
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Rethinking Node-wise Propagation for Large-scale Graph
Learning

Anonymous Author(s)
∗

ABSTRACT
Scalable graph neural networks (GNNs) have emerged as a promis-

ing technique, which exhibits superior predictive performance and

high running efficiency across numerous large-scale graph-based

web applications. However, (i) Most scalable GNNs tend to treat

all nodes in graphs with the same propagation rules, neglecting

their topological uniqueness; (ii) Existing node-wise propagation

optimization strategies are insufficient on web-scale graphs with

intricate topology, where a full portrayal of nodes’ local properties

is required. Intuitively, different nodes in web-scale graphs possess

distinct topological roles, and therefore propagating them indis-

criminately or neglect local contexts may compromise the quality of

node representations. This intricate topology in web-scale graphs

cannot be matched by small-scale scenarios. To address the above

issues, we propose Adaptive Topology-aware Propagation (ATP),

which reduces potential high-bias propagation and extracts struc-

tural patterns of each node in a scalable manner to improve running

efficiency and predictive performance. Remarkably, ATP is crafted

to be a plug-and-play node-wise propagation optimization strategy,

allowing for offline execution independent of the graph learning

process in a new perspective. Therefore, this approach can be seam-

lessly integrated into most scalable GNNs while remain orthogonal

to existing node-wise propagation optimization strategies. Exten-

sive experiments on 12 datasets, including the most representative

large-scale ogbn-papers100M, have demonstrated the effectiveness

of ATP. Specifically, ATP has proven to be efficient in improving the

performance of prevalent scalable GNNs for semi-supervised node

classification while addressing redundant computational costs.

CCS CONCEPTS
• Computing methodologies → Semi-supervised learning
settings; Neural networks.

KEYWORDS
Graph Neural Networks; Scalability; Semi-Supervised Learning

ACM Reference Format:
Anonymous Author(s). 2018. Rethinking Node-wise Propagation for Large-

scale Graph Learning. In Proceedings of Make sure to enter the correct con-
ference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Recently, the rapid growth of web-scale graph mining applications

has driven needs for efficient analysis tools to tackle scalability

challenges in the real world, including social analysis [45, 72, 73]

and e-commerce recommendations [6, 59, 61]. Scalable graph neural

networks (GNNs), as a new machine learning paradigm for large-

scale graphs, have inspire significant interests due to their higher

efficiency than vanilla GNNs in node-level [31, 57, 71], edge-level [5,

50, 68], and graph-level [52, 62, 74] downstream tasks.

Fundamentally, the core of GNN’s scalability lies in the simpli-

fied aggregators or weight-free deep structural encoding. Therefore,

existing scalable GNNs fall into two categories: (i) Sampling-based

methods [13, 17, 28, 33, 67] employ well-designed strategies to se-

lect suitable graph elements (e.g. nodes or edges) for computation-

friendly message aggregators. Although they are effective, these

approaches are imperfect because they still face high communica-

tion costs in sampling and the sampling quality highly influences

the performance. As a result, many recent advancements achieve

scalability by decoupling paradigm, orthogonal to the sampling

technologies. (ii) Decouple-based methods [14, 24, 26, 53, 76] treat

weight-free feature propagation as pre-process and combine prop-

agated results with reasonable learnable architectures to achieve

efficient training. For example, SGC [57] combines propagated node

features with simple linear regression and achieves performance

comparable to carefully designed GNNs. In weight-free feature

propagation, neighbors’ features are iteratively combined with the

current node. This relies on the homophily assumption [43, 48, 58],

where connected nodes share similar features and labels, thereby

helping predict node labels. We refer to the feature propagation

that does not distinguish between nodes as graph propagation.

Despite their effectiveness, most of the aforementioned scalable

GNNs fail to consider the unique roles played by each node in the

topology. Instead, they employ fixed propagation rules for compu-

tation. Therefore, there is still room for refining the granularity of

graph propagation. To improve it, NDLS [70] proposes node-wise

propagation (NP), which quantifies the difference between the cur-

rent propagated node features and the theoretically over-smoothed

node features obtained by infinite step propagation. This enables

custom propagation steps for each node. Building upon this concept

of NP, NDM [32] introduces an extra power parameter to extend

the graph heat diffusion function DGC [55], separating the termi-

nal time from the propagation steps for each node. SCARA [41]

further extends NP by the node feature-push operations, achieving

attribute mining for each node. Despite offering practical NP strate-

gies, these methods rely on spectral analysis and the generalized

steady-state distribution of the fixed propagation operator to cus-

tomize the rigid NP strategy from a global perspective. Therefore,

these methods often yield high-bias results due to over-reliance on

the coarse propagation operator in web-scale graphs with intricate

topology. Meanwhile, real-world node classification on web-scale

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(b) ogbn-products(a) Cora
Figure 1: Performance in the Cora (2.7k nodes) and ogbn-
products (2449k nodes). The x-axis is the training epoch. The
red line denotes the baseline performance for all nodes.

graphs with intricate topology heavily relies on the local node

context (LNC), which refers to a general characterization of nodes

based on their features, positions in the graph, and local topological
structure. Regrettably, existing methods ignore this crucial factor.

To further illustrate, we utilize the node degree to represent

the LNC, which directly influences the local connectivity of nodes.

Specifically, in Cora and ogbn-products, we classify nodes with

degrees less than or equal to 3 and 5 as Low-Deg and other nodes as

High-Deg, where Low-Deg at the graph’s periphery with fewer con-

nections and High-Deg located at the center of densely connected

communities. Subsequently, in Fig. 1, we use various propagation

operators combined with 3-layer SGC to evaluate the predictive

performance of nodes with different LNC (i.e. node degrees) in

these two datasets. The related notations can be referred to Sec. 2.1.

Intuitively, different propagation operators capture knowledge

based on nodes’ LNC from distinct perspectives during message

passing , resulting in the different node representations for clas-

sification: (i) the symmetric normalization propagation operator

D̂−1/2ÂD̂−1/2 [38] considers both current node and neighbors’ LNC
to perform unbiased message passing; (ii) the random walk-based

propagation operator D̂−1Â [67] only considers current node LNC,

leading to a more inclusive knowledge acquisition from its neigh-

bors without additional normalization; (iii) the reverse random

walk-based operator ÂD̂−1 [60] only considers neighbors’ LNC, en-
hancing the capacity to discriminate between neighbors to achieve

fine-grainedmessage aggregation. The following analysis illustrates

two key insights acquired through examining experimental results.

Key Insight 1: From the global perspective, we need to focus on
High-Deg in web-scale scenarios to mitigate the negative impacts
of high-bias propagation to ensure consistent performance. As de-
picted in Fig. 1, we observe that the Low-Deg performance remains

consistent (same trends in three operators) and stable (similar per-

formance to the red baseline) across two datasets. In contrast, the

inconsistent and unstable High-Deg performance has prompted us

to conduct a more in-depth analysis with different graph scales.

Research on complex networks [16, 20] indicates that the topol-

ogy of large-scale graphs is highly intricate, which results in the

emergence of densely connected communities with indiscernible

High-Deg. Consequently, in ogbn-products, densely connected com-

munities possess more intricate and ambiguous LNC, misleading

High-Deg during graph propagation (i.e. high-bias propagation).

This explains why considering the LNC of neighbors through ÂD̂−1

can yield better High-Deg performance but worse than baseline. In

contrast, the topology of small-scale Cora is relatively straightfor-

ward, enabling High-Deg to outperform the baseline by aggregating

more favorable messages. This explains why D̂−1/2ÂD̂−1/2 is bene-
ficial for predicting High-Deg, where both the knowledge of current

node and its neighbors hold equal significance.

Key Insight 2: From the local perspective, leveraging appropriate
propagation operators across different scenarios to effectively capture
relevant LNC can improve node predictive performance. After analyz-
ing High-Deg in graphs of different scales, we conduct a thorough

examination of the roles played by different propagation operators

in consistent performance trends observed for Low-Deg. As de-

picted in small-scale Cora, the success of D̂−1Â in Low-Deg stems

from its enhanced focus on aggregating neighbor features, which

breaks potential feature sparsity issues caused by fewer neighbors.

In contrast, D̂−1/2ÂD̂−1/2 and ÂD̂−1 apply progressively enhanced
normalization to propagated messages based on neighbors’ LNC,

thereby constraining the aggregation of knowledge from Low-Deg

neighbors. This is also applicable to large-scale scenarios in Fig. 1(b).

Motivated by the above key insights, in this paper, we propose

Adaptive Topology-aware Propagation (ATP), which offers a plug-

and-play solution for existing GNNs. Specifically, ATP first iden-

tifies potential high-bias propagation through graph propagation

analysis and then employs a masking mechanism to regularize the

node-wise propagation mechanisms (motivated by Key Insight 1).

After that, ATP employs a general encoding approach to represent

node-dependent LNC without learning, which is then used to tailor

propagation rules for each node (motivated by Key Insight 2).

Our contributions. (1)New Perspective.To the best of our knowl-
edge, this work is the first to address the adverse impact of in-

tricate topology in web-scale graph mining applications on the

semi-supervised node classification paradigm, providing valuable

empirical analysis. (2)New Method.Wepropose ATP, a user-friendly

and flexible NP optimization strategy. It effectively mitigates the

high-bias propagation caused by intricate topology and employs a

weight-free approach to represent the LNC of different nodes, thus

improving most scalable GNNs. Importantly, ATP is orthogonal to

the existing NP optimization strategies. (3) SOTA Performance. We

conduct experiments on prevalent scalable GNNs and 12 benchmark

datasets including the representative large-scale ogbn-papers100M.

Empirical results demonstrate that ATP has a significant positive

impact on existing scalable GNNs (up to 4.96% higher). Furthermore,

when combined with existing NP optimization strategies, it exhibits

a complementary effect, resulting in additional performance gains.

2 PRELIMINARIES
2.1 Problem Formulation
Consider a graph G = (V, E) with |V| = 𝑛 nodes and |E | = 𝑚

edges, the adjacency matrix (including self-loops) is Â ∈ R𝑛×𝑛 , the
feature matrix is X = {𝑥1, . . . , 𝑥𝑛} in which 𝑥𝑣 ∈ R𝑓 represents

the feature vector of node 𝑣 , and 𝑓 represents the dimension of the

node attributes. Besides, Y = {𝑦1, . . . , 𝑦𝑛} is the label matrix, where

𝑦𝑣 ∈ R |Y | is a one-hot vector and |Y| represents the number of

the classes. The semi-supervised node classification task is based

on the topology of labeled setV𝐿 and unlabeled setV𝑈 , and the

nodes inV𝑈 are predicted with the model supervised byV𝐿 .
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

2.2 Scalable Graph Neural Networks
Motivated by the spectral graph theory and deep neural networks,

GCN [38] simplifies the topology-based convolution operator [4]

by the first-order approximation of Chebyshev polynomials [37].

The forward propagation of the 𝑙-th layer in GCN is formulated as

X(𝑙) = 𝜎 (ÃX(𝑙−1)W(𝑙)), Ã = D̂−1/2ÂD̂−1/2, (1)

where D̂ represents the degree matrix of Â, W represents the train-

able weights, and 𝜎 (·) represents the non-linear activation function.

Intuitively, GCN aggregates the neighbors’ representation embed-

dings from the (𝑙 −1)-th layer to form the representation of the

𝑙-th layer. Such a simple paradigm is proved to be effective in var-

ious graph-based downstream tasks [25, 35, 64]. However, GCN

suffers from severe scalability issues since it executes the feature

propagation and transformation recursively and is trained in a full-

batch manner. To avoid the recursive neighborhood over expansion,

sampling and decouple-based approaches have been investigated.

Sampling-basedmethods.Regarding node-level sampling tech-

niques, GraphSAGE [28] employs random selection to extract a

fixed-size set of neighbors for computation within each mini-batch.

VR-GCN [13] delves into node variance reduction, achieving size

reduction in samples at the expense of additional memory usage.

For layer-level sampling, FastGCN [12] proposes importance-based

neighbor selection to minimize sampling variance. AS-GCN [33]

accounts for correlations among neighbors sampled from upper

layers, introducing an adaptive layer-level sampling method for ex-

plicit variance reduction. Meanwhile, LADIES [77] adheres to layer

constraints, crafting a neighbor-dependent and importance-based

sampling approach on a per-layer basis. As for the graph-level sam-

pling strategies, Cluster-GCN [17] initially clusters nodes before

extracting nodes from clusters, while GraphSAINT [67] directly

samples subgraphs for mini-batch training. GraphCoarsening [34]

creates a coarse-grained graph with a reduced number of nodes

and edges, derived from the original data. Subsequently, a GNN is

trained on this coarser graph and transferred to the original graph

for inference. ShaDow [66] first extracts a local subgraph for target

entities and employs GNN of arbitrary depth on the subgraph.

Decouple-based methods. Recent studies [69] have observed
that non-linear feature transformation contributes little to perfor-

mance as compared to graph propagation. Thus, a new direction

for scalable GNN is based on the SGC [57], which reduces GNNs

into a linear model operating on 𝑘-layer propagated features

X(𝑘) = Ã𝑘X(0) , Y = softmax

(
WX(𝑘)

)
, (2)

where X(0) = X and X(𝑘) is the 𝑘-layer propagated features. As

the propagated features X(𝑘) can be precomputed, SGC is easy to

scale to large graphs. Inspired by it, SIGN [26] proposes to con-

catenate the learnable propagated features

[
X(0)W0, . . . ,X(𝑘)W𝑘

]
.

S
2
GC [76] proposes to average the propagated results from the per-

spective of spectral analysis X(𝑘) =
∑𝑘
𝑙=0

Ã𝑙X(0) . GBP [14] utilizes

the 𝛽 weighted manner X(𝑘) =
∑𝑘
𝑙=0

𝑤𝑙 Ã𝑙X(0) ,𝑤𝑙 = 𝛽 (1 − 𝛽)𝑙 .
GAMLP [71] achieves information aggregation based on the atten-

tion mechanisms X(𝑘) = Ã𝑘X(0) ∥∑𝑘−1
𝑙=0

𝑤𝑙X(𝑙) , where attention
weight 𝑤𝑙 has multiple calculation versions. GRAND+ [24] pro-

poses a generalized forward push propagation algorithm to obtain

P̃, which is used to approximate 𝑘-order PageRank weighted Ã with

higher flexibility and efficiency. Then it obtains propagated results

X̃ = P̃WX(0) with P̃-based data augmentation and learnable W.

Node-wise Propagation Optimization Strategies. Despite
the aforementioned scalable GNNs utilizing computation-friendly

message aggregators (i.e. sampling-based methods) or decoupling

paradigms to extend learnable architectures to web-scale graphs

with millions of nodes, the majority of existing methods still ad-

here to fixed propagation rules. This approach, which does not

discriminate between nodes, inadvertently overlooks the unique-

ness of each node within the topology-based propagation process.

Hence, recent studies have introduced fine-grained 𝑘-step NP opti-

mization strategies in a scalable manner to improve the predictive

performance of scalable GNNs for web mining applications. The

optimization paradigm can be formally expressed as

X̃ =

𝑘∑︁
𝑙=0

Π · L · H · X [row, col] , Π =

𝑙∑︁
𝑖=0

𝑤𝑖 ·
(
D̂𝑟−1ÂD̂−𝑟

)𝑖
,

L = Diag {I [𝑙𝑢] : ∀𝑢 ∈ V} , 𝑘 = max {𝑙𝑢 ,∀𝑢 ∈ V} ,

H =
𝜔𝑙

(𝑙 !)𝜌 ·𝐶 , 𝐶 =

∞∑︁
𝑙=0

𝜔𝑙

(𝑙 !)𝜌 ← 𝑒−𝜔
𝜔𝑙

𝑙 !
≈ 𝑒−𝑡

∞∑︁
𝑖=0

𝑡𝑖

𝑖!
,

(3)

where propagated feature X̃ is obtained by the various NP optimiza-

tion perspectives (i.e. L, H, Π, and X [row, col]). In other words, the

NP optimization perspectives are diverse. NDLS [70] and NDM [32]

customize node-wise propagation step, where 𝑙𝑢 represents the

propagation step for node 𝑢, while L denotes the diagonal matrix

composed of indicator vectors I, used to compute the appropriate

propagation results, i.e., I [𝑙𝑢] = 1 if 𝑙 ≤ 𝑙𝑢 ≤ 𝑘 and I [𝑙𝑢] = 0 oth-

erwise. As we know, by solving the differential function of Graph

Heat Equation H at time 𝑡 defined by [18], GDC [27] and DGC [55]

obtain the underlying Heat Kernel PageRank parameterized by 𝜔

for fine-grained NP optimization. Notably, we focus solely on de-

scribing the heat kernel function used for propagation, omitting the

node features X. Additionally, for the sake of reader-friendliness,

we present H and Π in a decoupled manner. Building upon this,

NDM introduces normalization factor 𝐶 and power parameter 𝜌 to

improve its expressiveness and generalizability, which can control

change tendency for general purposes. Furthermore, SCARA [41]

achieves the discovery of potential correlations between nodes by

performing fine-grained feature-push operations, transforming the

computation entities from X [row, :] to X [:, col].
Despite their effectiveness, essential propagation rules are ig-

nored. Specifically, Π is the unified graph propagation equation,

which serves as an effective paradigm to model various node prox-

imity measures and basic GNN propagation formulas (i.e. ÃW(𝑙) in
GCN and Ã𝑙 in SGC). For a given node 𝑢, a node proximity query

yields Π(𝑣) that represents the importance of 𝑣 with respect to 𝑢.

It captures intricate structural insights from the 𝑙-hop neighbors,

which is guided by weight sequence𝑤𝑖 and probabilities obtained

from a 𝑙-step propagation that originates from a source node 𝑢

and extends to every node within the graph. More deeply, the

propagation kernel coefficient 𝑟 ∈ [0, 1] not only affects transport

probabilities during the propagation for modeling node proximity

but also captures pivotal LNC knowledge detailed in Sec. 1 (i.e. three

propagation operators obtained by setting 𝑟 = 0, 𝑟 = 1/2, 𝑟 = 1).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

3 ATP FRAMEWORK
As a plug-and-play node-wise propagation optimization strategy,

the computation of ATP is independent of the graph learning and

remains orthogonal to existing NP methods. It commences by em-

ploying a masking mechanism for correcting potential high-bias

propagation from a global perspective. Then, ATP represents the

LNC to custom propagation rules for each node in a weight-free

manner from a local perspective. Based on this, ATP serves to curtail

redundant computations and provides performance gains by high-

bias propagation correction and LNC encoding for existing scalable

GNNs. The complete algorithm can be referred to as Algorithm 1.

3.1 High-bias Propagation Correction
Propagation Operator. For existing GNNs, numerous variations

of the Laplacian matrix have been widely employed as propagation

operators, where P = D̂−1Â stands out due to its intuitive and ex-

plainable nature. Let 1 = 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑛 > −1 be the eigenval-
ues of P. Suppose the graph is connected, for any initial distribution

𝜋0, let 𝜋̃ (𝜋0) = lim𝑘→∞ 𝜋0P𝑘 , where 𝜋̃ (𝜋0) represents the stable
state under infinite propagation. Then according to [21], we have

𝜋̃𝑖 = 𝜋̃ (𝜋0)𝑖 = 1

𝑛

∑𝑛
𝑗=1 P𝑗𝑖 , where 𝜋̃𝑖 is the 𝑖-th component. If P is

not connected, we can divide P into connected blocks. Then for each

blocks 𝐵𝑔 , there always be 𝜋̃ (𝜋0)𝑖 = 1

𝑛𝑔

∑
𝑗∈𝐵𝑔 P𝑗𝑖 ·

∑
𝑗∈𝐵𝑔 (𝜋0) 𝑗 ,

where𝑛𝑔 is the number of nodes in𝐵𝑔 . Tomake the following deriva-

tion more reader-friendly, we assume P is connected. Therefore, 𝜋̃

is independent to 𝜋0, thus we replace 𝜋̃ (𝜋0) by 𝜋̃ . To investigate

the fine-grained graph propagation, we have the following lemmas

Lemma 1. The difference between the stable state and 𝑘-step prop-
agated results represents the upper bound of the convergence rate.����(P𝑘𝑒𝑖) 𝑗 − 𝜋̃ 𝑗 ���� ≤

√︄
˜𝑑 𝑗

˜𝑑𝑖
𝜆𝑘
2
, (4)

where ˜𝑑 denotes the degree of node plus 1 (to include itself by self-loop).

Lemma 2. For a graph G = (V, E) with the average degree 𝑑G ,

we have 1 − Δ𝜆 = 𝑂

(
1/
√︁
𝑑G

)
, where Δ𝜆 is the spectral gap of G.

Global Graph Propagation. Fundamentally, the core of graph

propagation is the trade-off between the node-wise optimal con-

vergence diameters and over-smoothing. This optimal convergence

diameter indicates the receptive field required for generating the

most effective node representations, whereas exceeding this range

would lead to negative impacts due to over-smoothing. While some

methods propose node-adaptive 𝑘 for aggregating valuable informa-

tionwithin𝑘-hop neighbors, there are other pivotal factors that play

significant roles in achieving convergence. Therefore, we adopt 𝑘-

step propagation for all nodes and analyze the varying propagation

states from a global perspective to obtain the Theorem 1.

Theorem 1. The upper bound on the convergence rate of 𝑘-step
graph propagation hinges on quantifying the discrepancy between
the current state and the stable state, which is defined as

| |𝜋̃ − 𝜋𝑖 (𝑘) | |2 ≤
√︄

2𝑚 + 𝑛
˜𝑑𝑖

𝜆𝑘
2
, (5)

where the pivotal factors in striking a balance between effective con-
vergence and over-smoothing are the High-Deg in large-scale graphs.

Proof. To consider the impact of each node on the others sep-

arately, let 𝜋0 = 𝑒𝑖 , where 𝑒𝑖 is a one-hot vector with the 𝑖-th

component equal to 1. According to [19], we have Lemma 1.

Eq. (4) shows (P𝑘𝑒𝑖) 𝑗 symbols the 𝑗-th component of P𝑘𝑒𝑖 , where
the 𝑘-step propagation started from node 𝑖 . We denote P𝑘𝑒𝑖 as 𝜋𝑖 (𝑘),
then have the following total convergence rate variations of node 𝑖

| |𝜋̃ − 𝜋𝑖 (𝑘) | |22 =
𝑛∑︁
𝑗=1

(
𝜋̃ 𝑗 − 𝜋𝑖 (𝑘) 𝑗

)
2

≤
∑𝑛
𝑗=1

˜𝑑 𝑗

˜𝑑𝑖
𝜆2𝑘
2

| |𝜋̃ − 𝜋𝑖 (𝑘) | |2 ≤
√︄

2𝑚 + 𝑛
˜𝑑𝑖

𝜆2𝑘
2

=

√︄
2𝑚 + 𝑛

˜𝑑𝑖
𝜆𝑘
2
,

(6)

where𝑚 and 𝑛 represent the number of edges and nodes. The

above inequality indicates that the factors influencing the conver-

gence rate of propagation include the degree of the current node 𝑖

denoted as
˜𝑑𝑖 , the second largest eigenvalue 𝜆 determined by the

propagation operator, and the number of propagation step 𝑘 .

In addition to 𝑘 , the first influencing factor ˜𝑑𝑖 is determined by

the degree of the current node 𝑖 . Since ˜𝑑𝑖 ≥ 1 (with self-loop), it

has minimal influence on the upper bound of the convergence rate

for Low-Deg. In contrast,
˜𝑑𝑖 is directly associated with the densely

connected communities (i.e. High-Deg). This explains the greater

stability of the Low-Deg shown in Fig. 1 compared to the High-Deg.

Then, we delve into an in-depth analysis of 𝜆2, narrowing our focus

to the large-scale graphs. According to [19], we have Lemma 2.

The spectral gap Δ𝜆 denotes the difference between the magni-

tudes of the two largest eigenvalues of the propagation operator P,
where 𝜆1 = 1. Therefore, the sparse graphs (i.e. small-scale Cora)

with a small value of 𝑑G result in a relatively large value of 𝜆2,

indicating a faster convergence rate. Contrastingly, dense graphs

(i.e. large-scale ogbn-products) with a large value of 𝑑G yield a

smaller value of 𝜆2, presenting a unique convergence challenge.

Building upon this, we have determined that the key to achieving a

delicate equilibrium between efficient convergence and mitigating

over-smoothing resides within the High-Deg in large-scale graphs.

□

To improve convergence efficiency in large-scale scenarios, we

can tackle the problem from two perspectives (excluding 𝑘): (i) de-

creasing
˜𝑑𝑖 and (ii) amplifying 𝜆2. Fortunately, we found that by

appropriately reducing the degrees of High-Deg—thereby eliminat-

ing redundant connections—we can achieve both goals concurrently

while reducing the computational costs of existing scalable GNNs.

Masking for Correction. From a structure-aware perspective,

we analyze the global graph propagation through Theorem 1 and

find that encoding deep graph structural information of High-Deg

within large-scale graphs presents difficulties, which leads to a

struggled trade-off between effective convergence diameters and

over-smoothing. To break these limitations, formally, we sample

a subset of nodes
˜V ⊂ V and mask a certain percentage of their

one-hop connections with a mask token [MASK], i.e., topology

indicator vector I[𝑀] ∈ R𝑛 with 𝜃 -based node selection threshold.

Thus, the corrected topology [A𝑢] of node 𝑢 can be defined as:

[A𝑢] =
{
I[𝑀] ⊙ A𝑢 𝑢 ∈ ˜V
A𝑢 𝑢 ∉ ˜V

. (7)

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 Adaptive Topology-aware Propagation

Input: Graph G, mask ratio𝑀 , threshold 𝜃 , hyperparameters𝐶, 𝜖 ;

Output: Node-wise propagation operator Π̃
1: Select an appropriate 𝜃 by the truncation of 𝜖-based inequality

| |𝜋̃ − 𝜋𝑖 (𝑘) | |2 ≤ 𝜖 or handcraft manner;

2: Correct the high-bias propagation to obtain

[
Â
]
by Eq. (7);

3: Calculate the centrality-based position encoding

R𝑑𝑔 = 1 · [D] · Diag
(

1

𝑛−1 , . . . ,
1

𝑛−1

)
,

R𝑒𝑣 = 1/𝜆max · [A] · (u11, . . . , u1𝑛) (Selectively);
4: Calculate the connectivity-based local topology encoding

R𝑑𝑔 = I(N) · [D] · Diag
(

1

[𝑑]1 ([𝑑]1−1) , . . . ,
1

[𝑑]𝑛 ([𝑑]𝑛−1)

)
;

5: Get node-wise propagation kernel coefficients R̃ by Eq. (11);

6: Π̃ =
∑𝑙
𝑖=0𝑤𝑖 ·

([
D̂
] R̃−1 [

Â
] [

D̂
]−R̃

)𝑖
for each propagation step;

Furthermore, from a feature-oriented perspective, unlike fea-

tures in computer vision and natural language processing (i.e. high-

resolution images and rich texts), graph learning often involves

sparsely informative features (e.g. one-hot vectors). In large-scale

graphs, disrupted homophily assumptions of High-Deg caused by

intricate topology lead to the connected neighbors diverging from

the current node. Consequently, these sparsely informative High-

Deg struggle to maintain their uniqueness during heterophilous

message aggregation. Fortunately, Eq. (7) enhances the robustness

of High-Deg by regularizing the connection of misleading messages.

3.2 Weight-free LNC Encoding
Based on the empirical study in Sec. 1, we highlight the influence of

LNC on node predictions. As stated, LNC is based on node features,
positions in the graph, and local topological structure. A natural solu-

tion is position encoding [9, 22, 40], which helps GNNs additionally

incorporate node positions. However, such segregated encoding

method could inadvertently lead to misaligned learning objectives

(i.e. positions and classifications), impacting the expressive capacity

of GNNs. Although attention-based graph transformers [8, 36, 42]

can mitigate this, they introduce extra computational costs, partic-

ularly concerning scalability when dealing with web-scale graphs.

Further analysis can be found in Sec. 4.2 and Appendix A.4-A.5.

Motivated by the Fig. 1 and D̂𝑟−1ÂD̂−𝑟 from Eq. (3), different

operators, guided by the propagation kernel coefficient 𝑟 , capture

LNC from different perspectives. Specifically, Low-Deg requires

smaller 𝑟 to avoid unnecessary normalization during aggregation,

acquiring more knowledge from neighbors. High-Deg benefit from

relatively larger 𝑟 , enhancing their capacity to discern neighbors.

Building upon these insights, we propose weight-free LNC en-

coding, which employs centrality and connectivity measures to

encode node positions and local topological structure in a weight-

free manner. Remarkably, this strategy seamlessly integrates into

feature-oriented scalable GNNs’ graph propagation equations and

coexists harmoniously with existing NP optimization strategies.

Given an undirected graph, the general node-adaptive propagation

kernel coefficients can be formulated as diagonal R =
∑𝐾
𝑘=1

𝛼𝑘P𝑘R0,

where P is the iteration matrix and R0 is the initial coefficients. We

use 𝐾 = 1 and high-bias propagation optimized P = [D] by default.

Centrality-based Position Encoding. In our implementation,

we employ degree and eigenvector centrality for encoding node

positions in the graph. In terms of degree-based position encoding,

nodes at the center of the network (i.e. High-Deg) indicate higher

influence during propagation corresponding to larger 𝑟 , where 𝑟 is

the optimized propagation kernel coefficient 𝑟 .

Degree

(
𝛼1 = 1,R0 = Diag

(
1

𝑛 − 1 , . . . ,
1

𝑛 − 1

))
:=

R𝑑𝑔 = 𝛼1 · [D] · R0 = Diag

(
[𝑑]1
𝑛 − 1 , . . . ,

[𝑑]𝑛
𝑛 − 1

)
.

(8)

For eigenvector-based position encoding, a node’s centrality de-

pends on its neighbors, which presents a unique spectral node po-
sitions in the topology. This implies that High-Deg within densely

connected communities possess higher influence, yielding larger 𝑟 .

Eigenvector (𝛼1 = 1/𝜆max, P = [A] ,R0 = (u11, . . . , u1𝑛)) :=

R𝑒𝑣 = Diag (𝛼1 · [A] ·R0)=Diag
(

1

𝜆max

· [A] · (u11, . . . , u1𝑛)
)
,
(9)

where the vector R0 is the eigenvector corresponding to the largest

eigenvalue 𝜆max of the optimized adjacency matrix [A]. Based on

the R𝑒𝑣 , High-Deg pulls 𝑟 − 1 closer to 0 to discern neighbors for

message aggregation, while Low-Deg pushes 𝑟 − 1 towards -1 to
acquire more neighbor knowledge. According to D̂𝑟−1ÂD̂−𝑟 from
Eq.(3), these trends satisfy the observations outlined in Sec.1.

As widely recognized, efficiently performing accurate eigende-

composition on web-scale graphs remains an open problem. How-

ever, we have opted to include R𝑒𝑣 as a component in our position

encoding strategy. This choice stems from the fact that eigenvec-

tors serve as spectral representations of nodes within the topology,

offering a precise depiction of a node’s position. Furthermore, we

can leverage numerical linear algebra techniques to rapidly approx-

imate solutions with error guaranteed [44, 47, 49]. Hence, under

affordable computational overhead, we propose to utilize both R𝑑𝑔
and R𝑒𝑣 to further improve performance. Alternatively, if compu-

tational constraints arise, selecting solely degree-based position

encoding remains a viable option. We further discuss this in Sec. 4.

Connectivity-based Local Topological Structure Encoding.
After that, ATP represents the local topological structure of each
node in the graph, which closely intertwines with the connectivity

of their neighbors and determines the unique propagation rules.

In other words, this reveals the localized connectivity patterns,

where stronger connectivity corresponds to larger 𝑟 , implying more

consideration of the intricate neighbors, and vice versa. For instance,

in social networks, nodes often form cohesive groups characterized

by a notably dense interconnection of ties. This tendency is usually

higher than the average probability of a random node pair [29, 56].

Therefore, we utilize local cluster connectivity with 𝛼1 = I(N) to
encode this local topological structure for each node in the graph,

Cluster

(
R0 = Diag

(
1

[𝑑]1 ([𝑑]1 − 1)
, . . . ,

1

[𝑑]𝑛 ([𝑑]𝑛 − 1)

))
:=

R𝑐𝑢 = 𝛼1 · [D] · R0 = Diag

(
[𝑑]1 · I(N1)
[𝑑]1 ([𝑑]1 − 1)

, . . . ,
[𝑑]𝑛 · I(N𝑛)
[𝑑]𝑛 ([𝑑]𝑛 − 1)

)
,

(10)

where N𝑖 denotes the one-hop neighbors of 𝑖 and indicator vectors

I (N𝑖) is used to compute the neighborhood connectivity of 𝑖 , i.e.,

I (N𝑖) = 2

��𝑒 𝑗𝑘 �� if 𝑣 𝑗 , 𝑣𝑘 ∈ N𝑖 , 𝑒 𝑗𝑘 ∈ E and I (N𝑖) = 0 otherwise.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Node-adaptive Propagation Kernel. After that, we obtain the

optimized propagation kernel coefficient, which is denoted as a

diagonal matrix R̃ ∈ R𝑛×𝑛 . Building upon this, the formal represen-

tation of node-wise propagation equation Π̃ through weight-free

LNC encoding combined with Eq. (3) is as follows

R̃ = 𝐶 ·
(
R𝑑𝑔 + R𝑒𝑣 + R𝑐𝑢

)
,

Π̃ =

𝑙∑︁
𝑖=0

𝑤𝑖 ·
([

D̂
] R̃−1 [

Â
] [

D̂
]−R̃

)𝑖
,

(11)

where 𝐶 is the normalization factor,

[
Â
]
is the topology with self-

loop after high-bias propagation correction, and

[
D̂
]
is the cor-

responding degree matrix. Remarkably, Π̃ can be seamlessly inte-

grated into any GNN dependent on graph propagation equations

(e.g. message-passing mechanisms) while maintaining orthogonal-

ity with existing NP strategies (independent of L, H, and X). Fur-

thermore, due to ATP directly optimizing the Π̃, its positive impact

on decouple-based scalable GNNs is particularly pronounced.

4 EXPERIMENTS
In this section, we first introduce experimental setups, including

datasets, baselines, and environments. More details can be found

in Appendix A.1-A.3. We aim to answer the following questions to

verify the effectiveness of our proposed ATP: Q1: How does ATP

perform in improving backbones? Meanwhile, can ATP coexist har-

moniously with existing NP optimization strategies? Q2: If ATP is

effective, what contributes to its performance gain for backbones?

Q3: If we insert ATP into the backbone, how does it affect the run-

ning efficiency? Q4: Compared to other NP optimization strategies,

how does ATP perform when applied to sparse web-scale graphs?

4.1 Experimental Setup
Datasets.We evaluate the performance of ATP under both trans-

ductive and inductive settings. For transductive settings, we conduct

experiments on citation networks (Cora, Citeseer, PubMed) [63],

user-item datasets (Amazon Computer, Amazon Photo), co-author

datasets (Coauthor CS, Coauthor Physics) [46], and OGB datasets

(ogbn-arxiv, ogbn-products, ogbn-papers100M) [30]. For inductive

settings, we perform experiments on Flickr and Reddit [67]. The

statistics and description details are summarized in Appendix A.1.

Baselines. We conduct experiments using the following backbone

GNNs: (i) Representative full-batch GNNs: GCN [38], GAT [51], GC-

NII [15], GATv2 [3]. (ii) Sampling-based GNNs: GraphSAGE [28],

Cluster-GCN [17], GraphSAINT [67], ShaDow [66]. (iii) Decouple-

basedGNNs: SGC [57], APPNP [39], PPRGo [2], GBP [14], SIGN [26],

S
2
GC [76], AGP [53], GAMLP [71], GRAND+ [24]. Based on this,

we compare ATP with existing NP optimization strategies, includ-

ing DGC [55], NDLS [70], NDM [32], and SCARA [41]. Although

GDC [27] and DGC both utilize heat diffusion function, we exclu-

sively focus on DGC, which exhibits superior performance. To alle-

viate the randomness and ensure a fair comparison, we repeat each

experiment 10 times for unbiased performance. Unless otherwise

stated, we adopt GAMLP as the backbone and eigenvector-based

LNC. The masking threshold 𝜃 is handcrafted with all nodes ranked

in the Top-10% degree and 20% random sampling of other nodes.

Hyperparameter Settings. The hyperparameters in the backbone

GNNs and NP optimization strategies are set according to the orig-

inal paper if available. Otherwise, we perform a hyperparameter

search via the Optuna [1]. For our proposed ATP, we explore the

optimized 𝜃 for masking mechanisms in a handcrafted manner,

which contains the selection ratios in all degree-ranked connected

densely nodes (Top-1%-20%) and the sampling ratio range for other

relatively sparse nodes is 0-0.5. The mask token [𝑀] and the nor-

malization factor 𝐶 are explored within the ranges of 0 to 1.

4.2 Performance Comparison
Backbone Improvement. To answer Q1, we present ATP’s opti-
mization results for full-batch GNNs, sampling, and decouple-based

scalable GNNs in Tables 1 and 2. Improvements highlighted in blue

and red demonstrate the impressive performance of ATP as a plug-

and-play NP optimization strategy. Building upon this, we observe

that ATP’s performance improvement is more pronounced in large-

scale graphs compared to small-scale graphs. This is attributed to

the fact that in large-scale graphs, ATP’s propagation correction

strategy masks more potential high-bias edges and LNC encoding

allows for finer-grained exploration of intricate topology.

Compared to Weighted Aggregation. In Table 1, GraphSAGE,

GAT, and GATv2 adopt well-known attention mechanisms based

on edges for weighted message aggregation (marked with *). This

node-pairs attention strategy is an additional alternative solution to

graph propagation equation (i.e. Π in Eq. (3)), making ATP cannot

coexist with these learnable aggregation strategy. It’s worth noting

that although these attention-based approaches intuitively have the

potential for better predictive performance, their limited receptive

fields due to first-order aggregation and the modeling complexity

imposed by intricate topologies often restrict their competitive

performance and scalability when dealing with web-scale graphs

(i.e. out-of-memory (OOM) error). Further detailed discuss about

attention methods and ATP can be found in Appendix A.4-A.5.

Compared to Existing NP Optimization Strategies. To answer

Q1 from the perspective of generalizability, we provide perfor-

mance gains brought by different NP optimization strategies for

backbones in Table 3 under both transductive and inductive settings.

We observe that ATP consistently produces competitive results in

the context of large-scale graph learning, thereby validating the

claims made in Sec. 1 that integrating high-bias propagation correc-

tion and LNC encoding can improve the comprehension of intricate

topologies. Meanwhile, SIGN★ and S
2
GC★ represent the best results

of integrating ATP with SCARA and NDM optimization strategies

by Eq. (3). We observe impressive results in their combination,

validating that ATP coexists harmoniously with existing methods.

4.3 Ablation Study and In-depth Analysis
To answer Q2, we investigate the contributions of high-bias prop-
agation correction (HPC), LNC encoding (LNC), and eigenvector-

based position encoding (Eigen) within LNC to ATP, which is shown

in Table. 4. In addition, we provide an in-depth analysis for them.

High-bias Propagation Correction. For HPC, it is applied to

reduce potential high-bias propagation through masking mecha-

nisms. Its primary goal is to improve running efficiency, reflected in

performance gains and reduced computational costs (see Sec. 3.1).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 1: Model performance. The blue and red colors are the improvement of small- and large-scale datasets from ATP.

Type Models Cora CiteSeer PubMed Photo Computer CS Physics arxiv products papers100M Improv.

Full-batch

GNNs

GCN 81.8±0.5 70.8±0.5 79.6±0.4 91.2±0.6 82.4±0.4 90.7±0.2 92.4±0.8 71.9±0.2 76.6±0.2 OOM ↑1.86%
⇑4.22%GCN+ATP 83.7±0.4 72.6±0.5 81.0±0.3 92.6±0.5 83.8±0.4 92.2±0.2 93.9±0.7 74.5±0.2 80.3±0.2 OOM

GCNII 83.2±0.5 72.0±0.6 79.8±0.4 91.5±0.8 82.6±0.5 91.0±0.3 92.8±1.2 72.7±0.3 79.4±0.4 OOM ↑1.71%
⇑4.45%GCNII+ATP 84.6±0.6 73.2±0.5 81.6±0.5 92.8±0.7 83.8±0.4 92.8±0.2 94.3±1.0 75.4±0.2 83.5±0.3 OOM

*GAT 82.2±0.7 71.3±0.7 79.4±0.5 91.0±0.8 81.8±0.5 90.2±0.3 91.8±1.0 71.5±0.1 OOM OOM -

*GATv2 82.8±0.8 71.5±0.8 79.3±0.4 91.5±0.6 82.5±0.5 91.3±0.4 92.2±1.1 72.8±0.2 OOM OOM -

Sampling

GNNs

*GraphSAGE 81.0±0.6 70.5±0.7 79.2±0.6 89.7±0.8 81.2±0.6 90.5±0.4 91.5±1.0 71.3±0.4 78.5±0.1 OOM -

Cluster-GCN 81.6±0.5 71.1±0.6 79.3±0.4 90.8±0.7 82.2±0.5 90.8±0.3 91.8±1.1 71.5±0.3 78.8±0.2 OOM ↑1.94%
⇑5.07%Cluster-GCN+ATP 83.4±0.6 73.5±0.5 80.7±0.5 92.3±0.6 83.8±0.5 92.0±0.3 93.4±1.0 74.4±0.3 83.6±0.2 66.4±0.2

GraphSAINT 81.3±0.5 71.5±0.6 79.3±0.5 90.5±0.8 81.6±0.5 90.4±0.3 92.0±1.2 71.9±0.3 80.3±0.3 OOM ↑2.06%
⇑4.20%GraphSAINT+ATP 83.5±0.5 73.3±0.7 81.0±0.4 92.0±0.7 83.6±0.6 91.8±0.2 93.6±1.0 74.9±0.2 83.7±0.4 67.2±0.2

ShaDow 81.4±0.7 71.6±0.5 79.6±0.5 90.8±0.9 82.0±0.6 91.0±0.3 92.2±1.0 72.1±0.2 80.6±0.1 67.1±0.2 ↑2.14%
⇑4.38%ShaDow+ATP 83.8±0.8 73.4±0.6 81.3±0.5 92.4±0.8 84.0±0.5 92.5±0.3 93.6±0.8 75.8±0.2 84.8±0.2 69.8±0.1

Table 2: Model performance on decoupled GNNs.

Models arxiv prodcuts papers100M Improv.

SGC 71.84±0.26 75.92±0.07 64.38±0.15 ⇑4.48%
SGC+ATP 74.47±0.21 82.06±0.10 67.25±0.12

APPNP 72.34±0.24 78.84±0.09 65.26±0.18 ⇑4.51%
APPNP+ATP 75.16±0.27 83.58±0.12 69.33±0.15

PPRGo 72.01±0.18 78.45±0.16 65.87±0.20 ⇑4.60%
PPRGo+ATP 74.56±0.24 83.88±0.12 69.45±0.16

GBP 72.13±0.25 78.49±0.15 64.10±0.18 ⇑4.30%
GBP+ATP 74.96±0.22 83.66±0.20 68.78±0.12

AGP 72.45±0.20 78.34±0.13 65.53±0.15 ⇑4.55%
AGP+ATP 75.08±0.16 83.58±0.16 69.16±0.18

GRAND+ 73.86±0.28 79.55±0.20 66.86±0.17 ⇑4.24%
GRAND++ATP 75.69±0.25 84.70±0.14 70.27±0.24

Table 3: Model performance with NP optimization strategies.

Model products papers100M Flickr Reddit

SIGN 79.26±0.1 65.34±0.2 52.46±0.1 93.41±0.0

SIGN+DGC 82.16±0.2 67.84±0.2 53.32±0.1 94.92±0.1

SIGN+NDLS 81.92±0.1 68.10±0.1 53.74±0.1 94.58±0.0

SIGN+NDM 82.48±0.2 68.45±0.1 53.95±0.1 95.32±0.1

SIGN+SCARA 82.20±0.2 67.91±0.2 54.18±0.2 94.64±0.1

SIGN+ATP 83.65±0.1 68.70±0.2 54.06±0.1 95.54±0.0
SIGN★ 83.95±0.2 69.24±0.2 54.83±0.2 96.08±0.1

S
2
GC 78.84±0.1 65.15±0.1 52.10±0.1 92.14±0.0

S
2
GC+DGC 81.75±0.1 67.42±0.2 53.24±0.1 94.22±0.1

S
2
GC+NDLS 82.18±0.2 67.86±0.1 53.68±0.1 94.10±0.1

S
2
GC+NDM 82.84±0.2 68.20±0.2 54.02±0.2 94.86±0.1

S
2
GC+SCARA 82.76±0.2 68.04±0.2 54.25±0.1 94.57±0.1

S
2
GC+ATP 82.32±0.1 68.10±0.1 54.48±0.1 95.28±0.0
S
2
GC★ 83.68±0.2 68.87±0.2 55.16±0.2 96.18±0.1

Therefore, HPC not only achieves an average improvement of 0.48%

but also offers a solution for enhancing model scalability. For in-

stance, in Table 1, HPC makes Cluster-GCN and GraphSAINT train-

able on ogbn-papers100M. More details can be found in Sec. 4.4.

Table 4: Ablation on transductive and inductive settings.

Model arxiv products Flickr Reddit

GCNII 72.74±0.3 79.43±0.4 53.11±0.1 93.65±0.1

GCNII+ATP 75.42±0.2 83.51±0.3 53.96±0.1 95.04±0.0

w/o HPC 75.04±0.4 82.97±0.4 53.68±0.2 94.76±0.1

w/o Eigen 74.83±0.3 82.72±0.3 53.55±0.1 94.65±0.0

w/o LNC 73.66±0.2 80.63±0.2 53.42±0.1 94.14±0.0

ShaDow 72.13±0.2 80.64±0.3 52.71±0.2 94.10±0.0

ShaDow+ATP 75.84±0.2 84.80±0.2 53.80±0.1 95.49±0.0

w/o HPC 75.37±0.3 84.04±0.2 53.48±0.2 95.02±0.1

w/o Eigen 75.04±0.2 83.85±0.3 53.28±0.1 94.84±0.1

w/o LNC 73.03±0.2 81.53±0.2 52.95±0.1 94.41±0.0

GAMLP 73.43±0.3 81.41±0.2 53.86±0.2 94.25±0.1

GAMLP+ATP 76.22±0.2 85.64±0.2 55.64±0.1 95.88±0.0

w/o HPC 75.73±0.3 84.96±0.3 54.85±0.2 95.50±0.1

w/o Eigen 75.69±0.2 84.85±0.3 54.47±0.1 95.33±0.1

w/o LNC 74.23±0.2 82.64±0.2 54.05±0.1 94.86±0.0

Building upon this, we further analyze HPC by the selection

ratio of High-Deg for masking in Fig. 2. The experimental results

indicate that as the masking rate increases from Top-1%, there is a

consistent improvement in performance. In most cases, we suggest

that select nodes with degrees in the Top-10%-15% of the degree

ranking (from high to low) for masking. Excessive masking nodes

may have a negative impact on predictions due to broken topology.

More results and discuss about HPC can be found in Appendix A.6.

Local Node Context Encoding. As mentioned in Sec.1, we aim

to customize propagation rules for each node in large-scale graphs

with intricate topologies, while adhering to the Π in Eq.(3). The key

insight is to focus on LNC composed of node features, positions in the
graph, and local topological structure, as it possesses unique prompts

that aid the model in node-level classification downstream task.

Experimental results in Table 4 confirm our claims, for instance,

LNC helps improve ShaDow’s performance on ogbn-products from

81.53 to 84.80. Moreover, Eigen, as a fine-grained position encoding

in the spectral domain, plays a significant role in performance gains.

Therefore, we suggest incorporating Eigen as part of LNC encoding,

with acceptable additional computational overhead (see Sec. 3.2).

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(b) Reddit(a) ogbn-products
Ranking of Node Degrees Ranking of Node Degrees

Figure 2: Predictive performance optimized by ATP.

(b) Flickr(a) ogbn-papers100M
Figure 3: Predictive performance with different kernels.

(b) Reddit

Reduce
Edges
1,685k

Reduce Edges 2,046k

Acc
94.6 Acc

94.4

(a) ogbn-papers100M

Reduce
Edges
253M

Reduce Edges 296M
Acc
67.3 Acc

67.0

Figure 4: Running times on large-scale graphs.

To further validate the effectiveness of LNC, we provide experi-

mental results in Fig. 3 using different propagation kernel coeffi-

cients. We observe that, in ogbn-papers100M consisting more High-

Deg, larger values of 𝑟 yield better results in general. Conversely,

in Flickr, smaller values of 𝑟 are recommended. In both cases, the

advantage of ATP-LNC is significant. Specifically, ATP employs

node-adaptive LNC encoding to capture topological distinctions

between nodes situated in different densities, thereby guiding the

NP process and achieving significant predictive performance.

4.4 Running Efficiency in Large-scale Graphs
To answer Q3, we present a visualization illustrating the impact

of ATP as a plug-and-play NP strategy on running efficiency for

backbone GNN in Fig. 4. In our report, the running efficiency encom-

passes both topology-related pre-processing and model training

time, the red text corresponds to the reduction in the number of

edges achieved by HPC, while the blue text represents the perfor-

mance influenced by Eigen. Based on this, we draw the following

conclusions: (i) HPC improves running efficiency by directly reduc-

ing potential high-bias edges. For instance, in SGC, HPC reduces

edges by 15.3% and 14.5% on ogbn-papers100M and Reddit. However,

for GAMLP, the optimized proportion of masked edges increases to

(a) Feature Sparsity (b) Edge Sparsity (b) Label Sparsity

Figure 5: Sparsity performance on ogb-products.

18.7% and 17.6%. This is because GAMLP utilizes a receptive field-

based attention mechanism, which reduces its reliance on intricate

topologies. Therefore, in some cases, overly dense connections can

cause negative impacts. (ii) While LNC introduces additional pre-

processing overhead, when not using Eigen, HPC further optimizes

the running efficiency for computationally complex scalable GNNs

such as GAMLP. Remarkably, lightweight LNC encoding strategies

(i.e. without Eigen) still exhibit robustness and competitive results

(67.3%-67.0% and 94.6%-94.4%) as a plug-and-play approach.

The above observations highlight that ATP can strike a bal-

ance between model running efficiency and predictive performance

through 𝜃 -based masking mechanisms and selective LNC encoding

strategies. This observation strongly underscores the exceptional

scalability of ATP and its ability to handle web-scale graphs.

4.5 Performance under Sparse Graphs
To answer Q4, the experimental results are presented in Fig. 5.

For stimulating feature sparsity, we assume that the feature repre-

sentation of unlabeled nodes is partially missing. In this case, NP

optimization strategies that rely on node representations like NDLS

and feature-push operations like SCARA are severely compromised.

Conversely, methods based on topology like heat diffusion such

as DGC and NDM, along with LNC encoding, exhibit robustness.

To simulate edge sparsity, we randomly remove a fixed percentage

of edges. Notably, since all NP optimization strategies rely on the

topology to custom propagation rules, their performance is not

optimistic under the edge sparsity setting. However, we observe

that ATP quickly recovers and exhibits with leading performance.

For stimulating label sparsity, we change the number of labeled

samples for each class and acquire the testing results with similar

trend as the feature-sparsity tests. Furthermore, the performance of

GAMLP★ in Fig. 5 once again demonstrates the positive coexistence

effect when seamlessly integrating our proposed ATP into other

optimization methods. Therefore, ATP comprehensively enhance

both the performance and robustness of the original backbone.

5 CONCLUSION
In this paper, we first provide a valuable empirical study that reveals

the uniqueness of intricate topology in web-scale graphs. Then,

we propose ATP, a plug-and-play NP optimization strategy that

can be seamlessly integrated into most GNNs to improve running

efficiency, reflected in performance gains and lower costs.

ATP aims to address scalability and adaptability challenges en-

countered by existing GNNs when being implemented in complex

web-scale graphs with intricate topologies. To further improve per-

formance, finer-grained HPC can be considered, such as identifying

edges (i.e. homophily or heterophily). Discovering isomorphism-

and kernel-based LNC encoding are promising directions as well.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, KDD. 2623–2631.

[2] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling Graph Neural Networks with Approximate PageRank. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD.

[3] Shaked Brody, Uri Alon, and Eran Yahav. 2022. How attentive are graph attention

networks? International Conference on Learning Representations, ICLR (2022).

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun. 2013. Spectral Networks and

Locally Connected Networks on Graphs. Computer Science (2013).
[5] Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. 2021. Line graph neural networks

for link prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2021).

[6] Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. 2023. LightGCL: Simple

Yet Effective Graph Contrastive Learning for Recommendation. In International
Conference on Learning Representations, ICLR.

[7] Cong Chen, Chaofan Tao, and Ngai Wong. 2021. Litegt: Efficient and lightweight

graph transformers. In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, CIKM. 161–170.

[8] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. 2020. Measuring

and relieving the over-smoothing problem for graph neural networks from the

topological view. In Proceedings of the AAAI conference on artificial intelligence,
AAAI, Vol. 34. 3438–3445.

[9] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware

transformer for graph representation learning. In International Conference on
Machine Learning, ICML. PMLR, 3469–3489.

[10] Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. 2022. Structure-aware

transformer for graph representation learning. In International Conference on
Machine Learning, ICML. PMLR, 3469–3489.

[11] Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. 2023. NAGphormer: A tok-

enized graph transformer for node classification in large graphs. In International
Conference on Learning Representations, ICLR.

[12] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph

convolutional networks via importance sampling. In International conference on
learning representations, ICLR.

[13] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic training of graph convolu-

tional networks with variance reduction. In International Conference on Machine
Learning, ICML.

[14] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and

Ji-RongWen. 2020. Scalable graph neural networks via bidirectional propagation.

Advances in Neural Information Processing Systems, NeurIPS 33 (2020), 14556–

14566.

[15] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.

Simple and deep graph convolutional networks. In International Conference on
Machine Learning, ICML.

[16] Qiong Chen, Ting-Ting Wu, and Ming Fang. 2013. Detecting local community

structures in complex networks based on local degree central nodes. Physica A:
Statistical Mechanics and its Applications 392, 3 (2013), 529–537.

[17] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.

2019. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, KDD. 257–266.

[18] Fan Chung. 2005. Laplacians and the Cheeger inequality for directed graphs.

Annals of Combinatorics 9 (2005), 1–19.
[19] Fan RK Chung. 1997. Spectral graph theory. Vol. 92. American Mathematical

Soc.

[20] Aaron Clauset. 2005. Finding local community structure in networks. Physical
review E 72, 2 (2005), 026132.

[21] H Dihe. 2010. An introduction to markov process in random environment [j].

Acta Mathematica Scientia 5 (2010).
[22] Vijay Prakash Dwivedi and Xavier Bresson. 2020. A generalization of transformer

networks to graphs. arXiv preprint arXiv:2012.09699 (2020).
[23] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and

Xavier Bresson. 2022. Graph neural networks with learnable structural and posi-

tional representations. In International Conference on Learning Representations,
ICLR.

[24] Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny

Kharlamov, and Jie Tang. 2022. Grand+: Scalable graph random neural networks.

In Proceedings of the ACM Web Conference, WWW. 3248–3258.

[25] Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface

prediction using graph convolutional networks. Advances in neural information
processing systems, NeurIPS 30 (2017).

[26] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael

Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural

networks. arXiv preprint arXiv:2004.11198 (2020).
[27] Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. 2019. Dif-

fusion Improves Graph Learning. Advances in neural information processing
systems, NeurIPS (2019).

[28] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. Advances in Neural Information Processing Systems,
NeurIPS (2017).

[29] Paul W Holland and Samuel Leinhardt. 1971. Transitivity in structural models

of small groups. Comparative group studies 2, 2 (1971), 107–124.
[30] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,

Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for

machine learning on graphs. Advances in neural information processing systems,
NeurIPS 33 (2020), 22118–22133.

[31] Youpeng Hu, Xunkai Li, Yujie Wang, Yixuan Wu, Yining Zhao, Chenggang Yan,

Jian Yin, and Yue Gao. 2021. Adaptive hypergraph auto-encoder for relational

data clustering. IEEE Transactions on Knowledge and Data Engineering (2021).

[32] Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang, and Xiaokui Xiao. 2023.

Node-wise Diffusion for Scalable Graph Learning. In Proceedings of the ACM
Web Conference, WWW. 1723–1733.

[33] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive sam-

pling towards fast graph representation learning. Advances in Neural Information
Processing Systems, NeurIPS 31 (2018).

[34] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. 2021.

Scaling up graph neural networks via graph coarsening. In Proceedings of the 27th
ACM SIGKDD conference on knowledge discovery & data mining, KDD. 675–684.

[35] Bowen Jin, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. 2020. Multi-

behavior recommendation with graph convolutional networks. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR. 659–668.

[36] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph structure learning for robust graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, KDD. 66–74.

[37] Peter Kabal and Ravi Prakash Ramachandran. 1986. The computation of line spec-

tral frequencies using Chebyshev polynomials. IEEE Transactions on Acoustics,
Speech, and Signal Processing 34, 6 (1986), 1419–1426.

[38] Thomas N Kipf andMaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In International Conference on Learning Representations,
ICLR.

[39] J. Klicpera, A. Bojchevski, and S Günnemann. 2019. Predict then Propagate: Graph

Neural Networks meet Personalized PageRank. In International Conference on
Learning Representations, ICLR.

[40] Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and

Prudencio Tossou. 2021. Rethinking graph transformers with spectral attention.

Advances in Neural Information Processing Systems, NeurIPS 34 (2021), 21618–

21629.

[41] Ningyi Liao, Dingheng Mo, Siqiang Luo, Xiang Li, and Pengcheng Yin. 2022.

SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization.

In International Conference on Very Large Databases, VLDB. 3240–3248.
[42] Xiaojun Ma, Qin Chen, Yi Wu, Guojie Song, Liang Wang, and Bo Zheng. 2023.

Rethinking Structural Encodings: Adaptive Graph Transformer for Node Classi-

fication Task. In Proceedings of the ACM Web Conference, WWW. 533–544.

[43] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. 2021. Is homophily a necessity

for graph neural networks? International Conference on Learning Representations,
ICLR (2021).

[44] Beresford N Parlett and David S Scott. 1979. The Lanczos algorithmwith selective

orthogonalization. Mathematics of computation 33, 145 (1979), 217–238.

[45] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. 2021. Graph neural networks

for friend ranking in large-scale social platforms. In Proceedings of the Web
Conference, WWW. 2535–2546.

[46] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan

Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[47] Horst D Simon. 1984. The Lanczos algorithm with partial reorthogonalization.

Mathematics of computation 42, 165 (1984), 115–142.

[48] Zixing Song, Xiangli Yang, Zenglin Xu, and Irwin King. 2022. Graph-based

semi-supervised learning: A comprehensive review. IEEE Transactions on Neural
Networks and Learning Systems (2022).

[49] Gilbert W Stewart. 1999. The QLP approximation to the singular value decom-

position. SIAM Journal on Scientific Computing 20, 4 (1999), 1336–1348.

[50] Qiaoyu Tan, Xin Zhang, Ninghao Liu, Daochen Zha, Li Li, Rui Chen, Soo-Hyun

Choi, and Xia Hu. 2023. Bring your own view: Graph neural networks for link

prediction with personalized subgraph selection. In Proceedings of the Sixteenth
ACM International Conference on Web Search and Data Mining, WSDM. 625–633.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[51] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Con-
ference on Learning Representations, ICLR.

[52] Cédric Vincent-Cuaz, Rémi Flamary, Marco Corneli, Titouan Vayer, and Nicolas

Courty. 2022. Template based graph neural network with optimal transport

distances. Advances in neural information processing systems, NeurIPS (2022).
[53] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du,

and Ji-Rong Wen. 2021. Approximate graph propagation. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, KDD.
1686–1696.

[54] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,

and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not

enough. Quantitative Science Studies 1, 1 (2020), 396–413.
[55] Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. Dissecting

the diffusion process in linear graph convolutional networks. Advances in Neural
Information Processing Systems, NeurIPS 34 (2021), 5758–5769.

[56] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature 393, 6684 (1998), 440–442.
[57] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian

Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning, ICML.

[58] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[59] Lianghao Xia, Chao Huang, Jiao Shi, and Yong Xu. 2023. Graph-less Collaborative

Filtering. In Proceedings of the ACM Web Conference, WWW. 17–27.

[60] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. 2018. Representation learning on graphs

with jumping knowledge networks. In International Conference on Machine Learn-
ing, ICML. PMLR, 5453–5462.

[61] Liangwei Yang, Shengjie Wang, Yunzhe Tao, Jiankai Sun, Xiaolong Liu, Philip S

Yu, and TaiqingWang. 2023. DGRec: GraphNeural Network for Recommendation

with Diversified Embedding Generation. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, WSDM. 661–669.

[62] Mingqi Yang, Yanming Shen, Rui Li, Heng Qi, Qiang Zhang, and Baocai Yin.

2022. A new perspective on the effects of spectrum in graph neural networks. In

International Conference on Machine Learning, ICML. PMLR, 25261–25279.

[63] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. 2016. Revisiting

Semi-Supervised Learning with Graph Embeddings. In International Conference
on Machine Learning, ICML. 40–48.

[64] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-

works for text classification. In Proceedings of the AAAI conference on artificial
intelligence, AAAI, Vol. 33. 7370–7377.

[65] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,

Yanming Shen, and Tie-Yan Liu. 2021. Do Transformers Really Perform Badly

for Graph Representation?. In Advances in Neural Information Processing Systems,
NeurIPS.

[66] Hanqing Zeng,Muhan Zhang, YinglongXia, Ajitesh Srivastava, AndreyMalevich,

Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen. 2021. Decoupling

the depth and scope of graph neural networks. Advances in Neural Information
Processing Systems, NeurIPS 34 (2021), 19665–19679.

[67] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor

Prasanna. 2020. Graphsaint: Graph sampling based inductive learning method.

In International Conference on Learning Representations, ICLR.
[68] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural

networks. Advances in neural information processing systems, NeurIPS (2018).
[69] Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu

Tao, Zhi Yang, and Bin Cui. 2022. PaSca: A Graph Neural Architecture Search

System under the Scalable Paradigm. In Proceedings of the ACM Web Conference,
WWW. 1817–1828.

[70] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen Ouyang, Yangyu Tao,

Zhi Yang, and Bin Cui. 2021. Node dependent local smoothing for scalable graph

learning. Advances in Neural Information Processing Systems, NeurIPS 34 (2021),
20321–20332.

[71] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu

Tao, Zhi Yang, and Bin Cui. 2022. Graph Attention Multi-Layer Perceptron.

Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, KDD (2022).

[72] Yanfu Zhang, Hongchang Gao, Jian Pei, and Heng Huang. 2022. Robust Self-

Supervised Structural Graph Neural Network for Social Network Prediction. In

Proceedings of the ACM Web Conference 2022. 1352–1361.
[73] Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. 2022. Improving social

network embedding via new second-order continuous graph neural networks.

In Proceedings of the 28th ACM SIGKDD conference on knowledge discovery and
data mining, KDD. 2515–2523.

[74] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu,

and Can Wang. 2019. Hierarchical graph pooling with structure learning. arXiv
preprint arXiv:1911.05954 (2019).

[75] Jianan Zhao, Chaozhuo Li, Qianlong Wen, Yiqi Wang, Yuming Liu, Hao Sun,

Xing Xie, and Yanfang Ye. 2021. Gophormer: Ego-graph transformer for node

classification. arXiv preprint arXiv:2110.13094 (2021).
[76] Hao Zhu and Piotr Koniusz. 2021. Simple spectral graph convolution. In Interna-

tional conference on learning representations, ICLR.
[77] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu.

2019. Layer-dependent importance sampling for training deep and large graph

convolutional networks. Advances in Neural Information Processing Systems,
NeurIPS 32 (2019).

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

A OUTLINE
The appendix is organized as follows:

A.1 Dataset Description

A.2 Compared Baselines

A.3 Experiment Environment

A.4 Weighted Aggregation and LNC Encoding

A.5 Graph Transformers and GCNII-based ATP

A.6 Masks in High-bias Propagation Correction

A.1 Dataset Description
The description of all datasets is listed below:

Cora, CiteSeer, and PubMed [63] are three citation network

datasets, where nodes represent papers and edges represent cita-

tion relationships. The node features are word vectors, where each

element indicates the presence or absence of each word in the paper.

Coauthor CS and Coauthor Physics [46] are co-authorship
graphs based on the Microsoft Academic Graph [54], where nodes

are authors, edges are co-author relationships, node features repre-

sent paper keywords, and labels indicate the research field.

Amazon Photo and Amazon Computers [46] are segments

of the Amazon co-purchase graph, where nodes represent items

and edges represent that two goods are frequently bought together.

Given product reviews as bag-of-words node features.

ogbn-arxiv and ogbn-papers100M [30] are two citation graphs

indexed by MAG [54]. Each paper comes with a 128-dimensional

feature vector obtained by averaging the embeddings of words

in its title and abstract. The embeddings of individual words are

computed by running the skip-gram model.

ogbn-products [30] is a co-purchasing network, where nodes
represent products and edges represent that two products are fre-

quently bought together. Node features are generated by extracting

bag-of-words features from the product descriptions followed by a

Principal Component Analysis to reduce the dimension to 100.

Flickr [67] dataset originates from the SNAP, where nodes repre-

sent images, and connected images from common properties. Node

features are 500-dimensional bag-of-words representations.

Reddit [28] dataset collected from Reddit, where 50 large com-

munities have been sampled to build a post-to-post graph, con-

necting posts if the same user comments on both. For features,

off-the-shelf 300-dimensional GloVe vectors are used.

A.2 Compared Baselines
To evaluate the effectiveness of different NP optimization strate-

gies, we utilize representative and scalable GNNs as benchmarks

to establish baseline performance.

GCN [38] introduces a novel approach to graphs that is based

on a first-order approximation of spectral convolutions on graphs.

This approach learns hidden layer representations that encode both

local graph structure and features of nodes.

GAT [51] utilizes attention mechanisms to quantify the impor-

tance of neighbors for message aggregation. This strategy enables

implicitly specifying different weights to different nodes in a neigh-

borhood, without depending on the graph structure upfront.

GCNII [15] incorporates initial residual and identity mapping.

Theoretical and empirical evidence is presented to demonstrate

how these techniques alleviate the over-smoothing problem.

GATv2 [3] introduces a variant with dynamic graph attention

mechanisms to improve GAT. This strategy provides better node

representation capabilities and enhanced robustness when dealing

with graph structure as well as node attribute noise.

GraphSAGE [28] leverages neighbor node attribute information

to efficiently generate representations. This method introduces a

general inductive framework that leverages node feature informa-

tion to generate node embeddings for previously unseen data.

Cluster-GCN [17] is designed for training with stochastic gra-

dient descent (SGD) by leveraging the graph clustering structure.

At each step, it samples a block of nodes that associate with a dense

subgraph identified by a graph clustering algorithm, and restricts

the neighborhood search within this subgraph.

GraphSAINT [67] is a inductive framework that enhances train-

ing efficiency through graph sampling. Each iteration, a complete

GCN is built from the properly sampled subgraph, which decouples

the sampling from the forward and backward propagation.

ShaDow [66] decouples the depth and scope of GNNs for infor-

mative representations in node classfication. This approach propose

a design principle to decouple the depth and scope of GNNs – to

generate representation of a target entity, where a properly ex-

tracted subgraph consists of a small number of critical neighbors,

while excluding irrelevant ones.

SGC [57] simplifies GCN by removing non-linearities and col-

lapsing weight matrices between consecutive layers. Theoretical

analysis show that the simplified model corresponds to a fixed

low-pass filter followed by a linear classifier.

APPNP [39] leverages the connection between GCN and PageR-

ank to develop an enhanced propagation method. This strategy

leverages a large, adjustable neighborhood for classification and

can be easily combined with any neural network.

PPRGo [2] proposes an efficient approximation of diffusion in

GNNs for substantial speed improvements and better performance.

This approach utilizes an efficient approximation of information

diffusion in GNNs resulting in significant speed gains while main-

taining competitive performance.

SIGN [26] introduces a novel, efficient, and scalable graph deep

learning architecture that eliminates the need for graph sampling.

This method sidesteps the need for graph sampling by using graph

convolutional filters of different size that are amenable to efficient

pre-computation, allowing extremely fast training and inference.

S2GC [76] introduces a modified Markov Diffusion Kernel for

GCN, which strikes a balance between low- and high-pass filters to

capture the global and local contexts of each node.

GBP [14] introduces a scalable GNN that employs a localized

bidirectional propagation process involving both feature vectors

and the nodes involved in training and testing. Theoretical analysis

shows that GBP is the first method that achieves sub-linear time

complexity for both the pre-computation and the training phases.

AGP [53] proposes a unified randomized algorithm capable of

computing various proximity queries and facilitating propagation.

This method provides a theoretical bounded error guarantee and

runs in almost optimal time complexity.

GAMLP [71] is designed to capture the inherent correlations

between different scales of graph knowledge to break the limitations

of the enormous size and high sparsity level of graphs hinder their

applications under industrial scenarios.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Table 5: The statistical information of the experimental datasets.

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test #Task Description

Cora 2,708 1,433 5,429 7 140/500/1000 Transductive citation network

CiteSeer 3,327 3,703 4,732 6 120/500/1000 Transductive citation network

PubMed 19,717 500 44,338 3 60/500/1000 Transductive citation network

Amazon Photo 7,487 745 119,043 8 160/240/7,087 Transductive co-purchase graph

Amazon Computer 13,381 767 245,778 10 200/300/12,881 Transductive co-purchase graph

Coauthor CS 18,333 6,805 81,894 15 300/450/17,583 Transductive co-authorship graph

Coauthor Physics 34,493 8,415 247,962 5 100/150/34,243 Transductive co-authorship graph

ogbn-arxiv 169,343 128 2,315,598 40 91k/30k/48k Transductive citation network

ogbn-products 2,449,029 100 61,859,140 47 196k/49k/2204k Transductive co-purchase graph

ogbn-papers100M 111,059,956 128 1,615,685,872 172 1200k/200k/146k Transductive citation network

Flickr 89,250 500 899,756 7 44k/22k/22k Inductive image network

Reddit 232,965 602 11,606,919 41 155k/23k/54k Inductive social network

GRAND+ [24] develops the generalized forward push algorithm

called GFPush, which is utilized for graph augmentation in a mini-

batch fashion. Both the low time and space complexities of GFPush

enable GRAND+ to efficiently scale to large graphs.

A.3 Experiment Environment
Experiments are conducted with Intel(R) Xeon(R) CPU E5-2686 v4

@ 2.30GHz, and a single NVIDIA GeForce RTX 3090 with 24GB

GPU memory. The operating system of the machine is Ubuntu

20.04.5 with 768GB of memory. As for software versions, we use

Python 3.8.10, Pytorch 1.13.0, and CUDA 11.7.0.

A.4 Weighted Aggregation and LNC Encoding
In Sec. 4.2, we provide a brief discussion of potential scalability

concerns associated with the attention mechanisms in web-scale

graph learning scenarios. We also highlight the incompatibility

of these end-to-end learnable message aggregation mechanisms

with the LNC encoding introduced in ATP for optimizing propa-

gation kernel coefficients 𝑟 . To delve deeper into these statements

and present a comprehensive evaluation about weighted message

aggregation and LNC encoding within ATP, this section begins

by clarifying the distinctions and connections between learnable

attention mechanisms and graph propagation equations. Then, we

present visual experimental results for both ATP and end-to-end

attention-based approaches, including GraphSAGE [28], GAT [51],

and GATv2 [3], on the ogbn-arxiv dataset for deeper analysis.

Graph Attention Mechanisms. To improve the predictive per-

formance of the current node 𝑖 , GraphSAGE proposes to explicitly

consider its first-order neighbors, denoted as 𝑗 ∈ N𝑖 . Specifically,
during the message aggregation, GraphSAGE treats all neighbors

with equal importance (indiscriminated aggregation), with a key

aspect being the combination of aggregated messages using an

end-to-end learnable mechanism. This can be formalized as follows

X𝑢 = Aggregate (W,X𝑢 , {X𝑣,∀𝑣 ∈ N (𝑢)}) . (12)

To achieve fine-grained message aggregation for each node, GAT

employs a 𝑑-dimension embedding-based learnable scoring func-

tion with trainable a, W, denoted as 𝑒 : R𝑑𝑞 × R𝑑𝑣 → R, to obtain

(a) GraphSAGE (b) GAT

(c) GATv2 (d) ATP
Figure 6: Comparison of the attention- and LNC encoding-
based message aggregation weights (similar to propagation
kernel coefficients) on ogbn-arxiv. The x-axis represents the
ranking of node degrees from low to high order.

the attention score 𝛼 of each "key" neighbor in generating repre-

sentations for the current "query" node (i.e. attention mechanism).

𝑒
(
X𝑖 ,X𝑗

)
= LeakyReLU

(
a⊤ ·

[
WX𝑖 ∥WX𝑗

])
,

𝛼𝑖 𝑗 = softmax

(
𝑒
(
X𝑖 ,X𝑗

))
=

exp

(
𝑒
(
X𝑖 ,X𝑗

))∑
𝑗∈N𝑖 exp

(
𝑒
(
X𝑖 ,X𝑗 ′

)) . (13)

Then, GAT takes into account neighbor messages with varying

scores when generating representations for the current node.

X𝑢 = 𝜎
©­«
∑︁
𝑗∈N𝑖

𝛼𝑖 𝑗 ·WX𝑗
ª®¬ . (14)

Due to the globally shared learnable parameters in the 𝑒 , different

"query" node embeddings X𝑢 ∈ R𝑑𝑞 will yield the same score rank-

ing list in extreme scenarios (e.g. complete bipartite graphs). In other

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Rethinking Node-wise Propagation for Large-scale Graph Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

words, GAT may disproportionately focus on a fixed "key" neigh-

bor (i.e. static attention), which contradicts the original intention

of flexible attention composition. Building upon this observation,

GATv2 modifies the order of importance scores computation to

achieve a more expressive graph attention mechanism.

𝑒
(
X𝑖 ,X𝑗

)
= a⊤ LeakyReLU

(
W ·

[
X𝑖 ∥X𝑗

])
. (15)

Reviewing graph attention, we find that their optimization can

also be derived from a node-wise perspective. For instance, GAT

aims to identify neighbors during aggregation, while GATv2 adopts

fine-grained attention score modeling. Fundamentally, graph at-

tention represents a specific instance within the broader context

of graph propagation equations, customizing message aggregation

strategies for each node in an end-to-end learnable manner (i.e.

node-pair based𝑤 in Eq. (3)). Intuitively, graph attention is effec-

tive, but the intricate topology in web-scale graphs brings unique

challenges. According to Table 1, it is evident that current attention

mechanisms struggle to maintain effective and consistent, let alone

provide the scalability required for large-scale graph learning. To

illustrate this issue, we provide the following visual analysis.

Visual Analysis.We report the visual results in Fig. 6, where

the x-axis indicates the node set with degrees within the Top 10%

of the ranking from low to high order and the heat map value

represents the percentage of nodes in the set that have achieved the

correspondent message weights. For ATP, the y-axis is the node-

adaptive 𝑟 . For others, we first train each model and then obtain the

average attention score 𝛼 for each node in first-order aggregation.

Building upon this, we draw the following conclusions: (1) The

performance of ATP aligns with the key intuition derived from our

empirical study in Sec.1. Specifically, nodes with smaller degrees

tend to have smaller 𝑟 , leading to a more inclusive knowledge ac-

quisition from their neighbors, while nodes with larger degrees

have larger 𝑟 to enable fine-grained discrimination of neighbors.

(2) Progressing from GraphSAGE to GATv2, we observe that their

optimization objectives align with the pre-process in ATP. However,

as previously emphasized, when faced with intricate topologies in

web-scale graphs, existing methods cannot fully capture potential

structural patterns through learnable mechanisms. The lack of dis-

tinct color differentiations leads to their sub-optimal performance.

A.5 Graph Transformers and GCNII-based ATP
We commence by revisiting graph transformer and graph attention

from the perspective of the attentionmechanism. Then, we elucidate

the distinctions between ATP and graph transformer. With experi-

mental analysis, we discuss if ATP is preferred to perform graph

propagation on web-scale graphs comparing graph transformer.

Graph Transformer Mechanisms. From a self-attention per-

spective, the graph attention mechanism calculates only the first-

order neighbors of the current node, while the graph transformer

considers all nodes within the graph. From a message aggregation

perspective, graph transformer correspond to fully connected dense

graphs, while graph attention corresponds to a relatively sparse

graph. In terms of structural encoding, graph transformers provide

the model with high-dimensional global structural positional priors,

whereas graph attention focuses more on the local neighbors.

Specifically, transformers consist of multiple transformer layers,

with each comprising a self-attention module and a feed-forward

network (FFN). Considering the 𝑙-th transformer layer, the input fea-

tures H(𝑙−1) ∈ R𝑁×𝑑 (where H(0) = X(0)) are initially transformed

using three weight matrices W𝑄 ∈ R𝑑×𝑑𝑄 ,W𝐾 ∈ R𝑑×𝑑𝐾 ,W𝑉 ∈
R𝑑×𝑑𝑉 to generate the corresponding query, key, and valuematrices

𝑄,𝐾,𝑉 ∈ R𝑁×𝑑 . For simplicity, we assume that 𝑑 = 𝑑𝐾 = 𝑑𝑄 = 𝑑𝑉 .

The formulation of the transformer layer is then as follows:

Q = H(𝑙−1)W𝑄 ,K = H(𝑙−1)W𝐾 ,V = H(𝑙−1)W𝑉

B(𝑙) =
QK⊤
√
𝑑
, H(𝑙) = FFN

(
softmax

(
B(𝑙)

)
V
)
.

(16)

Building upon this, graph transformers empower nodes to incor-

porate information from any other nodes in the graph, thereby

overcoming the constraints of the limited receptive field. In other

words, the fundamental concept behind graph transformers is to in-

corporate structural information into the transformer architecture

in a learnable manner, facilitating node predictions.

Related Works. To compare the performance improvement

brought by ATP to GCNII with models based on the graph trans-

former architecture, we summarize the key characteristics of repre-

sentative graph transformers proposed in recent years as follows

LSPE [23] proposes a generic architecture to decouple node at-

tributes and topology in a learnable manner for better performance.

This method proposes to decouple structural and positional repre-

sentations to learn these two essential properties.

Graphormer [65] utilizes node degree and neighborhood-based

spatial centrality to combine additional topological structure infor-

mation in the learnable message aggregation process.

Gophormer [75] utilizes well-designed sampled ego-graphs, in-

troduces a proximity-enhanced transformer mechanism to capture

structural biases for better aggregation. Meanwhile, this strategy

considers the stability in training and testing.

LiteGT [7] introduces an efficient graph transformer architecture

that incorporates sampling strategies and a multi-channel trans-

former mechanism with kernels for better performance.

SAT [10] employs various graph learning models to extract cor-

related structural information within the current node’s neighbor-

hood, including utilize graph Laplacian eigenvectors-based encod-

ing mechanism to improve transformer architectures.

AGT [42] consists of a learnable centrality encoding strategy and

a kernelized local structure encoding mechanism to extract struc-

tural patterns from the centrality and subgraph views to improve

node representations for the node-level downstream tasks.

NAGphormer [11] treats each node as a sequence containing a

series of tokens. For each node, NAGphormer aggregates the neigh-

borhood features from different hops into different representations.

Experimental Analysis.we present the predictive performance

of graph transformers and GCNII-based ATP, in Table 6. Notably,

we opt for GCNII over GCN to ensure a fair comparison, as the

simple computations in GCN appear obsolete compared with well-

designed transformer mechanisms. Based on the results, we observe

that graph transformers exhibit a significant advantage on small-

scale datasets such as Computer and Physics. This is attributed to

their ability to effectively capture the simple and direct topological

structures. Conversely, graph transformers struggle to perform well

as the dataset size grows due to the increasingly intricate topology,

as evidenced by their performance on ogbn-arxiv and Flickr.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 6: Model performance with NP optimization strategies.

Models Computer Physics ogbn-arxiv Flickr

GCNII 82.64±0.5 92.78±1.2 72.68±0.3 53.11±0.1

GCNII+ATP 83.75±0.4 94.32±1.0 75.37±0.2 53.96±0.1

GNN-LSPE 83.34±0.5 93.90±1.4 72.96±0.3 52.24±0.1

Graphormer 82.95±0.6 93.54±1.3 72.35±0.3 51.86±0.2

Gophormer 83.10±0.5 93.67±1.1 72.60±0.2 52.28±0.1

NAGphormer 83.76±0.5 93.85±1.2 73.75±0.3 53.40±0.2

LiteGT 82.84±0.6 93.12±1.5 73.13±0.3 52.33±0.1

SAT 83.55±0.5 94.12±1.2 73.84±0.3 52.57±0.1

AGT 83.84±0.6 93.88±1.1 73.98±0.3 53.24±0.2

Graph Attention/Transformer vs ATP. Fundamentally, both

graph attention and graph transformer share the core idea of achiev-

ing better message aggregation through end-to-end learnable mech-

anisms. However, graph attention pays more attention to local

neighbors, whereas graph transformers aim to encode global topol-

ogy. Although GATv2 and NAGphormer enhance the expressive-

ness of score function in graph attention and improve local rep-

resentations in graph transformers, they both exhibit significant

disadvantages as follows : (1) The representation capacity of end-

to-end learnable mechanisms is contentious, especially in facing

the intricate topology of web-scale graphs. In other words, the

debate about whether they can successfully capture the LNC of

each node remains uncertain. Our experiments on web-scale graphs

have yielded unsatisfying results. (2) Complex model architectures

with vast learnable parameters lead to scalability issue. Although

NAGphormer can be trained on ogbn-papers100M with the use of

sampling and mini-batch training strategies, it remains challeng-

ing to deploy and is prone to instability. It is highly sensitive to

sampling results and training hyperparameters such as token size.

To address these issues, we introduce LNC, which offers a com-

prehensive node characterization based on features, positions in
the graph, and local topological structure. As shown in our empiri-

cal study in Sec. 1, LNC reveals key insights for achieving robust

node classification performance on web-scale graphs with intricate

topology. Building upon this, we propose ATP to improve graph

propagation equations Eq. (3), which seamlessly combines node fea-
tures, positions (from a global perspective, centrality-based position

encoding similar to graph transformer), and local topological struc-
ture (from a local perspective, connectivity-based local topological

structure encoding similar to graph attention). Meanwhile, as a

weight-free and plug-and-play strategy, ATP improves the running

efficiency of the most of existing GNNs.

A.6 Masks in High-bias Propagation Correction
HPC first samples a subset of nodes

˜V ⊂ V . The design principles

for the sampling mechanism are as follows: (1) selecting all nodes

that rank in the Top-𝜃% based on their degree when nodes are sorted

from highest to lowest degree. This is to strike a balance between

the optimal convergence radius and over-smoothing from a global

graph propagation perspective. (2) Selecting partial nodes outside

the above node degree rankings. Specifically, for other relatively

sparse nodes, we perform random sampling with a fixed sampling

(b) Reddit(a) ogbn-products
Ranking of Node Degrees

Figure 7: Performance under the influence of masking ratio.

(b) Reddit(a) ogbn-products
Figure 8: Performance under the influence of sampling ratio.

ratio of 0.2. Similar to dropout in training process, this strategy

aims to enhance the robustness of node representations from a reg-

ularization perspective while further reducing the pre-computation

and training costs associated with topology. Subsequently, HPC

applies edge masking to the node set
˜V by the mask token [𝑀]. It

is worth noting that we have provided experimental analysis into

how different values of 𝜃 impact the performance improvement

brought by High-Deg selection in Fig.2. Therefore, in this section,

we supplement the discussion of the effect of the edge masking

ratio [𝑀] performed by HPC on predictive performance.

According to the experimental results presented in Fig. 7, in the

transductive setting, increasing the masking ratio from zero has an

overall positive impact on predictive performance. However, when

the masking ratio becomes excessively high, the performance dete-

riorates when handling edge sparsity. Furthermore, in the inductive

setting, we find that lower masking ratios may have a negative

effect, in stark contrast to the results in the transductive setting.

The observed variation arises from the inductive setting’s demand

for richer neighborhood knowledge in predicting unseen nodes.

Nevertheless, as we increase the masking ratio, the benefits of elim-

inating potential high-bias propagation outweigh the drawbacks

of reduced neighborhood knowledge. In conclusion, based on the

empirical analysis of the experimental results mentioned above,

we recommend setting the masking ratio to 0.5, as it tends to yield

optimal predictive performance in most cases.

Similar to the conclusions drawn from Fig.2 and Fig.7, the ex-

perimental results in Fig. 8 indicate that randomly sampling too

many relatively sparsely connected nodes for HPC can adversely

affect node prediction performance due to significant topological

information gap. Conversely, selecting an appropriate sampling

ratio can strike a balance between mitigating potential high-bias

propagation and topological gap, thereby contributing to significant

performance improvements in the original backbone.

14

	Abstract
	1 Introduction
	2 PRELIMINARIES
	2.1 Problem Formulation
	2.2 Scalable Graph Neural Networks

	3 ATP FRAMEWORK
	3.1 High-bias Propagation Correction
	3.2 Weight-free LNC Encoding

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison
	4.3 Ablation Study and In-depth Analysis
	4.4 Running Efficiency in Large-scale Graphs
	4.5 Performance under Sparse Graphs

	5 Conclusion
	References
	A Outline
	A.1 Dataset Description
	A.2 Compared Baselines
	A.3 Experiment Environment
	A.4 Weighted Aggregation and LNC Encoding
	A.5 Graph Transformers and GCNII-based ATP
	A.6 Masks in High-bias Propagation Correction

