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Abstract

Datasets and pre-trained models come with intrinsic biases. Most methods rely
on spotting them by analyzing misclassified samples, in a semi-automated human-
computer validation. In contrast, we propose ConceptDrift, a method that analyzes
the weights of a linear probe, learned on top of a foundation model. We capitalize
on the weight update trajectory, which starts from the embedding of the textual
representation of the class, and proceeds to drift towards embeddings that disclose
hidden biases. Different from prior work, with this approach we can pin-point un-
wanted correlations from a dataset, providing more than just possible explanations
for the wrong predictions. We empirically prove the efficacy of our method, by
significantly improving zero-shot performance with biased-augmented prompting.
Our method is not bound to a single modality, and we experiment in this work with
both image (Waterbirds, CelebA, Nico++) and text datasets (CivilComments).

1 Introduction

Deep neural networks, and especially fine-tuned versions of foundation models, are commonly
deployed in critical areas such as healthcare, finance, and criminal justice, where biased predictions
can have significant societal consequences [1]. Despite their impact, these models are often employed
in their natural black-box state, i.e. as highly non-linear, multi-layered decision processes, lacking
transparency or interpretability. Even if the pretrained model has been validated by the community,
the dataset leveraged in the fine-tuning process can, and usually does, imprint the model with new
biases. This issue is particularly concerning as biases from these datasets can lead to undesired
outcomes [6], reinforcing existing inequalities or creating new forms of discrimination. This scenario
finds its representation in subpopulation shift setups, where biases can naturally occur in samples.

Within the context of subpopulation shift setups, efforts employing foundation models [13, 37]
have been recently made towards identifying and preventing biases. However, these methods limit
themselves to data analysis alone. For instance, Kim et al. [13] focus on investigating misclassified
validation samples. Their method relies on validating the presence of a given object within the set of
mistakes and its absence from within the set of the correctly classified samples, in order to label it as
a bias. The actual internal decision-making process of the model is never investigated nor referred to.

As an example, a method focusing on analyzing misclassified samples, such as B2T [13], is restricted
to highlighting only the biases present in the validation set. Furthermore, some of the biases found
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Figure 1: Illustration of ConceptDrift for the Waterbirds benchmark. The model’s classification
weights drift from the embedding of the textual representation of the class, outside the scope of
relevant concepts, towards biases. We propose a novel embedding-space scoring system, capitalizing
upon this drift, to identify which concepts factor in the final decision of the model and leverage a
dictionary-based approach to delineate biases.

in the dataset might not have been imprinted upon the model weights. As an example, fine-tuning
a ViT-L-14 CLIP [25] model on the O2O-Hard setup from Spawrious [19], a dataset specifically
designed to instill biases at train-time and expose them at test-time, results in a 96% test-time accuracy.
This demonstrates that biases in the data need not necessarily translate to biases in the model, and that
model investigation is imperative in confirming whether or not a bias seen in the data is a contributing
factor in the decision making process of the model.

We endeavor to expand upon the current usage of foundation models, beyond the restricted scope
of simple data analysis, and propose a new direction for bias identification within the context of
subpopulation shift setups. Our method focuses on investigating the skewness of the model’s weights
towards detecting and prioritizing spurious features as part of the decision-making process of the
investigated model. We hereby propose a novel protocol for uncovering biases using foundation
models such as CLIP [25] and mGTE [36], leveraging the topology of their embedding space to
identify and name biases instilled by linear probing. Our protocol, dubbed ConceptDrift, is illustrated
in Fig. 1. We showcase how, during training, the weights of the final classification layer drift away
from the textual representation of their associated class, towards representations of spurious attributes.
We propose a ranking system based on embedding-space arithmetic to extract keywords from concepts
which factor in the activation of class neurons, and leverage a dictionary-based approach to delineate
concepts outside the semantic scope of the classes, as biases.

We summarize our main contributions as follows:

1. We introduce ConceptDrift, a method capable to pin-point concepts relevant for the decision-
making process of a model. We are the first to propose a weight-space approach for
identifying the biases of fine-tuned foundation models, diverging from the current data-
restricted protocols.

2. We propose a novel, embedding-space scoring method, able to reveal concepts which
discriminatively impact the class prediction.

3. We show how our procedure is suited to assist in bias investigation. We reveal previously
untapped biases on four datasets: Waterbirds [31], CelebA [17], Nico++[35] and CivilCom-
ments [5], showcasing significant improvements in terms of zero-shot bias prevention, upon
state-of-the-art bias identification methods. Validated over image and text data, it can work
on other modalities, with a foundation model with text processing capabilities as well.
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2 Our Method

For a standard classification task {(xj , yj)} ⊂ X ×Y , we propose a method for pin-pointing concepts
that are erroneously correlated to the task’s classes. In order to achieve this, we train a linear layer on
top of a frozen, pre-trained representations of the input data, obtained from a foundation model M .
Next, we find concepts (ci)1≤i≤q in textual form, that are present in the training data and strongly
influence the predictions of the classifier.

We require that the model M is capable of embedding both the concepts ci and the input samples
xj into the RD vector space, such that their cosine similarity cos(M(ci),M(xj)) is high when the
concept represented by ci is present in sample xj .

The main steps of our method are the following:

Step 1: Initialization We initialize the weights wk, 1 ≤ k ≤ |Y| = N , of the linear layer with the
embedding of the corresponding class name, extracted by the model M , for each class k.

Step 2: Drifting towards biases, through learning We perform ERM [29] training on our dataset of
interest, while keeping the weights wk on the unit sphere. Through learning, the weights in the linear
layer naturally shift from the original initialization, towards concepts that can effectively distinguish
the samples of different classes. In an ideal, unbiased dataset w.r.t. the foundation model, the learned
weights would be the embeddings of the class names. But in all the other cases, concepts used for
classification drift, like visually presented in Fig. 1.

Step 3: Dataset concepts extraction For image classification task, we first use a captioning model
to obtain descriptions of the images in the dataset. Next, for both image and text classification, we
extract concepts from the captions or directly from the text samples.

Step 4: Rank the concepts For each class, we want to keep only the candidate concepts, which
favour the prediction of that class with respect to another subset of classes. Since the weights wk of
each class are normalized, the prediction rule of the classifier can be formulated as:

ŷj = argmax
k∈Y

cos(wk,M(xj)). (1)

This further motivates the need for wk to point closer to samples in class k, than the weight of the
other classes. Consider now a concept ci, that has a high cosine with the weight wk and a training
example xj containing the concept ci. Based on the following inequality (proof in appendix A):

cos(M(xj), wk) ≥ cos(M(xj),M(ci))−
√

2(1− cos(wk,M(ci))), (2)

it follows that: as long as our assumption from the beginning of this section holds, and wk is highly
similar with M(ci), then wk is also guaranteed to have a high similarity with samples containing the
concept ci. Since we seek the concepts which favour the prediction of class k as opposed to at least
one other class, we rank them by the difference in similarity of M(ci) with wk, and the weight of any
other class, wp:

scorek(ci) = cos(wk,M(ci))− min
1≤p≤N ;

p ̸=k

cos(wp,M(ci)) (3)

Step 5: Filtering concepts Among the concepts with high rank, based on the score in Eq.3 we also
expect to find those that refer to the class itself, or specific instances of it. We thus apply a filtering
procedure to remove instances of the class from the keywords, leaving only associated attributes or
keywords of completely different concepts.

3 Experimental analysis

Foundation models (FM) We used mGTE (gte-large-en-v1.5 [36]) for text embeddings in CivilCom-
ments [5], and OpenAI CLIP ViT-L/14 [25] for text and images in the other datasets.

We train the linear layer on L2 normalized embeddings extracted by these models using the Py-
Torch [22] AdamW optimizer with a learning rate of 1e− 4, a weight decay of 1e− 5, a batch size
of 1024 and a cosine annealing learning rate scheduler. We use the cross entropy loss with balanced
class weights as the objective. The weights of the layer are normalized after each update and we

3



Table 1: Foundation Model (FM) Zero-shot prompting task. We modify the prompt using several bias-
discovering methods, and evaluate the zero-shot performance of the FM. Notice how our ConceptDrift
method significantly improves the accuracy for all datasets, over the baseline (prompt template w/o
biases wildcard) and over the existing SoTA methods.

Waterbirds
(Acc % ↑)

CelebA
(Acc % ↑)

Nico++
(Acc % ↑)

CivilComments
(Acc % ↑)

Method Worst Avg. Worst Avg. Worst Avg. Worst Avg.

FM zero-shot [25] 35.2 90.7 72.8 87.4 57.7 88.4 33.1 83.4

FM w B2T [13] 48.1 86.1 72.8 88.0 - - - -
FM w SpLiCE [4] - - 67.2 90.2 - - - -
FM w Lg [37] 46.1 85.9 50.6 87.2 - - - -

FM w ConceptDrift (ours) 55.3 84.7 75.6 88.4 63.5 86.2 53.7 69.0

Table 2: Model Ablation (Zero-shot prompting task). We variate the ranking score and the cut-off for
concepts, revealing that both aspects could greatly influence the overall performance.

Waterbirds
(Acc % ↑)

CelebA
(Acc % ↑)

Nico++
(Acc % ↑)

CivilComments
(Acc % ↑)

Mean
(Acc % ↑)

Variations Worst Avg. Worst Avg. Worst Avg. Worst Avg. Worst Avg.

top-q concepts: 30 51.3 85.0 70.6 86.7 46.0 80.9 54.0 68.0 59.0 77.9
score: final - init weights 48.1 85.7 74.4 88.6 60.9 85.8 50.6 64.3 61.9 80.5

ConceptDrift
* top-q concepts: 15
* score: classes difference 55.3 84.7 75.6 88.4 63.5 86.4 53.7 69.0 65.8 81.3

also learn a temperature to scale the logits. As early stopping criterion, we use the class-balanced
accuracy on the validation set.

Keyword extraction For image captioning we use the GIT-Large model [32], trained on
MSCOCO [15]. Next, to extract concepts we use YAKE [7], taking the top 256 n-gram concepts,
for both n = 3, 5. For post-processing the selected concepts, we split them into individual words to
remove stopwords, substrings from the class names, and hypernims or hyponims of the class concepts
using WordNet [20] (e.g. ’seagull’ for ’landbird’ class). We remove keywords common for all classes,
as they are usually in top because they are part of n-grams containing the class names.

3.1 Datasets

Waterbirds [31] is a common datasets for generalization and bias mitigation. It is created from CUB
[33], by grouping different species of birds into two categories, landbirds and waterbirds, each being
associated with a spurious correlation regarding its background, land and water respectively.

CelebA [17] is a large-scale collection of celebrity images (over 200000), widely used in computer
vision research. The setup for using it in a generalization context [18] consists of using the Blond_Hair
attribute as the class label and the Male attribute as the spurious variable.

Nico++ [35] image dataset has annotations for a main object and its context (e.g. dog on the beach).
Unlike other datasets, NICO++ includes over 50 classes and 6 contexts, providing a richer context
for evaluating model generalization performance across diverse scenarios. For this work, we build a
setup with spurious correlations between 4 classes and 3 contexts (more details in Appx. A.2).

CivilComments [5] is a large collection (1.8 millions) online user comments, used also for research-
ing bias and fairness in NLP, across different social and identity groups.

3.2 Quantitative analysis through zero-shot prompting

In this experiment, we validate the ability of our method to identify biases. We follow B2T [13] setup
and choose the zero-shot prediction task. We augment the initial, class-only related prompt, with the

4



Table 3: Identified global biases. For a qualitative comparison, we show the biases extracted by
multiple methods on Waterbirds and CelebA datasets. See in red biases that are off-topic, person
names, or too related to the semantic content of the class, in green new biases, that were not identified
before, and in blue words that come from expressions like ’body of water’, which are quite difficult
to filter. Notice how our ConceptDrift method proposes lots of new biases, that might be correct,
since they are obtained by analysing the model weights drift while iterating through each dataset.

Waterbirds (highest rank first) CelebA (highest rank first)
landbird waterbird blonde hair non-blonde hair

B2T [13]
forest, woods,
tree, branch

ocean, beach,
surfer, boat,

dock, water, lake

model, favorite,
outfit, hair,
love, style

man, player,
person, artist

SpLiCE [4] - -

hairstyles, dolly,
turban, actress,
tennis, beard

hairstyles, visor,
amy, kate, fielder,

cuff, rapper, cyclist

Lg [37]

forest, woods,
rainforest, tree

branch, tree

beach, lake,
water, seagull,

pond

woman blonde hair,
blonde hair, actress,

model, woman long hair

man, man wearing
sunglasses, young

man, black hair, actor

ConceptDrift
(ours)

bamboo, log, tree,
surrounded, floor, field,
snowy,ground, forest

boat, lake, flying,
ocean, pond, body,

swimming

smiles, woman,
long, girl,
beautiful

man, dark,
brown, eye,
made, hat

bias, through a minimal intervention (e.g. ’a photo of a {cls} in the {bias}’ (see Appx. A.1). For
each class, we test one prompt for each bias identified in the dataset, taking into account the score
for the best one (zero-shot with max over templates). The results in Tab. 1 show how the biases,
automatically selected by our method, improve the worst group accuracy, over the initial zero-shot
baseline and other bias-extracting solutions, in all four tested datasets. This emphasises on the quality
of the biases automatically extracted by ConceptDrift. The better they are, the more capable the
zero-shot prompt approach is to generalize, by adapting the prompt better to the new dataset context.

Ablations We validate key decisions in our algorithm in Tab. 2. We changed the ranking score (score)
in Eq. 3 to the difference in cosine similarity of a concept with the final weights and the initial ones
for each class. This highlights the concepts that the weights of a class have become more similar to,
but does not take their similarity to other class weights into account. We also notice that the number
of chosen concepts (top-q concepts) is important, as taking too many adds noise to the prompts and
lowers the performance. We leave finding a good cut-off strategy for future work.

3.3 Extracting qualitative biases

In Fig. 2, we analyse the scores for the n-gram concepts on Waterbirds, for both classes, extracted as
explained in Sec. 2). Notice how the score variation for each class is steep at the margins, becoming
almost flat as soon as similarity decreases, showing that there are only a few candidates with high
similarity scores, worth to be taken into account next for extracting the biases.

Qualitative examples We present in Tab. 3 the identified biases. Notice how our method comes with
lots of new proposals for biases (in green). This might be case because our approach is fundamentally
different, when compared with others [13, 37, 4], relying on the decision-making process of the
model being investigated. See Nico++ and CivilComments in Appx. A.2.

4 Related Work

To enable a more meaningful comparison, we have distilled in Tab. 4 existing methods down to the
aspects we consider fundamental to bias detection.

Biases and generalization Machine learning methods easily capture relevant factors to solve a task.
Nevertheless, many times, models capture shortcuts [10], that are helpful in solving a task, but are not
fundamental or essential for it. These shortcuts represent spurious correlations or biases, that don’t
always hold, and should not be used for reliable generalization outside of training distribution, often
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Figure 2: Top concept scores for Waterbirds (before Step 5: Filtering concepts). Notice that the curve
has a steep descent on both ends, showing that there are just a few top candidates (with high scores),
for each class. The first plot shows the similarities scores for all the concepts, while second and third
plot are the detailed high score areas, one per Waterbirds class.

Table 4: Bias-extraction approaches comparison, based on fundamental differences in methods.

Bias definition
key focus

Source for
bias candidates

Principle for
scoring candidates

B2T [13] mistakes driven valid-set common keywords in mistakes
SpLiCE [4] dictionary learning full dataset Lasso solver
Lg [37] class-specificity score full dataset embedding-space arithmetic

ConceptDrift
(ours)

weights drift
towards biases full dataset embedding-space arithmetic

leading to degraded performance [24, 3, 11]. Prior works [13, 37, 4] have thus focused on identifying
dataset biases, through data analysis procedures.

Debiasing Debiasing and bias extraction techniques have become crucial in ensuring the fairness and
accuracy of machine learning models [28], with extensive research dedicated to removing harmful
biases across various domains. Some existing methods use bias annotations to train unbiased model,
by means of group balanced subsampling [12], reweighting [27] or data augmentations [34]. In the
absence of these annotations, other works [21, 16, 23] have proposed to first learn a biased model
and then focus on its mistakes to train an unbiased one.

Fairness Fairness in machine learning has been extensively studied, with numerous approaches [8, 30]
proposed to facilitate ethical research and ensure equitable outcomes across different subpopulations.
Most of those methods overlap with domain generalization and worst-group performance improve-
ments. This is also a field where model interpretability plays a crucial role [26], as understanding
how decisions are made can help in identifying and mitigating biases.

Invariant Learning Robustness to out-of-distribution changes can be obtained by enforcing that
the learning model is invariant to different environments or domains [2, 14, 34]. But there are many
cases where we don’t have access to such environments and we must discover them. Approaches
like [9] partition the data into subsets that maximally contradict an invariant constraint, and apply
algorithms for distributional robustness, like groupDRO [27], on those subsets, called environments.
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5 Conclusions

We introduce ConceptDrift, the first method to identify biases using a weight-space approach, moving
beyond traditional data-restricted protocols. Our novel embedding-space scoring method highlights
concepts that significantly influence class predictions. We empirically demonstrate its effectiveness in
bias investigation across four datasets: Waterbirds, CelebA, Nico++, and CivilComments, revealing
previously undetected biases and achieving notable improvements in zero-shot bias prevention over
current state-of-the-art methods. Validated on image and text datasets, with a foundation model also
endowed with text processing capabilities, ConceptDrift can accommodate any other modality.
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A Appendix

Finding biases in models We discuss so far how our approach can be used to find biases in datasets, but it
can also be used for finding biases of a model w.r.t. the foundation model. We apply the same procedure, such
that the new ground-truth labels of the dataset entries are the predictions of our model of interest.

Broader impacts We emphasize that our method should not be used in a stand-alone fashion for automated
discovery of biases in every field and that human assistance is needed in order to interpret the model output
before any further actions of consequence. Our tool is meant to aid and assist humans in the process of bias
identification, not to replace them.

Limitations An important limitation in our method is the captioning model used for image classifications
task. Zhao et al. [37] acknowledged as well that these models usually do not extract all the details in the images,
so methods relying on them are limited to discovering the biases that they can extract. Another limitation is
the keyword extracting procedure - using a more sophisticated one could bring forth new biases (e.g. extracting
topics or taking into account synonymy). The method also relies on known hierarchies of concepts to detect
biases by filtering concepts related to the desired class. These hierarchies and the relations they provide thus
limit the type of filtering that we can ensure.

Bound on cosine similarity of vectors Let u, v, t ∈ RD be three vectors of unit length, with u and v
being fixed. We are interesting in finding the vector t that maximizes the difference in cosine similarity with the
two fixed vectors:

argmax
∥t∥2=1

(t · u− t · v) ,

where · represents the standard dot product of vectors. This can be rewritten as:

argmax
∥t∥2=1

t · (u− v) = argmax
∥t∥2=1

cos(t, u− v) ∥u− v∥2

= argmax
∥t∥2=1

cos(t, u− v) ,

as ∥u− v∥2 is a constant. It is now easy to see that the solution to this problem is t = 1
∥u−v∥2

(u − v), the
unit length vector with the same orientation as u − v. Using this we can place an upper bound on the initial
difference:

t · u− t · v ≤ ∥u− v∥2 ,

which we then rearrange as

t · v ≥ t · u− ∥u− v∥2 .

The norm ∥u− v∥2 can be equivalently expressed as

∥u− v∥2 =
√

(u− v) · (u− v) =
√
2− 2u · v =

√
2(1− u · v) .

Introducing this in the previous inequality we obtain

t · v ≥ t · u−
√

2(1− u · v) .

Since u, v and t are vectors of unit length we can replace the dot products with the cosine similarity. By then
setting u = M(ci), v = wk and t = M(xj) we finally obtain the inequality:

cos(M(xj), wk) ≥ cos(M(xj),M(ci))−
√

2(1− cos(M(ci), wk))

A.1 Zero-Shot Prompts

The basic prompts we used for each dataset are the following:

• Waterbirds: ’a photo of a {class name}’

• CelebA: ’a photo of a person with {class name}’,

• CivilComments: ’{class name}’

• Nico++: ’a photo of a {class name}’.

Next, we change them to accomodate the biases wildcard:

• Waterbirds: ’a photo of a {class name} in the {bias}’

10



Table 5: Identified global biases - Nico++
We find words related to the environments that we associated to each class, but also some attributes
more specific to the class itself than the other ones (e.g. ’wooden’ for chair).

Nico++ (highest rank first)
car flower chair truck

Model

Ground Truth Biases outdoor grass water water

ConceptDrift (ours)

beach, parking,
standing, driving,

parked, blue,
road, pool,
lot, group

red, close,
yellow, wild,
field, floating,
water, white

sitting, red,
pool, beach,

wooden, floating,
near

driving, road,
large, lake,

black, beach,
spraying, field,
standing, water

Table 6: Identified global biases - CivilComments++
Notice how references to religion and ethnicity are common in the class of offensive comments, while
in the opposite part we have words that are more common in formal contexts.

CivilComments (highest rank first)
non-offensive offensive

Model

ConceptDrift (ours)

experienced, completely, responsible,
barrier, coverage, attempt,

Engineer, total, Notice,
shared, primarily, regard,

helping, accepting, paycheck,
wrote, petition, case,
always, aspects, rest,
noticed, name, hours,

analysis, Extension, personal,
blog, based, relative,

important, new, mentioned

losers, acting, bigotry,
misogynist, mental, racist,
Muslim, jesus, Christian,
driving, Sexuality, White,

supremacist, Trump, someone,
rid, repub, president,

white, Mental, lesbian,
like, people, Jihadist,

intellectuals, state, God,
dangerous, black, mans,

killing, ultimate

• CelebA: ’a photo of a {bias} with {class name}’

• CivilComments: ’a/an {class name} comment about {bias}’

• Nico++: ’a photo of a {class name} in the {bias}’.

The class names used in the templates and for the initialization of the linear layer weights are:

• Waterbirds: ’landbird’, ’waterbird’

• CelebA: ’non-blonde hair’, ’blonde hair’

• CivilComments: ’non-offensive’, ’offensive’

• Nico++: ’car’, ’flower’, ’chair’, ’truck’

A.2 Nico++ and CivilComments Biases

See Tab. 5 and Tab. 6 for the biases extracted with our method for Nico++ and CivilComments datasets.

Custom Nico++ subset For the experiments on Nico++ we selected only the first four classes and paired
them with the environments that they had the most samples in, resulting in the following associations: (car,
outdoor), (flower, grass), (chair, water), (truck, water). Notice how the classes chair and truck shared the same
bias, in contrast to most popular subpopulation shift datasets that only have one-to-one associations of classes
and biases. For the training set we keep for each class 300 samples from its associated environment and only 25
from the other ones, while for validation we keep 50 from the associated one and 25 from the others. The test set
is made up of all the remaining samples.

11


	Introduction
	Our Method
	Experimental analysis
	Datasets
	Quantitative analysis through zero-shot prompting
	Extracting qualitative biases

	Related Work
	Conclusions
	Acknowledgments
	Appendix
	Zero-Shot Prompts
	Nico++ and CivilComments Biases


