- As you are a chatbot, speak casually but not too informally.

- Respond appropriately to the seeker’s answers in line with your role.

response from asking agent:{asking agent response }

response from chit-chatting agent: {chit-chatting agent response }

From the conversation history, determine whether user CAD design details is sufficient or not.

Must choose one of the candidate responses based on three different dialogue acts. These three
dialogue acts are: asking, or chit-chatting.

If there is nothing to respond to, please use the response "Alright!"

Table 11: Prompts for MACRS.
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Standard Prompting

Your current task is to determine the user’s intentions and satisfy their needs based on the provided
conversation between the user and the system. The given conversation history is [...]. Please
generate the response. If there is nothing to respond to, please use the response "Alright!"

Table 12: Prompts for standard prompting.

CoT

Your current task is to determine the user’s intentions and satisfy their needs based on the provided
conversation between the user and the system. The given conversation history is [...]. Let’s think
step by step. If there is nothing to respond to, please use the response "Alright!"

Table 13: Prompts for CoT.

Proactive Prompting

Your current task is to determine the user’s intentions and satisfy their needs based on the provided
conversation between the user and the system. The given conversation history is [...]. You may
choose to either inquire about a missing detail in the current CAD design or, if the current CAD
design is already complete, simply respond with "Alright!"

Table 14: Prompts for proactive prompting.

ProCoT

Your current task is to determine the user’s intentions and satisfy their needs based on the provided
conversation between the user and the system. The given conversation history is [...]. First, let’s
analyze step by step whether there are any missing details in the current CAD design. Then you
may choose to either inquire about a missing detail in the current CAD design or, if the current
CAD design is already complete, simply respond with "Alright!"

Table 15: Prompts for ProCoT.

PS+ Prompting

Your current task is to determine the user’s intentions and satisfy their needs based on the provided
conversation between the user and the system. The given conversation history is [...]. Let’s first
understand the user’s intentions and devise a plan to satisfy their needs. Then, let’s carry out the
plan to satisfy their needs step by step.

Table 16: Prompts for PS+ prompting.
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