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ABSTRACT

Continual learning needs to overcome catastrophic forgetting of the past. Memory
replay of representative old training samples has been shown as an effective solution,
and achieves the state-of-the-art (SOTA) performance. However, existing work is
mainly built on a small memory buffer containing a few original data, which cannot
fully characterize the old data distribution. In this work, we propose memory replay
with data compression (MRDC) to reduce the storage cost of old training samples
and thus increase their amount that can be stored in the memory buffer. Observing
that the trade-off between the quality and quantity of compressed data is highly
nontrivial for the efficacy of memory replay, we propose a novel method based
on determinantal point processes (DPPs) to efficiently determine an appropriate
compression quality for currently-arrived training samples. In this way, using
a naive data compression algorithm with a properly selected quality can largely
boost recent strong baselines by saving more compressed data in a limited storage
space. We extensively validate this across several benchmarks of class-incremental
learning and in a realistic scenario of object detection for autonomous driving.

1 INTRODUCTION

The ability to continually learn numerous tasks and infer them together is critical for deep neural
networks (DNNs), which needs to mitigate catastrophic forgetting (McCloskey & Cohen, 1989) of
the past. Memory replay of representative old training samples (referred to as memory replay) has
been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance (Hou et al.,
2019). Existing memory replay approaches are mainly built on a small memory buffer containing
a few original data, and try to construct and exploit it more effectively. However, due to the low
storage efficiency of saving original data, this strategy of building memory buffer will lose a lot
of information about the old data distribution. On the other hand, this usually requires huge extra
computation to further mitigate catastrophic forgetting, such as by learning additional parameters
(Liu et al., 2021a) or distilling old features (Hu et al., 2021).

Different from “artificial” memory replay in DNNs, a significant feature of biological memory is to
encode the old experiences in a highly compressed form and replay them to overcome catastrophic
forgetting (McClelland, 2013; Davidson et al., 2009; Carr et al., 2011). Thus the learned information
can be maintained in a small storage space as comprehensively as possible, and flexibly retrieved.
Inspired by the compression feature of biological memory replay, we propose memory replay with
data compression (MRDC), which can largely increase the amount of old training samples that can
be stored in the memory buffer by reducing their storage cost in a computationally efficient way.
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Figure 1: Averaged incremental accuracy and training time on ImageNet-sub. Using JPEG for data
compression can achieve comparable or better performance than recent strong approaches with less
extra computation (purple arrow), and can further improve their performance (gray arrow).

Given a limited storage space, data compression introduces an additional degree of freedom to
explicitly balance the quality and quantity for memory replay. With a properly selected quality, using
a naive JPEG compression algorithm (Wallace, 1992) can achieve comparable or better performance
than recent strong approaches with less extra computation (Fig. 1, purple arrow), and can further
improve their performance (Fig. 1, gray arrow). However, to empirically determine the compression
quality is usually inefficient and impractical, since it requires learning a task sequence or sub-sequence
repeatedly1. We propose a novel method based on determinantal point processes (DPPs) to efficiently
determine it without repetitive training. Further, we demonstrate the advantages of our proposal in
realistic applications such as continual learning of object detection for autonomous driving, where
the incremental data are extremely large-scale.

Our contributions include: (1) We propose memory replay with data compression, which is both an
important baseline and a promising direction for continual learning; (2) We empirically validate that
the trade-off between quality and quantity of compressed data is highly nontrivial for memory replay,
and provide a novel method to efficiently determine it without repetitive training; (3) Extensive
experiments show that using a naive data compression algorithm with a properly selected quality can
largely improve memory replay by saving more compressed data in a limited storage space.

2 RELATED WORK

Continual learning needs to overcome catastrophic forgetting of the past when learning a new
task. Regularization-based methods (Kirkpatrick et al., 2017; Wang et al., 2021b) approximated the
importance of each parameter to the old tasks and selectively penalized its changes. Architecture-
based methods (Rusu et al., 2016) allocated a dedicated parameter subspace for each task to prevent
mutual interference. Replay-based methods (Rebuffi et al., 2017; Shin et al., 2017) approximated and
recovered the old data distribution. In particular, memory replay of representative old training samples
(referred to as memory replay) can generally achieve the best performance in class-incremental
learning (Liu et al., 2021a; Hu et al., 2021) and in numerous other continual learning scenarios, such
as audio tasks (Ehret et al., 2020), few-shot (Tao et al., 2020b), semi-supervised (Wang et al., 2021a),
and unsupervised continual learning (Khare et al., 2021).

Most of the work in memory replay attempted to more effectively construct and exploit a small
memory buffer containing a few original data. As the pioneer work, iCaRL (Rebuffi et al., 2017)
proposed a general protocol of memory replay for continual learning. To better construct the memory
buffer, Mnemonics (Liu et al., 2020b) parameterized the original data and made them optimizable,
while TPCIL (Tao et al., 2020a) constructed an elastic Hebbian graph by competitive Hebbian
learning. On the other hand, BiC (Wu et al., 2019), LUCIR (Hou et al., 2019), PODNet (Douillard
et al., 2020), DDE (Hu et al., 2021) and AANets (Liu et al., 2021a) attempted to better exploit the
memory buffer, such as by mitigating the data imbalance between old and new classes (Hou et al.,
2019; Wu et al., 2019; Hu et al., 2021).

In contrast to saving original data, several work attempted to improve the efficiency of remembering
the old data distribution. One solution is to continually learn a generative model to replay generated
data (Shin et al., 2017; Wu et al., 2018) or compress old training data (Caccia et al., 2020). However,

1A naive grid search approach is to train continual learning processes with different qualities and choose the
best one, resulting in huge computational cost. Also, this strategy will be less applicable if the old data cannot be
revisited, or the future data cannot be accessed immediately.
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continual learning of such a generative model is extremely challenging, which limits its applications
to relatively simple domains, and usually requires a lot of extra computation. Another solution
is feature replay: GFR (Liu et al., 2020a) learned a feature generator from a feature extractor to
replay generated features, but the feature extractor suffered from catastrophic forgetting since it was
incrementally updated. REMIND (Hayes et al., 2020) saved the old features and reconstructed the
synthesized features for replay, but it froze the majority of feature extractor after learning the initial
phase, limiting the learning of representations for incremental tasks.

Data compression aims to improve the storage efficiency of a file, including lossless compression
and lossy compression. Lossless compression needs to perfectly reconstruct the original data from the
compressed data, which limits its compression rate (Shannon, 1948). In contrast, lossy compression
can achieve a much higher compression rate by degrading the original data, so it has been broadly used
in realistic applications. Representative hand-crafted approaches include JPEG (or JPG) (Wallace,
1992), which is the most commonly-used algorithm of lossy compression (Mentzer et al., 2020),
WebP (Lian & Shilei, 2012) and JPEG2000 (Rabbani, 2002). On the other hand, neural compression
approaches generally rely on optimizing Shannon’s rate-distortion trade-off, through RNNs (Toderici
et al., 2015; 2017), auto-encoders (Agustsson et al., 2017) and GANs (Mentzer et al., 2020).

3 CONTINUAL LEARNING PRELIMINARIES

We consider a general setting of continual learning that a deep neural network (DNN) incrementally
learns numerous tasks from their task-specific training dataset Dt = {(xt,i, yt,i)}Nt

i=1, where Dt is
only available when learning task t, (xt,i, yt,i) is a data-label pair and Nt is the number of such
training samples. For classification tasks, the training samples of each task might be from one or
several new classes. All the classes ever seen are evaluated at test time, and the classes from different
tasks need to be distinguished. This setting is also called class-incremental learning (van de Ven &
Tolias, 2019). Suppose such a DNN with parameter θ has learned T tasks and attempts to learn a
new task. Since the old training datasets

⋃T
t=1Dt are unavailable, the DNN will adapt the learned

parameters to fit DT+1, and tend to catastrophically forget the old tasks McClelland et al. (1995).

An effective solution of overcoming catastrophic forgetting is to select and store representative old

training samples Dmb
t = {(xt,i, yt,i)}

Nmb
t

i=1 in a small memory buffer (mb), and replay them when
learning the new task. For classification tasks, mean-of-feature is a widely-used strategy to select
Dmb
t (Rebuffi et al., 2017; Hou et al., 2019). After learning each task, features of the training data

can be obtained by the learned embedding function F eθ (·). In each class, several data points nearest
to the mean-of-feature are selected into the memory buffer. Then, the training dataset of task T + 1
becomes D′T+1 = DT+1

⋃
Dmb

1:T , including both new training samples DT+1 and some old training
samples Dmb

1:T =
⋃T
t=1D

mb
t , so as to prevent forgetting of the old tasks.

However, due to the limited storage space, only a few original data can be saved in the memory buffer,
namely, Nmb

t � Nt. Although numerous efforts in memory replay attempted to more effectively
exploit the memory buffer, such as by alleviating the data imbalance between the old and new classes,
this strategy of building memory buffer is less effective for remembering the old data distribution.

4 METHOD

In this section, we first present memory replay with data compression for continual learning. Then,
we empirically validate that there is a trade-off between the quality and quantity of compressed data,
which is highly nontrivial for memory replay, and propose a novel method to determine it efficiently.

4.1 MEMORY REPLAY WITH DATA COMPRESSION

Inspired by the biological memory replay that is in a highly compressed form (Carr et al., 2011), we
propose an important baseline for memory replay, that is, using data compression to increase the
amount of old training samples that can be stored in the memory buffer, so as to more effectively
recover the old data distribution. Data compression can be generally defined as a function F cq (·) of
compressing the original data xt,i to xq,t,i = F cq (xt,i) with a controllable quality q. Due to the smaller
storage cost of each xq,t,i than xt,i, the memory buffer can maintain more old training samples for
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Figure 2: Memory replay with data compression on ImageNet-sub. We make a grid search of the JPEG
quality in {10, 25, 50, 75, 90}. The quality of 100 refers to the original data without compression.

replay, namely, Nmb
q,t > Nmb

t for Dmb
q,t = {(xq,t,i, yt,i)}

Nmb
q,t

i=1 in Dmb
q,1:T =

⋃T
t=1D

mb
q,t . For notation

clarity, we will use Dmb
q to denote Dmb

q,t without explicitly writing out its task label t, likewise for xi,
yi, Nmb

q , Nmb and D. The compression rate can be defined as rq = Nmb
q /Nmb ∝ Nmb

q .

In analogy to the learning theory for supervised learning, we argue that continual learning will also
benefit from replaying more compressed data, assuming that they approximately follow the original
data distribution. However, the assumption is likely to be violated if the compression rate is too
high. Intuitively, this leads to a trade-off between quality and quantity: if the storage space is limited,
reducing the quality q of data compression will increase the quantity Nmb

q of compressed data that
can be stored in the memory buffer, and vice versa.

Here we evaluate the proposed idea by compressing images with JPEG (Wallace, 1992), a naive but
commonly-used lossy compression algorithm. JPEG can save images with a quality in the range of
[1, 100], where reducing the quality results in a smaller file size. Using a memory buffer equivalent
to 20 original images per class (Hou et al., 2019), we make a grid search of the JPEG quality with
representative memory replay approaches, such as LUCIR (Hou et al., 2019) and PODNet (Douillard
et al., 2020). As shown in Fig. 2, memory replay of compressed data with an appropriate quality can
substantially outperform that of original data. However, whether the quality is too large or too small,
it will affect the performance. In particular, the quality that achieves the best performance varies with
the memory replay approaches, but is consistent for different numbers of splits of incremental phases.

4.2 QUALITY-QUANTITY TRADE-OFF

Since the trade-off between quality q and quantityNmb
q is highly nontrivial for memory replay, it needs

to be carefully determined. Formally, after learning each task from its training datasetD, let’s consider

several compressed subsets Dmb
q = {(xq,i, yi)}

Nmb
q

i=1 , where q is from a set of finite candidates

Q = {q1, q2, q3, ...}. Each Dmb
q is constructed by selecting a subset Dmb∗

q = {(xi, yi)}
Nmb

q

i=1 of Nmb
q

original training samples from D (following mean-of-feature or other principles). The size Nmb
q is

determined as the maximum number such that the compressed version of Dmb∗
q to a quality q can

be stored in the memory buffer (see details in Appendix A). Thereby, a smaller q enables to save a
larger Nmb

q , and vice versa. The objective is to select a compressed subset that can best represent D,
namely, to determine an appropriate q for memory replay.

To understand the effects of data compression, which depends on the compression function F cq (·) and
the continually-learned embedding function F eθ (·), we focus on analyzing the features of compressed
data fq,i = F eθ (F cq (xi)). We first calculate the feature matrix M c

q = [f̄q,1, f̄q,2, ..., f̄q,Nmb
q

] of each
compressed subset Dmb

q , where each column vector f̄q,i is obtained by normalizing fq,i under L2-
norm to keep ||f̄q,i||2 = 1. Similarly, we obtain the feature matrix M∗q = [f̄1, f̄2, ..., f̄Nmb

q
] of each

original subset Dmb∗
q . Then, we can analyze the quality-quantity trade-off from two aspects:

On the empirical side, in Fig. 3 we use t-SNE (Van der Maaten & Hinton, 2008) to visualize features
of the original subset (light dot), which includes different amounts of original data, and its compressed
subset (dark dot), which is obtained by compressing the original subset to just fit in the memory
buffer. With the increase of quantity and the decrease of quality, the area of compressed subset is
initially similar to that of original subset and expands synchronously. However, as a large number of
low-quality compressed data occur out-of-distribution, the area of compressed subset becomes much
larger than that of its original subset, where the performance also severely declines (see Fig. 2, 3).
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Figure 3: t-SNE visualization of features of the original subset (light dots) and its compressed subset
(dark dots) after learning 5-phase ImageNet-sub with LUCIR. From left to right, the quantity is
increased from 37, 85 to 200, while the JPEG quality is reduced from 90, 50 to 10. We plot five
classes out of the latest task and label them in different colors. The crossed area is out-of-distribution.

On the theoretical side, given a training dataset D, we aim to find the compressed subset Dmb
q that

can best represent D by choosing an appropriate compression quality q from its range. To achieve
this goal, we introduce Pq(Dmb

q |D) to characterize the conditional likelihood of selecting Dmb
q given

input D under parameter q. The goal of learning is to choose appropriate q based on the training tasks
for making accurate predictions on unseen inputs. While there are a variety of objective functions for
learning, here we focus on the widely-used maximum likelihood estimation (MLE), where the goal is
to choose q to maximize the conditional likelihood of the observed data:

max
q
Pq(Dmb

q |D). (1)

The construction of Dmb
q can be essentially viewed as a sampling problem with the cardinality

Nmb
q . Here, we apply Determinantal Point Processes (DPPs) to formulate the conditional likelihood
Pq(Dmb

q |D), since DPPs are not only elegant probabilistic sampling models (Kulesza & Taskar,
2012), which can characterize the probabilities for every possible subset by determinants, but also
provide a geometric interpretation of the probability by the volume spanned by all elements in the
subset (detailed in Appendix C.2). In particular, a conditional DPP is a conditional probabilistic model
which assigns a probability Pq(Dmb

q |D) to each possible subset Dmb
q . Since the network parameter

θ is fixed during compression, and the feature matrix M c
q = F eθ (Dmb

q ), we rewrite Pq(Dmb
q |D) as

Pq(M c
q |D) equivalently. Formally, such a DPP formulates the probability Pq(Dmb

q |D) as

Pq(M c
q |D) =

det(LMc
q
(D; q, θ))∑

|M |=Nmb
q

det(LM (D; q, θ))
, (2)

where |M c
q | = Nmb

q and L(D; q, θ) is a conditional DPP |D| × |D| kernel matrix that depends on
the input D, the parameters θ and q. LM (D; q, θ) (resp., LMc

q
(D; q, θ)) is the submatrix sampled

from L(D; q, θ) using indices from M (resp., M c
q ). The numerator defines the marginal probability

of inclusion for the subset M c
q , and the denominator serves as a normalizer to enforce the sum

of Pq(M c
q |D) for every possible M c

q to 1. Generally, there are many ways to obtain a positive
semi-definite kernel L. In this work, we employ the most widely-used dot product kernel function,
where LMc

q
= M c>

q M c
q and LM = M>M .

However, due to the extremely high complexity of calculating the denominator in Eq. (2) (analyzed
in Appendix C.1), it is difficult to optimize Pq(M c

q |D). Alternatively, by introducing Pq(M∗q |D)
to characterize the conditional likelihood of selecting M∗q given input D under parameter q, we
propose a relaxed optimization program of Eq. (1), in which we (1) maximize Pq(M∗q |D) since
Pq(M c

q |D) ≤ Pq(M∗q |D) is always satisfied under lossy compression; and meanwhile, (2) constrain
that Pq(M c

q |D) is consistent with Pq(M∗q |D). The relaxed program is solved as follows.

First, by formulating Pq(M∗q |D) similarly as Pq(M c
q |D) in Eq. (2) (detailed in Appendix C.2), we

need to maximize

L1(q) = Pq(M∗q |D) =
det(LM∗q (D; θ))∑

|M∗|=Nmb
q

det(LM∗(D; θ))
, (3)

where the conditional DPP kernel matrix L(D; θ) only depends on D and θ. For our task, Pq(M∗q |D)

monotonically increases with Nmb
q . Thus, optimizing L1 is converted into maxq N

mb
q equivalently,

with significantly reduced complexity (detailed in Proposition 1 of Appendix C.3).
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Second, to constrain that Pq(M c
q |D) is consistent with Pq(M∗q |D), we propose to minimize

L2(q) =

∣∣∣∣Pq(M c
q |D)

Pq(M∗q |D)
− 1

∣∣∣∣ =

∣∣∣∣∣ det(M c>
q M c

q )

det(M∗>q M∗q )
Zq − 1

∣∣∣∣∣ =

∣∣∣∣∣
(

Volcq
Vol∗q

)2

Zq − 1

∣∣∣∣∣ =
∣∣R2

qZq − 1
∣∣ , (4)

where Zq =

∑
|M∗|=Nmb

q
det(LM∗ (D;θ))∑

|M|=Nmb
q

det(LM (D;q,θ)) . In particular, det(M∗>q M∗q ) has a geometric interpretation

that it is equal to the squared volume spanned by M∗q (Kulesza & Taskar, 2012), denoted as Vol∗q,

likewise for det(M c>
q M c

q ) with respect to Volcq. Then we define Rq =
Volcq
Vol∗q

as the ratio of the two
feature volumes. To avoid computing Zq, we can convert optimizing L2 into minimizing |Rq − 1|
equivalently, since both of them mean maximizing q (detailed in Proposition 2 of Appendix C.4).

Putting L1 and L2 together, our method is finally reformulated as

max
q

g(q)

s.t., q ∈ Q, |Rq − 1| < ε,
(5)

where ε is a small positive number to serve as the threshold of Rq. g(·) : R → N represents the
function that outputs the maximum number (i.e., Nmb

q ) such that the compressed version of Dmb∗
q

to a quality q can be stored in the memory buffer. Note that we relax the original restriction of
minimizing |Rq − 1| by enforcing |Rq − 1| < ε, since maximizing Nmb

q for L1 and maximizing
q for L2 cannot be achieved simultaneously. Of note, Rq is calculated by normalizing the feature
volume Volcq with Vol∗q, both of which depend on q (i.e., Nmb

q ). Therefore, ε can largely mitigate the
sensitivity of q to various domains and can be empirically set as a constant value (see Sec. 4.3).

Since the function g(·) in Eq. (5) is highly non-smooth, gradient-based methods are not applicable.
Indeed, we solve it by selecting the best candidate in a finite-size set Q. Generally, the candidate
values in Q can be equidistantly selected from the range of q, such as [1, 100] for JPEG. More
candidate values can determine a proper q more accurately, but the complexity will grow linearly. We
found that selecting 5 candidate values is a good choice in our experiments. Once we solve Eq. (5), a
good trade-off is achieved by reducing q as much as possible to obtain a larger Nmb

q , while keeping
the feature volume Volcq similar to Vol∗q. This is consistent with our empirical analysis in Fig. 3.

4.3 VALIDATE OUR METHOD WITH GRID SEARCH RESULTS

Figure 4: Properly select a quality without repetitive training.

In essence, the grid search described
in Sec. 4.1 can be seen as a naive ap-
proach to determine the compression
quality, which is similar to selecting
other hyperparameters for continual
learning (Fig. 4, a). This strategy is to
learn a task sequence or sub-sequence
using different qualities and choose
the best one (Fig. 4, b), which leads
to huge extra computation and will be
less applicable if the old data cannot
be revisited, or the future data cannot
be accessed immediately. In contrast,
our method described in Sec. 4.2 only
needs to calculate the feature volumes
of each compressed subset Dmb

q and
original subset Dmb∗

q (Fig. 4, c), with-
out repetitive training.

Now we validate the quality determined by our method with the grid search results, where LUCIR and
PODNet achieve the best performance at the JPEG quality of 50 and 75 on ImageNet-sub, respectively
(see Fig. 2). We present Rq in each incremental phase and the averaged Rq of all incremental phases
for 5-phase split in Fig. 5 and for 10- and 25-phase splits in Appendix Fig.13. Based on the principle
in Eq. (5) with ε = 0.5, it can be clearly seen that 50 and 75 are the qualities chosen for LUCIR and
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Figure 5: For 5-phase ImageNet-sub, we present Rq in each incremental phase with various compres-
sion qualities q, and the averaged Rq of all incremental phases.

PODNet, respectively, since they are the smallest qualities that satisfy |Rq − 1| < ε. Therefore, the
quality determined by our method is consistent with the grid search results, but the computational
cost is saved by more than 100 times. Interestingly, for each quality q, whether |Rq − 1| < ε is
generally consistent in each incremental phase and the average of all incremental phases. We further
explore the scenarios where Rq might be more dynamic in Appendix D.4.

5 EXPERIMENT

In this section, we first evaluate memory replay with data compression (MRDC) in class-incremental
learning of large-scale images. Then, we demonstrate the advantages of our proposal in realistic
semi-supervised continual learning of large-scale object detection for autonomous driving.2

5.1 CLASS-INCREMENTAL LEARNING

Benchmark: We consider three benchmark datasets of large-scale images for continual learning.
CUB-200-2011 (Wah et al., 2011) is a large-scale dataset including 200-class 11,788 colored images
of birds with default format of JPG, split as 30 images per class for training while the rest for testing.
ImageNet-full (Russakovsky et al., 2015) includes 1000-class large-scale natural images with default
format of JPEG. ImageNet-sub (Hou et al., 2019) is a subset derived from ImageNet-full, consisting
of randomly selected 100 classes of images. Following Hou et al. (2019), we randomly resize, crop
and normalize the images to the size of 224×224, and randomly split a half of the classes as the initial
phase while split the rest into 5, 10 and 25 incremental phases. We report the averaged incremental
accuracy with single-head evaluation (Chaudhry et al., 2018) in the main text, and further present the
averaged forgetting in Appendix E.3.

Implementation: We follow the implementation of representative memory replay approaches (Hou
et al., 2019; Douillard et al., 2020) (detailed in Appendix B.1), where we focus on constraining a
certain storage space of the memory buffer rather than a certain number of images. The storage
space is limited to the equivalent of 20 original images per class, if not specified. We further discuss
the effects of different storage space in Fig. 7, a fixed memory budget in Appendix E.4 and less
compressed samples in Appendix E.5. For data compression, we apply a naive but commonly-used
JPEG (Wallace, 1992) algorithm to compress images to a controllable quality in the range of [1, 100].

Baseline: We evaluate representative memory replay approaches such as LwF (Li & Hoiem, 2017),
iCaRL (Rebuffi et al., 2017), BiC (Wu et al., 2019), LUCIR (Hou et al., 2019), Mnemonics (Liu
et al., 2020b), TPCIL (Tao et al., 2020a), PODNet (Douillard et al., 2020), DDE (Hu et al., 2021)
and AANets (Liu et al., 2021a). In particular, AANets and DDE are the recent strong approaches
implemented on the backbones of LUCIR and PODNet, so we also implement ours on the two
backbones. Since both AANets and DDE only release their official implementation on LUCIR, we
further reproduce LUCIR w/ AANets and LUCIR w/ DDE for fair comparison.

Accuracy: We summarize the performance of the above baselines and memory replay with data
compression (MRDC, ours) in Table 1. Using the same extra storage space, ours achieves comparable
or better performance than AANets and DDE on the same backbone approaches, and can further
boost their performance by a large margin. The improvement from ours is due to mitigating the
averaged forgetting, detailed in Appendix E.3. For CUB-200-2011 with only a few training samples,
all old data can be saved in the memory buffer with a high JPEG quality of 94. In contrast, for
ImageNet-sub/-full, only a part of old training samples can be selected, compressed and saved in the

2All experiments are averaged by more than three runs with different random seeds.
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Table 1: Averaged incremental accuracy (%) of classification tasks. The reproduced results are
presented with ± standard deviation, while others are reported results. The reproduced results might
slightly vary from the reported results due to different random seeds. 1With class-balance finetuning.
2PODNet reproduced by Hu et al. (2021) underperforms that in Douillard et al. (2020).

CUB-200-2011 ImageNet-sub ImageNet-full

Method 5-phase 10-phase 25-phase 5-phase 10-phase 25-phase 5-phase 10-phase

LwF (Li & Hoiem, 2017) 39.42 ±0.48 38.53 ±0.96 36.33 ±0.74 53.62 47.64 44.32 44.35 38.90

iCaRL (Rebuffi et al., 2017) 39.49 ±0.58 39.31 ±0.66 38.77 ±0.73 65.44 59.88 52.97 51.50 46.89

BiC (Wu et al., 2019) 45.29 ±0.88 45.25 ±0.70 45.17 ±0.27 70.07 64.96 57.73 62.65 58.72

Mnemonics (Liu et al., 2020b) – – – 72.58 71.37 69.74 64.54 63.01

TPCIL (Tao et al., 2020a) – – – 76.27 74.81 – 64.89 62.88

LUCIR (Hou et al., 2019) 44.63 ±0.32 45.58 ±0.28 45.48 ±0.66 70.84 68.32 61.44 64.45 61.57

w/ AANets (Liu et al., 2021a) – – – 72.55 69.22 67.60 64.94 62.39

w/ DDE (Hu et al., 2021) – – – 72.34 70.20 – 67.511 65.771

w/ MRDC (Ours) 46.68 ±0.60 47.28 ±0.51 48.01 ±0.72 73.56 ±0.27 72.70 ±0.47 70.53 ±0.57 67.53 ±0.08
1 65.29 ±0.10

1

w/ AANets (Reproduced) 46.87 ±0.66 47.34 ± 0.77 47.35 ±0.95 72.91 ±0.45 71.93 ±0.52 70.70 ±0.46 63.37 ±0.26 62.46 ±0.14

w/ AANets + MRDC (Ours) 49.02 ±1.07 49.84 ±0.87 51.33 ±1.42 73.79 ±0.42 73.73 ±0.37 73.47 ±0.35 64.99 ±0.13 63.04 ±0.11

w/ DDE (Reproduced) 45.86 ±0.65 46.48 ±0.69 46.46 ±0.33 73.04 ±0.36 70.84 ±0.59 66.61 ±0.68 66.95 ±0.09
1 65.21 ±0.05

1

w/ DDE + MRDC (Ours) 47.16 ±0.60 48.33 ±0.48 48.37 ±0.34 75.12 ±0.17 73.39 ±0.29 70.83 ±0.34 67.90 ±0.05
1 66.67 ±0.23

1

PODNet (Douillard et al., 2020) 44.92 ±0.31 44.49 ±0.65 43.79 ±0.44 75.54 74.33 68.31 66.95 64.13

w/ AANets (Liu et al., 2021a) – – – 76.96 75.58 71.78 67.73 64.85

w/ DDE (Hu et al., 2021) – – – 76.71 75.41 – 66.422 64.71

w/ MRDC (Ours) 46.00 ±0.28 46.09 ±0.37 45.84 ±0.43 78.08 ±0.66 76.02 ±0.54 72.72 ±0.74 68.91 ±0.16 66.31 ±0.26

memory buffer, where our method can efficiently determine the compression quality for LUCIR and
PODNet (see Sec. 4.3 and Appendix D.2), and for AANets and DDE (see Appendix D.3).

Figure 6: Averaged incremental accuracy (the column, left
Y-axis) and computational cost (the triangle, right Y-axis) on
ImageNet-sub. We run each baseline with one Tesla V100.

Computational Cost: Limiting the
size of memory buffer is not only
to save its storage, but also to save
the extra computation of learning all
old training samples again. Here we
evaluate the computational cost of
AANets, DDE and memory replay
with data compression (MRDC, ours)
on LUCIR (see Fig. 6 for ImageNet-
sub and Appendix Table 3 for CUB-
200-2011). Both AANets and DDE
require a huge amount of extra com-
putation to improve the performance
of continual learning, which is gener-
ally several times that of the backbone approach. In contrast, ours achieves competing or more
performance improvement but only slightly increases the computational cost.

Figure 7: The effects of different storage space (equal to 10, 20, 40 and 80 original images per class)
on ImageNet-sub. LUCIR (a) and PODNet (b) are reproduced from their officially-released codes.

Storage Space: The impact of storage space is evaluated in Fig. 7. Limiting the storage space to
equivalent of 10, 20, 40 and 80 original images per class, ours can improve the performance of
LUCIR and PODNet by a similar margin, where the improvement is generally more significant for
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more splits of incremental phases. Further, ours can achieve consistent performance improvement
when using a fixed memory budget (detailed in Appendix E.4), and can largely save the storage cost
without performance decrease when storing less compressed samples (detailed in Appendix E.5).

5.2 LARGE-SCALE OBJECT DETECTION

Figure 8: We present the grid search results (left), Rq in each
incremental phase (middle), and the averaged Rq of all incre-
mental phases (right) for SSCL on SODA10M. The quality
determined by our method is 50, which indeed achieves the
best performance in the grid search.

The advantages of memory replay
with data compression are more sig-
nificant in realistic scenarios such as
autonomous driving, where the incre-
mental data are extremely large-scale
with huge storage cost. Here we eval-
uate continual learning on SODA10M
(Han et al., 2021), a large-scale object
detection benchmark for autonomous
driving. SODA10M contains 10M un-
labeled images and 20K labeled im-
ages of size 1920× 1080 with default
format of JPEG, which is much larger
than the scale of ImageNet. The la-
beled images are split into 5K, 5K and
10K for training, validation and testing, respectively, annotating 6 classes of road objects for detection.

Table 2: Detection results with ± standard deviation (%)
of semi-supervised continual learning on SODA10M. FT:
finetuning. MR: memory replay.

Method AP AP50 AP75

Pseudo

Labeling

FT 40.36 ±0.34 63.83 ±0.35 43.82 ±0.34

MR 40.75 ±0.30 / +0.39 65.11 ±0.64 / +1.28 43.53 ±0.20 / -0.29

Ours 41.50 ±0.06 / +1.14 65.36 ±0.47 / +1.53 44.95 ±0.22 / +1.13

Unbiased

Teacher

FT 42.88 ±0.32 66.70 ±0.59 45.99 ±0.32

MR 43.10 ±0.06 / +0.22 66.88 ±0.51 / +0.18 46.62 ±0.02 / +0.63

Ours 43.72 ±0.25 / +0.84 67.80 ±0.46 / +1.10 47.36 ±0.23 / +1.37

Since the autonomous driving data are
typically partially-labeled, we follow
the semi-supervised continual learn-
ing (SSCL) proposed by Wang et al.
(2021a) for object detection. Specifi-
cally, we randomly split 5 incremen-
tal phases containing 1K labeled data
and 20K unlabeled data per phase, and
use a memory buffer to replay labeled
data. The storage space is limited
to the equivalent of 100 original im-
ages per phase. Following Han et al.
(2021), we consider Pseudo Labeling
and Unbiased Teacher (Liu et al., 2021b) for semi-supervised object detection (the implementation
is detailed in Appendix B.2). Using the method described in Sec. 4.2 with the same threshold (i.e.,
ε = 0.5), we can efficiently determine the compression quality for SSCL of object detection, and
validate that the determined quality indeed achieves the best performance in grid search (see Fig. 8).
Then, compared with memory replay of original data, our proposal can generally achieve several
times of the performance improvement on finetuning, as shown in Table 2.

6 CONCLUSION

In this work, we propose that using data compression with a properly selected compression quality
can largely improve the efficacy of memory replay by saving more compressed data in a limited
storage space. To efficiently determine the compression quality, we provide a novel method based on
determinantal point processes (DPPs) to avoid repetitive training, and validate our method in both
class-incremental learning and semi-supervised continual learning of object detection. Our work not
only provides an important yet under-explored baseline, but also opens up a promising new avenue for
continual learning. Further work could develop adaptive compression algorithms for incremental data
to improve the compression rate, or propose new regularization methods to constrain the distribution
changes caused by data compression. Meanwhile, the theoretical analysis based on DPPs can be used
as a general framework to integrate optimizable variables in memory replay, such as the strategy of
selecting prototypes. In addition, our work suggests how to save a batch of training data in a limited
storage space to best describe its distribution, which will motivate broader applications in the fields
of data compression and data selection.
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A TRADE-OFF BETWEEN QUALITY AND QUANTITY

Figure 9: Limiting the storage space to the equivalent of
(a) 20 original images per class for ImageNet and (b) 50
original images per phase for SODA10M, we plot the relation
between the quality and quantity of compressed data. The
quality of 100 refers to the original data without compression.

Given a limited storage space, there
is an intuitive trade-off between the
quality q and quantity Nmb

q of com-
pressed data. Here we plot the re-
lation of q and Nmb

q for ImageNet
and SODA10M used in our paper. As
shown in Fig. 9, reducing the quality
enables to save more compressed data
in the memory buffer, and vice versa.
Then, we present compressed images
with various qualities in Fig. 10. Al-
though reducing the quality tends to
distort the compressed data and thus
hurts the performance of continual
learning, it can be clearly seen that
the semantic information of such com-
pressed data is hardly affected. There-
fore, a potential follow-up work is to regularize the differences between compressed data and original
data, so as to further improve the performance of memory replay.

Figure 10: Compressed images of ImageNet. (a) Each column contains compressed images of a
specific JPEG quality. (b) Two exemplar images with different qualities.
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B IMPLEMENTATION DETAIL

B.1 CLASS-INCREMENTAL LEARNING

Following the implementation of Hou et al. (2019); Douillard et al. (2020); Tao et al. (2020a); Liu
et al. (2021a); Hu et al. (2021), we train a ResNet-18 architecture for 90 epochs, with minibatch
size of 128 and weight decay of 1× 10−4. We use a SGD optimizer with initial learning rate of 0.1,
momentum of 0.9 and cosine annealing scheduling. We run each baseline with one Tesla V100, and
measure the computational cost. We evaluate the performance of class-incremental learning with the
averaged incremental accuracy (AIC) (Hou et al., 2019). After learning each phase, we can calculate
the test accuracy on all classes learned so far in the previous t phases as At. Then we can calculate
AICt = 1

t

∑t
i=1 Ai.

To evaluate the effects of class similarity on the determined quality of data compression, we select
similar or dissimilar superclasses from ImageNet, which includes 1000 classes ranked by their
semantic similarity. Specifically, we select 10 adjacent classes as a superclass, and construct 10
adjacent (similar) or remote (dissimilar) superclasses. The index of classes selected in 10 similar
superclasses is [1, 2, 3, ..., 100], while in 10 dissimilar superclasses is [1, 2, ..., 10, 101, 102, ..., 110,
..., 910].

B.2 LARGE-SCALE OBJECT DETECTION

For memory replay, we follow Wang et al. (2021a) to randomly select the old labeled data and
save them in the memory buffer, which indeed achieves competitive performance as analyzed by
Chaudhry et al. (2018). We follow the implementation of Han et al. (2021) for semi-supervised
object detection. Specifically, we use Faster-RCNN (Ren et al., 2015) with FPN (Lin et al., 2017)
and ResNet-50 backbone as the object detection network for Pseudo Labeling (Han et al., 2021) and
Unbiased Teacher (Liu et al., 2021b). For each incremental phase, we train the network for 10K
iterations using the SGD optimizer with initial learning rate of 0.01, momentum of 0.9, and constant
learning rate scheduler. The batch size of supervised and unsupervised data are both 16 images.
For Pseudo Labeling, we first train a supervised model on the labeled set in the first 2K iterations.
Then we evaluate the supervised model on the unlabeled set. A bounding box with a predicted score
larger than 0.7 in the evaluation results is selected as a pseudo label, which would be used to train
the supervised model in the later 8K iterations in each phase. For Unbiased Teacher, we follow the
default setting and change the input size to comply with SODA10M. We run each baseline with 8
Tesla V100. The performance is evaluated by the metrics (AP, AP50, AP75) used in the prior works
(Liu et al., 2021b; Han et al., 2021).

C THEORETICAL ANALYSIS

C.1 DETERMINANTAL POINT PROCESSES (DPPS) PRELIMINARIES

Arising in quantum physics and random matrix theory, determinantal point processes (DPPs) are
elegant probabilistic models of global, negative correlations, and offer efficient algorithms for
sampling, marginalization, conditioning, and other inference tasks.

A point process P on a ground set V is a probability measure on the power set 2N , where N = |V|
is the size of the ground set. Let B be a D ×N matrix with D ≥ N . In practice, the columns of
B are vectors representing items in the set V . Denote the columns of B by Bi for i = 1, 2, · · · , N .
A sample from P might be the empty set, the entirety of B, or anything in between. P is called
a determinantal point process if, given a random subset Y drawn according to P (2N possible
instantiations for Y ), we have for every S ⊆ B,

P(Y = S) ∝ det(LS), (6)

where S = {Bi1 , Bi2 , · · · , Bi|S|}, P(Y = S) characterizes the likelihood of selecting the subset
S from B. For some symmetric similarity kernel L ∈ RN×N (e.g., L = BTB), where LS is
the similarity kernel of subset S (e.g., L = STS). That is, LS is the submatrix sampled from L
using indices from S. Since P is a probability measure, all principal minors det(LS) of L must
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be non-negative, and thus L itself must be positive semidefinite. These requirements turn out to be
sufficient: any L, 0 � L � I , defines a DPP.

L is often referred to as the marginal kernel since it contains all the information needed to compute
the probability of any subset S being included in Y . Hence, the marginal probability of including one
element Bi is P(Bi ∈ Y ) = Lii, and two elements Bi and Bj is P(Bi, Bj ∈ Y ) = LiiLjj −L2

ij =

P(Bi ∈ Y )P(Bj ∈ Y ) − L2
ij . A large value of Lij reduces the likelihood of both elements to

appear together in a diverse subset. This demonstrates why DPPs are “diversifying”. Below is several
important conclusions about DPPs related to our work (Kulesza & Taskar, 2012).

Geometric Interpretation. By focusing on L-ensembles in DPPs, determinants have an intuitive
geometric interpretation. If L = B>B, then

P(Y = S) ∝ det(LS) = (Vol(S))2, (7)

where the first two terms specify the marginal probabilities for every possible subset S, and the last
term is the squared |S|-dimensional volume of the parallelepiped spanned by the items in S.

Quality vs. Diversity. While the entries of the DPP kernel L are not totally opaque in that they can
be seen as measures of similarity— reflecting our primary qualitative characterization of DPPs as
diversifying processes. In most practical situations, we want diversity to be balanced against some
underlying preferences for different items in B. Kulesza & Taskar (2012) proposed a decomposition
of the DPP that more directly illustrates the tension between diversity and a per-item measure of
quality. Specifically, L = B>B can be taken one step further, by writing each column Bi as the
product of a quality term qi ≥ 0 and vector of normalized diversity features fi ∈ RD, ‖fi‖ = 1.
Then, Lij = qif

T
i fjqj , where f>i fj ∈ [−1, 1] is a signed measure of similarity between Bi and Bj .

Let φij = f>i fj =
Lij√
LiiLjj

, and φ = {φij}Ni,j=1. Then, depending on Eq. (6), we have

P(Y = S) ∝

 ∏
Bij
∈S
q2ij

 det(φS), (8)

where qij can be seen as a quality score of an item Bij in B, and φS is the submatrix sampled from φ
using indices from S.

Alternative Likelihood Formulas. In an L-ensemble DPP, the likelihood of a particular set S ⊆ B
is given by

PL(S) =
det(LS)∑
S′ det (LS′)

=
det(LS)

det(L+ I)
, (9)

where S′ is one of all 2N possible subsets in B, and LS′ is the submatrix sampled from L using
indices from S′.

This expression has some nice intuitive properties in terms of volumes, and, ignoring the normalization
in the denominator, takes a simple and concise form. However, as a ratio of determinants on matrices
of differing dimension, it may not always be analytically convenient. Minors can be difficult to reason
about directly, and ratios complicate calculations like derivatives. Such a high computational cost is
just one key challenge in DPPs.

Conditional DPPs. A conditional DPP P(Y = S|B) is a conditional probabilistic model which
assigns a probability to every possible subset S ⊆ B. The model takes the form of an L-ensemble:

P(Y = S|B) ∝ det(LS(B)), (10)

where L(B) is a positive semidefinite conditional N ×N kernel matrix that depends on the input B.

k-DPPs. A k-DPP is obtained by conditioning a standard DPP on the event that the set Y has
cardinality k, which is concerned only with the content of a random k-set (i.e., without the size
k) (Kulesza & Taskar, 2012). Formally, the k-DPP PkL gives the probability of a particular set S as

PkL(Y = S) =
det(LS)∑

|S′|=k det(LS′)
, (11)
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where |S| = k and L is a positive semidefinite kernel. Although numerous optimization algorithms
have been proposed to solve DPPs problems, the high computational complexity about denominator
cannot be avoided generally. On the one hand, computing denominator is a sum over

(
N
k

)
terms. On

the other hand, computing the determinant of each term through matrix decomposition is with O(k3)
time. Just as Kulesza & Taskar (2012) claimed, sparse storage of larger matrices is possible for DPPs,
but computing determinants remains prohibitively expensive unless the level of sparsity is extreme.

If the dot product kernel function is adopted to compute the kernel L in Eq. (11), similar to Geometric
Interpretation of standard DPPs above, the probability PkL(Y = S) is further defined with volume
sampling (Deshpande & Rademacher, 2010), i.e.,

PkL(Y = S) =
det(LS)∑

|S′|=k det(LS′)
∝ det(LS) = (k! · (Vol(Conv(0̄ ∪ S)))2), (12)

where L = B>B, Conv(·) denotes the convex hull, and Vol(·) is the k-dimensional volume of such a
convex hull.

C.2 MODELING OUR CASE AS A CONDITIONAL Nmb
q -DPP

Figure 11: Construction of Dmb∗
q , Dmb

q ,
M∗q and M c

q . θ is fixed in this stage.

In this work, we aim to find the compressed subset Dmb
q

that can best represent the training dataset D by choos-
ing an appropriate compression quality q from its range.
To achieve this goal, we introduce Pq(Dmb

q |D) to charac-
terize the conditional likelihood of selecting Dmb

q given
input D under parameter q. Since the network parame-
ter θ is fixed during compression, and the feature matrix
M c
q = F eθ (Dmb

q ), we rewrite Pq(Dmb
q |D) as Pq(M c

q |D)
equivalently (see Fig. 11 for the details of constructing
Dmb
q and M c

q ). Depending on the nice properties of DPPs
in Sec. C.1, we formulate our goal as a conditional DPP,
where D is the associated ground set, and M c

q is a desired
subset in feature space. Then Pq(M c

q |D) is a distribution
over all subsets of D with cardinality Nmb

q , which is for-
mally called a conditional Nmb

q -DPP, since |M c
q | = Nmb

q
for any possible subset. Thus, such a DPP formulates the
conditional probability Pq(M c

q |D) as

Pq(M c
q |D) =

det(LMc
q
(D; q, θ))∑

|M |=Nmb
q

det(LM (D; q, θ))
, (13)

where L(D; q, θ) is a conditional DPP |D| × |D| kernel matrix that depends on the input D parame-
terized in terms of parameters θ and q. LM (D; q, θ) (resp., LMc

q
(D; q, θ))) is the submatrix sampled

from L(D; q, θ) using indices from M (resp., M c
q ).

Similarly, Pq(M∗q |D) can be formulated by a conditional Nmb
q -DPP as

Pq(M∗q |D) =
det(LM∗q (D; θ))∑

|M∗|=Nmb
q

det(LM∗(D; θ))
, (14)

where |M∗q | = Nmb
q . Unlike L(D; q, θ) above, the conditional DPP kernel matrix L(D; θ) only

depends on D and θ without q, since q is fixed at its maximum, i.e., without compression. LM∗(D; θ)
(resp., LM∗q (D; θ)) is the submatrix sampled from L(D; θ) using indices from M∗ (resp., M∗q ).

Differences: Of note, two important differences between standard k-DPPs and our Nmb
q -DPP lie in

the optimization variable and objective. For this work, we need to find an optimal set cardinality (i.e.,
Nmb
q ), while it is fixed for standard k-DPPs. Although both of them can finally determine a desired

subset with the maximum volume, our Nmb
q -DPP can uniquely determine it by Nmb

q , while standard
k-DPPs obtain it by maximizing Eq. (11).

17



Published as a conference paper at ICLR 2022

C.3 THE FIRST GOAL

First, we need to maximize

L1(q) = Pq(M∗q |D) =
det(LM∗q (D; θ))∑

|M∗|=Nmb
q

det(LM∗(D; θ))

∝ det(M∗>q M∗q ) = (Vol∗q)2

= (Nmb
q ! · (Vol(Conv(0̄ ∪M∗q)))2),

(15)

where |M∗q | = Nmb
q . L(D; θ) is a conditional DPP |D| × |D| kernel matrix that depends on the

input D parameterized in terms of θ. LM∗(D; θ) (resp., LM∗q (D; θ)) is the submatrix sampled from
L(D; θ) using indices from M∗ (resp., M∗q ). The numerator defines the marginal probability of
inclusion for the subset M∗q , and the denominator serves as a normalizer to enforce the sum of
Pq(M∗q |D) for every possible M∗q to 1. Here we employ the commonly-used dot product kernel
function, where LM∗q = M∗>q M∗q and LM∗ = M∗>M∗. Conv(·) denotes the convex hull, and Vol(·)
is the Nmb

q -dimensional volume of such a convex hull.

Eq. (15) provides a geometric interpretation that the conditional probabilityPq(M∗q |D) is proportional
to the squared volume of M∗q with respect to Nmb

q , denoted as Vol∗q. For our task, Pq(M∗q |D)

monotonically increases with Nmb
q . Thus, optimizing L1 is converted into maxq N

mb
q equivalently

(detailed in Proposition 1 as below).

Proposition 1 For any matrix X = (x1,x2, · · · ,xn), where xi ∈ Rd is the i-th column of X ,
d > n and X>X 6= I , defineM = {i1, i2, · · · , im} as a subset of [n] containing m elements, and
XM as the submatrix sampled from X using indices fromM. Then for

P (M) :=
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

) ,
we can ensure that the following two optimization programs

max
m

P (M)

and

max
m
|M|

are equivalent.

Below is one critical lemma for the proof of Proposition 1.

Lemma 1 For any matrix X = (x1,x2, · · · ,xn), where xi ∈ Rd is the i-th column of X and
d > n, define M = {i1, i2, · · · , im} as a subset of [n] containing m elements, and XM as the
submatrix sampled from X using indices fromM. Then for

P (M) :=
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

) ,
we can ensure that

[n] = argmaxMP (M).

This means when |M| = n, the probability P (M) takes the maximum value.

Proof. From the definition, we have

0 ≤ P (M) =
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

)
=

det
(
X>MXM

)
det
(
X>MXM

)
+
∑
{|M′|=m}∩{M′ 6=M} det

(
X>M′XM′

) ≤ 1.
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If |M′| = m < n, we have
(
n
m

)
> 1 possible options for subset XM′ , where det

(
X>M′XM′

)
≥ 0.

Only if |M| = n, then
(
n
m

)
= 1 and the probability P (M) will definitely take the maximum value,

i.e. P (M) = 1. In addition, X>X has full rank due to d > n, and then det(X>X) > 0 always
holds. That is, P (M) = 1 can be guaranteed only when selecting all n items together. This means
[n] = argmaxMP (M). It completes the proof.

Proof of Proposition 1 From the definition in Deshpande & Rademacher (2010), we have

P (M) =
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

)
∝ det

(
X>MXM

)
= (m! · (Vol(Conv(0̄ ∪XM)))2),

(16)

where Conv(·) denotes the convex hull, and Vol(·) is the m-dimensional volume of such a convex
hull. Here, from the monotonicity side, it can be easily verified that for XM ∪ xim+1

, where
xim+1 ∈ {XXM, we have

(m! · (Vol(Conv(0̄ ∪XM
∗)))2) < ((m + 1)! · (Vol(Conv(0̄ ∪XM ∪ xim+1

)))2),

which means P (M) is monotonically increasing with the increase of |M|.
From the extremum side, by using Lemma 1, we can ensure that the following two optimization
programs

max
m

P (M)

and

max
m
|M|

have the same optimal value. Thus, maximizing P (M) with respect to |M| can be converted into
maxm |M| equivalently.

C.4 THE SECOND GOAL

Second, we need to minimize

L2(q) =

∣∣∣∣Pq(M c
q |D)

Pq(M∗q |D)
− 1

∣∣∣∣ =

∣∣∣∣∣det(LMc
q
(D; q, θ))

det(LM∗q (D; θ))
Zq − 1

∣∣∣∣∣
=

∣∣∣∣∣ det(M c>
q M c

q )

det(M∗>q M∗q )
Zq − 1

∣∣∣∣∣ =

∣∣∣∣∣
(

Volcq
Vol∗q

)2

Zq − 1

∣∣∣∣∣ =
∣∣R2

qZq − 1
∣∣ , (17)

where Zq =

∑
|M∗|=Nmb

q
det(LM∗ (D;θ))∑

|M|=Nmb
q

det(LM (D;q,θ)) . In particular, det(M∗>q M∗q ) has a geometric interpretation

that it is equal to the squared volume spanned by M∗q (Kulesza & Taskar, 2012), denoted as Vol∗q,

likewise for det(M c>
q M c

q ) with respect to Volcq. Then we define Rq =
Volcq
Vol∗q

as the ratio of the two
feature volumes. To avoid computing Zq, we can convert optimizing L2 into minimizing |Rq − 1|
equivalently, since both of them mean maximizing q (detailed in Proposition 2 as below).

Below we are going to introduce Proposition 2. We first introduce some necessary assumptions, then
we present the theoretical guarantee of Proposition 2.

Assumption 1 We make the following assumptions:

1. Image dataset: For any image dataset D = (x1, x2, · · · , xn), where xi is the i-th image
in D, define Dq = (x1, x2, · · · , xn) as a compressed image dataset with the compression
quality q for D. The compression quality is bounded as q ∈ Q (Q can be a finite/infinite
set), in which the higher of q, the better of image quality.
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2. Feature matrix: Denote X = (f1,f2, · · · ,fn) ∈ Rd×n and Xq = (f q1 ,f
q
2 , · · · ,f qn) ∈

Rd×n as the feature matrices ofD andDq with the same fixed feature extractor, respectively.
Here, d > n, X>X 6= I and X>q Xq 6= I .

3. Selection principle: DefineM = {i1, i2, · · · , im} as a subset of [n] containingm elements,
and XM as the submatrix sampled from X using indices fromM. Likewise, defineMq =
{j1, j2, · · · , jm} as a subset of [n] containing m elements, and XMq as the submatrix
sampled from Xq using indices fromMq . Both of them use the same selection principle.

4. Buffer storage space: g(·) : R → N represents the function that outputs the maximum
number (i.e. m ) such that the compressed version of Dq to a quality q can be stored in the
memory buffer. That is, m is uniquely determined by q.

Proposition 2 Under Assumption 1, for two probabilities

P (M) :=
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

)
and

P (Mq) :=
det
(
X>Mq

XMq

)
∑
|M̃|=m det

(
X>
M̃
XM̃

) ,
we can ensure that the following two optimization programs

min
q

∣∣∣∣∣∣
det
(
X>Mq

XMq

)
det
(
X>MXM

) − 1

∣∣∣∣∣∣
and

min
q

∣∣∣∣P (Mq)

P (M)
− 1

∣∣∣∣
are equivalent.

Below are two critical lemmas for the proof of Proposition 2.

Lemma 2 Under Assumption 1, for a ratio

Rq :=
det
(
X>Mq

XMq

)
det
(
X>MXM

) ,

we can ensure that

supQ = argminq |Rq − 1|.

This means when q = supQ (i.e, without image compression), |Rq − 1| takes the minimum value.

Proof. From the definition, we know |Rq − 1| ≥ 0. To minimize |Rq − 1|, we need the ratio Rq = 1,
i.e.,

det
(
X>Mq

XMq

)
= det

(
X>MXM

)
. (18)

Of note, both XMq and XM are selected from the source dataset D with the same feature extractor,
selection principle and set cardinality (i.e., m). That is, the only difference between them is image
compression with respect to q.

By recurring to the Geometric Interpretation in k-DPPs (i.e., Eq. (12)), we have

det
(
X>Mq

XMq

)
= (m! · (Vol(Conv(0̄ ∪XMq

)))2)
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and

det
(
X>MXM

)
= (m! · (Vol(Conv(0̄ ∪XM)))2).

Then, Eq. (18) holds only when XMq
and XM have the same convex hull. Due to great difficulty

of analytically defining compression function, the two convex hull cannot be mathematically given.
However, by conducting extensive experiments on this task (as shown in Fig. 3, Fig. 5, Fig. 8, Fig. 13
and Fig. 14), we find that the volume of XMq is larger than that of XM for a specific m (i.e., q).
Additionally, with q decreasing (i.e., m increasing), the volume of XMq

is increasing more quickly.
Thus, we have an empirical conclusion that the two volumes are the same only when q = supQ
(without image compression). It is reasonable since without image compression, the two selection
problems about XMq

and XM are identical. This means when q = supQ, |Rq − 1| takes the
minimum value, which completes the proof.

Lemma 3 Under Assumption 1, for

P (M) :=
det
(
X>MXM

)∑
|M′|=m det

(
X>M′XM′

)
and

P (Mq) :=
det
(
X>Mq

XMq

)
∑
|M̃|=m det

(
X>
M̃
XM̃

) ,
we can ensure that

supQ = argminq

∣∣∣∣P (Mq)

P (M)
− 1

∣∣∣∣ .
This means when q = supQ (i.e, without image compression),

∣∣∣P (Mq)
P (M) − 1

∣∣∣ takes the minimum
value.

Proof. From the definition, we know
∣∣∣P (Mq)
P (M) − 1

∣∣∣ ≥ 0. To minimize
∣∣∣P (Mq)
P (M) − 1

∣∣∣, we need the ratio
P (Mq)
P (M) = 1. In fact,

P (Mq)

P (M)
=

det
(
X>Mq

XMq

)
det
(
X>MXM

) · ∑|M′|=m det
(
X>M′XM′

)
∑
|M̃|=m det

(
X>
M̃
XM̃

) = Rq · Zq, (19)

where Rq =
det
(
X>Mq

XMq

)
det(X>MXM)

and Zq =
∑
|M′|=m det(X>M′XM′)∑
|M̃|=m

det
(
X>
M̃
XM̃

) .

By using Lemma 2, we know that when q = supQ, Rq = 1 always holds. More importantly,
Zq = 1 also holds if q = supQ, since the numerator and denominator in Zq will be equal without

compression. That is, when q = supQ, the ratio P (Mq)
P (M) = 1 and

∣∣∣P (Mq)
P (M) − 1

∣∣∣ takes the minimum
value. This completes the proof.

Proof of Proposition 2 From Lemma 2 and Lemma 3, we can ensure that under Assumption 1, the
following two optimization programs

min
q

∣∣∣∣∣∣
det
(
X>Mq

XMq

)
det
(
X>MXM

) − 1

∣∣∣∣∣∣
and

min
q

∣∣∣∣P (Mq)

P (M)
− 1

∣∣∣∣
have the same optimal value. Thus, maximizing

∣∣∣P (Mq)
P (M) − 1

∣∣∣ with respect to q can be converted into

minq |Rq − 1| equivalently, where Rq =
det
(
X>Mq

XMq

)
det(X>MXM)

.
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D EMPIRICAL ANALYSIS

D.1 T-SNE VISUALIZATION OF NORMALIZED FEATURES

Figure 12: t-SNE visualization of features of original subsets (dark dots) and all training data (light
dots) for 5-phase ImageNet-sub with LUCIR. We randomly select five classes out of the latest task
and label them in different colors.

To provide an empirical analysis of the quality-quantity trade-off and validate the theoretical inter-
pretation, we use t-SNE (Van der Maaten & Hinton, 2008) to visualize features of all training data,
the compressed subset Mq, and the original subset M∗q . First, with the increase of quantity Nmb

q ,
the area of original subset is expanded and can better cover the training data distribution, as shown
in Fig. 12. This result is consistent with maximizing Nmb

q for L1. Second, with the decrease of
quality q and increase of quantity Nmb

q , the compressed data tend to be distorted and thus become
out-of-distribution, which has been discussed in the main text Fig. 3. This result is consistent with
enforcing |Rq − 1| < ε for L2.

D.2 Rq FOR 5-, 10- AND 25-PHASE IMAGENET-SUB

Figure 13: We present Rq in each incremental phase with various compression qualities (left), and
the averaged Rq of all incremental phases (right). From top to bottom are 5-, 10- and 25-phase
ImageNet-Sub, respectively.
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We presentRq in each incremental phase and the averagedRq of all incremental phases for 5-, 10- and
25-phase ImageNet-sub in Fig.13. Based on the principle in Eq. (5) (we set ε = 0.5 as the threshold
of Rq), it can be clearly seen that 50 and 75 is a good quality for LUCIR and PODNet, respectively.
Also, the determined quality is the same for different numbers of splits, which is consistent with the
results of grid search in Fig. 2.

D.3 AANETS AND DDE

Figure 14: Determine the compression quality for AANets and DDE. We present Rq in each
incremental phase (left), and the averaged Rq of all incremental phases (right) for 5-phase ImageNet-
sub. The quality of 100 refers to the original data without compression.

Similar to LUCIR and PODNet, we apply the method described in Sec. 4.2 to determine the com-
pression quality for AANets and DDE. Since both AANets and DDE only release their official
implementation on LUCIR, here we focus on LUCIR w/ AANets and LUCIR w/ DDE. We present
Rq in each incremental phase and the averaged Rq of all incremental phases for 5-phase ImageNet-
sub in Fig. 14. The determined qualities for both LUCIR w/ AANets and LUCIR w/ DDE are
consistent in different incremental phases, and are the same as that of LUCIR.

D.4 STATIC VS DYNAMIC QUALITY

For ImageNet-sub with randomly-split classes, whether |Rq − 1| < ε of each quality q is consistent
among incremental phases and their average (see Fig. 13 and Fig. 14). Thus, the determined quality by
our method usually serves as a static hyperparameter in continual learning, which has been validated
by the results of gird search (see Fig. 2). Now, we wonder in which case the determined quality
is dynamic, and whether using a dynamic quality is better than using a static one. Intuitively, the
determined quality might be affected by the similarity of incremental classes, because the model
learned to predict similar classes might be more sensitive to the image distortion caused by data
compression.

Figure 15: Continual learning of ten similar or dissimilar
superclasses with LUCIR.

Since the ImageNet classes are ranked
by their semantic similarity, we select
10 adjacent classes as a superclass,
and construct 10 adjacent (similar)
or remote (dissimilar) superclasses
(detailed in Appendix B.1). Simi-
lar to the 5-phase ImageNet-sub, we
first learn 5 superlcasses as the initial
phase, and then incrementally learn
one superclass per phase with LUCIR.
The results are presented in Fig. 15.
For dissimilar superclasses, whether
|Rq − 1| < ε is consistent in each in-
cremental phase and their average, so
the determined quality is stable at 50,
validated by the results of grid search.
For similar superclasses, the quality
determined by the averaged Rq is 75,
where using a stable quality of 75 in-

23



Published as a conference paper at ICLR 2022

deed achieves the best performance in grid search. On the other hand, it can be clearly seen that
|R75 − 1| > ε before phase 3 while |R75 − 1| < ε after it. Then we use the dynamically-determined
quantity and quantity for each incremental phase. However, the dynamic quality and quantity result
in severe data imbalance, so the performance is far lower than using a static quality of either 50,
75 or 90. A promising further work is to alleviate the data imbalance for the scenarios where the
determined quality is highly dynamic.

E ADDITIONAL RESULTS

E.1 COMPUTATIONAL COST

In Table 3, we present the detailed results of computational cost and averaged incremental accuracy
of LUCIR, LUCIR w/ AANets, LUCIR w/ DDE and LUCIR w/ Ours for CUB-200-2011 and
ImageNet-sub.

Table 3: Comparison of computational cost and averaged incremental accuracy. We run each baseline
with one Tesla V100.

CUB-200-2011 ImageNet-sub

Methods 5-phase 10-phase 25-phase 5-phase 10-phase 25-phase

LUCIR 1.97 h / 44.63% 3.60 h / 45.58% 8.03 h / 45.48% 8.65 h / 70.84% 10.47 h / 68.32% 15.63 h / 61.44%

LUCIR w/ AANets 3.52 h / 46.87% 5.56 h / 47.34% 14.34 h / 47.35% 21.94 h / 72.55% 40.58 h / 69.22% 91.26 h / 67.60%

LUCIR w/ DDE 7.28 h / 45.86% 13.09 h / 46.48% 31.02 h / 46.56% 55.36 h / 72.34% 61.81 h / 70.20% 79.42 h / 66.31%

LUCIR w/ Ours 2.70 h / 46.68% 5.00 h / 47.28% 11.00 h / 48.01% 9.09 h / 73.56% 11.27 h / 72.70% 18.83 h / 70.53%

E.2 STORAGE SPACE

In Table 4, we present the detailed results of different storage space.

Table 4: Averaged incremental accuracy (%) on ImageNet-sub. The storage space of the memory
buffer is limited to the equivalent of 10, 20, 40 and 80 original images per class, respectively. The
results of LUCIR and PODNet are reproduced from their officially-released codes.

Storage Space 10 20 40 80

5-phase

LUCIR 68.83 70.90 72.64 73.56

w/ Ours 71.39 / +2.55 73.56 / +2.66 74.37 / +1.73 75.74 / +2.19

PODNet 74.99 76.44 78.28 79.18

w/ Ours 76.55 / +1.56 78.08 / +1.64 79.43 / +1.15 80.17 / +0.99

10-phase

LUCIR 64.64 68.31 70.84 72.56

w/ Ours 68.13 / +3.49 72.70 / +4.39 74.11 / +3.28 76.09 / +3.54

PODNet 70.73 73.91 76.63 78.26

w/ Ours 72.78 / +2.05 76.02 / +2.11 77.82 / +1.19 79.27 / +1.01

25-phase

LUCIR 58.98 64.46 67.55 70.12

w/ Ours 67.75 / +5.77 70.53 / +6.07 73.49 / +5.94 76.03 / +5.91

PODNet 59.41 67.17 72.57 76.21

w/ Ours 64.99 / +5.58 72.27 / +5.10 76.61 / +4.04 78.82 / +2.61

E.3 AVERAGED FORGETTING

In addition to averaged incremental accuracy, we evaluate the averaged forgetting, which is calculated
by averaging the test accuracy of each task minus its highest test accuracy achieved in continual
learning (Caccia et al., 2020). In Table 5, we present the averaged forgetting of classes in the
initial phase, which suffers from the most severe forgetting. It can be clearly seen that the averaged
forgetting is largely alleviated by ours on each backbone.
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Table 5: Averaged forgetting (%) of classes in the initial phase. The storage space is limited to the
equivalent of 20 original images per class. DDE (Hu et al., 2021) and AANets (Liu et al., 2021a) are
reproduced from their officially-released code.

CUB-200-2011 ImageNet-sub

Method 5-phase 10-phase 25-phase 5-phase 10-phase 25-phase

LUCIR (Hou et al., 2019) -2.86 -4.56 -4.72 -15.08 -17.32 -22.40

w/ Ours -0.84 -1.08 -0.75 -14.11 -14.64 -17.96

w/ AANets (Reproduced) -4.03 -6.58 -10.37 -11.78 -9.54 -12.86

w/ AANets + Ours -1.40 -3.77 -6.82 -7.46 -8.13 -12.32

w/ DDE (Reproduced) -1.41 -5.24 -3.91 -14.02 -17.68 -23.73

w/ DDE + Ours -0.22 -0.97 -0.71 -11.24 -12.36 -17.80

E.4 FIXED MEMORY BUDGET

Here we evaluate memory replay with data compression (ours) under a fixed memory budget (i.e.,
storage space) on ImageNet-sub. Following a widely-used setting (Rebuffi et al., 2017; Wu et al.,
2019), the memory budget (i.e., storage space) is limited to equivalent of 2000 original images (20
original images per class × a total of 100 classes in ImageNet-sub). We further evaluate a much
smaller memory budget, fixed to 1000 original images. Under such a fixed memory budget, ours
substantially boosts the performance of each backbone approach as shown in Table 6.

Table 6: Averaged incremental accuracy (%) on ImageNet-sub, under a fixed memory budget of 1000
or 2000 original images.

1000 Original Images 2000 Original Images

Method 5-phase 10-phase 25-phase 5-phase 10-phase 25-phase

LUCIR (Hou et al., 2019) 70.16 66.32 62.07 71.87 69.37 65.72

w/ Ours 72.37 69.63 68.16 73.73 73.07 72.02

w/ DDE (Reproduced) 72.61 70.82 65.58 73.47 71.92 66.70

w/ DDE + Ours 74.40 72.62 69.03 75.35 73.93 71.17

E.5 LESS COMPRESSED SAMPLES

In Table 7, we present the results of LUCIR with different numbers of compressed samples on
ImageNet-sub. Similar to the main text, we select the JPEG quality of 50 for LUCIR, where the
storage space of 20 original images can save 85 such compressed images. Memory replay of 85
compressed images of quality 50 achieves a much better performance than that of 20 original images.
When reducing the quantity from 85 to 70, 55 and 40, the accuracy will also decline. However,
memory replay of 40 compressed images of quality 50 still outperforms that of 20 original images,
where the average memory can be saved by 52.94%.

Table 7: Averaged incremental accuracy (%) of LUCIR on ImageNet-sub with different numbers of
compressed data. “5-phase”, “10-phase” and “25-phase” refer to the accuracy of 5-, 10- and 25-phase
ImageNet-sub, respectively.

Quality 50 50 50 50 Original

Quantity 85 70 55 40 20

Total Storage 100% 82.35% 64.71% 47.06% 100%

5-phase 73.63 73.22 72.79 72.29 72.06

10-phase 72.65 72.01 71.35 70.16 68.59

25-phase 70.38 68.37 66.90 65.33 63.27
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