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Abstract

The integration of graphs with Goal-conditioned Hierarchical Reinforcement Learning
(GCHRL) has recently gained attention, as intermediate goals (subgoals) can be effectively
sampled from graphs that naturally represent the overall task structure in most RL tasks.
However, existing approaches typically rely on domain-specific knowledge to construct these
graphs, limiting their applicability to new tasks. Other graph-based approaches create
graphs dynamically during exploration but struggle to fully utilize them, because they have
problems passing the information in the graphs to newly visited states. Additionally, current
GCHRL methods face challenges such as sample inefficiency and poor subgoal representa-
tion. This paper proposes a solution to these issues by developing a graph encoder-decoder
to evaluate unseen states. Our proposed method, Graph-Guided sub-Goal representation
Generation RL (G4RL), can be incorporated into any existing GCHRL method to enhance
performance. We show that the graph encoder-decoder can be effectively implemented us-
ing a network trained on the state graph generated during exploration. Empirical results
indicate that leveraging high and low-level intrinsic rewards from the graph encoder-decoder
significantly enhances the performance of state-of-the-art GCHRL approaches with an extra
small computational cost in dense and sparse reward environments.

1 Introduction

Traditional reinforcement learning methods face great challenges when learning policies in environments with
long time horizons and sparse rewards. To address these challenges, Hierarchical Reinforcement Learning
(HRL) methods have been proposed to break problems into smaller, more manageable subproblems conducive
to more efficient learning. Previous works (Sutton et al., 1999; Kulkarni et al., 2016; Vezhnevets et al.,
2017; Levy et al., 2017) have demonstrated HRL’s capability in handling large, sparse-reward environments.
Among HRL methods, Goal-Conditioned Hierarchical Reinforcement Learning (GCHRL) has attracted much
attention due to its well-defined paradigm (Nachum et al., 2018b) and its resemblance to the human thinking
process. Although GCHRL has shown superior performance compared to non-hierarchical methods in some
scenarios, questions such as how to learn better subgoal representations and explore the state space more
efficiently (Nachum et al., 2018a; Guo et al., 2021) remain unanswered.

GCHRL methods typically utilize two levels of agents as described in Nachum et al. (2018b). The high-level
agent chooses the next target state based on its current state, while the low-level agent decides how to reach
this target. Both agents face their own challenges. The high-level agent suffers from sample inefficiency in
environments with a large state-action space, a problem also encountered by non-hierarchical methods, while
the low-level agent is trained solely by the reward signals derived from the distances between the current
state and subgoals in the representation space, making the reward signals highly susceptible to poor subgoal
representations.

Previous works have tried to either enhance the efficiency of high-level exploration (Huang et al., 2019; Zhang
et al., 2022) or find a good subgoal space to boost GCHRL’s performance in complex environments (Wang
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et al., 2024). To the best of our knowledge, while these methods have made progress in their respective
aspects, no prior work has attempted to address them in a unified framework. Yet, such integration is
crucial, as uniting an effective high-level agent with an accurate low-level agent within a cohesive framework
can yield performance improvements that surpass simple additive effects.

Recently, combining graph theory with RL has become a trend in the community (Lee et al., 2022; Gieselmann
& Pokorny, 2021) as graphs are inherently well-suited for representing the environment and task structure.

Previous work has focused on areas such as decision-making through graph search or traversal (Wan et al.,
2021; Shang et al., 2019; Eysenbach et al., 2019), and as well as using graphs as world models (Zhang et al.,
2021; Huang et al., 2019). Yet, many previous works rely on pre-crafted graphs, limiting their generalizability.
Additionally, most existing works constructed graphs directly from the original state space, which cannot
provide meaningful guidance when the agent encounters a state that is not represented in those graphs.

To utilize graph representations when a new state (node) is encountered, transitioning to these representa-
tions (Hamilton, 2020; Chen et al., 2020; Khoshraftar & An, 2024) through graph learning is a viable option.
Recent studies have shown that employing graph representations for learning can improve underlying RL
performance (Klissarov & Precup, 2020; Klissarov & Machado, 2023).

In this paper, we propose a novel approach that simultaneously addresses all of the aforementioned problems.
Specifically, we construct a state graph based on visited states until the number of nodes reaches a threshold
and after that we update the graph by adding and dropping nodes as new states are visited. Using this
graph, we build a subgoal space through graph learning that leverages both state representation and spatial
connectivity. By generating subgoal representations through graph learning, we ensure that they capture
their relative positions in the decision chain, thereby forming a more effective subgoal space. In estimating
the distance between the current state and the intended subgoal in the original space, we use the distance
between their corresponding representations in the subgoal space. This distance is then used to calculate the
intrinsic reward for curiosity-driven exploration, aiming to improve sample efficiency across both high-level
and low-level agents.

The main contributions of this paper are as follows:

• We propose a novel architecture that employs a graph encoder-decoder to embed spatial information
into subgoal representations, enabling the evaluation of newly visited states. This architecture can
be integrated into any GCHRL algorithm to enhance performance.

• We present a method for the online construction of the state graph as a graph-based world model
(Ha & Schmidhuber, 2018; Zhang et al., 2021) for the HRL agent by sampling from trajectories.

• We use novelty-based auxiliary rewards (Simsek & Barto, 2006; Nehmzow et al., 2013) derived from
subgoal representations to improve sample efficiency for both high-level and low-level agents.

We tested our approach on several environments (Todorov et al., 2012) to assess the significance of our
experimental results. The findings indicate that our method can significantly enhance the performance of
the underlying HRL approach in terms of both sample efficiency and success rate/cumulative reward.

2 Preliminaries

2.1 Notation

As the most common framework for modeling reinforcement learning scenarios, the Markov Decision Process
(MDP) (Puterman, 2014) is introduced as a tuple < S, A, P, R, γ >, defined as follows: At each time step
t, the agent observes the current state st ∈ S provided by the environment and chooses an action at ∈ A
according to its internal policy π(at|st), which specifies the probability of choosing action at given state
st. The action is then executed, and the interaction with the environment leads the agent to a new state
st+1 according to a transition probability function P (st+1|st, at) which is known only to the environment.
Subsequently, the agent receives a reward rt, determined by the reward function R(st, at) that evaluates
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the action taken in the current state and is also only visible to the environment. The agent aims to learn
an optimal policy π to maximize the expected discounted cumulative reward Eπ

[ ∑T
t=0 γtrt

]
, where γ (with

0 ≤ γ < 1) is a pre-defined discount factor used to prioritize immediate rewards over distant future rewards,
thereby ensuring that the total reward remains finite.

2.2 Goal-conditioned Hierarchical RL (GCHRL)

Goal-Conditioned Reinforcement Learning (GCRL) trains agents to achieve specific goals, which are the
target states. The agent receives an additional goal input along with the state input and learns a policy that
aims to achieve this goal. Goals are represented explicitly in the input to the policy, guiding the agent’s
actions towards desired outcomes. The reward function is often goal-dependent, providing positive feedback
when the agent successfully reaches the desired goal state.

To deal with large and complex environments, Goal-Conditioned Hierarchical Reinforcement Learning
(GCHRL) (Nachum et al., 2018b; Zhang et al., 2022; Wang et al., 2024) decomposes the learning task
into a hierarchy of smaller, more manageable sub-tasks. Typically, there are two levels of agents. At time
step t, the high-level agent chooses a subgoal gt, a representation of a target state, and assigns it to the
low-level agent to achieve as part of the overall task. This choice is made by sampling gt from the high-
level policy πh(gt|ϕ(st)), where ϕ : s 7→ Rd is the state representation function which gives a condensed
representation of the state.

Each state st can be mapped to its subgoal feature g(st) by a subgoal feature extractor. Note that g(st) is
not the same as gt. The former, g(st), is the learned subgoal feature of the current state st, while the latter,
gt, is the target state we aim to reach from the state st in one step or multiple steps.

Given the subgoal gt sampled from the high-level policy πh(gt|ϕ(st)) for the current time step t and the state
representation vector ϕ(st), a low-level agent executes action at based on the low-level policy πl(at|ϕ(st), gt).
The low-level agent is trained using the intrinsic reward signal rint(st, gt, at, st+1) = −∥ϕ(st+1) − gt∥2 to
encourage it to achieve the subgoal.

Both agents can be implemented by any policy-based methods, including those introduced in previous works
on policy gradients such as Fujimoto et al. (2018); Haarnoja et al. (2018) and Schulman et al. (2017).

2.3 Graph and MDP

Graph is a generic data structure, which can model complex relations among objects in many real-world
problems. A graph is defined as G = (V, E), where V = {1, 2, . . . , N} is the set of nodes and E = {eij} is the
set of edges without self-loops. The adjacency matrix of G is denoted by A = (Ai,j) ∈ RN×N with Ai,j = 1
if there is an edge between nodes i and j, otherwise Ai,j = 0. The adjacency matrix can be extended to a
weighted adjacency matrix, where Ai,j is a weight of the edge eij .

In MDP, a node can represent a state, while the edge weights can model the transition probabilities or
reachability statistics between states.

3 Methods

This section presents our framework, Graph-Guided subGoal representation Generation (G4RL). Our method
reshapes the subgoal space utilizing a state graph to incorporate the relative spatial information of visited
states.

One drawback of previous hierarchical reinforcement learning algorithms (Nachum et al., 2018b; Kim et al.,
2021; Zhang et al., 2022; Luo et al., 2024) is that the Euclidean distance calculated in the original state
representation space between the current state and the intended goal does not accurately reflect the true
progress of the low-level agent, as there is rarely a straight path between the current state and the subgoal
in the space. As a result, the low-level agent trained with such information may receive an inaccurate
reward signal, thus impairing its performance. Another issue is that, without appropriate constraints, the
high-level agent may propose subgoals that are too difficult to reach, wasting exploration steps on pursuing
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infeasible targets (Zhang et al., 2022). Our proposed method aims to mitigate both problems by calculating
the distance in a subgoal representation space between subgoal representations given by a graph encoder-
decoder. This graph encoder-decoder captures the actual connectivity between states, ensuring that the
generated subgoal representations respect adjacency information.

3.1 State graph

To record the visited states and their connections, we maintain a state graph G = (V, E) with a fixed number
N of nodes1. This graph is built and updated during training, with no pre-training using expert data or
handcrafted process involved in its construction.

Each node is labelled by the corresponding state and for each node st, the corresponding state representation
vector ϕ(st), which is also referred to as the node feature, is stored. Edges in the graph represent connectivity
between states. The graph is constantly updated during exploration.

3.1.1 Graph construction

The graph is initialized with N empty nodes and no edges. The corresponding weighted adjacency matrix A
is set to an N ×N zero matrix. We perform the GCHRL exploration process using randomly initialized policy
πh and πl. Once the agent encounters a state representation never seen before, that is, the representation is
different from any state representations stored in the graph, as described in equation (1), it stores the state
representation ϕ(st) as the node feature of an empty node in the graph and build an edge between this node
and the node corresponds to the previous state:

∀sv∈V , ∥ϕ(st) − ϕ(sv)∥2 > ϵd, (1)

Ast,st−1 = Ast−1,st = 1, (2)

where ϵd is a hyper-parameter controlling the distance threshold between state representations. When the
agent encounters a state st with feature ϕ(st) that is similar to several node representations already stored
in the graph, it finds the state whose representation is the closest to the current state feature:

sv = arg min
su:∥ϕ(st)−ϕ(su)∥2≤ϵd

∥ϕ(st) − ϕ(su)∥2. (3)

Then the node sv is relabeled as st and the weight for the edge (st−1, st) is updated as follows:

Ast−1,st
= Ast,st−1 := Ast−1,st

+ 1. (4)

Note that a large weight indicates more frequent transitions between the underlying states.

We have used the Euclidean norm to define the distance between feature vectors. Since some elements may
contain more spatial information than others, one can use a weighted Euclidean norm to define the distance
between state representations instead.

3.1.2 Graph updating

The graph has a fixed number of nodes. Suppose the graph is now full. When a new state st is encountered,
if sv from equation (3) exists, as before we relabel the node as st and perform edge update as shown in
equation (4); Otherwise, we replace the oldest state node in the graph with the current state node, delete
all edges previously linked to that node, and create an edge (st−1, st) with weight Ast−1,st

= Ast,st−1 = 1.
Alternatively, we could replace the state node that is most weakly connected to the other nodes–that is, the
node with the lowest sum of edge weights.

1The number of training states for the graph encoder-decoder grows quadratically with N because the adjacency weight
matrix has N2 elements. The choice of N depends on the machine’s capabilities.
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3.2 Graph encoder-decoder

To enable the assignment of suitable subgoal representations to every possible state, including unseen ones,
we use node representations and edges to train a graph encoder-decoder. The parameter updates of the
graph encoder-decoder and the policies during policy training are performed alternately in each episode.

The encoder-decoder starts training after the graph is full and continues periodically after processing a few
trajectories. Section 3.3 will show the details of the training schedule.

The encoder E maps every state representation ϕ(s) to a subgoal representation g(s). We use a feed-forward
network (FFN) with several layers as the encoder E:

g(s) = E(ϕ(s)) = FFN(ϕ(s)). (5)

The weight parameters of the feed-forward network will be learned through training. The decoder D takes
two subgoal representations as input and outputs the inner product of these two representations:

D(g(su), g(sv)) = g(su)T g(sv). (6)

The aim is to use the encoder-decoder structure to predict node relations. Naturally we can use Asu,sv
as

a measure of the relation between nodes su and sv. But for the sake of numerical stability in the training
process, we use Asu,sv / maxsi,sj Asi,si as a measure. Thus the loss function is defined as:

L =
∑

su,sv∈V

[
D(g(su), g(sv)) − Asu,sv / max

si,sj

Asi,si

]2
. (7)

This loss function can enforce the subgoal representation provided by the encoder to respect neighbouring
features in the graph.

Note that in each training phase of the graph encoder-decoder (except the first one), we use the values of
the parameters obtained from the last training phase as the initial point, which helps save computation cost.

3.3 Adaptive training schedule of the graph encoder-decoder

The graph stores evolving data, including state representations as node features and connection information
in the weighted adjacency matrix A, which are continuously updated during online training. Since the
graph structure and content change at varying rates across episodes, training the graph encoder-decoder at
fixed intervals can cause several issues: (1) high variance in earlier episodes, where sparse or unstable graph
data may lead to unreliable model updates; (2) data underutilization, where intermediate graph states are
overwritten before being used for training; and (3) overfitting in later episodes, as the model repeatedly
trains on increasingly redundant data. To address these issues, we introduce an adaptive training schedule
for the graph encoder-decoder, described in the following paragraph.

There are two types of data changing in the graph: node replacement and edge update. We introduce a
variable c to track the weighted number of data changes. Since the replacement of nodes has a much higher
impact on the data than the edge update, we add N − 1 to c if a node replacement occurs, and add 1 to c
if an edge update happens:

c =
{

c + N − 1, if a node replacement happens,
c + 1, if an edge update happens.

(8)

When this variable exceeds a certain value, specifically a tolerance β multiplied by the total number of non-
diagonal elements N2 − N in the matrix A. we perform one gradient update for the graph encoder-decoder,
and then we reset c to 0.

3.4 Hierarchical agent with graph encoder-decoder

Our proposed method involves traditional goal-conditioned settings and a subgoal representation extractor
implemented by a graph encoder-decoder.
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The high-level policy πh(gt|ϕ(st)) nominates a subgoal every K steps and is trained using the external
environmental reward rext.

The policy can be implemented by any policy-based RL algorithm that takes transition tuples
(st, gt, at, rt, st+1, gt+1) as input. To encourage it to propose a subgoal that is not too difficult to reach
from the current state st for more efficient exploration, we add an intrinsic term to the high-level reward,
considering the distance between the subgoal features of st and gt in the subgoal space:

rh(st, gt, st+1) = rext + rint = rext + αh · D(E(ϕ(st)), E(gt)), (9)

where αh is a hyperparameter that controls the significance of the intrinsic term in the high-level reward.

The low-level policy πl(at|ϕ(st), gt), however, operates in the subgoal space. While it still takes ϕ(st) and gt

as input and outputs an atomic action at, we compute the reward based on distances in the subgoal space:

rl(st, gt, at, st+1) = −∥ϕ(st+1) − gt∥2 + αl · D(E(ϕ(st+1)), E(gt)), (10)

where αl is a hyperparameter controlling the significance of the reward term in the low-level reward. By
computing the intrinsic reward in the subgoal space rather than in the state space, the function provides high
values when proposed subgoals are easy to reach from the current location and low values when subgoals
are close in the original state space but difficult to reach from the current location. The low-level agent can
also be any policy-based algorithm.

3.5 Balancing between speed and performance

Due to the excessive comparisons between the current state representation and the node features during
graph updates, as well as the training cost of the graph encoder-decoder on a large graph, our experiments
show that the GCHRL method, after incorporating our method, takes approximately twice as long as the
original GCHRL method.

To reduce the additional cost, we can either decrease the frequency of sampling candidates for node features,
train the graph encoder-decoder with a subset of all available training data, or do both.

For the sampling frequency, instead of comparing the state representation with node features in each time
step, we do it in every tc time steps. This may significantly speed up our method while maintaining
satisfactory performance.

To reduce the training data in each graph encoder-decoder training cycle, we randomly sample node pairs
in the graph instead of using every node pair for training.

In the experiments section, we will present the training time and performance of G4RL with the above two
techniques applied.

3.6 Algorithm: GCHRL + G4RL

The detailed description of how our proposed strategy, G4RL, can be incorporated into typical GCHRL
algorithms is given in Appendix C.

4 Experiments

In this section, we empirically evaluate the effectiveness of integrating G4RL into existing GCHRL methods.
The experiment results demonstrate substantial improvements in both convergence speed and overall success
rates achieved by our proposed approach. Additionally, we provide empirical evidence that the generated
state graph accurately represents the underlying structure and relationships within the task environments.

4.1 Environment settings

We used AntMaze, AntGather, AntPush, AntFall and AntMaze-Sparse environments from the GYM MuJoCo
library (Todorov et al., 2012). The first four involve complex navigation and manipulation tasks performed
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by a simulated multi-armed robot, while AntMaze-Sparse presents a particularly challenging scenario due
to sparse reward signals, providing feedback only upon reaching the goal. For the state representation, we
selected a subset of raw state dimensions that contains spatial information (e.g. coordinates and arm angles)
to serve as the node representation for the graph encoder-decoder. We deliberately aligned our choice of
environments with prior work to ensure a fair and consistent comparison between the backbone algorithms
and their G4RL-augmented versions. This allowed us to use the same environments, hyperparameters, and
codebases provided by the original studies. Our goal was to demonstrate that G4RL can consistently enhance
the performance of these backbone algorithms under comparable conditions.

4.2 Experimental Comparisons

We incorporated G4RL in the following existing GCHRL methods:

• HIRO (Nachum et al., 2018b): This is the first method which describes how the Goal-conditioned
information can be integrated into hierarchical agents.

• HRAC (Zhang et al., 2022): This method enhances the performance of HIRO by training an
adjacency network that produces subgoals easier to reach from the current subgoal.

• HESS (Li et al., 2022): This method applies a regularization term on consecutive subgoal represen-
tations in each update to stabilize the representation across episodes.

• HLPS (Wang et al., 2024): This method applies the Gaussian process on subgoal representations
for a smoother representation update.

In addition to comparing these four GCHRL-G4RL methods with their native counterparts, we also compared
them with the following non-hierarchical method:

• TD3 (Fujimoto et al., 2018): This is a well-known non-hierarchical policy-based method designed
for continuous action spaces and we use it to implement both high- and low-level agents.

Although reward is a key metric of an agent’s learning ability, for AntMaze and AntMaze-Sparse, we compare
success rates of these methods instead of their rewards on the corresponding tasks. This is because higher
rewards in AntMaze/AntMaze-Sparse do not necessarily indicate better performance; the agent may achieve
high rewards without reaching the goal.

The learning curves of baseline methods and G4RL-applied versions are plotted in Figure 1 and 2. Note that
all the curves reported in Section 4 are averages from 20 independent runs and they have been smoothed
equally for better visualization.

(a) (b) (c)

Figure 1: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather, using HIRO,
HIRO-G4RL, HRAC, HRAC-G4RL, and TD3.
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(a) (b) (c)

Figure 2: Success Rate on (a) AntMaze (b) AntMaze-Sparse and (c) AntPush, using HESS, HESS-G4RL,
HLPS, HLPS-G4RL.

From Figures 1 and 2, we observe that, in all environments, incorporating G4RL in the base GCHRL methods
significantly enhances their performance, further improving the already strong results of these hierarchical
methods compared to the non-hierarchical method. Notably, G4RL-augmented methods not only achieve
higher final success rates but also converge substantially faster, with the most significant improvements
observed during the early stages of training.

To demonstrate the proposed method’s effectiveness in environments with image-based state representations,
we conducted experiments on AntMaze, AntPush, and AntFall, utilizing images as states, and compared
the results with HESS and HLPS, along with their G4RL variations. We use Mean Squared Error (MSE)
to measure the pixel-wise differences between image states to decide whether a new node should be added
to the graph. The test results, given in Figure 3, show that methods incorporating G4RL exhibit faster
convergence and achieve higher performance across all tested image-based environments.

(a) (b) (c)

Figure 3: Success Rate on (a) AntMaze (b) AntPush and (c) AntFall with image state features, using HESS,
HESS-G4RL, HLPS, HLPS-G4RL.

4.3 Ablation study

4.3.1 The effect of high/low-level intrinsic reward

We consider the following variants of G4RL to show the effectiveness of adding high-level and low-level
intrinsic rewards:

• High+Low-level intrinsics: Apply both equation (9) and equation (10) to the high-level and
low-level rewards respectively.
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• High-level intrinsic only: Apply equation (9) to the high-level rewards and set αl = 0 in equation
(10) when it is applied to the low-level rewards.

• Low-level intrinsic only: Apply equation (10) to the low-level rewards and set αh = 0 in equation
(9) when it is applied to the high-level rewards.

• HIRO/HRAC/HESS/HLPS: Vanilla baseline methods.

Same as before, all the curves reported in this section are drawn from results averaged across 20 independent
runs. All curves have been smoothed equally for better visualization.

(a) (b) (c)

Figure 4: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather using HIRO-
G4RL, HIRO + High-level intrinsic, HIRO + Low-level intrinsic and HIRO.

(a) (b) (c)

Figure 5: Success Rate on (a) AntMaze (b) AntMaze-Sparse and Reward on (c) AntGather using HRAC-
G4RL, HRAC + High-level intrinsic, HRAC + Low-level intrinsic and HRAC.

Figures 4 to 7 show that, across all tested environments and algorithms, the combination of high-level and low-
level intrinsic rewards results in the highest success rates and fastest convergence. The high-level intrinsic-
only variant outperforms the low-level intrinsic-only variant, especially in sparse reward tasks, indicating
that high-level intrinsic rewards play a crucial role in facilitating efficient exploration by encouraging the
agent to select reachable and meaningful subgoals. In contrast, low-level intrinsic rewards have limited effect
on exploration, primarily refining the execution of local behaviors. These results demonstrate that intrinsic
rewards at different hierarchy levels serve complementary functions, and their combination yields superior
performance.

4.3.2 Balancing between time and performance

To assess the trade-off between computational efficiency and performance, we evaluate two acceleration
strategies mentioned in Section 3.5. First, we vary the sampling frequency of node features by testing
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(a) (b) (c)

Figure 6: Success Rate on (a) AntMaze (b) AntMaze-Sparse and (c) AntPush using HESS-G4RL, HESS +
High-level intrinsic, HESS + Low-level intrinsic and HESS.

(a) (b) (c)

Figure 7: Success Rate on (a) AntMaze (b) AntMaze-Sparse and (c) AntPush using HLPS-G4RL, HLPS +
High-level intrinsic, HLPS + Low-level intrinsic and HLPS.

intervals of 1, 5, and 10 steps in HLPS. As shown in Figure 8, increasing the sampling interval substantially
reduces computation time, as it decreases the number of interactions with the graph, with only minor
degradation in success rates across both AntMaze and AntPush tasks. Second, we vary the proportion of
training data used for the graph encoder-decoder, testing 50%, 75%, and 100% subsets. Results in Figure 9
indicate that reducing the amount of training data leads to only marginal improvements in computational
efficiency and has negligible impact on final performance.

These findings suggest that the primary computational bottleneck of G4RL lies in the graph construction
and node comparison processes described in Section 3.1.1, rather than in the encoder-decoder training itself.
Adjusting the sampling frequency is therefore an effective approach for reducing time cost while largely
preserving the benefits of G4RL integration.

4.4 Subgoal space visualization

This section shows how the subgoal space evolves in the AntMaze environment as the number of train-
ing episodes grows. We recorded state representations encountered in specific episodes and then used the
corresponding graph encoders from those episodes to map these state representations to the subgoal repre-
sentations. The subgoal representations are projected into 2D using PCA for visualization.

The distributions of subgoal representations in the subgoal space across different episodes are shown in
Figure 10.

From the figure we can conclude that the graph encoder-decoder gives better subgoal representations when
the number of episodes grows. At the 2000th episode, the subgoal representations form a few chains in the
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(a) (b)

Figure 8: Success Rate on (a) AntMaze and (b) AntPush using HLPS+G4RL and HLPS. The number of
steps in the legend indicates the selection of tc as described in Section 3.5 and the timescale is calculated
w.r.t. the vanila HLPS algorithm.

(a) (b)

Figure 9: Success Rate on (a) AntMaze and (b) AntPush using HLPS+G4RL and HLPS. The percentage
of data in the legend indicates the amount of data used in the training of the graph encoder-decoder as
described in Section 3.5 and the timescale is calculated w.r.t. the vanila HLPS algorithm.

(a) (b) (c)

Figure 10: The distribution of subgoal representations in the subgoal space at the (a) 2000th (b) 4000th (c)
6000th episode.
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2D space, indicating that the current graph is partitioned into many isolated sub-graphs. The graph encoder
has not yet learned to understand the environment well, and the agent cannot find relationships between
different state representations yet. By the 4000th episode, the representations are less isolated, suggesting
that the graph encoder has begun to learn the connections between different groups of state representation.
Finally, at the 6000th episode, the subgoal representations are distributed more evenly across the entire
space, indicating that the encoder can organize them into a highly connected graph. The subgoal space now
better represents the underlying problem’s structure.

The evolution of the graph encoder demonstrates that it can indeed learn to represent the task structure as
the number of episodes grows.

5 Conclusion and future work

We have presented a novel approach using a graph encoder-decoder to address the challenges of poor subgoal
representations and sample inefficiency in GCHRL. The proposed architecture is designed to efficiently
evaluate unseen states by operating in the graph representation space. It is easy to implement and can be
seamlessly integrated into any existing GCHRL algorithms to enhance their performance. Our experiments
on both sparse and dense control tasks have demonstrated the effectiveness and robustness of our method.

Despite the advantages demonstrated by G4RL in HRL tasks, its effectiveness depends significantly on
several hyperparameters (e.g., ϵd, αl, and αh), which require careful tuning to achieve optimal performance
across different environments.

In future work, we aim to develop methods for automatically selecting these hyperparameters based on
environmental dynamics, thereby reducing the need for manual tuning. Also, we plan to extend our work by
exploring how to generate subgoals with more interpretable representations to facilitate knowledge transfer,
potentially leveraging alternative graph representations (e.g. Graph Laplacian). Another promising direction
is to transfer the knowledge embedded in the graph structure to new tasks by analyzing graph topology and
establishing mappings between nodes of different state graphs.
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A Implementation details

A.1 Environment details

AntMaze This environment is a part of the Gymnasium-Robotics libraries. The size of the environment is
24 × 24. Both of the state space and the action space are continuous, with a state dimension of 31 and an
action dimension of 8. The reward of each step is defined by its negative Euclidean distance from the current
location to the target position. At evaluation time, the goal is set to (0, 16) and an episode is recognized as
successful if the agent is within an Euclidean distance of 5 from the goal.

AntMaze Sparse This environment is a variant of Antmaze. The size of the environment is 20 × 20. The
state and action spaces are the same as those in AntMaze. The reward of each step is 1 if and only if the
agent reaches within an Euclidean distance of 1 from the goal, which is set to (2, 9).

AntGather This environment is described in Duan et al. (2016). The size of the environment is 20 × 20.
The state and action spaces are continuous. The task involves gathering apples to the designated place. The
agent will be awarded +1 for each apple gathered and −1 for each bomb gathered. Apples and bombs are
randomly placed in the 20 × 20 world.

AntPush The size of the environment is 20×20. The state and action spaces are continuous. A challenging
task that requires both task and motion planning. The agent needs to move to the left then move up and
push the block to the right in order to reach the goal.

A.2 Network architecture details

Our network architecture for the HRL agents is the same as described in Nachum et al. (2018b), Zhang et al.
(2022), Li et al. (2022) and Wang et al. (2024). For HIRO, HRAC, HESS and HLPS both the high-level and
low-level agents use the TD3 algorithm. The size of each hidden layer in actor and critic networks in TD3
is 300.

For the graph encoder-decoder, we use a four-layer fully connected network with the hidden size of 128. The
activation function used is ReLU. The decoder is a dot product of the two input subgoal representations.
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We use Adam as the optimizer for the actor network, critic network and the graph encoder is Adam optimizer
(Kingma & Ba, 2014).
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B Hyperparameters

In this section we list all hyperparameters used in our experiments.

Hyperparameters Values
High-level agent

Actor learning rate 0.0001
Critic learning rate 0.001

Batch size 128
Discount factor γ 0.99

Policy update frequency 1
High-level action frequency 10

Replay buffer size 20000
Exploration strategy Gaussian(σ = 1)

Low-level agent
Actor learning rate 0.0001
Critic learning rate 0.001

Batch size 128
Discount factor γ 0.99

Policy update frequency 1
Replay buffer size 20000

Exploration strategy Gaussian(σ = 1)

Table 1: Hyperparameters used in high- and low-level TD3 agents.

Hyperparameters Values
Number of nodes N 200

Batch size 128
Optimizer learning rate 0.0001

ϵd 0.1 for AntMaze/0.2 for others
αh 0.1
αl 0.1
β 0.2

Table 2: Hyperparameters used in the graph encoder-decoder.
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C Algorithm

Now we describe our proposed method in Algorithm 1.

Algorithm 1 GCHRL+G4RL
Require: High-level policy πh(g|ϕ(s)), low-level policy πl(a|ϕ(s), g), replay buffer B,

graph encoder E, graph decoder D, high-level action frequency K,
significance hyperparameter αh and αl, tolerance hyperparameter β,
number of episodes N , nunber of steps in one episode T .

1: n = 0
2: while n ≤ N do
3: t = 0
4: c = 0
5: while t ≤ T do
6: if t mod K = 0 then
7: Execute the high-level policy πh(gt|ϕ(st)) to sample the subgoal gt.
8: else
9: Keep the subgoal gt unchanged.

10: Execute the low-level policy πl(at|ϕ(st), gt) to sample the atomic action at.
11: Sample reward rt and next state st+1.
12: Calculate rh(st, gt, st+1) and rl(st, gt, at, st+1) using (9) and (10).
13: Collect experience (st, gt, at, rh, rl, st+1) and update the replay buffer B.
14: Update node representations and edge weights using collected experience.
15: Update c using (8).
16: if c ≥ β then
17: Update graph encoder E with node representation and edge information in the graph.
18: c = 0.
19: t = t + 1
20: Update low-level policy πl(a|ϕ(s), g) using the chosen HRL algorithm.
21: Update high-level policy πh(g|ϕ(s)) using the chosen HRL algorithm.
22: n = n + 1
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