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ABSTRACT

Estimating future events is a difficult task. Unlike humans, machine learning approaches
are not regularized by a natural understanding of physics. In the wild, a plausible suc-
cession of events is governed by the rules of causality, which cannot easily be derived
from a finite training set. In this paper we propose a novel theoretical framework to per-
form causal future prediction by embedding spatio-temporal information on a Minkowski
space-time. We utilize the concept of a light cone from special relativity to restrict and
traverse the latent space of an arbitrary model. We demonstrate successful applications
in causal image synthesis and future video frame prediction on a dataset of images. Our
framework is architecture- and task-independent and comes with strong theoretical guar-
antees of causal capabilities.

1 INTRODUCTION

In many everyday scenarios we make causal predictions to assess how situations might evolve based on our
observations and experiences. Machine learning has not been developed to this level yet, though, automated,
causally plausible predictions are highly desired for critical applications like medical treatment planning,
autonomous vehicles and security. Recent works have contributed machine learning algorithms for the pre-
diction of the future in sequences and for causal inference Kurutach et al. (2018). One major assumption that
many approaches implicitly adopt, is that the space of the model representation is a flat Euclidean space of
N dimensions. However, as shown by Arvanitidis et al. Arvanitidis et al. (2018), the Euclidean assumption
leads to false conclusions as a model’s latent space can be better characterized as a high dimensional curved
Riemannian manifold rather than an Euclidean space. Furthermore, the Alexandrov-Zeeman theorem Zee-
man (1964); Kosheleva & Kreinovich (2014) suggests that causality requires a Lorentzian group space and
advocates the unsuitability of Euclidean spaces for causal analysis.

In this paper, we present a novel framework that changes the way we treat hard computer vision problems
like the continuation of frame sequences. We embed information on a spatio-temporal, high dimensional
pseudo-Riemannian manifold - the Minkowski space-time - and utilize the special relativity concept of light
cones to perform causal inference. We focus on temporal sequences and image synthesis to exhibit the full
capabilities of our framework. In summary our contributions are:

• We extend representation learning to spatio-temporal Riemannian manifolds that follow the ideas
of the Minkowski space-time while being agnostic towards the used embedding architecture and
the prescribed task.
• We introduce a novel utilization of the concept of light cones and use them for convincing frame

synthesis and plausible prediction of future frames in video sequences.
• We provide theoretical guarantees about the causal properties of our model and demonstrate a causal

inference framework.

1



Under review as a conference paper at ICLR 2021

2 RELATED WORKS

High dimensional Riemannian manifolds for machine learning are utilized by a few major works. Arvanitidis
et al. Arvanitidis et al. (2018) show evidence that more general Riemannian manifolds characterize learned
latent spaces better than an Euclidean space. Their work however, utilizes generators that have been trained
under an Euclidean assumption. Contrary to that, Nickel et al. Nickel & Kiela (2017) introduce the use of
a Poincaré ball for hierarchical representation learning on word embeddings, showing superior performance
in representation capacity and generalization ability while employing a Riemannian optimization process.
In Nickel & Kiela (2018), Nickel et al. extend the previous work to a Lorentzian manifold as this offers
improvements in efficiency and stability of the distance function. In this paper we accept the argument made
by Nickel et al. but extend it as we argue in Section 3 that causal inference requires a Lorentzian group
space Zeeman (1964).

Ganea et al. Ganea et al. (2018) embed word information on a Poincaré ball and form entailment cones. The
authors propose to work with Directed Acyclical Graphs (DAG) and strive for non overlapping cones in a
Poincaré ball. In contrast to this, we encourage overlapping light cones in a Lorentzian manifold to model
future events.

Sun et al. Sun et al. (2015) use a space-time idea similar to ours but interpret the time axis as a ranking rather
than as temporal information. Their method is intended for dimensionality reduction and does not generate
further samples, or considers causal relationships between sampling points. Finally, Mathieu et al. Mathieu
et al. (2019) train a Variational Autoencoder (VAE) constrained to a Poincaré ball while also employing
the appropriate Riemannian equivalent to a normal distribution as well as Riemannian optimization. We
consider this work as the closest related since it is the only approach that has shown good performance in
the image domain.

In the Computer Vision focused field of future frame prediction for video sequences, Kurutach et al. (2018)
propose the causal InfoGAN which, however, lacks theoretical guarantees of causal abilities. Jayaraman
et al. (2019) aims at predicting the probabilistic bottlenecks where the possible futures are constrained in-
stead of generating a single future. Similarly, we are not attempting to predict a single future, rather we
predict all plausible futures in a way that naturally enables us to identify all probabilistic bottlenecks; see
Section 3. In other works concerned with video continuation, Mathieu et al. (2016); Vondrick et al. (2016a)
use CNNs to regress future frames directly, while Villegas et al. (2017a) introduce an LSTM utilizing the dif-
ference ∆ between frames to predict motion. Further works include the use of optical flow Liu et al. (2018)
or human pose priors Villegas et al. (2017b). The autoregressive nature of these methods results in accumu-
lated prediction errors that are propagated through the frames the further a sequence is extended. Beyond
a few frames, these approaches quickly lose frame-to-frame consistency. In order to mitigate these limita-
tions, works like Vondrick et al. (2016b) propose generative models to predict future frames and Tulyakov
et al. (2018) offers a generative model that disentangles motion and content. Neither can infer the causal
implications of their starting positions.

3 THEORETICAL FORMULATION

Causal Inference Causal inference refers to the investigation of causal relations between data. There is a
rich literature on machine learning and causal inference ranging from association of events to counterfactuals
Peters et al. (2019); Pearl (2019). Briefly we observe two equivalent approaches towards causality in machine
learning: Structural Causal Models Pearl (2019); Pearl et al. (2016) which rely on Directed Acyclical Graphs
(DAG) and Rubin Causal Models Rubin (2005) which rely upon the potential outcomes framework. In this
paper we will be focusing on the latter. In the potential outcomes framework as established by Rubin (2005)
multiple outcomes Y of X are contrasted in order to deduce causal relations between Y and X . As we will
show, our proposed method provides the theoretically guaranteed infrastructure to create a Rubin Causal
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Model. In addition, as our method is able to operate in a future as well as a past regime it enables the
formation of counterfactual questions, i.e., what would Y be if X ′ had happened instead.

On the choice of space: In his seminal 1964 work, E.C. Zeeman Zeeman (1964) makes the case that the
causality group RM that arises from the concept of partial ordering in a Minkowski space-time implies an
inhomogenous Lorentz group as the symmetry group ofRM . We highlight the explicit mention of Zeeman
on the unsuitability of an Euclidean topology to describe RM due to its local homogeneity, which does not
arise in RM . In Kosheleva & Kreinovich (2014) the authors prove that from observable causality we can
reconstruct the Minkowski space-time. Hence, we are in a position to argue that the use of a Minkowski
space-time for embeddings, which belongs to the inhomogenous Lorentz group, would reinforce causal
inference capabilities.

We define our Minkowski space-time to be characterized by the metric of Eq. 1 with the element−1 denoting
the temporal dimension and +1 elements the spatial dimensions. We extend Nickel & Kiela (2018) and
argue that the use of the Lorentzian manifold, which coincides with the Minkowski space-time, is both more
efficient as an embedding as well as enabling causal arguments,

ηµν = diag(−1,+1,+1,+1). (1)

Minkowski Space-Time and Causality: Mathematically a space can be described by its metric, which
defines the way the inner product of two vectors in this space is determined, i.e. the way we calculate
distances. Consequently, the inner product 〈., .〉η of two vectors a and b in 1 + 3D Minkowski space-time
can be defined as

〈a, b〉η =

3∑
µ=0

3∑
ν=0

aµηµνbν = −a0b0 + a1b1 + a2b2 + a3b3, (2)

where the coordinate 0 is understood to be the time coordinate.

One of the consequences of endowing the latent space with a Minkowski-like metric is the emergence of
causality in the system. This property can be more readily seen by employing the concept of proper time.
Given a manifold M endowed with a Minkowski metric ηµν , we define the proper time τ . This is the
time measured by an observer following along a continuous and differentiable path C(s) parametrized by
s ∈ [0, 1] between two events {x, y} ∈ M such that C(0) = x, C(1) = y,

τC =

∫
C

√
−
∑
µ,ν

dxµdxν . (3)

In order to ensure τ ∈ R, we require
∑
i dx

2
i ≤ dx20, where i ∈ 1, 2, ..., d. Therefore, the rate of change

|dx|/dτ in the spatial coordinates is capped by the time evolution of the system. In other words, there exists
a maximum speed limit which C must obey at every point. Further, it means that there exist pairs of space-
time points x, y which cannot be possibly connected by a valid path C , lest τ /∈ R. In order to describe
this phenomenon we borrow the concept of a light cone from special relativity. The set of solution paths
{C0(s)} such that C0(0) = (t0,x0) and τC0 = 0 describe the fastest any particle or piece of information can
travel within the system starting from (t0,x0). This boundary is known as the light cone, and is such that
∂R = {C0(s)}, where R is the causal region of the point (t0,x0). Every space-time point x ∈ R is said to
be within the light cone. As shown by (3), no valid path C(s) can cross ∂R. Thus, two space-time points
can only influence each other if they lie within each other’s light cone, that is, if they can be connected by a
valid path C. The region R splits into two disjoint sets: R+ and R−. R+ lies within the future light cone
of a particle at time t0, and thus includes all of the points (t1,x1) ∈ R such that t1 > t0. Conversely, R−
includes the points (t2,x2) ∈ R such that t2 < t0 and characterizes the past light cone of a particle at time
t0.
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If we have two space-time vectors x = (t0,x0) and y = (t1,x1) we can describe their relation as timelike
when 〈x, y〉 < 0, spacelike when 〈x, y〉 > 0 and lightlike when 〈x, y〉 = 0. A timelike position vector
lies within the light cone of a particle at the origin of the system. A spacelike vector lies outside of it,
and a lightlike vector lies exactly at its edge. One can then generalize this idea beyond the origin, and
thus compute the inner product of the difference between two space-time vectors x − y ≡ (∆t,∆r) , i.e.,
〈y − x, y − x〉 = −∆t2 + |∆r|2. Hence, when the separation of the vectors x and y is timelike, they lie
within each other’s causal region. In that case we can argue that there is a path for particle x, that belongs
in the model that defines the latent world of represented data, to evolve into particle y within a time period
∆t. Thus, by constructing the light cone of an initial point x we can constrain the space where the causally
resulting points may lie. We can then see that this mathematical construction of the latent space naturally
enforces that the velocity of information propagation in the system be finite, and that a particle can only be
influenced by events within its past light cone, i.e. the model is causal. By mapping this into a machine
learning perspective we argue that in a latent space that is built to follow the Minkowski space-time metric
an encoded point can then be used to create a light cone that constrains where all the causally entailed points
may be encoded to or sampled from.
On Intersecting Cones: A light cone can be constructed with each point of the latent space as its origin.
Consider point x0 to be an initial point derived from, for example, an encoded frame f0 from a video
sequence: by constructing the light cone C0 around x0 we are able to deduce where the various causally
related x0+t points might lie. By setting t to be a specific time instance, we are able to further constrain the
sub-space to points that lie inside of the conic section. They are causally plausible results of point x0 within
the time t. Geometrically, we can visualize this as a plane cutting a cone at a set time. We visualize this in
Figure 1a.

(a) Visualization of the emerging structure of a
light cone. The intersecting plane at point z = 3
signifies the 2-dimensional feature space at time
3. The interior of the cone subspace contains all
possible frames given a original video frame at
point z = 0.

(b) Visualization of the intersecting cones
algorithm. The subspace marked in yellow
contains the points that are causally related
to points F0,1,2.

Figure 1: Visual aids of proposed algorithm. Note that for visualization purposes we are exhibiting a 1 + 2
dimensional Euclidean space rather than a high dimensional Riemannian manifold.

A second point x1 that lies inside the light cone of x0 can be derived from an encoded frame f1. Similar to
x0 we construct the light cone C1 whose origin is x1. We then define the conic intersection CS = C0 ∩C1.
Following the causality argument, we deduce that the enclosed points in CS are causally related to both x0
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and x1 as they lie in the light cones of both. In addition, by constraining the intersecting time plane, we
constrain the horizon of future prediction.

Consequently, we propose Algorithm 1 as a method of future frame prediction using light cones on a
Minkowski space-time latent space. We graphically represent Algorithm 1 in Figure 1b.

Algorithm 1: Future Prediction using Intersecting Light Cones
Input : Frame Sequence F ; Queried Time T
Output: Predicted Frame
for t < T do

Mft ←MinkowskiEmbedding(ft)
CMft ← LightCone(Mft)
if t > len(F ) then

SamplesMft ← sample(CMft)
Mft+k ← choose(SamplesMft)

end
end
CS ← intersection(CMF )
fout ← choose(sample(CS))
Predicted Frame← Decoder(fout)

On the Entropy and the Aperture of Cones : When considering the intersection of the cones in Algo-
rithm 1 it is vital to examine the aperture of the cone at time T . For simplicity, we assume that the gradient
of the side of the cone is 45◦ for all cones. However, such an assumption implies that each frame and hence
each cone evolves with the same speed and can reach the same number of states at a given time. For real
world scenarios this is not necessarily true as, for example, the possible states in t + 1 for a ball rolling
constraint by rails are less than a ball rolling on a randomly moving surface. Hence, the actual gradient of
the cone depends on the number of states that are reachable from the state depicted in frame t. This quantity
is also known as the thermodynamic entropy of the system. It is defined as the sum of the states the system
can evolve to. Calculating the thermodynamic entropy of a macro-world system as in a real world dataset is
not trivial and we are not aware of any appropriate method to compute this at the time of writing. Hence, we
are forced to make the aforementioned assumption of 45◦.

However, given a frame sequence F , a set of counter example frames CF and following Algorithm 1 but
omitting the sampling steps, it is possible to build more accurate light cones in a contrastive manner. Hence,
it is possible to acquire a proxy for the thermodynamic entropy of the system. We note that the proxy can
only be accurate to a certain degree as any frame sequence is not able to contain enough information to
characterize the full state of the world.

4 EXPERIMENTATION

Training: Our proposed algorithm is invariant to the method used to train the embedding. In an ideal
scenario, we require an encoder-decoder pair that is able to map any image to a latent space and to reconstruct
any latent code. For the purposes of this paper’s evaluation we have chosen the method by Mathieu et
al. Mathieu et al. (2019) as our baseline embedding, as it is the only approach that has shown good image
domain performance.

Mathieu et al. Mathieu et al. (2019) construct a Variational Auto Encoder (VAE) that enforces the latent
space to be a Poincaré Ball. We analyze the properties of the Poincaré ball in the supplementary material. It
can be shown Nickel & Kiela (2018) that a n−dimensional Poincaré ball embedding can be mapped into a
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subspace of the Minkowski space-time by an orthochronous diffeomorphism m : Pn →Mn,

m(x1, ...xn) =
(1 + ||x||2, 2x1, ..., 2xn)

1− ||x||2
,

and back with the inverse m−1 : Mn → Pn

m−1(x1, ...xn) =
(x1, ..., xn)

1 + x0
,

where xi is the i-th component of the embedding vector.

We extend Mathieu et al. (2019) to enforce the embedding to a subspace of the Minkowski space-time by
utilizing Eq. 4 and 4. We treat the space’s dimensionality as hyper-parameter and tune it experimentally. We
establish that the optimal embedding of our data can be achieved in an 1 + 8 dimensional space i.e. 1 time
and 8 space dimensions. The model consists of a MLP with a single hidden layer and was trained with the
Riemannian equivalent of the Adam optimizer Sun et al. (2015) with a learning rate of 5e− 4. Training the
model with Moving MNIST requires on a Titan RTX Nvidia GPU less than 1 hour.

Inference: Our proposed Algorithm 1 is executed during inference as it does not require any learned
parameters. We sample from a Gaussian distribution wrapped to be consistent with our Minkowski space-
time in a manner similar to Mathieu et al. (2019), details can be found in the supplement. Inference can be
performed in about 0.5 s per intersecting cone in an exponential manner.

Dataset: As a proof of concept we use a custom version of the Moving MNIST datasetSrivastava et al.
(2015). Specifically we employ 10.000 sequences consisting of 30 frames each, making a total of 300.000
frames. Each sequence contains a single digit. The first frame is derived from the training set of the original
MNIST dataset, while the subsequent frames are random continuous translations of the digit. Construction
of the test set followed the same procedure with the first frame derived from the test set of the original
MNIST dataset. We created 10.000 testing sequences of 30 frames each. Each frame is 32 × 32 while the
containing digits range from 18px− 25px

We further use the KTH action recognition dataset Schuldt et al. (2004) to highlight the real world capa-
bilities of our method. We focus on the walking and handwaving actions and use all 4 distinct directions.
Different person identities are used in the train-test split.

5 RESULTS

Experiment 1: Single Cone Image Synthesis In the first experiment we evaluate the ability of the light
cone to constrain the latent space such that samples lying inside the cone are reasonably similar to the
original frame. We train our model with 1+8 latent dimensions. Following standard VAE sampling we
produce 100.000 random samples using a wrapped normal distribution. As expected, the tighter the imposed
time bound is, the fewer samples are accepted. We note that for t = 2 only 2 samples were accepted, for
t = 10 our method accepts N = 31% of the samples and for t = 20, N = 71%. In Figure 2a we exhibit
qualitative results for Experiment 1. We note that as the time limit increases we observe higher variability,
both in terms of morphology and location of the digits, while the identity of the digit remains the same. This
is in accordance with the theory that the “system” would have enough time to evolve into new states. More
examples are included in the supplementary material.

Experiment 2: Intersecting Cones In the second experiment we evaluate the ability of our algorithm to
predict frames by intersecting light cones. There is no unique path a system might evolve in time. Our
algorithm does not aim at producing a single future, rather it is able to produce multiple plausible futures.
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(a) Samples from Experiment 1. (b) Samples from Experiment 2.

Figure 2: (a): Random sampling was constrained in Experiment 1 such that the samples lie inside the light
cone with an upper temporal bound. Samples in the last row of Figure (a) had no constraints imposed
on them. We observe larger morphological and location differences as time progresses. This is consistent
with the theory that the system had enough time to evolve into these states. (b): In Experiment 2 we
are intersecting 2 cones. For ease of reading the figures have been arranged such that the movements are
more apparent. on the left in (b) we exhibit vertical movements while on the right we exhibit horizontal
movements. The arrows guide the direction of reading in the figure.

At a single time instant we can find any number of probable frames that extend a sequence. Hence, the
choose step of Algorithm 1 depends on the target application. In this experiment to guide the choice of
frames we map the sampled points to image space and compare the structural similarity of them with the
original frame of t = 0. We adopt a simple manner to choose the next step and we do not provide the model
with any further conditioning information to highlight the default strengths of the proposed algorithm. In an
online inference scenario the reference frame could be updated as ground truth frames become available.

In Figures 2b and 3a we exhibit qualitative results of our algorithm when intersecting 2 and 5 cones respec-
tively. In Figure 2b each set of results evaluates a specific movement, vertical or horizontal. In Figure 3a
we exhibit the case of intersecting 5 cones. As this scenario allows up to 10 time steps for our model to
evolve we notice a great number and more varied results. In the first two rows the depicted digits bounce
while moving towards one direction. In the third row the digit 0 exhibits morphological changes and in the
fourth row the digit 6 gradually moves its closing intersection upwards to become a 0. As our model is only
trained with single frames of MNIST digits it is not constrained to show only movement or morphological
changes. Rather it can vary both as seen in Figure 3a. The transmutation of the digit 6 to 0 is a probable, al-
beit unwanted, outcome under certain scenarios. In addition, we note that we are not providing any labels or
additional information to the model during inference. In principle, one could condition the model to produce
probable future frames by tuning the choose procedure of Algorithm 1. In the appendix we perform an
analysis for the SSIM degradation over time and show how out method is not susceptible to autoregressive
errors.

Experiment 3: Realistic video data As a final experimentation we use the KTH action dataset. Examples
of the performance of the proposed algorithm are shown in Fig. 3b. Due to the computational constraints
of the Poincaré VAE, which we are using as a base model, we are limited to one action at a time during
training. We note how our algorithm retains characteristics like the shade of gray of the clothing while
producing plausible futures. Each frame differs to the previous by 2 time instances giving ample time for
the subject to change directions. We believe that with a higher capacity network a similar performance can
be achieved on more complex scenes and higher resolution videos.
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(a) Moving MNIST (b) KTH movement video sequences dataset

Figure 3: Samples from Experiment 2 (a) and Experiment 3 (b). 5 cones intersected, trained on the moving
MNIST dataset (a) and the KTH movement video dataset (b). Differences in image brightness in (b) are due
to PyTorch’s contrast normalization in the plotting function.

Discussion As the model is only trained as a VAE on single frames and not on sequences, the notion of
time is not encoded in the weights of the network. Hence, all the resulting movement and predictive abilities
are derived from our proposed algorithm and the natural embedding abilities of the Minkowski space-time.
We emphasize the time-agnostic nature of our algorithm. Our predictions are constrained in time but are
probabilistic in nature. The proposed algorithm is able to produce multiple plausible futures. We believe
this is a very important feature for future prediction and sequence extrapolation techniques as it can be
used as an anomaly detection technique. Specifically, if one of the produced futures includes a hazardous
situation, an automated system can adapt in order to avoid an outcome, enabling for example defensive
driving capabilities in autonomous vehicles.
Even though our method is in principle auto-regressive, it does not suffer from the accumulation of errors as
it is both probabilistic and relies on efficient latent space sampling rather than the ability of a neural network
to remember structural and temporal information about the image.
Furthermore, we believe that the quality of the predicted frames as well as the definition of the subspace
from which the samples should be derived could be improved by incorporating the inferred thermodynamic
entropy of the frame. We will explore the link between the information and thermodynamic entropy in
future work. In addition, even though our framework is architecture agnostic, a customized architecture for
the prediction task would be an intriguing direction.
Finally, as our model allows us to find all probable scenarios that might exist, it can be used as a causal
inference tool in the "potential outcomes" framework Rubin (2005). Given a state we are able to probe
possible scenarios and investigate plausible outcomes, hence, deduce causal relations within the data. In
addition, by using the past light coneR−, we are able to probe the events that could have led to an observed
state enabling counterfactual analysis.

6 CONCLUSION

Machine Learning techniques are able to build powerful representations of large quantities of data. Leverag-
ing this ability we propose that hard computer vision problems can be approached with minimal learning in
an architecture agnostic manner. In this paper, we extend early Riemannian representation learning methods
with the notion of Minkowski space-time as it is more suitable for causal inference. We further propose a
novel algorithm to perform causally plausible image synthesis and future video frame prediction utilizing
the special relativity concept of light cones and apply it to two standard datasets.
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