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∗

Abstract: Deep reinforcement learning (DRL) algorithms have successfully been
demonstrated on a range of challenging decision making and control tasks. One
dominant component of recent deep reinforcement learning algorithms is the target
network which mitigates the divergence when learning the Q function. However,
target networks can slow down the learning process due to delayed function updates.
Our main contribution in this work is a self-regularized TD-learning method to
address divergence without requiring a target network. Additionally, we propose a
self-guided policy improvement method by combining policy-gradient with zero-
order optimization to search for actions associated with higher Q-values in a broad
neighborhood. This makes learning more robust to local noise in the Q function
approximation and guides the updates of our actor network. Taken together, these
components define GRAC, a novel self-guided and self-regularized actor critic
algorithm. We evaluate GRAC on the OpenAI gym tasks, outperforming popular
methods such as TD3 [1] and SAC [2] on four tasks and achieving competitive re-
sults on two environments. We also apply GRAC to enable a non-anthropomorphic
robotic hand to successfully accomplish an in-hand manipulation task in the real
world.

Keywords: Deep Reinforcement Learning, Q-learning

1 Introduction

Reinforcement learning (RL) studies decision-making with the goal of maximizing total discounted
reward when interacting with an environment. Leveraging high-capacity function approximators such
as neural networks, Deep reinforcement learning (DRL) algorithms have been successfully applied to
a range of challenging domains, from video games [3] to robotic control [4].

Actor-critic algorithms are among the most popular approaches in DRL, e.g. DDPG [5], TRPO [4],
TD3 [1] and SAC [2]. These methods are based on policy iteration, which alternates between policy
evaluation and policy improvement [6]. Actor-critic methods jointly optimize the value function
(critic) and the policy (actor) as it is often impractical to run either of these to convergence [2].

In DRL, both the actor and critic use deep neural networks as the function approximator. However,
DRL is known to assign unrealistically high values to state-action pairs represented by the Q-function.
This is detrimental to the quality of the greedy control policy derived from Q [7]. Mnih et al. [8]
proposed to use a target network to mitigate divergence. A target network is a copy of the current Q
function that is held fixed to serve as a stable target within the TD error update. The parameters of the
target network are either infrequently copied [8] or obtained by Polyak averaging [5]. A limitation of
using a target network is that it can slow down learning due to delayed function updates. We propose
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an approach that reduces the need for a target network in DRL while still ensuring stable learning
and good performance in high-dimensional domains. We add a self-regularization term to encourage
small changes to the target value while minimizing the Temporal Difference (TD)-error [6].

Evolution Strategies (ES) are a family of black-box optimization algorithms which are typically
very stable, but scale poorly in high-dimensional search spaces e.g. neural networks [9]. Policy
gradient-based DRL methods, unlike evolutionary search methods, can continue to sample previous
experiences to improve value estimation, particularly in the off-policy setting. At the same time,
these approaches can also be unstable and highly sensitive to hyper-parameter tuning [9]. We
propose a novel policy improvement method which combines both approaches to get the best of both
worlds. Specifically, after the actor network first outputs an initial action, we apply the Cross Entropy
Method (CEM) [10] to search the neighborhood of the initial action to find a second action associated
with a higher Q value. Then we leverage the second action in the policy improvement stage to speed
up the learning process.

Our main contribution in this work is a self-regularized TD-learning method to address divergence
without requiring a target network that may slow down learning progress. In addition, we propose a
self-guided policy improvement method which combines policy-gradients and zero-order optimiza-
tion. This helps to speed up learning and is robust to local noise in the Q function approximation.
Taken together, these components define GRAC, a novel self-guided and self-regularized actor critic
algorithm. We evaluate GRAC on six continuous control domains from OpenAI gym [11], where
GRAC outperforms popular methods such as TD3 [1] and SAC [2] on four tasks and achieves com-
petitive results on two environments. We run our experiments across a large number of seeds with
fair evaluation metrics [12], perform extensive ablation studies, and open source both our code
and learning curves. We also run GRAC to enable a non-anthropomorphic, real robotic hand to
successfully rotate a cube to the target pose.

2 Related Work

The proposed algorithm incorporates key ingredients within the actor-critic method: a self-regularized
TD update and self-guided policy improvements based on evolution strategies. In this section, we
review prior work related to these ideas.

Divergence in Deep Q-Learning In Deep Q-Learning, we use a nonlinear function approximator
such as a neural network to approximate the Q-function that represents the value of each state-action
pair. Learning the Q-function in this way is known to suffer from divergence issues [13] such as
assigning unrealistically high values to state-action pairs [7]. For the case when the control policy is
greedily derived from Q [7], unrealistically high Q values are detrimental. To mitigate the divergence
issue, Mnih et al. [8] introduce a target network which is a copy of the estimated Q-function and
is held fixed to serve as a stable target for some number of steps. However, because of the delayed
function updates, target networks can slow down learning [14]. Durugkar and Stone [15] propose
Constrained Q-Learning, which uses a constraint to prevent the average target value from changing
after an update. Achiam et al. [16] give a simple analysis based on a linear approximation of the
Q function and develop a stable Deep Q-Learning algorithm for continuous control without target
networks. However, their proposed method requires separately calculating backward passes for each
state-action pair in the batch, and solving a system of equations at each timestep. Bhatt et al. [17]
introduce a normalization called cross-normalization which is regarded as an extension of batch
normalization that re-centers data for on- and off-policy transitions. Peng et al. [18] uses Monte
Carlo instead of TD error to update the Q network and removes the need for a target network. Our
proposed GRAC algorithm adds a self-regularization term to the TD-Learning objective to keep the
change of the state-action value small.

Evolution Strategies in Deep Reinforcement Learning Evolution Strategies are typically stable
but suffer from scaling to high-dimensional search spaces. Policy gradient-based deep RL methods,
such as DDPG [5] can continue to reuse previous experience to improve value estimations, particularly
in the off-policy setting, but can be unstable and highly sensitive to hyper-parameter tuning [9].
Researchers have proposed to combine these approaches to get the best of both worlds. Pourchot
and Sigaud [9] proposed CEM-RL to combine CEM with either DDPG [5] or TD3 [1]. However,
CEM-RL applies CEM within the actor parameter space which is extremely high-dimensional, making
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the search not efficient. Kalashnikov et al. [19] introduce QT-Opt, which leverages CEM to search
the landscape of the Q function, and enables Q-Learning in continuous action spaces without using
an actor. Based on QT-Opt, Simmons-Edler et al. [20] leverage CEM to search the landscape the
Q-function but propose to initialize CEM with a Gaussian prior covering the action space, independent
of observations. However, CEM does not scale well to high-dimensional action spaces [21], such as
in the Humanoid task. We first let the actor network output an initial Gaussian action distribution
conditioned on current state. Then we use CEM to search for an action with a higher Q value than the
Q value of the Gaussian mean. Starting from the predicted distribution, we show that GRAC speeds
up the learning process compared to popular actor-critic methods.

3 Preliminaries
In this section, we define the notation used in subsequent sections. Consider a Markov Decision
Process (MDP), defined by the tuple (S,A,P, r, ρ0, γ), where S is a finite set of states, A is a finite
set of actions, P : S ×A× S → R is the transition probability distribution, r : S ×A → R is the
reward function, ρ0 : S → R is the distribution of the initial state s0, and γ ∈ [0, 1] is the discount
factor. At each discrete time step t, with a given state st ∈ S, the agent selects an action at ∈ A,
receiving a reward r and the new state st+1 of the environment.

Let π denote the policy which maps a state to a probability distribution over the actions, π : S →
P(A). The return from a state is defined as the sum of discounted reward Rt =

∑
i=t γ

i−tr(si, ai).
In reinforcement learning, the objective is to find the optimal policy π∗, with parameters φ, which max-
imizes the expected return J(φ) =

∑
t E(st,at)∼ρπ(st,at)[γ

tr(st, at)] where ρπ(st) and ρπ(st, at)
denote the state and state-action marginals of the trajectory distribution induced by the policy π(at|st).

We use the following standard definitions of the state-action value function Qπ. It describes the
expected discounted reward after taking an action at in state st and thereafter following policy π:

Qπ(st, at) = Eπ[Rt|st, at].

In this work we use CEM to find optimal actions with maximum Q values. CEM is a randomized zero-
order optimization algorithm. To find the action a that maximizes Q(s, a), CEM is initialized with a
paramaterized distribution over a, P (a;ψ). Then it iterates between the following two steps [22]:
First generate a1, . . . , aN ∼ P (s;ψ). Retrieve their Q values Q(s, ai) and sort the actions to have
decreasing Q values. Then keep the first K actions, and solve for updated parameters ψ′:

ψ′ = argmaxψ
1

K

K∑
i=1

log(P (ai;ψ))

In the following, let CEM(Q(s, ·), π(·|s)) denote the action found by CEM to maximize Q(s, ·),
when CEM is initialized with the distribution predicted by the policy.

4 Technical Approach

4.1 Self-Regularized TD Learning

Reinforcement learning is prone to instability and divergence when a nonlinear function approximator
such as a neural network is used to represent the Q function [13]. Mnih et al. [8] identified several
reasons for this. One is the correlation between the current action-values and the target value. Updates
to Q(st, at) often also increase Q(st+1, a

∗
t+1) where a∗t+1 is the optimal next action. Hence, these

updates also increase the target value yt which may lead to oscillations or the divergence of the policy.

More formally, given transitions (st, at, rt, st+1) sampled from the replay buffer distribution B, the
Q network can be trained by minimising the loss functions L(θi) at iteration i:

L(θi) = E(st,at)∼B‖(Q(st, at; θi)− yi)‖2 (1)

where for now let us assume yi = rt+γmaxaQ(st+1, a; θi) to be the target for iteration i computed
based on the current Q network parameters θi. a∗t+1 = arg maxaQ(st+1, a). If we update the
parameter θi+1 to reduce the loss L(θi), it changes both Q(st, at; θi+1) and Q(st+1, a

∗
t+1; θi+1).

Assuming an increase in both values, then the new target value yi+1 = rt + γQ(st+1, a
∗
t+1; θi+1) for
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Algorithm 1 GRAC
Initialize critic network Qθ1, Qθ2 and actor network πφ with random parameters θ1, θ2 and φ
Initialize replay buffer B, Set α < 1

1: for i = 1, . . . do
2: Select action a ∼ πφi(s), observe reward r and new state s′
3: Store transition tuple (s, a, r, s′) in B
4: Sample mini-batch of N transitions (st, at, rt, st+1) from B.
5: ât+1 ∼ πφi(st+1)

6: ãt+1 ← CEM(Q(st+1, ·; θ2), πφi(·|st+1))

7: y ← rt + γmax{min
j=1,2

Q(st+1, ãt+1; θj), min
j=1,2

Q(st+1, ât+1; θj)}

8: a† ← arg max
{ã,â}

{min
j=1,2

Q(st+1, ãt+1; θj), min
j=1,2

Q(st+1, ât+1; θj)}

9: y′1, y
′
2 ← Q(st+1, a

†; θ1), Q(st+1, a
†; θ2)

10: for k = 1 to K do
11: Lk = ‖y − Q(st, at; θ1)‖22+‖y − Q(st, at; θ2)‖22+‖y′1 − Q(st+1, a

†; θ1)‖22+‖y′2 −
Q(st+1, a

†; θ2)‖22
12: θ1← θ1− λ∇θ1Lk, θ2← θ2− λ∇θ2Lk
13: if Lk < αL1 then
14: Break
15: end if
16: end for
17: ât ∼ πφi(st)
18: Jπ(φ) = E(st,ât)[Q(st, ât; θ1)]
19: āt ← CEM(Q(st, ·; θ1), πφi(·|st))
20: φ← φ− λ∇φJπ(φ)− λE(st,ât)[Q(st, āt; θ1)−Q(st, ât; θ1)]+∇φ log π(āt|st;φ)
21: end for

the next iteration will also increase leading to an explosion of the Q function. We demonstrated this
behavior in an ablation experiment with results in Fig. 2. We also show how maintaining a separate
target network [8] with frozen parameters θ− to compute yi+1 = rt + γQ(st+1, a

∗
t+1; θ−) delays the

update of the target and therefore leads to more stable learning of the Q function. However, delaying
the function updates also comes with the price of slowing down the learning process.

We propose a self-Regularized TD-learning approach to minimize the TD-error while also keeping
the change of Q(st+1, a

∗
t+1) small. This regularization mitigates the divergence issue [13], and

no longer requires a target network that would otherwise slow down the learning process. Let
y′i = Q(st+1, a

∗
t+1; θi), and yi = rt + γy′i. We define the learning objective as

min
θ
‖Q(st, at; θ)− yi‖2+‖Q(st+1, a

∗
t+1; θ)− y′i‖2 (2)

where the first term is the original TD-Learning objective and the second term is the regularization
term penalizing large updates to Q(st+1, a

∗
t+1). Note that when the current Q network updates its

parameters θ, both Q(st, at) and Q(st+1, a
∗
t+1) change. Hence, the target value yi will also change

which is different from the approach of keeping a frozen target network for a few iterations. We will
demonstrate in our experiments that this self-regularized TD-Learning approach removes the delays
in the update of the target value thereby achieves faster and stable learning.

4.2 Self-Guided Policy Improvement with Evolution Strategies

The policy, known as the actor, can be updated through a combination of two parts. The first part,
which we call Q-loss policy update, improves the policy through local gradients of the current Q
function, while the second part, which we call CEM policy update, finds a high-value action via
CEM in a broader neighborhood of the Q function landscape and updates the action distribution to be
around this high-value action. We formally describe the two parts below.

Given states st sampled from the replay buffer, the Q-loss policy update maximizes the objective

Jπ(φ) = Est∼B,ât∼π[Q(st, ât)], (3)
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where ât is sampled from the current policy π(·|st). The gradient is taken through the reparameteri-
zation trick. We reparameterize the policy using a neural network transformation as described by
Haarnoja et al. [2],

ât = fφ(εt|st) (4)
where εt is an input noise vector, sampled from a fixed distribution, such as a standard multivariate
Normal distribution. Then the gradient of Jπ(φ) is:

∇Jπ(φ) = Est∼B,εt∼N [
∂Q(st, fφ(εt|st))

∂f

∂fφ(εt|st)
∂φ

] (5)

For the CEM policy update, given a minibatch of states st, we first find a high-value action āt for
each state by running CEM on the current Q function, āt = CEM(Q(st, ·), π(·|st)). Then the policy
is updated to increase the probability of this high-value action. The guided update on the parameter φ
of π at iteration i is

Est∼B,ât∼π[Q(st, āt)−Q(st, ât)]+∇φ log πi(āt|st). (6)

We used Q(st, ât) as a baseline term, since its expectation over actions ât will give us the normal
baseline V (st):

Est∼B[Q(st, āt)− V (st)]+∇φ log πi(āt|st) (7)

In our implementation, we only perform an update if the improvement on the Q function, Q(st, āt)−
Q(st, ât), is non-negative, to guard against the occasional cases where CEM fails to find a better
action.

Combining both parts, the final update rule on the parameter φi of policy πi is

φi+1 = φi − λ∇φJπi(φi)− λEst∼B,ât∼πi [Q(st, āt)

−Q(st, ât)]+∇φ log πi(āt|st)

where λ is the step size.

Let Qπ be the state-action value function induced by the current policy. We can prove that if the Q
function has converged to Qπ then both the Q-loss policy update and the CEM policy update will be
guaranteed to improve the current policy. We formalize this result in Theorem 1 and Theorem 2, and
prove them in Appendix.
Theorem 1. Q-loss Policy Improvement Starting from the current policy π, we maximize the objec-
tive Jπ = E(s,a)∼ρπ(s,a)Q

π(s, a). The maximization converges to a critical point denoted as πnew.
Then the induced Q function, Qπnew , satisfies ∀(s, a), Qπnew(s, a) ≥ Qπ(s, a).

Theorem 2. CEM Policy Improvement Assuming the CEM process is able to find the optimal
action of the state-action value function, a∗(s) = arg maxaQ

π(s, a), where Qπ is the Q function
induced by the current policy π. By iteratively applying the update E(s,a)∼ρπ(s,a)[Q(s, a∗) −
Q(s, a)]+∇ log π(a∗|s), the policy converges to πnew. Then Qπnew satisfies ∀(s, a), Qπnew(s, a) ≥
Qπ(s, a).

4.3 Max-min Double Q-Learning

Q-learning [23] is known to suffer from overestimation [24]. Hasselt [25] proposed Double-Q
learning which uses two Q functions with independent sets of weights to mitigate the overestimation
problem. Fujimoto et al. [1] proposed Clipped Double Q-learning with two Q functions denoted
as Q(s, a; θ1) and Q(s, a; θ2), or Q1 and Q2 in short. Given a transition (st, at, rt, st+1), Clipped
Double Q-learning uses the minimum between the two estimates of the Q functions when calculating
the target value in TD-error [6]:

y = rt + γ min
j=1,2

Q(st+1, ât+1; θj) (8)

where ât+1 is the predicted next action.

Fujimoto et al. [1] mentioned that such an update rule may induce an underestimation bias. In
addition, ât+1 = πφ(st+1) is the prediction of the actor network. The actor network’s parameter
φ is optimized according to the gradients of Q1. In other words, ât+1 tends be selected according
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to the Q1 network which consistently increases the discrepancy between the two Q-functions. In
practice, we observe that the discrepancy between the two estimates of the Q-function, |Q1 −Q2|,
can increase dramatically leading to an unstable learning process.

We found that a technique we call Max-min Double Q-Learning reduces the discrepancy between
the Q-functions. We first select ât+1 according to the actor network πφ(st+1). Then we run CEM
to search the landscape of Q2 within a broad neighborhood of ât+1 to return a second action ãt+1.
Note that CEM selects an action ãt+1 that maximises Q2 while the actor network selects an action
ât+1 that maximises Q1. We gather four different Q-values: Q(st+1, ât+1; θ1), Q(st+1, ât+1; θ2),
Q(st+1, ãt+1; θ1), and Q(st+1, ãt+1; θ2). We then run a max-min operation to compute the target
value that cancels the biases induced by ât+1 and ãt+1.

y = rt + γmax{min
j=1,2

Q(st+1, ât+1; θj),

min
j=1,2

Q(st+1, ãt+1; θj)}
(9)

The inner min-operation minj=1,2Q(st+1, ât+1; θj) is adopted from Eq. 8 and mitigates overestima-
tion [24]. The outer max operation helps to reduce the difference betweenQ1 andQ2. In addition, the
max operation provides a better approximation of the Bellman optimality operator [6]. We visualize
Q1 and Q2 during the learning process in the supplementary material. We formalize the convergence
of the proposed Max-min Double Q-Learning approach in the finite MDP setting and prove this
theorem in the Appendix.

5 Experiments
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Figure 1: Learning curves for the OpenAI gym continuous control tasks. For each task, we train
10 instances of each algorithm, using 10 different seeds. Evaluations are performed every 5000
interactions with the environment. Each evaluation reports the return (total reward), averaged over 10
episodes. For each training seed, we use a different seed for evaluation, which results in different
start states. The solid curves and shaded regions represent the mean and standard deviation of the
average return over 10 seeds. We do not apply any smoothing to the learning curves. GRAC (orange)
learns faster than other methods across all tasks. GRAC achieves comparable result to the popular
methods on the Hopper-v2 task and the Ant-v2 task and outperforms prior methods on the other four
tasks including the complex high-dimensional Humanoid-v2.

5.1 Comparative Evaluation
We present GRAC, a self-guided and self-regularized actor-critic algorithm as summarized in Algo-
rithm 1. To evaluate GRAC, we measure its performance on the suite of MuJoCo continuous control
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tasks [26], interfaced through OpenAI Gym [11]. We compare our method with DDPG [5], TD3 [1],
CEM-RL [9], TRPO [4], SAC1 [2], and SAC2 [27]. We use the source code released by the original
authors and adopt the same hyperparameters reported in the original papers and the number of training
steps according to SAC1 [2]. For CEM-RL [9] and SAC2 [27], we use the results provided by their
corresponding authors. SAC2 does not contain results on Swimmer-v2. CEM-RL does not contain
results on Humanoid-v2 and only runs one millions step on every tested task. Hyperparameters
for all experiments are in the Appendix. Results are shown in Figure 1. GRAC outperforms or is
comparable to all other algorithms in both final performance and learning speed across all tasks.
On complex tasks with high state and action dimensions such as Humanoid-v2, GRAC outperforms
all other algorithms by a large margin. Both CEM-RL and GRAC leverage CEM. CEM-RL applies
CEM within the actor parameter space which is extremely high-dimensional while GRAC utilizes
CEM within the action space of the Q function. GRAC outperform CEM-RL on tasks such as Ant-v2,
HalfCheetah-v2, Swimmer-v2 by a large margin.

5.2 Ablation Study

20000 40000 60000 80000 100000
steps

200

400

600

800

1000

av
er

ag
e 

re
tu

rn

0 20000 40000 60000 80000 100000
steps

102

104

106

108

av
er

ag
e 

of
 Q

1 
ov

er
 tr

ai
ni

ng
 b

at
ch

DDPG DDPG w/o target network DDPG w/o target network, w/ target regularization

0.0 0.2 0.4 0.6 0.8 1.0
steps 1e6

0

600

1200

1800

2400

3000

av
er

ag
e 

re
tu

rn

DDPG DDPG w/o target network, w/ target regularization

(a) Returns on
Hopper-v2

(b) Average of Q1 over
training batch on Hopper-v2

(c) Returns on Hopper-v2 over
one million steps

Figure 2: Learning curves and average Q1 values (y′1 in Alg. 1) on Hopper-v2. DDPG w/o target
network quickly diverges as seen by the unrealistically high Q values. DDPG is stable but progresses
slowly. If we remove the target network and add the proposed target regularization, we both maintain
stability and achieve faster learning than DDPG.

Figure 3: Average returns for the
BreakoutNoFrameskip-v4 environment
on OpenAI gym. Blue is DQN, red
is DQN w/o target network w/ target
regularization.

In this section, we present ablation studies to under-
stand the contribution of each proposed component: Self-
Regularized TD-Learning (Section 4.1) and Self-Guided
Policy Improvment (Section 4.2). We present our results
in Fig. 4 in which we compare the performance of GRAC
with alternatives, each removing one component from
GRAC. Additional learning curves can be found in the Ap-
pendix. We also run experiments to examine how sensitive
GRAC is to some hyperparameters such as α and K listed
in Alg. 1, and the results can be found in the Appendix.

Self-Regularized TD Learning To verify the effective-
ness of the proposed self-regularized TD-learning method,
we apply our method to DDPG (DDPG w/o target net-
work w/ target regularization). We compare against two
baselines: the original DDPG and DDPG without target networks for both actor and critic (DDPG
w/o target network). We choose DDPG, because it does not have additional components such as
Double Q-Learning, which may complicate the analysis of this comparison.

In Fig. 2, we visualize the average returns, and average Q1 values over training batches (y′1 in Alg.1).
TheQ1 values of DDPG w/o target network changes dramatically which leads to poor average returns.
DDPG maintains stable Q values but makes slow progress. Our proposed DDPG w/o target network
w/ target regularization maintains stable Q values. In addition, we compare the average returns of
DDPG w/o target network, w/ target regularization and DDPG within one million steps over four
random seeds. DDPG w/o target network, w/ target regularization outperforms DDPG by large
margins in five out of six Mujoco tasks (Fig. 2 shows results on Hopper-v2. The remaining results
can be found in the Appendix). We also apply self-regularized TD-learning to DQN called DQN w/o
target network w/ target regularization on the Atari Breakout environment and it outperforms DQN
by 25%. The learning curve over 50 million steps is shown in Fig.3. These results on two different
Q-learning methods demonstrate the effectiveness of our method and its potentials to be applied to a
wide range of DRL methods.
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Policy Improvement with Evolution Strategies The GRAC actor network uses a combination of
two actor loss functions, denoted as QLoss and CEMLoss. QLoss refers to the unbiased gradient
estimators which extend the DDPG-style policy gradients [5] to stochastic policies. CEMLoss
represents the policy improvement guided by the action found with the zero-order optmization
method CEM. We run another two ablation experiments on all six control tasks and compare it
with our original policy training method denoted as GRAC. As seen in Fig. 4, in general GRAC
achieves a better performance compared to either using CEMLoss or QLoss. The significance of
the improvements varies over the six control tasks. For example, CEMLoss plays a dominant role
in Swimmer while QLoss has a major effect in HalfCheetah. This suggests that the CEMLoss and
QLoss are complementary.

HalfCheetah-v2 Ant-v2 Swimmer-v2 Walker2d-v2 Hopper-v2 Humanoid-v2
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Figure 4: Final average returns, normalized w.r.t GRAC for all tasks. For each task, we train each
ablation setting with 4 seeds, and average the last 10 evaluations of each seed (40 evaluations in
total). The black lines represent one standard deviation. Actor updates without CEMLoss (GRAC
w/o CEMLoss) and actor updates w.r.t minimum of both Q networks (GRAC w/o CriticCEM w/
minQUpdate) achieves slightly better performance on Walker2d-v2 and Hopper-v2. GRAC achieves
the best performance on 4 out of 6 tasks, especially on more challenging tasks with higher-dimensional
state and action spaces (Humanoid-v2, Ant-v2, HalfCheetah-v2). This suggests that individual
components of GRAC complement each other.

5.3 In Hand Manipulation

Figure 5: Real-world Experi-
ment Setup

We evaluate our approach on the problem of in-hand manipulation
which remains unsolved due the high dimensionality of the prob-
lem and the complexity of multi-contact control [28]. Having this
capability would allow robots to perform sophisticated tasks re-
quiring repositioning and reorienting of grasped objects. We apply
GRAC to a non-anthropomorphic robotic hand with 9 degrees of
freedom [29]. We train the robotic hand in simulation to rotate a
cube by 50 degrees around the gravity direction. The input states
are the current, previous, initial, and target object position and
orientation, and all nine gripper joint positions at the current time
step. The actions are nine joint positions for the gripper at the next
time step. GRAC learns a policy successfully accomplishing the
task within 500k iterations. We test the learned policy on the real
hand. Videos are included in the supplementary material.

6 Conclusion
Leveraging neural networks as function approximators, DRL has been successfully demonstrated
on a range of decision-making and control tasks. However, the nonlinear function approximators
also introduce issues such as divergence and overestimation. As our main contribution, we proposed
a self-regularized TD-learning method to address divergence without requiring a target network
that may slow down learning progress. The proposed method is agnostic to the specific Q-learning
method and can be added to any of them. In addition, we propose self-guided policy improvement by
combining policy-gradient with zero-order optimization such as the Cross Entropy Method. This
helps to search for actions associated with higher Q-values in a broad neighborhood and is robust to
local noise in the Q function approximation. Taken together, these components define GRAC, a novel
self-guided and self-regularized actor critic algorithm. We evaluate GRAC on the OpenAI gym tasks,
outperforming popular methods such as TD3 [1] and SAC [2] on four tasks and achieving competitive
results on two environments. We also run GRAC to enable a non-anthropomorphic robotic hand to
successfully accomplish an in-hand manipulation task in the real world.
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