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ABSTRACT

Transformers have emerged as the dominant architecture in the field of deep learn-
ing, with a broad range of applications and remarkable in-context learning (ICL)
capabilities. While not yet fully understood, ICL has already proved to be an
intriguing phenomenon, allowing transformers to learn in-context—without re-
quiring further training. In this paper, we further advance the understanding of
ICL by demonstrating that transformers can perform full Bayesian inference for
commonly used statistical models in-context. More specifically, we introduce a
general framework that builds on ideas from prior fitted networks and continu-
ous normalizing flows and enables us to infer complex posterior distributions for
models such as generalized linear models and latent factor models. Extensive
experiments on real-world datasets demonstrate that our ICL approach yields pos-
terior samples that are similar in quality to state-of-the-art MCMC or variational
inference methods that do not operate in-context. The source code for this pa-
per is available at https://anonymous.4open.science/r/ICL_For_
Full_Bayesian_Inference-3F53

1 INTRODUCTION

Can we leverage in-context learning (ICL) to perform full Bayesian inference? In this paper, we
investigate this question. The core principle of ICL is that a system adapts to a given task based
on information provided in its context, enabling it to solve complex problems, such as question-
answering or text summarization, using a fixed model and without requiring any gradient-based
fine-tuning, simply by referencing the context. This way, ICL enables the generation of real-time
solutions via local understanding of data without explicit re-training.

ICL has become not only a central paradigm in natural language processing, with LLMs as ubiq-
uitous in-context learners (Brown et al., 2020; Touvron et al., 2023), but led to a paradigm shift in
machine learning in general (Dong et al., 2022). In the domain of tabular data, tabular prior-data fit-
ted networks (TabPFNs) are in-context learners that achieve state-of-the-art classification accuracy
on small datasets in combination with minimal prediction time (Hollmann et al., 2022). The central
idea of prior fitted networks (PFNs) is to train a transformer model that takes as input a small tabular
dataset and directly outputs the class labels for test samples. The training data for such a model is
purely synthetic, and sampled from a distribution referred to as the “prior” in the context of PFNs.

1.1 FULL BAYESIAN INFERENCE IN-CONTEXT

Performing full Bayesian inference can be challenging, even for relatively simple models such as
generalized linear models (GLMs; Nelder & Wedderburn, 1972). We use the notion of full Bayesian
inference for methods yielding potentially complex and high-dimensional posterior distributions—
in contrast to, for instance, methods that yield only the posterior predictive, as e.g. in Müller et al.
(2021). Full Bayesian inference is thus fundamental for a wide range of applications in Bayesian
statistics and probabilistic machine learning, even though it cannot always be achieved. Methods
of central importance for full Bayesian inference are Markov chain Monte Carlo (MCMC) and
variational inference (VI).
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While previous studies of ICL are mostly concerned with learning to simulate univariate predictions
of models in-context, and only discuss synthetic scenarios (Garg et al., 2022; Ahuja et al., 2023; Bai
et al., 2024), our work attempts to perform full Bayesian inference via ICL on real-world data.

The idea underlying the proposed approach is founded on two observations relating to full Bayesian
inference and the working principle of PFNs: First, many Bayesian models have a generative for-
mulation that allows the simulation of arbitrarily large amounts of training samples from the joint
distribution Px,z . We assume that samples from Px,z comprise a dataset x = {xj}Kj=1 containing
K samples xj ∈ X and a corresponding (latent) variable z ∈ Z .1 This joint distribution Px,z

corresponds to the “prior” in PFNs and allows the training of a large neural network that implicitly
learns to perform Bayesian inference. Second, Bayesian inference is especially useful for smaller
datasets x that can be processed in a single forward pass. This makes an entire dataset a viable
context for Bayesian ICL.

To summarize, our main contributions are as follows:

1. Using the aforementioned idea, we develop, train, and examine a model that yields samples from
the posterior distribution P z|x given data x as context without any (explicit) parameter updates
or parametric assumption about the posterior.

2. To achieve this, we propose to use synthetic samples from the joint distribution Px,z in order
to train a large transformer model that performs ICL regarding the posterior P z|x, and provide
a general framework to analyze the circumstances that enable learning P z|x purely through
samples from Px,z .

3. We then analyze the efficacy of our approach for GLMs and latent factor models. For these
applications, we show that including the “prior” used for TabPFNs results in reliably inferring
posterior distributions on real-world data.

4. In a variety of experiments, we demonstrate that this approach yields posterior samples that are
very similar to those from a Hamiltonian Monte Carlo sampler. Furthermore, we find that the
quality of the samples, when compared to various popular VI techniques that do not operate
in-context, is preferable.

2 RELATED WORK

Beyond the perspective of prior fitted networks, the contribution of this work can be summarized
from two additional viewpoints: First, from the perspective of in-context learning, we show that
(large) transformer models can not only implement statistical models in terms of their predictions,
but also explicitly and in a full probabilistic setting. From the simulation-based inference view-
point, we demonstrate that sample-based posterior estimation (Dax et al., 2021) can be used for
full Bayesian inference in complex scenarios arising in commonly used latent variable models and
demonstrate the effectiveness of this approach on real-world datasets.

In-context learning ICL is a special case of meta-learning (Hospedales et al., 2021) character-
ized by using a large pre-trained model in order to learn from a context dataset without explicitly
updating task-specific parameters. Several recent lines of work investigate the in-context learning
capabilities of transformers (Garg et al., 2022; Ahuja et al., 2023; Wang et al., 2024; Chan et al.,
2022). For instance, Garg et al. (2022) show that a model similar to GPT-2 can implicitly implement
various interesting function classes in-context. More specifically, the model learns to reproduce
the predictions of different statistical models, in particular linear functions, as well as sparse linear
functions, decision trees, and even two-layer neural networks. This approach can be extended to
multiple families of functions and even mixtures of tasks (Ahuja et al., 2023). However, the results
by Garg et al. (2022) and Ahuja et al. (2023) are restricted to rather small problem scales and scalar-
valued predictions instead of multivariate posterior distributions. Additionally, the experiments are
conducted exclusively on simulated data.

Furthermore, while Xie et al. (2021) explain ICL from a Bayesian perspective, several lines employ
ICL as a tool for fundamentally Bayesian tasks such as Bayesian optimization (Müller et al., 2023;

1We do not assume any specific form of z. That is, there can be a single zj associated with each data point
xj in x, but the case where a single “global” z governs the behavior of each xj in x is equally included in this
notation.
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Ramos et al., 2023) or regression with probabilistic predictions based on natural language (Requeima
et al., 2024).

Amortized Inference Amortized inference is a central paradigm in the field of variational infer-
ence (Kingma, 2013; Zhai et al., 2018; Kim et al., 2018; Margossian & Blei, 2023). The central
idea here is to model the posterior distribution P z|x of latent variables z given a dataset x via
p(z|x) ≈

∏K
j=1 qθ(zj |hϕ(xj)). Here, in contrast to our more general assumption, each datapoint

xj in x has a corresponding latent variable zj . While the parameter θ determines global aspects of
the variational distribution, the function hϕ is shared for all xj and thus amortized across a dataset
x. For example, variational autoencoders (Kingma, 2013; Rezende et al., 2014) and neural pro-
cesses (Garnelo et al., 2018a;b; Rudner et al., 2018) are important model classes based on amortized
inference.

In contrast, our ICL approach amortizes its parameters on the level of datasets, such that a single
functional relationship is learned for a set D ⊂ (X × Z)N of datasets. From this point of view,
D =

{(
x(i), z(i)

)}N

i=1
comprising N datasets x(i) ∈ X and the corresponding latent variables

z(i) ∈ Z can be seen as a “meta-dataset” for which we perform amortized inference. Furthermore,
unlike amortized variational inference, we do not use the notion of an evidence lower bound (Blei
et al., 2017) or even the Kullback-Leibler divergence to learn the posterior distribution, but rather
utilize ideas that also appear in the context of simulation-based inference.

Simulation-based inference Analogously to latent variable models, some scientific simulations,
for instance in neuroscience or astrophysics (Fan & Markram, 2019; Schmit & Pritchard, 2018),
allow to draw samples from the joint distribution Px,z of data and latent variable of interest. Amor-
tized posterior inference in this context is referred to as simulation-based inference (SBI; Cranmer
et al., 2020). Several recent approaches focus on using neural networks to directly infer aspects of
the likelihood p(x|z), the posterior P z|x or the joint distribution Px,z in the aforementioned simu-
lation cases. More specifically, techniques based on discrete normalizing flows (Dax et al., 2021) or
flow-matching (Wildberger et al., 2024) are used to approximate the posterior P z|x, while Gloeckler
et al. (2024) propose to use a transformer-based diffusion model in order to approximate the joint
distribution Px,z .

3 IN-CONTEXT LEARNING FOR FULL BAYESIAN INFERENCE

Bayesian inference is a tool of central importance for countless applications. However, exact pos-
terior inference can become computationally expensive when using sampling-based methods (Hast-
ings, 1970; Hoffman et al., 2014; Betancourt, 2017) and even impossible when relying on fully
factorized VI methods, which can incur substantial approximation errors (Bishop et al., 2002; Blei,
2012; Margossian & Blei, 2023). Amortized variational inference can alleviate those issues but typ-
ically requires the development of specialized and complex modeling frameworks (Kingma, 2013;
Srivastava & Sutton, 2017; Garnelo et al., 2018b; Lin et al., 2021). Another issue with variational
inference arises from having to choose a variational distribution. While insufficient flexibility in this
respect can lead to overly simplistic posteriors, a too flexible variational distribution might overfit
the given data (Cremer et al., 2018).

We propose a simple and effective solution based on ideas from ICL, which can be seen as conduct-
ing amortized inference on a dataset level. Training a model on a potentially unlimited amount of
synthetic datasets yields an in-context learner that can not only approximate a vast, almost arbitrarily
large, class of distributions, but is also highly efficient when used for sampling. Furthermore, this
does not incur any issues with overly or insufficiently flexible distribution assumptions as in VI.

More specifically, our central goal is to develop a method allowing to infer the posterior distribution
P z|x of latent variables z ∈ Z , given observations x ∈ X using ICL. From a supervised-learning
perspective, we thus aim to directly learn the mapping f0 : X →M(Z),x 7→ P z|x, whereM(Z)
is the space of all probability measures. Therefore, we want a model fθ(x) = Q

z|x
θ for the posterior

to be as close as possible to the true posterior P z|x = f0(x) . We measure “closeness” w.r.t. some
divergence d : M(Z) ×M(Z) → [0,∞). When considering the expected divergence over data
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samples x ∼ Px, this gives rise to the following objective:

Rθ := Ex∼p(x) [d (fθ(x), f0(x))] = Ex∼p(x)

[
d
(
Q

z|x
θ , P z|x

)]
. (1)

Note that we use the notion of a divergence d loosely to refer to any measure of similarity of two
distributions. AlthoughRθ itself is usually intractable, specific choices of d and the use of the joint
distribution Px,z make Eq. (1) accessible via

∼
Rθ:= Ex,z∼p(x,z) [Ld(x, z, θ)] , (2)

where the loss function Ld depends on d and the structure of Qz|x
θ (discussed in detail later). Per-

forming empirical risk minimization for
∼
Rθ with samples from the joint distribution Px,z then

corresponds to learning to approximate P z|x. The model for the posterior P z|x is thereby only
implicitly defined by the joint distribution Px,z . While this requires the ability to sample from
Px,z , drawing samples from the joint distribution is often a weak requirement in terms of model
specification that immediately follows from specifying the generative process of a model. Further-
more, a simple sufficient condition that follows directly from the law of total expectation implies the
equivalence ofRθ and

∼
Rθ:

Proposition 1. Let d(Qz|x
θ , P z|x) =

∫
γ
(
Q

z|x
θ

)
dP z|x for some measurable functional γ :

M(Z)→ R. ThenRθ =
∼
Rθ with Ld(x, z, θ) = γ

(
Q

z|x
θ

)
.

For instance, choosing d to be the forward Kullback-Leibler divergence dKLD(Q
z|x
θ , P z|x) =

DKL [p(·|x)||qθ(·|x)] implies that LdKLD
(x, z, θ) = − log qθ(z|x) + const. (Müller et al., 2021).

In this case, minimizing
∼
Rθ thus directly corresponds to performing maximum likelihood inference

on samples from Px,z .

3.1 DEFINING THE FORM OF THE POSTERIOR

To learn the posterior distribution P z|x in-context, we use the framework of flow matching (Lipman
et al., 2022). More specifically, we utilize continuous normalizing flows (CNFs) to specify and
ultimately sample from P z|x. CNFs, currently excelling in the field of image synthesis (Esser et al.,
2024), do not only allow to flexibly learn almost arbitrary distributions, but are also found to be more
sample-efficient in training than for instance diffusion objectives (Lipman et al., 2022; Wildberger
et al., 2024). Furthermore, unlike discrete normalizing flows (Papamakarios et al., 2021a), CNF
objectives do not limit the architecture of the used neural network, allowing to incorporate complex
conditioning on the data x in addition to flexibly modeling the posterior, which is a crucial aspect
of our ICL framework. Refer to Appendix K for more information on CNFs.

3.1.1 NORMALIZING FLOWS

The key idea of modeling a distribution P z|x with normalizing flows (see, e.g., Papamakarios et al.,
2021b), which are the basis of CNFs, is to assume that P z|x is the result of “pushing forward” a
simple base distribution PB into P z|x using a conditional flow ψθ(·|x):

P z|x ≈ [ψθ(·|x)]♯PB. (3)

Therefore, one assumes that samples from P z|x are generated by first drawing z0 ∼ PB, and then
applying ψθ(·|x), such that ψθ(z0|x) ∼ P z|x. The base distribution PB is commonly set to be a
standard normal distribution, i.e., PB = N (0, I). The conditional flow ψθ(·|x) is the object to be
learned, such that our model of P z|x is defined as Qz|x

θ := [ψθ(·|x)]♯PB.

3.1.2 CONTINUOUS NORMALIZING FLOWS

In flow matching (Lipman et al., 2022), which we will use to obtain an in-context learner for full
Bayesian inference, the normalizing flow ψθ(·|x) is implicitly defined via a (conditional) vector
field vθt,x of an ordinary differential equation (ODE):

d

dt
ψθ,t(z|x) = vθt,x(ψθ,t(z|x)), ψθ,0(z|x) = z, (4)

4
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where 0 ≤ t ≤ 1. The first condition d
dtψθ,t(z|x) = vθt,x(ψθ,t(z|x)) means that vθt,x describes

the change in ψθ,t(z|x) at time t, and the second condition ψθ,0(z|x) = z implies that initially
the flow is just the identity. The family of vector fields vθt,x is parameterized by a neural network

whose parameters θ will be learned. In order to ultimately compute the flow vθ1,x, that yieldsQz|x
θ =

[ψθ,1(·|x)]♯PB, a numerical ODE solver can be used to forward-solve the ODE, which ultimately
corresponds to evaluating ψ1,x at a datapoint z0 ∼ PB.

Assuming Gaussian conditional probability paths with an optimal-transport mean- and variance-
function (Lipman et al., 2022), one obtains the following discrepancy measure dCFM between
Q

z|x
θ := [ψθ,1(·|x)]♯PB and P z|x:

dCFM

(
Q

z|x
θ , P z|x

)
:= E

[∣∣∣∣∣∣∣∣vθt,x((1− (1− σmin)t)z0 + tz1)−
z1 − (1− σmin)z0
1− (1− σmin)t

∣∣∣∣∣∣∣∣2
2

]
, (5)

where the expectation is taken w.r.t. to three random variables:

1. a uniform time-step t ∼ U([0, 1]);
2. samples from the base distribution z0 ∼ PB;

3. samples from the ground-truth conditional distribution z1 ∼ P z|x.

We refer to Wildberger et al. (2024) for mathematical results on the relationship of dCFM and the
(forward) Kullback-Leibler divergence. The hyperparameter σmin, which is the variance at time
t = 1 in the Gaussian conditional probability paths, appears to have negligible influence when set to
a sufficiently small value (Lipman et al., 2022).2

In order to make optimizing Ex∼p(x)

[
dCFM

(
Q

z|x
θ , P z|x

)]
tractable, and thus train our in-context

learner, we make use of the sufficient condition in Proposition 1. Thus, the divergence dCFM

admits the re-formulation as an objective
∼
Rθ using samples from the joint distribution Px,z . We

can therefore optimize
∼
Rθ using N independent and identically distributed (i.i.d.) samples t(i) ∼

U([0, 1]) from the time-distribution, z(i)
0 ∼ PB from the base distribution, and (z

(i)
1 ,x(i)) ∼ Px,z

from the joint distribution. With this, we obtain the following empirical risk used for the training of
all ICL models:

R̂θ =

N∑
i=1

∣∣∣∣∣
∣∣∣∣∣vθt(i),x(i)((1− (1− σmin)t

(i))z
(i)
0 + t(i)z

(i)
1 )− z

(i)
1 − (1− σmin)z

(i)
0

1− (1− σmin)t(i)

∣∣∣∣∣
∣∣∣∣∣
2

2

. (6)

3.2 SAMPLING FROM THE JOINT DISTRIBUTION

In order to learn a model that can perform posterior inference according to Section 3.1, we require to
sample (x, z) ∼ Px,z . Given p(x, z) = p(x|z)p(z), this is always possible as long as one can draw
samples from P z and then from Px|z . Hence, this is a relatively weak requirement allowing for a
broad variety of priors and observation models. More specifically, for ICL, we generate a training
dataset D which comprises i.i.d. samples

{(
x(i), z(i)

)}N

i=1
resulting from sampling z(i) ∼ P z and

then x(i) ∼ Px|z(i)

. We use this simple yet fundamental and very general template to generate
samples from the joint Px,z for GLMs, factor analysis (FA), and Gaussian mixture models (GMMs)
in our later applications.

GLM example For example, assume that x := (u, y) is partitioned into covariates u and a re-
sponse y related via a conditional distribution P y|x depending on a linear predictor u⊤β. This
allows to define various GLM structures. In case of a fully Bayesian GLM, one further assumes a
prior Pβ on the regression coefficients and additionally on the variance σ2 of the responses, which
takes the role of a separate dispersion parameter, as well as a link function g : R→ R. Algorithm 1
specifies how a dataset D with i.i.d samples from Px,z can be sampled in this case.

2In our experiments, we follow Wildberger et al. (2024) and set σmin := 10−4 for all experiments.
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Algorithm 1: Generation of synthetic data for GLMs
1 Initialize D ← ø;
2 for i = 1, . . . N do
3 draw βi ∼ Pβ ;

4 draw σ2
i ∼ Pσ2

;
5 for j = 1, . . . ,K do
6 draw ui,j ∼ Pu;
7 draw yi,j ∼ p(y|g−1

(
u⊤

i,jβi

)
, σ2

i );
8 end
9 set x(i) := ((ui,j , yi,j))

K
j=1;

10 set z(i) := βi;

11 D ← D ∪
{
(x(i),z(i))

}
;

12 end

Variations in the structure of the distributions Pβ, Pσ2

, P y|x, as well as g give rise to different
models. Examples include Bayesian ridge, Bayesian lasso and logistic regression (Box & Tiao,
2011; Murphy, 2023), which we all consider in our later experiments (see Appendix A.1 for details
on the distributional setups and GLMs in general). Analogously, albeit with different data generating
mechanisms, one can obtain samples for FA and GMMs, which we detail in Appendix A.2 and
Appendix A.3.

3.3 GENERATING REALISTIC DATA

While we assume a data-generating process such as the one in Algorithm 1, this is not necessar-
ily the data-generating process that produces the data in the model’s application as an in-context
learner. Even when the generative process Px,z underlying a statistical model is sophisticated and
complex in nature, model misspecification is inevitable in almost every practical application. While
mismatches between the real data-generating processes and model assumptions can lead to various
problems in traditional Bayesian modeling (Grünwald & van Ommen, 2017), the question of model
misspecification plays a somewhat different and yet an especially central role for our ICL approach.

More specifically, the ICL model learns the relationship between P z|x and a datapoint x exclusively
based on synthetic samples from the marginal Px implied by the statistical model with generative
process Px,z . Given a real-world dataset x∗ ∼ Px∗

, model misspecification in terms of Px∗
implies

that the in-context learner needs to infer the posterior based on out-of-distribution data, where the
problem is aggravated the more unrealistic Px is.

To be able to access a reference or ground truth distribution, the data generating processes in our ex-
periments need to match the structure of the GLM, FA and GMM approaches. While the generative
processes of FA and GMMs directly prescribe how all parts of the data are generated, this can po-
tentially cause a discrepancy between synthetically generated and real-world datasets. However, our
empirical results (Section 4.1) demonstrate that the in-context learner can generalize to real-world
data despite the discrepancy to the simulated datasets.

GLM example continued In the aforementioned GLM case, the distribution of the covariates
Pu does not affect the structure of P z|x in the data generating process (cf. Algorithm 1). We can
therefore use a flexible prior Pu such as the TabPFN-“prior” (Hollmann et al., 2022) to generate
covariates u and thereby effectively tackle the issue of model specification. More specifically, by
generating a plethora of highly realistic samples of tabular covariates with different ranges, domains,
and correlations, the in-context learner will learn the GLM structure on a broad mixture of distribu-
tions regarding the covariates u.

3.4 THE ARCHITECTURE

In order to implement the idea of learning full Bayesian inference in-context, we extend ideas of
diffusion transformers (Peebles & Xie, 2023), where the conditioning on the time t is implemented

6
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via adaptive layer norm (adaLN) blocks initialized as the identity function. As we potentially require
complex conditioning on the data x, an additional transformer encoder is added. The input to the
decoder is a vector in the form 1− (1−σmin)t)z0+ tz1, which is treated as a sequence with length
one and processed by a transformer decoder without self-attention, but the adaLN blocks. Therefore,
the decoder has an equivalent interpretation as a multi-layer perceptron with skip-connections, cross-
attention, and adaptive layer normalization. For the final processing in the decoder, only conditional
feedforward layers with adaptive layer normalization are used, which corresponds exactly to the
architecture of the decoder before, albeit without cross attention. We call this part an “MLP with
Conditioning”. Samples for the time t ∈ [0, 1] are mapped onto a conditioning vector using several
fully connected layers, which yields a richer representation of t that is well-suited as an input to the
adaLN blocks. Fig. 1 depicts of the resulting architecture.

3.5 IMPLEMENTING FLOW MATCHING

Encoder

x

MLP

t1− (1− σmin)t)z0 + tz1

Norm
Scale and Shift

Cross Attention

Scale

+

Norm
Scale and Shift

Feed Forward

Scale

+

MLP with Conditioning

vθt,x((1− (1− σmin)t)z0 + tz1)

Nlayers×

Figure 1: Architecture to perform ICL for full Bayesian
inference.

During the training phase, a tuple (z1,x) is
drawn from the distribution P z,x. Addition-
ally, a time step t ∼ U [0, 1] and a sample
z0 is drawn from the base distribution PB,
which is a standard Gaussian for all our appli-
cations. Subsequently, the ground-truth condi-
tional flow ψ(z0|x) = 1−(1−σmin)t)z0+tz1
is computed, pushing forward PB into P z|x up
to time-point t. The transformer encoder pro-
cesses x and the decoder takes the representa-
tion of the encoder into account in order to out-
put vθt,x(ψ(z0|x)). This output should match
the vector field that describes how the ground-
truth flow ψ(z0|x) continues at time t. The
discrepancy to the ground-truth vector field is
measured with the MSE-loss in Eq. (6).

In the sampling phase, we are given x and the
goal is to sample from P z|x. To do so, first a
vector z0 ∼ PB is drawn. The data x is passed through the encoder. The decoder defines a function
that maps a time-point t and a vector ν onto a vector field: (t,ν) 7→ vθt,x(ν) taking x into account.
This function is given to an ODE-solver in order to forward-solve the corresponding ODE with
boundary conditions 0 ≤ t ≤ 1.

4 EXPERIMENTS

To show that the proposed methodology is not just an abstract concept, we derive exemplary use
cases that demonstrate how well ICL is able to keep up with MCMC and VI approaches in practice.

For this, we will use two prominent statistical modeling classes, namely generalized linear models
(GLMs) and latent factor models. For the latent factor models, we consider factor analysis (FA) and
Gaussian mixture models (GMMs).

Modeling scenarios We use seven different scenarios for the GLMs, where we vary the prior
distribution on the parameters, the conditional distribution of the response, and whether an intercept
is included. For FA, we vary the form of the priors and dimensionalities of variables, and for the
GMMs investigate different dimensionalities as well as prior configurations. We refer to Appendix A
for details on the model structure and scenarios.

Datasets We evaluate the methods on 50 synthetic datasets and 17 real-world datasets from a
benchmark suite proposed by Grinsztajn et al. (2022). We refer to Appendix J for more details on
the preprocessing of the datasets.
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Methods Apart from a comparison with a gold standard, we compare our ICL approach to a
Laplace approximation (Daxberger et al., 2021) and different established VI methods based on au-
tomatic differentiation VI (Kucukelbir et al., 2017). For the variational distribution, we incorporate
a normal distribution with 1) a diagonal and 2) a full covariance matrix, as well as 3) a structured
normal distribution with linear dependencies between the latent variables, and 4) an approach based
on inverse auto-regressive flows (IAF; Kingma et al., 2016). Appendix D contains a discussion about
the hyperparameters of all considered methods.

Evaluation process For every synthetic and real-world dataset, 1000 posterior samples from each
method are compared against samples from the analytical solution, if available, or from a Hamilto-
nian Monte Carlo (HMC) sampler with a NUTS kernel (Hoffman et al., 2014) as the gold standard.
For unimodal problems, we run a single chain. For posteriors with multiple modes, we use three
times the number of modes as the number of chains to capture multimodality.

Evaluation metrics Three metrics are employed to compare samples from different approxima-
tions of the posterior distribution. The first metric is a classifier 2-sample test (C2ST; Lueckmann
et al., 2021; Lopez-Paz & Oquab, 2016), where the ROC-AUC score of a random forest classifier,
trained to distinguish between samples from the gold standard and the method in question, is uti-
lized. For random forest, we use default hyperparameters, as defined in Scikit-learn (Pedregosa
et al., 2011) and 10-fold cross-validation. The second metric is the maximum mean discrepancy
(MMD) between the two distributions (gold-standard and each tested method) with an exponential
kernel (Gretton et al., 2012). The third metric is the empirical Wasserstein-2 distance (W2; Givens
& Shortt, 1984) of the two distributions, using a quadratic solver implemented in the POT library
(Flamary et al., 2021).

4.1 RESULTS

4.1.1 GENERALIZED LINEAR MODELS

Across seven different variants of GLMs, we find that ICL yields samples that have overall the
highest agreement with the gold-standard (see Table 1). Specifically on the synthetic datasets, the
C2ST, MMD and W2 metrics indicate that the posterior distribution can be approximated more
accurately with ICL than via variational inference. Particularly in cases where the posterior has a
shape deviating from a normal distribution, ICL and HMC agree more closely than VI. For instance
in the case where a gamma prior, i.e. a skewed distribution, is used on the coefficients of a regression
model, we find that ICL substantially outperforms VI both on synthetic and real-world data (see
Table 2). On the real-world data, ICL still matches the performance of VI methods and has the best
(or not significantly worse than the best) performance in terms of C2ST in four out of seven cases
(see Appendix B.1).

Table 1: Results for GLMs. Average performance of VI methods and our ICL approach on 50 synthetic and
17 real-world datasets across 7 different GLM scenarios. Comparison to the analytical solution when available
and HMC otherwise. The best average result is marked in bold.

Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1.000 2.770 2.049 1.000 2.091 0.849
VI: DiagonalNormal 0.869 1.586 1.742 0.819 0.583 0.529
VI: MultivariateNormal 0.714 1.016 1.601 0.668 0.116 0.374
VI: Structured Normal 0.711 0.929 1.580 0.664 0.109 0.370
VI: IAF 0.784 1.648 2.349 0.732 0.516 0.680
ICL 0.657 0.183 0.556 0.648 0.090 0.387

4.1.2 FACTOR ANALYSIS

On the factor analysis tasks, ICL has notably lower dissimilarity scores compared to the gold stan-
dard than all other considered methods in the synthetic evaluation (Table 3). Notably, an average
C2ST score of 0.568 is remarkably close to the theoretical lower bound of 0.5. Regarding the real
world datasets, C2ST and MMD indicate that our ICL approach yields samples most similar to the
reference, while the averageW2 score is substantially higher. We hypothesize that this discrepancy
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Table 2: Results for GLMs. Real-world Evaluation on 17 datasets: Linear regression with a gamma prior on
the coefficients β, and an inverse gamma prior on the variance σ2 of the responses (scenario 5). Comparison to
HMC samples. All results within two standard errors of the best average result are marked in bold.

Model C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1.000 (± 0.000) 1.982 (± 0.126) 0.623 (± 0.084)
VI: DiagonalNormal 0.810 (± 0.036) 0.441 (± 0.252) 0.384 (± 0.089)
VI: MultivariateNormal 0.711 (± 0.038) 0.148 (± 0.093) 0.279 (± 0.056)
VI: Structured Normal 0.705 (± 0.032) 0.140 (± 0.081) 0.269 (± 0.045)
VI: IAF 0.777 (± 0.106) 0.684 (± 0.939) 0.625 (± 0.525)
ICL 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

in the metrics might be caused by numerical issues when computing the empirical W2 distance.
Furthermore, the relatively high number of latent variables in comparison to the limited number of
data-points can yield overly flexible assumptions on the variational posterior causing the VI methods
to overfit. While the ICL approach is well suited for cases with little data, the small number of data
points is likely the cause for the poor performance of the VI methods on the FA tasks.

Table 3: Results for FA: Average performance of VI methods and our ICL approach on 50 synthetic and 17
real-world datasets across 6 different FA scenarios. Comparison to HMC samples. The best average result is
marked in bold.

Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1.000 4.115 2.543 1.000 4.127 0.597
VI: DiagonalNormal 0.999 3.321 1.998 0.960 1.220 0.288
VI: MultivariateNormal 0.993 3.222 1.955 0.950 1.173 0.281
VI: Structured Normal 0.995 3.404 2.079 0.955 1.189 0.283
VI: IAF 0.987 3.226 1.973 0.902 0.969 0.251
ICL 0.568 0.057 0.409 0.751 0.673 0.583

4.1.3 GAUSSIAN MIXTURE MODELS

Full Bayesian inference for GMMs is arguably much more challenging than for GLMs or FA. First,
the generative process of GMMs involves discrete assignments to clusters, which poses a challenge
not only for NUTS, but especially for VI methods. Second, the dimensionality of the posterior sam-
ples can be relatively large since for diagonal normal distributions, each component of the mixture
has a mean and a variance parameter per dimension. Finally, the considered GMMs are not identi-
fiable leading to multi-modal posterior distributions, which are impossible to perfectly approximate
with the most commonly used VI methods based on normal approximations.

Due to this inherent difficulty of the GMM scenarios, we find the overall performances of all models
to be worse than in the GLM and FA cases. In particular, the C2ST metric is almost saturated
for the VI approaches and has a value of around 83 percent for ICL (Table 4). The MMD andW2

metrics also indicate that ICL yields samples with higher agreement with the reference than the other
approaches on synthetic data. A plot of the marginals of the posterior shows high agreement between
the posterior distributions of both HMC and ICL while VI is incapable of perfectly approximating
a bimodal distribution and exhibits typical mode-seeking behavior (Figure 2). Note that also the
VI approach based on inverse autoregressive flows, which in theory allows flexible modeling of a
wide range of posterior shapes, fails to learn the bi-modality accurately from the limited number
of 50 data points in this GMM scenario. This demonstrates the strength of our ICL approach in
flexibly learning distributions agnostic of the provided sample size. On the real-world evaluation,
the differences are similar in nature, albeit slightly less pronounced. While C2ST and MMD are
better for ICL than for VI, theW2 metric is not substantially different.

5 DISCUSSION

This paper explores in-context learning for the purpose of full Bayesian inference in latent vari-
able models. We propose to use conditional flow matching as a generic and flexible framework to
approximate posterior distributions and an architecture that utilizes a transformer encoder for poten-
tially complex conditioning on the data. We find that our ICL approach yields, on average, a closer
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Table 4: Average performance of VI methods and our ICL approach on 50 synthetic and 17 real-world datasets
across 4 different GMM scenarios. Comparison to HMC samples. The best average result is marked in bold.

Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)
Laplace Approximation 1.000 3.916 8.324 1.000 3.385 12.740
VI: DiagonalNormal 0.994 2.676 7.938 0.992 2.182 11.633
VI: MultivariateNormal 0.995 2.556 7.947 0.987 2.143 11.696
VI: Structured Normal 0.994 2.595 7.929 0.988 2.129 11.521
VI: IAF 0.985 2.308 7.489 0.957 1.845 11.541
ICL 0.825 0.706 4.348 0.881 1.051 10.691

Figure 2: Density plots for the marginals of the posterior for GMM scenario 1. Comparison to HMC samples a
on a synthetic dataset. Only the marginals of the first three components of the mean and the variance are shown.

approximation of the posterior than several state-of-the-art variational inference methods across dif-
ferent datasets and model setups. This does not only hold for synthetic data, but also real-world
tabular datasets, emphasizing the flexibility of ICL and its applicability for full Bayesian inference.

Limitations While our experiments indicate the effectiveness of ICL as a Bayesian inference
method, it requires an extensive up-front training routine on modern GPU hardware. Despite ICL
being consistently faster at inference time than the considered HMC methods, the overall compu-
tational burden to train our approach is much higher. As with many other ICL approaches, large
datasets as a context can further become computationally very expensive.

Outlook and future work Despite its vast up-front computational cost, ICL has not only proven
fundamentally transformative in the field of natural language processing (Brown et al., 2020; Tou-
vron et al., 2023), but recently also appears to be very promising for tabular classification (Hollmann
et al., 2022). Exploring the frontiers of ICL in terms of full Bayesian inference, starting from the
feasibility results of this work, might therefore yield a path into similarly fertile territories.

Even though our experiments show that ICL works well despite being trained on data that is poten-
tially very different from real-world data, the approach will only be as flexible as the data and model
structures it was trained on. As a result, ICL might fail if the model, which implies the synthetic data
generation, is severely misspecified. However, this is the same limitation as when misspecifying the
hypothesis space of, e.g., a deep neural network or other machine learning approaches, effectively
providing the model with the wrong inductive bias.

While flexible state-of-the-art sampling-based methods, such as HMC, are an efficient and highly
effective reference in terms of inference for standard and simple statistical methods discussed in this
paper, the proposed ICL approach is fundamentally more general in nature. In particular, any proba-
bilistic model for which a generative process is conceivable can be fitted using our ICL approach—
the potential for fitting models beyond the horizon of standard Bayesian methods is therefore mani-
fold.
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APPENDIX

A DATA-GENERATING PROCESSSES

This section contains more details on the data generating processes of the latent variable models we
fit via ICL.

A.1 GENERALIZED LINEAR MODELS

In this section we expand the description and explanation regarding GLMs from section 3.2. GLMs
are among the most commonly used statistical models with myriads of applications (Nelder & Wed-
derburn, 1972; Fahrmeir et al., 2013). In the context of GLMs, we assume that the response y
follows a distribution P y|u depending on the linear predictor η := u⊤β and an additional parame-
ter σ2. We denote the covariates as u, the regression coefficients as β, and use σ2 for the variance
of the response. The mean of P y|u depends on the linear predictor via a link function g, such that
g (E[y|u]) = u⊤β. Ultimately, the density of distribution of the response y depending on the linear
predictor and the additional parameter is denoted by p(y|g

(
u⊤β

)
, σ2). To showcase the flexibility

of our framework, we experiment with different priors P β on the regression coefficients, Pσ2

on the
parameter σ2, and also different parametric distributions of the response. Additionally, to include
covariates u that resemble practically relevant tabular data in the generative process, allowing for
meaningful inference on real-world datasets, we utilize samples from the Tab-PFN “prior” for Pu.

GLMs belong to the framework of latent variable models defined by data x and (latent) variables
z, where the data comprises covariates and response x := (u, y). The variables of interest are the
coefficients z := β. This yields the following generative process for a set of synthetic samples
D :=

{
(x(i), z(i))

}N

i=1
from Px,z:

Algorithm 2: Generation of synthetic data for GLMs
1 Initialize D ← ø;
2 for i = 1, . . . N do
3 draw βi ∼ Pβ ;
4 draw σ2

i ∼ Pσ2

;
5 for j = 1, . . . ,K do
6 draw ui,j ∼ Pu;
7 draw yi,j ∼ p(y|g−1

(
u⊤
i,jβi

)
, σ2

i );
8 end
9 set x(i) := ((ui,j , yi,j))

K
j=1;

10 set z(i) := βi;
11 D ← D ∪

{
(x(i), z(i))

}
;

12 end

We consider seven different GLM scenarios by varying the structure of the prior distributions and
the conditional distribution of the response (Table 5). In particular, we consider a normal N (0, 1)
prior, a Laplace(0, 1) and a gamma Ga(1, 1) prior that factorizes over the coefficients βj contained
in β = (β1, . . . , βp). In two cases we include an intercept in the model using a normal priorN (0, 9)
with a relatively large variance. We consider regression cases with a normally distributed response
N (u⊤β, σ2), a Bernoulli distributed response Bin(1, sigmoid(u⊤β)), i.e. logistic regression, and
a response following a gamma distribution Ga(σ−2 exp (u⊤β), σ−2 exp(2u⊤β)). In the last case,
we set exp(u⊤β) to be the mean and σ2 to be the conditional variance of the response. An inverse
gamma prior IG(5, 2) is used on the variance σ2 for each scenario except the logistic regression. We
fix the number of covariates and thus also the dimensionality of β at p = 5 and set the number of
data points per dataset to K = 50.
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Table 5: Distribution of variables for the considered GLM scenarios.

Scenario βi,j βi,0 σ2
i yi,j |(ui,j ,βi, β0,i, σ

2
i )

Scenario 1 N (0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2 N (0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 3 Laplace(0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 4 Laplace(0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5 Ga(1, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 6 N (0, 1) - - Bin(1, sigmoid(u⊤
i,jβi))

Scenario 7 N (0, 1) - IG(5, 2) Ga(σ−2
i exp (u⊤

i,jβi), σ
−2
i exp(2u⊤

i,jβi))

A.2 FACTOR ANALYSIS

The goal of factor analysis is to explain data x in terms of latent, typically lower-dimensional, factors
z (Lawley & Maxwell, 1962; Rummel, 1988). In the Bayesian setting, one assumes a prior P z on
the latent variable z, a prior PW on the factor loading matrix W and additional priors PΨ and
Pµ on the covariance matrix and the mean vector. The conditional distribution P z|x of the data
given z has mean E[z|x] = Wz + µ and covariance matrix Cov[z|x] = Ψ. In the case where
P z and P z|x are Gaussian, one can set P z = N (0, I) and assume a diagonal covariance matrix Ψ
without loosing expressiveness of the model (Murphy, 2023). We make the assumption that W is
lower triangular with positive entries on the diagonal in order to ensure identifiability of the model
(Lopes & West, 2004). Additionally, we assume that the distributions µ, Ψ and PW fully factorize.
In order to ensure that the diagonal of W is positive, we consider absolute values in the generative
process. Algorithm 3 details the data generating process.

Table 6 summarizes the different configurations for FA. We assume a Gaussian prior on the mean
components, and an inverse gamma prior on the elements of the diagonal covariance matrix Ψ. For
the factor loading matrix W , independent normal and Laplace priors are investigated. Furthermore,
we use a normal prior on the latent factors z(i) in five cases and a Laplace prior in one case. We
vary the number of samples K per dataset x, the dimensionality P of each data point, as well as the
dimensionality zdim.

Algorithm 3: Generation of synthetic data for FA
1 Initialize D ← ø;
2 for i = 1, . . . N do
3 draw µi ∼ Pµ ;
4 draw Ψi ∼ PΨ ;
5 draw Wi ∼ PW ;
6 draw z(i) ∼ P z ;
7 for j = 1, . . . ,K do
8 draw xi,j ∼ N (Wiz

(i) + µi,Ψi);
9 end

10 D ← D ∪
{
(x(i), z(i))

}
;

11 end

Table 6: Distribution and dimensionalitites of variables for the considered FA scenarios.

Scenario K P µi,j Ψi,j,j Wi,j,k zi,j zdim
Scenario 1 50 3 N (0, 1) IG(5, 1) N (0, 1) N (0, 1) 3
Scenario 2 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10) N (0, 1) 3
Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 3
Scenario 4 25 15 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 5
Scenario 5 25 5 N (0, 0.1) IG(5, 2) Laplace(0, 3) N (0, 1) 3
Scenario 6 25 5 N (0, 0.1) IG(5, 2) N (0, 3) Laplace(0, 1) 3
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A.3 GAUSSIAN MIXTURE MODELS

In GMMs one assumes that the data of interest is generated by a convex combination of M (mul-
tivariate) normal distributions, such that p(x|z) =

∑M
m=1 ϕmpm(x), where the probability vec-

tor ϕ = (ϕ1, . . . , ϕM ) comprises the mixture weights and pm denotes the m-th mixture compo-
nent. We consider pm to take the form of a diagonal Gaussian with mean vector µm and co-
variance matrix with diagonal elements σ2

m. We assume a prior Pϕ on ϕ, a prior Pσ2

on the
variances of each component and a prior Pµ|σ2

for the means that depends on the variance of the
respective component. More specifically, we assume a symmetric Dirichlet prior on ϕ such that
Pϕ = Dir(αDir) and an independent inverse gamma distribution as prior on each component σ2

m of
σ2
m. The prior on each component of µi,m ∈ RL is then given by an independent normal distribution

Pµ|σ2
i,m,l = N (0, λσ2

i,m,l). We use ωi,j to denote the assignment of datapoint j a component. Al-
gorithm 4 details the data generating process and Table 22 summarizes the different setups regarding
the prior distributions.

Algorithm 4: Generation of synthetic data for a GMM.
1 Initialize D ← ø;
2 for i = 1, . . . N do
3 draw ϕi ∼ Pϕ ;
4 for m = 1, . . . ,M do
5 for l = 1, . . . , L do
6 draw σ2

i,m,l ∼ Pσ2

;

7 draw µi,m,l ∼ Pµ|σ2
i,m,l ;

8 end
9 end

10 for j = 1, . . . ,K do
11 draw ωi,j ∼ Cat(ϕi);
12 draw xi,j ∼ N (µi,ωi,j ,σ

2
i,ωi,j

);
13 end

14 set z(i) :=
(
(σ2

i,m,l, µi,m,l)
)M,L

m,l=1
;

15 D ← D ∪
{
(x(i), z(i))

}
;

16 end

Table 7: Distribution and dimensionalitites of variables for the considered GMM scenarios.

Scenario K M L ϕi σ2
i,m,l µi,m,l|σ2

i,m,l

Scenario 1 50 5 1 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2 25 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 3 50 3 5 Dir(0.5) IG(5, 2) N (0, 5σ2
i,m,l)

Scenario 4 50 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

B DETAILED EXPERIMENTAL RESULTS

B.1 GENERALIZED LINEAR MODELS

Table 8 contains detailed results regarding the performance of the proposed ICL and the reference
VI approaches. In summary, we find that on the synthetic data, our ICL method has the overall best
performance, or a performance not significantly3 worse than that of the best model, with respect to
the C2ST metric. More specifically, ICL significantly outperforms all other models in 5 out of seven

3We refer to a difference that is larger than two standard deviations as “significant”.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

cases w.r.t. the C2ST and also the MMD metric. While theW2 metric exhibits a larger variance, it
also indicates that on the synthetic data, ICL yields the significantly best result in those 5 cases.

On the real-world data, the differences between ICL and VI are less pronounced, and ICL attains the
best average result without any other model within two standard errors in three scenarios in terms
of the C2ST metric. ICL is among those models not significantly worse than the best in four cases
with respect to the C2ST metric, in six cases in terms of the MMD metric, and also in six cases in
terms ofW2.

In scenario 1, which is a linear regression scenario with a normal prior on the coefficients β and
an inverse gamma prior on the variance σ2, ICL and HMC show a similarly large agreement with
the analytical solution. Furthermore, the VI approaches with an ordinary multivariate normal dis-
tribution, a structured normal distribution as well as the approach based on inverse autoregressive
flows also show a large agreement with the analytical solution, which is to be expected since sce-
nario 1 is has a conjugate prior structure yielding a multivariate t-distribution for the posterior of the
coefficients (Murphy, 2023).

Scenario 2 and scenario 4 are those where an intercept is included in the generative structure of the
GLM. The notably superior performance of the ICL approach in those two cases might be explained
by its ability to model distributions with substantially different variances in different dimensions
better than VI. Similarly, the posterior in scenario 5 is determined by the gamma prior on the coef-
ficients leading to a (slightly) skewed posterior distribution, which might explain the good relative
performance of ICL. See Fig. 3 for a plot of the marginals of the posterior in this scenario on the
Miami housing 2016 dataset.

Finally, scenarios 6 and 7 demonstrate the versatility of the ICL method in terms of posterior infer-
ence for logistic regression and regression with a gamma response.

Figure 3: Density plots for first three the marginals of the posterior in a GLM with a gamma prior
on the coefficients β, and an inverse gamma prior on the variance σ2 of the responses. The data is
part of the Miami housing 2016 dataset.
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Table 8: Generalized Linear Models: Evaluation on 50 synthetic and 17 real-world datasets for
seven different scenarios. All results within two standard errors of the best average result for each
scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 2.738 (± 0.721) 0.825 (± 0.279) 1.000 (± 0.000) 2.150 (± 0.323) 0.642 (± 0.124)
VI: DiagonalNormal 0.904 (± 0.076) 1.452 (± 0.984) 0.669 (± 0.301) 0.797 (± 0.083) 0.612 (± 0.511) 0.414 (± 0.152)
VI: MultivariateNormal 0.750 (± 0.128) 0.735 (± 0.733) 0.565 (± 0.292) 0.607 (± 0.070) 0.167 (± 0.196) 0.301 (± 0.123)
VI: Structured Normal 0.753 (± 0.126) 0.736 (± 0.737) 0.570 (± 0.310) 0.600 (± 0.070) 0.169 (± 0.214) 0.306 (± 0.131)
VI: IAF 0.777 (± 0.122) 0.864 (± 0.844) 0.725 (± 0.523) 0.683 (± 0.132) 0.440 (± 0.559) 0.503 (± 0.383)
HMC 0.745 (± 0.130) 0.722 (± 0.732) 0.569 (± 0.301) 0.595 (± 0.075) 0.173 (± 0.213) 0.321 (± 0.140)
ICL 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 4.853 (± 2.333) 5.770 (± 5.946) 1.000 (± 0.000) 2.572 (± 0.206) 0.809 (± 0.149)
VI: DiagonalNormal 0.957 (± 0.091) 3.906 (± 2.679) 5.628 (± 6.092) 0.892 (± 0.044) 0.847 (± 0.389) 0.530 (± 0.175)
VI: MultivariateNormal 0.910 (± 0.131) 3.407 (± 2.781) 5.584 (± 6.104) 0.820 (± 0.031) 0.243 (± 0.148) 0.408 (± 0.118)
VI: Structured Normal 0.908 (± 0.119) 3.139 (± 2.763) 5.480 (± 6.164) 0.824 (± 0.023) 0.215 (± 0.110) 0.392 (± 0.109)
VI: IAF 0.968 (± 0.063) 4.416 (± 2.473) 7.474 (± 6.235) 0.888 (± 0.067) 0.921 (± 0.860) 0.942 (± 0.733)
ICL 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 2.203 (± 0.997) 1.170 (± 0.949) 1.000 (± 0.000) 1.841 (± 0.185) 0.729 (± 0.175)
VI: DiagonalNormal 0.866 (± 0.101) 1.069 (± 1.150) 0.846 (± 0.747) 0.797 (± 0.083) 0.526 (± 0.361) 0.480 (± 0.207)
VI: MultivariateNormal 0.656 (± 0.131) 0.445 (± 1.061) 0.660 (± 0.737) 0.560 (± 0.035) 0.032 (± 0.028) 0.249 (± 0.069)
VI: Structured Normal 0.653 (± 0.125) 0.421 (± 0.993) 0.659 (± 0.736) 0.552 (± 0.028) 0.027 (± 0.015) 0.239 (± 0.055)
VI: IAF 0.751 (± 0.148) 0.939 (± 1.349) 0.964 (± 0.924) 0.673 (± 0.141) 0.399 (± 0.543) 0.563 (± 0.433)
ICL 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 3.511 (± 2.025) 2.166 (± 1.722) 1.000 (± 0.000) 2.011 (± 0.058) 0.993 (± 0.144)
VI: DiagonalNormal 0.968 (± 0.036) 2.798 (± 2.255) 2.065 (± 1.745) 0.916 (± 0.040) 0.928 (± 0.339) 0.732 (± 0.181)
VI: MultivariateNormal 0.855 (± 0.123) 1.648 (± 2.052) 1.853 (± 1.745) 0.771 (± 0.017) 0.087 (± 0.030) 0.539 (± 0.070)
VI: Structured Normal 0.847 (± 0.116) 1.505 (± 1.978) 1.889 (± 1.883) 0.769 (± 0.012) 0.083 (± 0.018) 0.543 (± 0.070)
VI: IAF 0.942 (± 0.077) 3.029 (± 2.210) 3.554 (± 2.715) 0.833 (± 0.069) 0.636 (± 0.756) 0.978 (± 0.600)
ICL 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 2.060 (± 0.472) 0.797 (± 0.577) 1.000 (± 0.000) 1.982 (± 0.126) 0.623 (± 0.084)
VI: DiagonalNormal 0.866 (± 0.085) 0.954 (± 1.022) 0.651 (± 0.549) 0.810 (± 0.036) 0.441 (± 0.252) 0.384 (± 0.089)
VI: MultivariateNormal 0.765 (± 0.100) 0.537 (± 1.019) 0.633 (± 1.067) 0.711 (± 0.038) 0.148 (± 0.093) 0.279 (± 0.056)
VI: Structured Normal 0.758 (± 0.098) 0.447 (± 0.818) 0.572 (± 0.816) 0.705 (± 0.032) 0.140 (± 0.081) 0.269 (± 0.045)
VI: IAF 0.814 (± 0.105) 0.953 (± 1.165) 0.881 (± 1.067) 0.777 (± 0.106) 0.684 (± 0.939) 0.625 (± 0.525)
ICL 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 2.026 (± 0.027) 1.612 (± 0.162) 1.000 (± 0.000) 1.993 (± 0.032) 1.299 (± 0.106)
VI: DiagonalNormal 0.724 (± 0.060) 0.185 (± 0.082) 0.787 (± 0.078) 0.703 (± 0.039) 0.147 (± 0.063) 0.637 (± 0.089)
VI: MultivariateNormal 0.534 (± 0.018) 0.014 (± 0.006) 0.581 (± 0.074) 0.538 (± 0.019) 0.016 (± 0.007) 0.466 (± 0.029)
VI: Structured Normal 0.536 (± 0.016) 0.014 (± 0.005) 0.583 (± 0.071) 0.536 (± 0.019) 0.017 (± 0.009) 0.469 (± 0.033)
VI: IAF 0.542 (± 0.026) 0.031 (± 0.031) 0.613 (± 0.092) 0.535 (± 0.015) 0.015 (± 0.006) 0.467 (± 0.031)
ICL 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)

Scenario 7

Laplace Approximation 1.000 (± 0.000) 3.559 (± 1.933) 1.347 (± 1.067) 1.000 (± 0.000) 2.016 (± 0.080) 0.763 (± 0.174)
VI: DiagonalNormal 0.938 (± 0.074) 2.536 (± 2.097) 1.142 (± 0.993) 0.936 (± 0.024) 1.029 (± 0.255) 0.579 (± 0.181)
VI: MultivariateNormal 0.814 (± 0.181) 1.999 (± 2.283) 1.033 (± 0.969) 0.741 (± 0.020) 0.093 (± 0.025) 0.391 (± 0.074)
VI: Structured Normal 0.824 (± 0.177) 1.891 (± 2.127) 1.041 (± 0.934) 0.734 (± 0.025) 0.072 (± 0.019) 0.385 (± 0.065)
VI: IAF 0.939 (± 0.091) 2.707 (± 1.712) 1.590 (± 0.820) 0.864 (± 0.093) 0.830 (± 0.697) 1.064 (± 0.616)
ICL 0.700 (± 0.116) 0.317 (± 0.355) 0.400 (± 0.286) 0.773 (± 0.048) 0.294 (± 0.457) 0.559 (± 0.256)
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B.2 FACTOR ANALYSIS

Table 16 contains detailed results regarding FA for 50 synthetic and 17 real-world datasets across 6
different scenarios. We find that overall the ICL method has a very high agreement with the gold
standard HMC reference with scores of more than than 56 percent in five scenarios on the synthetic
data. In comparison, the C2ST metric is almost saturated for all considered VI methods. For MMD
andW2 the ICL method is again the best.

The real-world datasets show a similar picture except for scenario 4 where C2ST and MMD in-
dicate that VI with inverse autoregressive flows performs best. The W2 metric, however exhibits
a relatively large variance in those cases and does not yield significant results regarding the best
performance.

Table 9: Factor Analysis: Evaluation on 50 synthetic and 17 real-world datasets for six different
scenarios. All results within two standard errors of the best average result for each scenario are
marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 3.459 (± 1.553) 1.987 (± 1.363) 1.000 (± 0.000) 2.487 (± 0.454) 0.875 (± 0.036)
VI: DiagonalNormal 1.000 (± 0.001) 4.695 (± 1.488) 2.865 (± 1.681) 0.979 (± 0.008) 1.283 (± 0.225) 0.625 (± 0.058)
VI: MultivariateNormal 0.998 (± 0.003) 4.163 (± 1.473) 2.603 (± 1.959) 0.966 (± 0.010) 1.213 (± 0.260) 0.608 (± 0.047)
VI: Structured Normal 0.997 (± 0.004) 4.655 (± 1.189) 2.700 (± 1.333) 0.979 (± 0.010) 1.231 (± 0.132) 0.611 (± 0.041)
VI: IAF 0.953 (± 0.104) 3.992 (± 2.089) 2.750 (± 1.838) 0.849 (± 0.075) 0.772 (± 0.335) 0.503 (± 0.063)
ICL 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 3.687 (± 1.661) 1.954 (± 1.129) 1.000 (± 0.000) 1.690 (± 0.182) 0.598 (± 0.058)
VI: DiagonalNormal 0.998 (± 0.002) 3.135 (± 1.482) 1.629 (± 0.938) 0.975 (± 0.010) 1.156 (± 0.068) 0.496 (± 0.052)
VI: MultivariateNormal 0.989 (± 0.009) 2.945 (± 1.019) 1.482 (± 0.683) 0.951 (± 0.025) 0.764 (± 0.053) 0.421 (± 0.052)
VI: Structured Normal 0.984 (± 0.031) 3.790 (± 1.572) 2.106 (± 1.429) 0.958 (± 0.025) 1.001 (± 0.126) 0.465 (± 0.056)
VI: IAF 0.966 (± 0.066) 3.523 (± 1.340) 2.153 (± 0.968) 0.799 (± 0.058) 0.462 (± 0.226) 0.342 (± 0.070)
ICL 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 4.137 (± 0.932) 2.188 (± 1.011) 1.000 (± 0.000) 3.653 (± 0.183) 0.473 (± 0.026)
VI: DiagonalNormal 0.999 (± 0.002) 3.339 (± 0.985) 1.722 (± 0.870) 0.951 (± 0.007) 1.114 (± 0.080) 0.245 (± 0.016)
VI: MultivariateNormal 0.994 (± 0.007) 3.189 (± 0.960) 1.644 (± 0.859) 0.945 (± 0.007) 1.085 (± 0.082) 0.242 (± 0.015)
VI: Structured Normal 0.997 (± 0.003) 3.159 (± 0.968) 1.614 (± 0.793) 0.942 (± 0.009) 1.084 (± 0.071) 0.242 (± 0.018)
VI: IAF 0.990 (± 0.011) 3.145 (± 1.203) 1.705 (± 0.990) 0.928 (± 0.015) 1.022 (± 0.093) 0.235 (± 0.018)
ICL 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 4.354 (± 0.572) 3.339 (± 0.932) 1.000 (± 0.000) 6.617 (± 0.259) 0.598 (± 0.135)
VI: DiagonalNormal 1.000 (± 0.000) 3.396 (± 0.591) 2.420 (± 0.720) 0.977 (± 0.003) 1.499 (± 0.066) 0.096 (± 0.003)
VI: MultivariateNormal 0.999 (± 0.001) 3.447 (± 0.567) 2.479 (± 0.848) 0.973 (± 0.008) 1.484 (± 0.097) 0.096 (± 0.005)
VI: Structured Normal 1.000 (± 0.000) 3.421 (± 0.610) 2.481 (± 0.884) 0.973 (± 0.007) 1.474 (± 0.078) 0.095 (± 0.004)
VI: IAF 0.999 (± 0.001) 3.269 (± 0.552) 2.307 (± 0.779) 0.961 (± 0.018) 1.337 (± 0.142) 0.092 (± 0.005)
ICL 0.684 (± 0.060) 0.198 (± 0.141) 0.918 (± 0.246) 0.988 (± 0.003) 1.764 (± 0.026) 1.248 (± 0.008)

Scenario 5

Laplace Approximation 1.000 (± 0.000) 4.456 (± 0.785) 2.608 (± 0.946) 1.000 (± 0.000) 4.559 (± 0.494) 0.663 (± 0.127)
VI: DiagonalNormal 0.999 (± 0.002) 3.520 (± 1.073) 2.012 (± 0.886) 0.944 (± 0.010) 1.007 (± 0.129) 0.261 (± 0.036)
VI: MultivariateNormal 0.995 (± 0.007) 3.472 (± 1.021) 1.982 (± 0.814) 0.930 (± 0.017) 0.964 (± 0.111) 0.255 (± 0.038)
VI: Structured Normal 0.998 (± 0.005) 3.369 (± 1.044) 1.916 (± 0.852) 0.934 (± 0.011) 0.996 (± 0.133) 0.259 (± 0.035)
VI: IAF 0.992 (± 0.012) 3.166 (± 0.967) 1.761 (± 0.671) 0.910 (± 0.011) 0.892 (± 0.094) 0.247 (± 0.037)
ICL 0.535 (± 0.016) 0.021 (± 0.011) 0.279 (± 0.060) 0.886 (± 0.017) 1.207 (± 0.101) 1.002 (± 0.042)

Scenario 6

Laplace Approximation 1.000 (± 0.000) 3.942 (± 0.971) 2.624 (± 1.682) 1.000 (± 0.000) 3.319 (± 0.196) 0.377 (± 0.020)
VI: DiagonalNormal 0.998 (± 0.002) 3.214 (± 1.072) 2.209 (± 1.543) 0.949 (± 0.008) 1.196 (± 0.093) 0.210 (± 0.011)
VI: MultivariateNormal 0.991 (± 0.013) 3.056 (± 1.237) 2.189 (± 1.698) 0.938 (± 0.009) 1.121 (± 0.075) 0.205 (± 0.012)
VI: Structured Normal 0.997 (± 0.005) 3.279 (± 1.071) 2.276 (± 1.787) 0.944 (± 0.006) 1.161 (± 0.066) 0.208 (± 0.012)
VI: IAF 0.989 (± 0.029) 3.027 (± 0.910) 1.936 (± 1.060) 0.865 (± 0.027) 0.822 (± 0.106) 0.179 (± 0.015)
ICL 0.543 (± 0.021) 0.023 (± 0.015) 0.345 (± 0.173) 0.666 (± 0.020) 0.200 (± 0.034) 0.224 (± 0.014)
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B.3 GAUSSIAN MIXTURE MODELS

We summarize the results of the ICL approach and the different VI methods regarding the GMM
scenarios in Table 17. First, one can note that on the synthetic data, the ICL approach has a much
lower C2ST score for scenario 1 and scenario 2 than the other methods. However, for scenarios 3
and 4, C2ST saturates, or at least almost saturates for all approaches. The MMD metric, however,
shows that ICL not only has a high agreement with HMC in scenarios 1 and 2, but that it attains the
significantly best result in scenarios 3 and 4 as well. This is supported by theW2 metric, which has
the significantly lowest values for ICL in scenarios 2,3 and 4.

Analogously, on the real-world data, MMD shows that ICL is the best approach in all four scenarios
without any other model coming into the two standard-deviation range. While the C2ST score is the
lowest in scenario 1 and scenario 2 for ICL, it saturates for cases 3 and 4.

Table 10: Gaussian Mixture Models: Evaluation on 50 synthetic and 17 real-world datasets for six
different scenarios. All results within two standard errors of the best average result for each scenario
are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1

Laplace Approximation 1.000 (± 0.000) 3.367 (± 1.030) 4.341 (± 2.018) 1.000 (± 0.000) 3.374 (± 0.941) 6.440 (± 1.994)
VI: DiagonalNormal 0.988 (± 0.013) 1.175 (± 1.189) 2.961 (± 1.669) 0.995 (± 0.006) 1.919 (± 1.217) 5.145 (± 2.489)
VI: MultivariateNormal 0.988 (± 0.013) 1.135 (± 1.149) 2.926 (± 1.651) 0.994 (± 0.007) 2.007 (± 1.367) 5.379 (± 2.845)
VI: Structured Normal 0.987 (± 0.015) 1.126 (± 1.145) 2.944 (± 1.663) 0.993 (± 0.009) 1.943 (± 1.359) 5.313 (± 2.737)
VI: IAF 0.989 (± 0.013) 1.017 (± 1.036) 3.104 (± 1.523) 0.995 (± 0.010) 1.888 (± 1.051) 5.402 (± 2.310)
ICL 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2

Laplace Approximation 1.000 (± 0.000) 2.864 (± 0.607) 5.407 (± 2.320) 1.000 (± 0.000) 2.928 (± 0.438) 7.228 (± 1.323)
VI: DiagonalNormal 0.989 (± 0.024) 1.425 (± 0.829) 4.933 (± 2.379) 0.998 (± 0.003) 1.525 (± 0.356) 6.091 (± 0.931)
VI: MultivariateNormal 0.991 (± 0.021) 1.532 (± 0.940) 5.119 (± 2.521) 0.999 (± 0.002) 1.619 (± 0.269) 6.258 (± 0.872)
VI: Structured Normal 0.992 (± 0.017) 1.487 (± 0.899) 5.085 (± 2.530) 0.999 (± 0.002) 1.580 (± 0.337) 6.241 (± 0.960)
VI: IAF 0.992 (± 0.021) 1.319 (± 0.854) 5.265 (± 2.534) 0.998 (± 0.004) 1.256 (± 0.320) 6.201 (± 0.892)
ICL 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3

Laplace Approximation 1.000 (± 0.000) 3.631 (± 1.362) 16.387 (± 19.604) 1.000 (± 0.000) 3.009 (± 0.768) 37.034 (± 7.178)
VI: DiagonalNormal 0.996 (± 0.011) 2.127 (± 1.479) 16.864 (± 19.301) 0.992 (± 0.018) 2.429 (± 0.516) 35.355 (± 6.608)
VI: MultivariateNormal 0.997 (± 0.009) 2.076 (± 1.388) 16.938 (± 19.636) 0.993 (± 0.016) 2.427 (± 0.510) 35.312 (± 6.655)
VI: Structured Normal 0.995 (± 0.017) 2.049 (± 1.462) 16.723 (± 19.093) 0.993 (± 0.016) 2.301 (± 0.549) 34.217 (± 5.461)
VI: IAF 0.994 (± 0.018) 1.675 (± 1.049) 14.311 (± 9.266) 0.993 (± 0.017) 2.148 (± 0.528) 34.336 (± 5.398)
ICL 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)

Scenario 4

Laplace Approximation 1.000 (± 0.000) 6.260 (± 1.427) 13.497 (± 29.702) 1.000 (± 0.000) 5.924 (± 1.145) 12.400 (± 4.313)
VI: DiagonalNormal 1.000 (± 0.002) 3.958 (± 1.641) 12.068 (± 21.301) 1.000 (± 0.000) 3.879 (± 1.061) 11.080 (± 3.341)
VI: MultivariateNormal 1.000 (± 0.002) 3.875 (± 1.691) 12.150 (± 22.198) 1.000 (± 0.000) 3.896 (± 1.057) 11.112 (± 3.321)
VI: Structured Normal 1.000 (± 0.001) 3.661 (± 1.717) 12.195 (± 22.874) 0.996 (± 0.016) 3.822 (± 1.302) 11.368 (± 4.216)
VI: IAF 1.000 (± 0.002) 3.536 (± 1.597) 12.015 (± 20.884) 1.000 (± 0.000) 3.471 (± 1.036) 11.421 (± 3.233)
ICL 1.000 (± 0.000) 2.451 (± 0.868) 8.333 (± 4.202) 1.000 (± 0.000) 2.518 (± 0.694) 11.938 (± 2.956)

C ABLATION: USING A DIFFUSION OBJECTIVE

To validate choosing the flow matching objective with optimal transport (OT) paths resulting in the
objective in equation Eq. (6), we also conduct experiments using a diffusion-objective with variance
preserving paths introduced by Song et al. (2020). We choose three selected GLM, FA and GMM
scenarios with the same 50 synthetic and 17 real-world datasets for each scenario as in the other
benchmarks.

Table 11: GLMs: Comparison of the OT flow matching and the VP diffusion objective on 50 syn-
thetic and 17 real-world datasets for three different scenarios. All results within two standard errors
of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 2 Diffusion paths 0.961 (± 0.040) 1.525 (± 0.777) 3.354 (± 1.333) 0.961 (± 0.016) 1.347 (± 0.365) 2.025 (± 0.270)
OT paths 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 Diffusion paths 0.903 (± 0.111) 1.080 (± 0.564) 1.733 (± 0.408) 0.936 (± 0.013) 1.002 (± 0.203) 1.442 (± 0.103)
OT paths 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 5 Diffusion paths 0.691 (± 0.074) 0.211 (± 0.143) 0.708 (± 0.233) 0.681 (± 0.038) 0.182 (± 0.093) 0.554 (± 0.090)
OT paths 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

In summary, the empirical results demonstrate that using the OT paths consistently outperforms the
VP diffusion objective across all scenarios for both GLMs and FAs. For GLMs, OT paths achieve
significantly lower C2ST values in all scenarios. In Scenario 2, OT paths reduce C2ST from 0.961
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to 0.839 on synthetic data and from 0.961 to 0.768 on real-world data. Similarly, in Scenario 3, OT
paths achieve substantial improvements, with C2ST dropping from 0.903 to 0.611 on synthetic data
and from 0.936 to 0.576 on real-world data. This trend is complemented by consistent improvements
in other metrics such asW2, where OT paths often achieve reductions by over 50%.

Table 12: FA: Comparison of the OT flow matching and the VP diffusion objective on 50 synthetic
and 17 real-world datasets for three different scenarios. All results within two standard errors of the
best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths 0.622 (± 0.043) 0.207 (± 0.121) 0.692 (± 0.192) 0.595 (± 0.012) 0.089 (± 0.011) 0.475 (± 0.019)
OT paths 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 Diffusion paths 0.826 (± 0.036) 0.768 (± 0.238) 1.219 (± 0.276) 0.878 (± 0.028) 0.793 (± 0.154) 1.056 (± 0.084)
OT paths 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 Diffusion paths 0.751 (± 0.048) 0.387 (± 0.216) 0.834 (± 0.163) 0.944 (± 0.008) 1.514 (± 0.056) 1.332 (± 0.028)
OT paths 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

For FA, the performance gap in C2ST remains notable. In Scenario 1, OT paths achieve the best
results on synthetic data, reducing C2ST from 0.622 to 0.552, while also delivering improvements
in W2 (0.289 compared to 0.692). On real-world datasets, OT paths maintain competitive results,
matching or exceeding the performance of diffusion paths. The advantage is even more pronounced
in Scenario 2, where OT paths consistently lead across all metrics, with a particularly striking reduc-
tion in MMD on synthetic data (0.017 compared to 0.768) and strong results for C2ST on real-world
data (0.622 vs. 0.878). Similarly, in Scenario 3, OT paths achieve the lowest C2ST values, with
synthetic results improving from 0.751 to 0.537 and real-world results from 0.944 to 0.609.

Table 13: GMMs: Comparison of the OT flow matching and the VP diffusion objective on 50
synthetic and 17 real-world datasets for three different scenarios. All results within two standard
errors of the best average result for each scenario are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 Diffusion paths 0.924 (± 0.024) 0.241 (± 0.381) 2.195 (± 1.431) 0.958 (± 0.030) 0.890 (± 0.912) 5.328 (± 2.544)
OT paths 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 Diffusion paths 0.942 (± 0.020) 0.213 (± 0.187) 2.748 (± 0.659) 0.984 (± 0.012) 0.411 (± 0.162) 5.397 (± 1.458)
OT paths 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 Diffusion paths 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)
OT paths 0.999 (± 0.001) 0.267 (± 0.154) 7.234 (± 2.974) 1.000 (± 0.000) 1.155 (± 0.258) 26.956 (± 3.114)

In the case of Gaussian Mixture Models (GMMs), the empirical results indicate that the OT paths
generally outperform the VP diffusion objective across most scenarios and metrics, though the dif-
ferences are not always statistically significant in pair-wise comparisons. For example, in Scenario
1, OT paths achieve notably better results for C2ST on both synthetic and real-world datasets, with
reductions from 0.924 to 0.760 and from 0.958 to 0.847, respectively. Similarly, forW2, OT paths
exhibit better performance on real-world data (4.054 vs. 5.328). In Scenario 2, OT paths maintain a
consistent advantage in metrics such as C2ST andW2. For instance, synthetic data shows a C2ST
improvement from 0.942 to 0.812, while real-world data improves from 0.984 to 0.937. The OT
paths also achieve lower MMD on synthetic data (0.159 vs. 0.213), supporting their effectiveness in
this scenario. For Scenario 3, the differences in performance between OT paths and diffusion paths
are more nuanced. OT paths achieve better results for W2 on both synthetic and real-world data,
reducing it from 8.708 to 7.234 and from 33.230 to 26.956, respectively.
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D HYPERPARAMETERS, SOFTWARE AND COMPUTATIONAL SETUP

D.1 ICL

To ensure maximum comparability across different experiments, we fix the hyperparameters for all
ICL experiments: For the architecture of the model introduced in Section 3.4, we use the following
configuration: The dimensionality of encoder representations is set to 512 and is expanded to 1024
in the feed-forward blocks. We use 8 heads and 8 encoder layers with a dropout rate of 0.1. For
the decoder part we also use 512 as the dimensionality of the representations and 1024 as the inter-
mediate representation in the feed-forward layers and a dropout rate of 0.1. Furthermore, 3 simple
fully connected layers with adaLN conditioning are used for final processing in the decoder. For
the time conditioning, we use 3 simple fully connected layers to map the scalar-valued time t onto
a 512 dimensional conditioning vector that is used for the adaLN blocks in the decoder. This yields
a model of around 43.1 million parameters. We use no tokenization for either the encoder or the
decoder and simple embedding layers to map the encoder- and decoder-input onto the feed-forward
dimensions.

We use an Adam optimizer (Kingma, 2014) with a cosine learning rate schedule (Loshchilov &
Hutter, 2016), where the maximum learning rate is 5 · 10−4, the final division factor is 104 and
10 percent of the epochs are used for warm-up. We use a weight decay parameter of 10−5 and a
batch size of 1024 and gradient clipping with a maximum gradient norm of one. We use in total 75
million synthetic samples for all scenarios. Of the total number, half, i.e. 37.5 million, are used for
training and 10 percent for validation and the remaining 40 percent for testing. Note that we observe
convergence of the loss usually much earlier than after this training duration, but fix the number of
samples for consistency across experiments. A single L4 GPU is used for the GLM scenarios and a
single A100 GPU for the FA and GMM cases.

To solve the ODE for the sample generation, dopri5 (Dormand & Prince, 1980) as implemented in
Torchdiffeq (Chen, 2018) is used in the adjoint version. We set the relative and absolute tolerance
to 10−7. The σmin parameter in the CNF-loss is set to 10−4.

Figure 4: Learning curves for
GLM scenario 1 with a Normal
Prior on the coefficients β and
an Inverse Gamma prior on σ2.

Figure 5: Learning curves for
GMM scenario 1 with M =
5 components, K = 50 data-
points and L = 1 dimensions.

Figure 6: Learning curves for
GMM scenario 3 with M =
3 components, K = 50 data-
points and L = 5 dimensions.

D.2 HMC

We use HMC with a NUTS kernel (Hoffman et al., 2014) as a reference for all experiments where
no analytical solution is available. We set the number of burn-in samples to 500 and use one chain
for all uni-modal problems and three times the number of potential modes in all other cases. More
specifically, we useM×3 chains for all GMM scenarios. The Pyro implementation of NUTS is used
for the GLM scenarios (Bingham et al., 2019) and the conceptually identical, albeit computationally
faster implementation in Numpyro for the FA and GMM cases (Phan et al., 2019).
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D.3 VI

For the variational inference methods, we utilize automatic guide generation based on the ground-
truth data-generating processes (Kucukelbir et al., 2017). Pyro is used for the implementation of the
probabilistic programs, which we also use to sample the synthetic training data, for the automatic
guide generation, and for the implementation of the actual VI methods (Bingham et al., 2019).
Default hyperparameters, as well as an Adam optimizer (Kingma, 2014) with a learning rate of
10−2 is used for all methods except for AutoIAF where a learning rate of 10−3 is used. We perform
2000 full-batch gradient update steps for each method.

E RUNTIMES

We use a single L4 GPU for generating samples based on our ICL approach and HMC in the GLM
scenarios, a single A100 for our ICL approach and HMC in the FA and GMM scenarios, and an
Intel(R) Xeon(R) CPU @ 2.20GHz CPU with two virtual cores and 40 gigabytes of RAM for the
VI methods. Across all considered GLM scenarios, pre-training takes on average 14.89 hours with
a standard error of 18.01 minutes. For the FA scenarios, on average 3.95 hours with a standard error
of 11.38 minutes is used for pretraining and for the GMM scenarios 10.63 with a standard error of
72.88 minutes.

When applied in order to generate samples for a new dataset, the benchmarked VI methods have,
as expected the lowest runtime. The Laplace approximation is the fastest of all methods, while our
ICL appraoch has consistently a lower runtime compared to HMC. Overall, the ICL method takes
around 2 minutes on the GLM tasks, around 30 seconds in the FA scenarios and less than 2 minutes
for the inference regarding the GMM tasks.

This difference is especially pronounced in the FA and GMM scenarios. Please note that the runtime
of the ICL method also fundamentally depends on the used precision for solving the underlying dif-
ferential equation where we use a relatively high relative and absolute precision of 10−7. Decreasing
this value might lead to significantly faster inference time while maintaining sample quality.

Table 14: Runtime Metrics for all GLM, FA, and GMM Scenarios
Scenario Method Mean Runtime (s)

GLM

Laplace Approximation 10.48 (±0.25)
VI: DiagonalNormal 12.02 (±0.26)
VI: MultivariateNormal 13.70 (±0.29)
VI: Structured Normal 19.81 (±0.98)
VI:IAF 15.44 (±0.30)
HMC 120.24 (±13.94)
ICL 107.79 (±17.36)

FA

Laplace Approximation 17.85 (±0.21)
VI: DiagonalNormal 20.94 (±0.66)
VI: MultivariateNormal 20.84 (±0.28)
VI: Structured Normal 36.17 (±0.61)
VI:IAF 23.75 (±0.38)
HMC 248.26 (±57.88)
ICL 31.49 (±4.97)

GMM

Laplace Approximation 27.52 (±0.40)
VI: DiagonalNormal 29.74 (±0.57)
VI: MultivariateNormal 30.50 (±0.41)
VI: Structured Normal 42.44 (±0.44)
VI:IAF 33.39 (±0.49)
HMC 239.67 (±32.71)
ICL 93.88 (±10.47)
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F COMPARISON TO SGLD

Besides comparing the samples from our ICL approach to samples from various VI methods, we ad-
ditionally compare it against samples generated via stochastic gradient Langevin dynamics (SGLD)
(Welling & Teh, 2011). We run SGLD with a learning rate of 10−3 for the GLM and GMM cases
and a learning rate of 10−4 for FA and use 1000 gradient steps for warmup and partition the data into
ten minibatches. We implement the preconditioning method introduced by Li et al. (2016) for more
stable sampling behavior. Despite the preconditioning, SGLD consistently fails for GLMs scenario
7 because the sampler diverges causing singular covariance matrices. To facilitate running SGLD
for the GMMs, which also include discrete variables, we marginalize over the discrete variables.

In summary, we find that ICL yields samples with much higher quality than SGLD compared to
the gold standard HMC samples across almost all scenarios on both synthetic and real-world data.
The poor sample quality with SGLD is expected given that numerous theoretical and empirical
findings confirm that, while SGLD is computationally very cheap, it is substantially outperformed
by, for instance, HMC, in terms of sample quality, which is especially pronounced when the posterior
distributions are complex and parameters are correlated (Chen et al., 2014; Mangoubi & Vishnoi,
2019; Izmailov et al., 2021; Brosse et al., 2018) .

Table 15: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for six different
GLM scenarios. All results within two standard errors of the best average result for each scenario
are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 0.992 (± 0.015) 2.846 (± 1.411) 1.951 (± 0.917) 0.980 (± 0.013) 2.191 (± 1.183) 0.865 (± 0.438)
ICL 0.765 (± 0.123) 0.767 (± 0.727) 0.585 (± 0.301) 0.614 (± 0.074) 0.175 (± 0.219) 0.310 (± 0.138)

Scenario 2 SGLD 0.999 (± 0.004) 5.650 (± 1.762) 8.295 (± 5.629) 0.994 (± 0.006) 2.699 (± 1.093) 1.289 (± 0.454)
ICL 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 SGLD 0.997 (± 0.008) 3.320 (± 1.595) 3.011 (± 1.036) 0.983 (± 0.013) 2.152 (± 1.194) 0.935 (± 0.523)
ICL 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 4 SGLD 1.000 (± 0.000) 6.626 (± 1.215) 15.674 (± 8.100) 0.994 (± 0.006) 2.927 (± 1.564) 1.606 (± 1.022)
ICL 0.753 (± 0.049) 0.171 (± 0.153) 0.631 (± 0.294) 0.762 (± 0.015) 0.105 (± 0.046) 0.597 (± 0.104)

Scenario 5 SGLD 0.999 (± 0.003) 3.308 (± 1.728) 2.216 (± 1.247) 1.000 (± 0.000) 4.012 (± 1.413) 0.996 (± 0.406)
ICL 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

Scenario 6 SGLD 0.998 (± 0.001) 2.681 (± 0.565) 2.419 (± 0.510) 0.998 (± 0.002) 2.845 (± 0.590) 1.851 (± 0.319)
ICL 0.532 (± 0.019) 0.016 (± 0.008) 0.590 (± 0.066) 0.556 (± 0.017) 0.035 (± 0.015) 0.504 (± 0.038)

For GLMs (Table 15), ICL achieves significantly better results, with notable improvements in C2ST.
In Scenario 1, synthetic C2ST drops from 0.992 to 0.765 and real-world C2ST from 0.980 to 0.614.
Similarly, Scenario 3 shows substantial gains, with synthetic C2ST improving from 0.997 to 0.611
and real-world C2ST from 0.983 to 0.576. These trends extend to metrics likeW2, where ICL yields
consistent reductions, such as in Scenario 2, reducingW2 from 8.295 to 1.111 on synthetic data.

Table 16: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for six different
FA scenarios. All results within two standard errors of the best average result for each scenario are
marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 0.996 (± 0.006) 2.883 (± 1.552) 1.776 (± 0.694) 0.995 (± 0.003) 2.676 (± 0.710) 1.608 (± 0.381)
ICL 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 SGLD 0.997 (± 0.003) 2.950 (± 0.786) 1.892 (± 0.533) 0.995 (± 0.003) 2.517 (± 0.583) 1.500 (± 0.268)
ICL 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 SGLD 0.998 (± 0.005) 3.662 (± 1.099) 2.086 (± 0.919) 0.956 (± 0.025) 1.580 (± 0.819) 0.311 (± 0.108)
ICL 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

Scenario 4 SGLD 1.000 (± 0.000) 4.127 (± 0.635) 3.047 (± 0.972) 0.950 (± 0.021) 1.520 (± 0.512) 0.141 (± 0.031)
ICL 0.684 (± 0.060) 0.198 (± 0.141) 0.918 (± 0.246) 0.988 (± 0.003) 1.764 (± 0.026) 1.248 (± 0.008)

Scenario 5 SGLD 0.999 (± 0.001) 3.465 (± 0.939) 1.981 (± 0.938) 0.962 (± 0.024) 1.945 (± 1.383) 0.393 (± 0.243)
ICL 0.535 (± 0.016) 0.021 (± 0.011) 0.279 (± 0.060) 0.886 (± 0.017) 1.207 (± 0.101) 1.002 (± 0.042)

Scenario 6 SGLD 0.997 (± 0.004) 3.395 (± 1.199) 2.358 (± 1.458) 0.950 (± 0.040) 2.177 (± 1.643) 0.342 (± 0.224)
ICL 0.543 (± 0.021) 0.023 (± 0.015) 0.345 (± 0.173) 0.666 (± 0.020) 0.200 (± 0.034) 0.224 (± 0.014)
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For FA (Table 16), ICL also achieves superior performance, particularly in Scenarios 1 and 2. For
example, in Scenario 1, synthetic C2ST decreases from 0.996 to 0.552, accompanied by improve-
ments in W2 from 1.776 to 0.289. Scenario 2 sees further enhancements, with synthetic MMD
dropping from 2.950 to 0.017 and real-world C2ST improving from 0.995 to 0.622.

Table 17: SGLD vs. ICL: Evaluation on 50 synthetic and 17 real-world datasets for four different
GMM scenarios. All results within two standard errors of the best average result for each scenario
are marked in bold.

Scenario Model
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 SGLD 1.000 (± 0.001) 2.629 (± 0.868) 3.279 (± 1.330) 1.000 (± 0.000) 3.421 (± 0.877) 6.510 (± 1.763)
ICL 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 SGLD 1.000 (± 0.000) 3.046 (± 1.041) 6.015 (± 4.265) 1.000 (± 0.000) 2.487 (± 0.521) 6.858 (± 1.618)
ICL 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 SGLD 1.000 (± 0.000) 4.631 (± 1.169) 23.247 (± 30.646) 1.000 (± 0.000) 2.655 (± 0.437) 26.356 (± 2.699)
ICL 1.000 (± 0.000) 0.582 (± 0.280) 8.708 (± 4.945) 1.000 (± 0.000) 1.869 (± 0.342) 33.230 (± 8.095)

Scenario 4 SGLD 1.000 (± 0.000) 3.464 (± 1.098) 6.995 (± 5.554) 1.000 (± 0.000) 2.555 (± 0.494) 9.477 (± 3.432)
ICL 1.000 (± 0.000) 2.451 (± 0.868) 8.333 (± 4.202) 1.000 (± 0.000) 2.518 (± 0.694) 11.938 (± 2.956)

For GMMs (Table 17), ICL demonstrates a clear advantage in most scenarios. In Scenario 1, ICL
reduces synthetic C2ST from 1.000 to 0.760 and real-world W2 from 6.510 to 4.054. Scenario 2
shows synthetic C2ST improving from 1.000 to 0.812, and MMD from 3.046 to 0.159. While in
scenarios 3, ICL has a singificantly lower MMD score on the synthetic data, the other differences
are not signigicant.

G ROBUSTNESS TO OUT-OF-DISTRIBUTION DATA

To investigate how our ICL approach behaves under mismatches between the distribution of syn-
thetic training data and the data used to infer the posterior, we conduct an ablation study by changing
aspects of the distribution of training and testing data.

In summary, the results in Tables 19, 21 and 23 show that our ICL approach is, in most cases,
capable of robustly generalizing beyond its specific pre-training distribution when various aspects
of this distribution are changed. While the performance sometimes decreases when a mismatch
between training and testing data occurs, the drops in performance are almost always modest and,
in many cases, almost negligible.

G.1 GLM SCENARIOS

For scenario 2, we change the variance of the prior on the covariates from a value of V(βi,j) = 1 to
V(βi,j) = 2 for scenario 2.B and V(βi,j) = 4 for scenario 2.C. In scenarios 2.D and 2.E we change
the scale parameter of the prior on the variance σ2 of the noise—thereby changing its mean from
E[σ2] = 0.5 to a value of E[σ2] ≈ 0.7071 for 2.D and E[σ2] = 1 for 2.E. The variance is changed
from V[σ2] ≈ 0.0833 to V[σ2] ≈ 0.1667 and V[σ2] ≈ 0.333.

For scenarios 3.B and 3.C, the variance of the coefficients is doubled from scenario 3 to scenario
3.B and from 3.B to 3.C again, analogously to scenarios 2.B and 2.C.0

For scenario 5, the rate parameter of the gamma distribution is changed. This leads to a decrease
in the variance from V(βi,j) = 1 to V(βi,j) = 0.5 for scenario 5.B and V(βi,j) = 0.25 for
scenario 5.C. Notably, we also change the mean in the distribution of the covariates from mean from
E[βi,j ] = 1 to a value of E[βi,j ] ≈ 0.7071 for 2.D and E[βi,j ] = 0.5 for 2.E.

Table 18 shows that our ICL approach only exhibits modest degradation in performance when the
variance of the coefficients is doubled or quadruple while the mean stays the same (Scenarios 2.B,
2.C and 3.B, 3.C). Increasing the variance of the noise term by a factor of two only has a small effect
while multiplying it by four causes a drop in C2ST by 9.3%. However, decreasing the variance
of the gamma prior in scenario 5, combined with decreasing the mean, leads to a notable drop in
performance across all metrics.
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Table 18: Distribution of variables for the OOD analysis on GLM scenarios.

Scenario βi,j βi,0 σ2
i yi,j |(ui,j ,βi, β0,i, σ

2
i )

Scenario 2 N (0, 1) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.B N (0, 2) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.C N (0, 4) N (0, 9) IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 2.D N (0, 1) N (0, 9) IG(5, 2
√
2) N (u⊤

i,jβi, σ
2
i )

Scenario 2.E N (0, 1) N (0, 9) IG(5, 4) N (u⊤
i,jβi, σ

2
i )

Scenario 3 Laplace(0, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 3.B Laplace(0,
√
2) - IG(5, 2) N (u⊤

i,jβi, σ
2
i )

Scenario 3.C Laplace(0, 2) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5 Ga(1, 1) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Scenario 5.B Ga(1,
√
2) - IG(5, 2) N (u⊤

i,jβi, σ
2
i )

Scenario 5.C Ga(1, 2) - IG(5, 2) N (u⊤
i,jβi, σ

2
i )

Table 19: OOD Performance: Evaluation on 50 synthetic datasets for 8 different GLM scenarios.
All results within two standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 2 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300)
Scenario 2.B 0.809 (± 0.055) 0.410 (± 0.095) 2.250 (± 0.916)
Scenario 2.C 0.857 (± 0.105) 0.634 (± 0.318) 3.067 (± 1.759)

Scenario 2 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300)
Scenario 2.D 0.840 (± 0.109) 0.916 (± 1.123) 4.007 (± 3.261)
Scenario 2.E 0.932 (± 0.120) 1.556 (± 1.127) 4.850 (± 2.261)

Scenario 3 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348)
Scenario 3.B 0.667 (± 0.080) 0.210 (± 0.117) 1.172 (± 0.258)
Scenario 3.C 0.720 (± 0.108) 0.362 (± 0.248) 1.891 (± 0.678)

Scenario 5 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195)
Scenario 5.B 0.831 (± 0.121) 0.479 (± 0.200) 1.762 (± 0.541)
Scenario 5.C 0.920 (± 0.064) 0.753 (± 0.424) 3.159 (± 1.254)

G.2 FA SCENARIOS

To construct the mismatch between training and test distribution, we vary the variance of the factor
loading Wi,j,k for scenarios 1, 2 and 3. Concretely, the variance is doubled and quadrupled.

Table 20: Distribution of variables for the OOD analysis on the FA scenarios.

Scenario K P µi,j Ψi,j,j Wi,j,k zi,j zdim
Scenario 1 50 3 N (0, 1) IG(5, 1) N (0, 1) N (0, 1) 3
Scenario 1.B 50 3 N (0, 1) IG(5, 1) N (0, 2) N (0, 1) 3
Scenario 1.C 50 3 N (0, 1) IG(5, 1) N (0, 4) N (0, 1) 3

Scenario 2 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10) N (0, 1) 3
Scenario 2.B 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 10 ·

√
2) N (0, 1) 3

Scenario 2.C 50 3 N (0, 0.1) IG(5, 1) Laplace(0, 20) N (0, 1) 3

Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3) N (0, 1) 3
Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 3 ·

√
2) N (0, 1) 3

Scenario 3 25 5 N (0, 0.1) IG(5, 2) N (0, 6) N (0, 1) 3

For the FA cases (refer to Table 21), there is a notable drop in performance in the first scenario when
OOD data is used. Please note that even in the most misspecified scenario (1.C), the performance,
as measured in C2ST is still around ten percent better than the best VI method in this scenario
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Table 21: OOD Performance: Evaluation on 50 synthetic datasets for 6 different FA scenarios. All
results within two standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 1 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083)
Scenario 1.B 0.826 (± 0.066) 0.656 (± 0.384) 0.929 (± 0.321)
Scenario 1.C 0.855 (± 0.060) 0.837 (± 0.494) 1.135 (± 0.461)

Scenario 2 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033)
Scenario 2.B 0.580 (± 0.069) 0.087 (± 0.191) 0.393 (± 0.291)
Scenario 2.C 0.589 (± 0.076) 0.089 (± 0.113) 0.446 (± 0.233)

Scenario 3 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088)
Scenario 3.B 0.544 (± 0.028) 0.030 (± 0.021) 0.285 (± 0.094)
Scenario 3.C 0.533 (± 0.025) 0.021 (± 0.015) 0.347 (± 0.152)

(Table 16). While the absolute difference between performance on the training distribution and the
test distribution is very small for scenarios 2 and 3, the difference is still not within two standard
errors of the non-OOD performance because the standard error itself is quite small. The performance
on the OOD data is still better than all other VI methods (see Table 3).

G.3 GMM SCENARIOS

To generate several distinct OOD scenarios based on the generative processes of GMMs, we vary
scenario 2 in various ways. Note that the structure of the distributions is the same for all GMM
scenarios—focusing on this specific scenario thus makes sense when considering OOD general-
ization. First, in scenario 2.B, we decrease the symmetric parameter of the Dirichlet prior on the
assignments from 1 to 0.5 causing larger discrepancy in the number of points per cluster. In scenario
2.C we make the opposite change.

In scenarios 2.D and 2.E we first double and then quadruple the variance of the prior on the per-
component variances σi,m,l. Finally, in scenarios 2.F and 2.G, the prior on the mean is made more
dispersed compared to the training data.

Table 22: Distribution for the OOD analysis of the GMM scenarios.

Scenario K M L ϕi σ2
i,m,l µi,m,l|σ2

i,m,l

Scenario 2 25 3 3 Dir(1) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.B 25 3 3 Dir(0.5) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.C 25 3 3 Dir(2) IG(5, 2) N (0, 3σ2
i,m,l)

Scenario 2.D 25 3 3 Dir(1) IG(5, 2 ·
√
2) N (0, 3σ2

i,m,l)
Scenario 2.E 25 3 3 Dir(1) IG(5, 4) N (0, 3σ2

i,m,l)

Scenario 2.F 25 3 3 Dir(1) IG(5, 2) N (0, 4σ2
i,m,l)

Scenario 2.G 25 3 3 Dir(1) IG(5, 2) N (0, 5σ2
i,m,l)

On the GMM scenarios (Table 23), the sample quality obtained via ICL is surprisingly stable under
various changes to the data-generating process. It is relatively unsurprising that changing the Dirich-
let prior, i.e., making the cluster more or less uniform in their number of samples, might lead to cases
the ICL method can generalize to relatively easily, as demonstrated in scenarios 2.B and 2.C. The
most pronounced drop in performance results from increasing the variance of the prior on the stan-
dard deviation of the components of the mixture model (scenario 2.E), while increasing the variance
of the mean vector relative to the standard deviation of the components has a less pronounced effect.
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Table 23: OOD Performance: Evaluation on 50 synthetic datasets for 6 different GMM scenarios.
All results within two standard errors of the non-OOD result for each scenario are marked in bold.

Scenario C2ST (↓) MMD (↓) W2 (↓)
Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.B 0.829 (± 0.050) 0.233 (± 0.161) 2.595 (± 0.998)
Scenario 2.C 0.816 (± 0.057) 0.149 (± 0.135) 2.272 (± 0.654)

Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.D 0.812 (± 0.076) 0.148 (± 0.091) 2.557 (± 0.837)
Scenario 2.E 0.880 (± 0.057) 0.231 (± 0.109) 3.535 (± 1.003)

Scenario 2 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926)
Scenario 2.F 0.821 (± 0.076) 0.216 (± 0.214) 2.700 (± 1.044
Scenario 2.G 0.844 (± 0.046) 0.197 (± 0.124) 2.675 (± 0.552)

H ABLATION: USING AN MLP-BASED ENCODER

To further justify choosing a transformer encoder in our ICL approach, we conduct an ablation
study comparing the performance of our original ICL method with the performance obtained when
the transformer encoder is replaced by an MLP with batch normalization (Ioffe, 2015) and skip-
connections. To ensure a fair comparison, we use an MLP encoder with a hidden dimension of 1250
to give the overall model approximately the same number of parameters as in the transformer-based
approach. Concretely, our MLP-approach has 43.3 million parameters compared to 43.1 million
parameters with the transformer encoder. We choose three selected GLM, FA and GMM scenarios
with 50 synthetic and 17 real-world datasets for each scenario.

In summary, we find that the transformer encoder yields consistently better, results than the mlp
encoder across all scenarios. While the difference is especially pronounced for the GLM scenarios,
the difference become smaller for FA and GMMs.

Table 24: GLMs: Comparison when using an MLP-based encoder and a transformer encoder on 50
synthetic and 17 real-world datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 2 MLP 0.942 (± 0.093) 1.783 (± 1.048) 2.503 (± 0.814) 0.968 (± 0.012) 1.528 (± 0.394) 2.271 (± 0.315)
Transformer 0.839 (± 0.072) 0.707 (± 0.658) 1.111 (± 0.300) 0.768 (± 0.033) 0.143 (± 0.089) 0.411 (± 0.094)

Scenario 3 MLP 0.957 (± 0.075) 2.236 (± 1.218) 2.681 (± 1.130) 0.972 (± 0.012) 1.658 (± 0.450) 2.076 (± 0.427)
Transformer 0.611 (± 0.070) 0.089 (± 0.114) 0.423 (± 0.348) 0.576 (± 0.027) 0.037 (± 0.026) 0.257 (± 0.044)

Scenario 5 MLP 0.845 (± 0.115) 1.066 (± 0.859) 1.166 (± 0.996) 0.890 (± 0.055) 1.223 (± 0.791) 1.102 (± 0.383)
Transformer 0.621 (± 0.063) 0.067 (± 0.080) 0.299 (± 0.195) 0.610 (± 0.045) 0.046 (± 0.020) 0.242 (± 0.038)

In Table 24, the transformer encoder consistently outperforms the MLP encoder across all metrics
and scenarios. In Scenario 2, C2ST drops from 0.942 (MLP) to 0.839 (Transformer) on synthetic
data and from 0.968 to 0.768 on real-world data. Similarly, W2 improves significantly, decreasing
from 2.503 to 1.111 on synthetic data and from 2.271 to 0.411 on real-world data. In Scenario
3, transformers achieve substantial improvements, reducing C2ST from 0.957 (MLP) to 0.611 on
synthetic data and from 0.972 to 0.576 on real-world data.W2 also sees notable reductions, dropping
from 2.681 to 0.423 on synthetic data and from 2.076 to 0.257 on real-world data. Finally, in
Scenario 5, transformers maintain their superiority, achieving reductions in C2ST from 0.845 (MLP)
to 0.621 on synthetic data and from 0.890 to 0.610 on real-world data. Improvements in W2 are
similarly remarkable, with reductions from 1.166 to 0.299 on synthetic data and from 1.102 to 0.242
on real-world data.

For the factor analysis cases (Table 25), the transformer encoder still has better average performances
even though the differences are substantially less pronounced than for the GLMs. In Scenario 1,
transformers slightly outperform MLPs, reducing C2ST from 0.579 to 0.552 on synthetic data and
from 0.634 to 0.606 on real-world data. W2 also sees moderate improvements, dropping from 0.364
to 0.289 on synthetic data and from 0.331 to 0.265 on real-world data. In Scenario 2, the advantage
of the transformer encoder remains consistent, with C2ST decreasing from 0.562 (MLP) to 0.542
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Table 25: FA: Comparison when using an MLP-based encoder and a transformer encoder on 50
synthetic and 17 real-world datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 MLP 0.579 (± 0.015) 0.017 (± 0.006) 0.364 (± 0.029) 0.634 (± 0.014) 0.013 (± 0.004) 0.331 (± 0.010)
Transformer 0.552 (± 0.028) 0.034 (± 0.034) 0.289 (± 0.083) 0.606 (± 0.038) 0.068 (± 0.069) 0.265 (± 0.078)

Scenario 2 MLP 0.562 (± 0.038) 0.037 (± 0.042) 0.308 (± 0.097) 0.632 (± 0.068) 0.182 (± 0.407) 0.339 (± 0.174)
Transformer 0.542 (± 0.006) 0.017 (± 0.006) 0.244 (± 0.033) 0.622 (± 0.032) 0.098 (± 0.039) 0.287 (± 0.046)

Scenario 3 MLP 0.539 (± 0.025) 0.023 (± 0.022) 0.278 (± 0.116) 0.680 (± 0.019) 0.268 (± 0.044) 0.253 (± 0.017)
Transformer 0.537 (± 0.023) 0.024 (± 0.021) 0.259 (± 0.088) 0.609 (± 0.019) 0.124 (± 0.037) 0.179 (± 0.018)

on synthetic data and from 0.632 to 0.622 on real-world data. W2 also improves slightly, dropping
from 0.308 to 0.244 on synthetic data and from 0.339 to 0.287 on real-world data. Scenario 3 shows
the smallest differences, where transformers marginally improve C2ST from 0.539 (MLP) to 0.537
on synthetic data and from 0.680 to 0.609 on real-world data. ForW2, the reductions are minor but
consistent, dropping from 0.278 to 0.259 on synthetic data and from 0.253 to 0.179 on real-world
data.

Table 26: GMMs: Comparison when using an MLP-based encoder and a transformer encoder on 50
synthetic and 17 real-world datasets for three different scenarios.

Scenario Type of Encoder
Synthetic Evaluation Real-World Evaluation

C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Scenario 1 MLP 0.873 (± 0.045) 0.242 (± 0.363) 2.203 (± 1.098) 0.917 (± 0.067) 0.891 (± 1.150) 4.528 (± 2.701)
Transformer 0.760 (± 0.092) 0.303 (± 0.548) 2.095 (± 1.692) 0.847 (± 0.082) 0.486 (± 0.623) 4.054 (± 2.782)

Scenario 2 MLP 0.921 (± 0.035) 0.291 (± 0.205) 2.870 (± 0.710) 0.992 (± 0.005) 0.399 (± 0.127) 5.505 (± 1.144)
Transformer 0.812 (± 0.061) 0.159 (± 0.154) 2.314 (± 0.926) 0.937 (± 0.041) 0.282 (± 0.131) 3.947 (± 1.055)

Scenario 3 MLP 0.999 (± 0.000) 0.438 (± 0.181) 11.502 (± 9.719) 1.000 (± 0.000) 1.001 (± 0.149) 26.282 (± 3.731)
Transformer 0.999 (± 0.001) 0.267 (± 0.154) 7.234 (± 2.974) 1.000 (± 0.000) 1.155 (± 0.258) 26.956 (± 3.114)

For the Gaussian Mixture Models (GMMs), the results indicate a more mixed performance where
the transformer still performs slightly better (Table 26): In Scenario 1, transformer encoders slightly
outperform MLPs on synthetic data, with C2ST improving from 0.873 (MLP) to 0.760 andW2 de-
creasing slightly from 2.203 to 2.095. However, on real-world data, MLPs perform marginally better
in terms of MMD, reducing it from 0.486 to 0.242, while transformers show minor improvements
in W2 from 4.528 to 4.054. In Scenario 2, transformers show a more noticeable advantage. On
synthetic data, C2ST improves from 0.921 (MLP) to 0.812, and W2 decreases significantly from
2.870 to 2.314. On real-world data, transformers reduce C2ST from 0.992 to 0.937 and MMD from
0.399 to 0.282, along with a considerable improvement in W2 from 5.505 to 3.947. In Scenario
3, the differences between the two encoders are relatively small but still favor the transformers on
synthetic data, with W2 decreasing from 11.502 (MLP) to 7.234. For real-world data, the results
are nearly identical for C2ST (1.000 for both) but show a slight increase inW2 for the transformer
from 26.282 to 26.956. Overall, for the GMMs, the transformer encoders demonstrate consistent
improvements across scenarios for synthetic data, particularly in Scenarios 1 and 2. However, for
real-world data, the performance differences are less pronounced.
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I ABLATION: DIFFERENT LEARNING RATES FOR VI

To investigate the role of the learning rate parameter for the benchmarked VI methods, we record
the performance for learning-rate values of 10−2, 10−3 and 10−4 across a prototypical GLM, a FA
and a GMM scenario, where we use 10 synthetic and 10 real-world datasets. In summary, while
we find the VI methods to often be quite robust to the choice of the learning rate, those results also
confirm our choice of setting the learning rate to 10−2 for the Laplace approximation, variational
inference with a diagonal normal distribution, a multivariate normal distribution and a structured
normal distribution, and to a value of 10−3 for the VI approach with inverse autoregressive flows.

For the GLM-scenario, we find in terms of the C2ST metric that VI with an ordinary multivariate
normal distribution and VI with a structured normal distribution and a learning rate of 10−2 are the
best models on the synthetic data. While MMD also indicates that this learning rate yields ideal
results for those models, VI with inverse auoregressive flows has good values across the different
learning rates with the minimum for 10−3. TheW2 metric indicates a similar tendency.

Table 27: Results of VI methods with different learning rates on 10 synthetic and 10 real-world
datasets: Linear regression with a normal prior on the coefficients β and an inverse gamma prior on
the variance σ2 (scenario 1). Comparison to HMC samples. All results within two standard errors
of the best average result are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation
C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Laplace Approximation 1e-2 1.000 (± 0.000) 2.342 (± 0.390) 2.121 (± 0.100) 1.000 (± 0.000) 2.134 (± 0.107) 2.095 (± 0.062)
Laplace Approximation 1e-3 1.000 (± 0.000) 2.341 (± 0.389) 2.121 (± 0.100) 1.000 (± 0.000) 2.133 (± 0.108) 2.095 (± 0.062)
Laplace Approximation 1e-4 1.000 (± 0.000) 2.341 (± 0.389) 2.121 (± 0.100) 1.000 (± 0.000) 2.133 (± 0.108) 2.095 (± 0.062)

VI: DiagonalNormal 1e-2 0.892 (± 0.074) 0.921 (± 0.374) 1.411 (± 0.174) 0.889 (± 0.062) 0.819 (± 0.343) 1.339 (± 0.190)
VI: DiagonalNormal 1e-3 0.966 (± 0.024) 1.588 (± 0.540) 1.672 (± 0.203) 0.981 (± 0.017) 1.685 (± 0.331) 1.739 (± 0.139)
VI: DiagonalNormal 1e-4 0.971 (± 0.010) 1.572 (± 0.300) 1.666 (± 0.081) 0.849 (± 0.030) 0.575 (± 0.127) 1.221 (± 0.098)

VI: MultivariateNormal 1e-2 0.725 (± 0.064) 0.523 (± 0.242) 1.114 (± 0.261) 0.625 (± 0.051) 0.470 (± 0.066) 0.918 (± 0.119)
VI: MultivariateNormal 1e-3 0.964 (± 0.008) 1.455 (± 0.327) 1.617 (± 0.100) 0.853 (± 0.052) 0.634 (± 0.266) 1.238 (± 0.151)
VI: MultivariateNormal 1e-4 0.984 (± 0.005) 1.848 (± 0.324) 1.773 (± 0.079) 0.899 (± 0.020) 0.807 (± 0.094) 1.345 (± 0.079)

VI: Structured Normal 1e-2 0.734 (± 0.063) 0.541 (± 0.254) 1.119 (± 0.264) 0.670 (± 0.047) 0.467 (± 0.086) 1.060 (± 0.130)
VI: Structured Normal 1e-3 0.882 (± 0.042) 0.719 (± 0.315) 1.335 (± 0.149) 0.776 (± 0.045) 0.473 (± 0.081) 1.064 (± 0.131)
VI: Structured Normal 1e-4 0.890 (± 0.027) 0.710 (± 0.290) 1.347 (± 0.138) 0.771 (± 0.049) 0.468 (± 0.078) 1.062 (± 0.128)
VI: IAF 1e-2 0.840 (± 0.036) 0.502 (± 0.262) 1.272 (± 0.170) 0.614 (± 0.045) 0.455 (± 0.048) 0.957 (± 0.105)
VI: IAF 1e-3 0.797 (± 0.065) 0.485 (± 0.556) 1.169 (± 0.313) 0.619 (± 0.036) 0.469 (± 0.064) 0.989 (± 0.124)
VI: IAF 1e-4 0.803 (± 0.068) 0.475 (± 0.535) 1.162 (± 0.291) 0.612 (± 0.034) 0.457 (± 0.055) 0.977 (± 0.113)

Regarding the learning rate for the FA scenario, one can first see that no single learning rate seems
to dominate substantially given the variance of the results. However, on the synthetic data for the
Laplace approximation, as well as VI with a diagonal normal distribution, a multivariate normal and
a structured normal distribution, the lowest average result is obtained for a learning rate of 10−2,
while for VI with inverse autoregressive flows the best performance is obtained when the learning
rate equals 10−3. The real-world results are the best for VI with a structured normal distribution and
a learning rate of 10−2.

For the GMM scenario, we find that VI with a diagonal, structured and ordinary normal distribution
obtain the best results, namely for learning rates of 10−2 and 10−3, taking the variance into account.
Just considering the averages leads to the conclusion that 10−2 is the best choice here. The results
on the real-world data confirm that 10−2 is the optimal choice for VI with a diagonal normal and
ordinary multivariate normal, while VI with inverse autoregressive flows has good results across all
choices regarding the learning rate.
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Table 28: Results of VI methods with different learning rates on 10 synthetic and 10 real-world
datasets: Factor analysis with Gaussian priors on the weights and the latents andK = 25 datapoints,
P = 5 features, and dimensionality of the latents zdim = 3 (scenario 3). Comparison to HMC
samples. All results within two standard errors of the best average result are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation
C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Laplace Approximation 1e-2 1.000 (± 0.000) 3.449 (± 0.821) 1.773 (± 0.539) 1.000 (± 0.000) 2.703 (± 0.312) 0.362 (± 0.017)
Laplace Approximation 1e-3 1.000 (± 0.000) 4.288 (± 0.853) 2.263 (± 0.732) 1.000 (± 0.000) 2.896 (± 0.238) 0.376 (± 0.022)
Laplace Approximation 1e-4 1.000 (± 0.000) 4.252 (± 0.611) 2.122 (± 0.430) 1.000 (± 0.000) 2.805 (± 0.181) 0.368 (± 0.017)

VI: DiagonalNormal 1e-2 0.998 (± 0.002) 2.880 (± 1.046) 1.457 (± 0.559) 0.944 (± 0.008) 1.022 (± 0.067) 0.230 (± 0.010)
VI: DiagonalNormal 1e-3 0.998 (± 0.002) 2.973 (± 0.834) 1.465 (± 0.540) 0.941 (± 0.006) 0.997 (± 0.056) 0.229 (± 0.010)
VI: DiagonalNormal 1e-4 1.000 (± 0.001) 3.416 (± 0.761) 1.602 (± 0.437) 0.943 (± 0.009) 0.997 (± 0.057) 0.229 (± 0.010)

VI: MultivariateNormal 1e-2 0.993 (± 0.007) 2.969 (± 1.089) 1.506 (± 0.659) 0.929 (± 0.007) 0.957 (± 0.048) 0.224 (± 0.010)
VI: MultivariateNormal 1e-3 0.996 (± 0.004) 3.140 (± 0.910) 1.570 (± 0.625) 0.934 (± 0.009) 0.971 (± 0.054) 0.225 (± 0.010)
VI: MultivariateNormal 1e-4 0.997 (± 0.007) 3.464 (± 0.791) 1.639 (± 0.426) 0.934 (± 0.005) 0.962 (± 0.049) 0.225 (± 0.010)

VI: Structured Normal 1e-2 0.998 (± 0.002) 3.005 (± 0.871) 1.481 (± 0.504) 0.947 (± 0.005) 1.003 (± 0.066) 0.230 (± 0.009)
VI: Structured Normal 1e-3 0.999 (± 0.001) 3.244 (± 0.665) 1.619 (± 0.559) 0.948 (± 0.007) 1.033 (± 0.078) 0.232 (± 0.009)
VI: Structured Normal 1e-4 0.999 (± 0.001) 3.119 (± 0.612) 1.487 (± 0.400) 0.943 (± 0.007) 0.998 (± 0.056) 0.229 (± 0.010)

VI: IAF 1e-2 0.939 (± 0.040) 2.836 (± 0.293) 1.247 (± 0.297) 0.944 (± 0.008) 1.518 (± 0.048) 1.332 (± 0.027)
VI: IAF 1e-3 0.927 (± 0.047) 2.758 (± 0.342) 1.195 (± 0.331) 0.949 (± 0.009) 1.560 (± 0.031) 1.392 (± 0.024)
VI: IAF 1e-4 0.842 (± 0.038) 2.862 (± 0.296) 1.281 (± 0.292) 0.943 (± 0.008) 1.493 (± 0.039) 1.302 (± 0.039)

Table 29: Results of VI methods with different learning rates on 10 synthetic and 10 real-world
datasets: Gaussian Mixture Model with K = 50 datapoints, L = 1 features (univariate case),
M = 5 components, λ = 3, and αdir = 1 (scenario 1). Comparison to HMC samples.All results
within two standard errors of the best average result are marked in bold.

Model LR Synthetic Evaluation Real-World Evaluation
C2ST (↓) MMD (↓) W2 (↓) C2ST (↓) MMD (↓) W2 (↓)

Laplace Approximation 1e-2 1.000 (± 0.000) 4.380 (± 1.386) 4.838 (± 1.521) 1.000 (± 0.000) 4.588 (± 1.229) 6.813 (± 1.697)
Laplace Approximation 1e-3 1.000 (± 0.000) 3.893 (± 1.433) 4.010 (± 1.233) 1.000 (± 0.000) 4.699 (± 1.193) 6.986 (± 0.981)
Laplace Approximation 1e-4 1.000 (± 0.000) 4.463 (± 1.117) 4.610 (± 1.027) 1.000 (± 0.000) 4.710 (± 1.205) 6.995 (± 0.869)

VI: DiagonalNormal 1e-2 0.979 (± 0.138) 1.370 (± 1.394) 3.522 (± 1.634) 0.985 (± 0.030) 2.384 (± 1.318) 6.202 (± 1.747)
VI: DiagonalNormal 1e-3 0.990 (± 0.096) 1.454 (± 1.454) 3.650 (± 1.743) 0.999 (± 0.002) 3.026 (± 0.977) 6.959 (± 0.890)
VI: DiagonalNormal 1e-4 1.000 (± 0.001) 2.390 (± 1.177) 4.903 (± 1.278) 0.998 (± 0.007) 2.830 (± 1.001) 7.007 (± 0.987)

VI: MultivariateNormal 1e-2 0.978 (± 0.119) 1.351 (± 1.410) 3.474 (± 1.604) 0.987 (± 0.024) 2.375 (± 1.304) 6.189 (± 1.761)
VI: MultivariateNormal 1e-3 0.980 (± 0.089) 1.476 (± 1.480) 3.681 (± 1.734) 0.997 (± 0.008) 2.808 (± 1.014) 6.964 (± 0.944)
VI: MultivariateNormal 1e-4 1.000 (± 0.001) 2.114 (± 1.140) 4.532 (± 1.187) 0.997 (± 0.007) 2.799 (± 1.012) 6.963 (± 0.950)

VI: Structured Normal 1e-2 0.958 (± 0.129) 1.246 (± 1.615) 3.225 (± 1.701) 1.000 (± 0.001) 2.911 (± 0.753) 6.675 (± 1.403)
VI: Structured Normal 1e-3 0.979 (± 0.092) 1.593 (± 1.561) 3.395 (± 1.440) 0.998 (± 0.007) 2.882 (± 1.070) 6.968 (± 0.941)
VI: Structured Normal 1e-4 1.000 (± 0.001) 2.270 (± 1.133) 4.733 (± 1.162) 0.997 (± 0.009) 2.802 (± 1.012) 6.953 (± 0.948)

VI: IAF 1e-2 0.998 (± 0.003) 1.539 (± 0.691) 8.371 (± 0.750) 0.987 (± 0.022) 1.376 (± 0.799) 8.082 (± 1.352)
VI: IAF 1e-3 0.997 (± 0.004) 1.443 (± 0.564) 8.517 (± 0.820) 0.988 (± 0.020) 1.304 (± 0.855) 8.425 (± 1.281)
VI: IAF 1e-4 0.997 (± 0.004) 1.602 (± 0.628) 7.888 (± 0.783) 0.987 (± 0.020) 1.380 (± 0.848) 7.729 (± 1.322)
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J PREPROCESSING OF THE REAL-WORLD DATASETS

The real-world datasets considered for the evaluation of all methods are proposed in a benchmark
study by Grinsztajn et al. (2022). We standardize all features, scale and shift the target such that
it has the mean and variance implied by the prior structure of the respective generative model.
Furthermore, for the GLM scenarios, we apply a Yeo-Johnson transform on the target variable (Yeo
& Johnson, 2000) before applying the scaling. In cases where the number of features in the real-
world dataset exceeds that of our scenario, we select those features with the most distinct values in
the original dataset and randomly sub-sample the appropriate number of samples from the real-world
datasets for our experiments.

K BACKGROUND ON CONDITIONAL FLOW-MATCHING

Flow matching, initially used in image synthesis leverages normalizing flows (Papamakarios et al.,
2021b) to model arbitrary distributions. Continuous normalizing flows (Lipman et al., 2022) have
emerged as a potent tool for modeling complex distributions. For example, recent advancements
have shown its effectiveness in state-of-the-art image generation, outperforming diffusion-based
methods in likelihood and sample quality on ImageNet (Lipman et al., 2022). Techniques like Flow-
Turbo have accelerated class-conditional and text-to-image generation, setting new benchmarks
(Zhao et al., 2024). Additionally, applying flow matching in latent spaces of pretrained autoen-
coders has enhanced computational efficiency and scalability for high-resolution image synthesis
(Dao et al., 2023). Similarly, flow-based models have been successfully applied to protein structure
prediction, improving accuracy and efficiency in modeling complex protein conformations (Yim
et al., 2024; 2023).

In the area of simulation-based inference, Wildberger et al. (2024) introduce the idea of using con-
tinuous normalizing flows in order to efficiently approximate complex posterior distributions. In
particular, they apply the framework to the field of gravitational-wave inference, substantially out-
performing approaches based on discrete flows. Furthermore, they demonstrate good performance
on the existing SBI-Benchmark (Lueckmann et al., 2021) using a simple MLP-based architecture.
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