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ABSTRACT

Continual learning needs to overcome catastrophic forgetting of the past. Memory
replay of representative old training samples has been shown as an effective solution,
and achieves the state-of-the-art (SOTA) performance. However, existing work is
mainly built on a small memory buffer containing a few original data, which cannot
fully characterize the old data distribution. In this work, we propose memory replay
with data compression (MRDC) to reduce the storage cost of old training samples
and thus increase their amount that can be stored in the memory buffer. Observing
that the trade-off between the quality and quantity of compressed data is highly
nontrivial for the efficacy of memory replay, we propose a novel method based
on determinantal point processes (DPPs) to efficiently determine an appropriate
compression quality for currently-arrived training samples. In this way, using
a naive data compression algorithm with a properly selected quality can largely
boost recent strong baselines by saving more compressed data in a limited storage
space. We extensively validate this across several benchmarks of class-incremental
learning and in a realistic scenario of object detection for autonomous driving.

1 INTRODUCTION

The ability to continually learn numerous tasks and infer them together is critical for deep neural
networks (DNNs), which needs to mitigate catastrophic forgetting (McCloskey & Cohen, 1989) of
the past. Memory replay of representative old training samples (referred to as memory replay) has
been shown as an effective solution, and achieves the state-of-the-art (SOTA) performance (Hou et al.,
2019). Existing memory replay approaches are mainly built on a small memory buffer containing
a few original data, and try to construct and exploit it more effectively. However, due to the low
storage efficiency of saving original data, this strategy of building memory buffer will lose a lot
of information about the old data distribution. On the other hand, this usually requires huge extra
computation to further mitigate catastrophic forgetting, such as by learning additional parameters
(Liu et al., 2021a) or distilling old features (Hu et al., 2021).

Different from “artificial” memory replay in DNNs, a significant feature of biological memory is to
encode the old experiences in a highly compressed form and replay them to overcome catastrophic
forgetting (McClelland, 2013; Davidson et al., 2009; Carr et al., 2011). Thus the learned information
can be maintained in a small storage space as comprehensively as possible, and flexibly retrieved.
Inspired by the compression feature of biological memory replay, we propose memory replay with
data compression (MRDC), which can largely increase the amount of old training samples that can
be stored in the memory buffer by reducing their storage cost in a computationally efficient way.
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Figure 1: Averaged incremental accuracy and training time on ImageNet-sub. Using JPEG for data
compression can achieve comparable or better performance than recent strong approaches with less
extra computation (purple arrow), and can further improve their performance (gray arrow).

Given a limited storage space, data compression introduces an additional degree of freedom to
explicitly balance the quality and quantity for memory replay. With a properly selected quality, using
a naive JPEG compression algorithm (Wallace, 1992) can achieve comparable or better performance
than recent strong approaches with less extra computation (Fig. 1, purple arrow), and can further
improve their performance (Fig. 1, gray arrow). However, to empirically determine the compression
quality is usually inef�cient and impractical, since it requires learning a task sequence or sub-sequence
repeatedly1. We propose a novel method based on determinantal point processes (DPPs) to ef�ciently
determine it without repetitive training. Further, we demonstrate the advantages of our proposal in
realistic applications such as continual learning of object detection for autonomous driving, where
the incremental data are extremely large-scale.

Our contributions include: (1) We propose memory replay with data compression, which is both an
important baseline and a promising direction for continual learning; (2) We empirically validate that
the trade-off between quality and quantity of compressed data is highly nontrivial for memory replay,
and provide a novel method to ef�ciently determine it without repetitive training; (3) Extensive
experiments show that using a naive data compression algorithm with a properly selected quality can
largely improve memory replay by saving more compressed data in a limited storage space.

2 RELATED WORK

Continual learning needs to overcome catastrophic forgetting of the past when learning a new
task. Regularization-based methods (Kirkpatrick et al., 2017; Wang et al., 2021b) approximated the
importance of each parameter to the old tasks and selectively penalized its changes. Architecture-
based methods (Rusu et al., 2016) allocated a dedicated parameter subspace for each task to prevent
mutual interference. Replay-based methods (Rebuf� et al., 2017; Shin et al., 2017) approximated and
recovered the old data distribution. In particular, memory replay of representative old training samples
(referred to asmemory replay) can generally achieve the best performance in class-incremental
learning (Liu et al., 2021a; Hu et al., 2021) and in numerous other continual learning scenarios, such
as audio tasks (Ehret et al., 2020), few-shot (Tao et al., 2020b), semi-supervised (Wang et al., 2021a),
and unsupervised continual learning (Khare et al., 2021).

Most of the work in memory replay attempted to more effectively construct and exploit a small
memory buffer containing a few original data. As the pioneer work, iCaRL (Rebuf� et al., 2017)
proposed a general protocol of memory replay for continual learning. To better construct the memory
buffer, Mnemonics (Liu et al., 2020b) parameterized the original data and made them optimizable,
while TPCIL (Tao et al., 2020a) constructed an elastic Hebbian graph by competitive Hebbian
learning. On the other hand, BiC (Wu et al., 2019), LUCIR (Hou et al., 2019), PODNet (Douillard
et al., 2020), DDE (Hu et al., 2021) and AANets (Liu et al., 2021a) attempted to better exploit the
memory buffer, such as by mitigating the data imbalance between old and new classes (Hou et al.,
2019; Wu et al., 2019; Hu et al., 2021).

In contrast to saving original data, several work attempted to improve the ef�ciency of remembering
the old data distribution. One solution is to continually learn a generative model to replay generated
data (Shin et al., 2017; Wu et al., 2018) or compress old training data (Caccia et al., 2020). However,

1A naive grid search approach is to train continual learning processes with different qualities and choose the
best one, resulting in huge computational cost. Also, this strategy will be less applicable if the old data cannot be
revisited, or the future data cannot be accessed immediately.
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continual learning of such a generative model is extremely challenging, which limits its applications
to relatively simple domains, and usually requires a lot of extra computation. Another solution
is feature replay: GFR (Liu et al., 2020a) learned a feature generator from a feature extractor to
replay generated features, but the feature extractor suffered from catastrophic forgetting since it was
incrementally updated. REMIND (Hayes et al., 2020) saved the old features and reconstructed the
synthesized features for replay, but it froze the majority of feature extractor after learning the initial
phase, limiting the learning of representations for incremental tasks.

Data compressionaims to improve the storage ef�ciency of a �le, including lossless compression
and lossy compression. Lossless compression needs to perfectly reconstruct the original data from the
compressed data, which limits its compression rate (Shannon, 1948). In contrast, lossy compression
can achieve a much higher compression rate by degrading the original data, so it has been broadly used
in realistic applications. Representative hand-crafted approaches include JPEG (or JPG) (Wallace,
1992), which is the most commonly-used algorithm of lossy compression (Mentzer et al., 2020),
WebP (Lian & Shilei, 2012) and JPEG2000 (Rabbani, 2002). On the other hand, neural compression
approaches generally rely on optimizing Shannon's rate-distortion trade-off, through RNNs (Toderici
et al., 2015; 2017), auto-encoders (Agustsson et al., 2017) and GANs (Mentzer et al., 2020).

3 CONTINUAL LEARNING PRELIMINARIES

We consider a general setting of continual learning that a deep neural network (DNN) incrementally
learns numerous tasks from their task-speci�c training datasetD t = f (x t;i ; yt;i )gN t

i =1 , whereD t is
only available when learning taskt, (x t;i ; yt;i ) is a data-label pair andN t is the number of such
training samples. For classi�cation tasks, the training samples of each task might be from one or
several new classes. All the classes ever seen are evaluated at test time, and the classes from different
tasks need to be distinguished. This setting is also called class-incremental learning (van de Ven &
Tolias, 2019). Suppose such a DNN with parameter� has learnedT tasks and attempts to learn a
new task. Since the old training datasets

S T
t =1 D t are unavailable, the DNN will adapt the learned

parameters to �tDT +1 , and tend to catastrophically forget the old tasks McClelland et al. (1995).

An effective solution of overcoming catastrophic forgetting is to select and store representative old

training samplesD mb
t = f (x t;i ; yt;i )gN mb

t
i =1 in a small memory buffer (mb), and replay them when

learning the new task. For classi�cation tasks, mean-of-feature is a widely-used strategy to select
D mb

t (Rebuf� et al., 2017; Hou et al., 2019). After learning each task, features of the training data
can be obtained by the learned embedding functionF e

� (�). In each class, several data points nearest
to the mean-of-feature are selected into the memory buffer. Then, the training dataset of taskT + 1
becomesD 0

T +1 = DT +1
S

D mb
1:T , including both new training samplesDT +1 and some old training

samplesD mb
1:T =

S T
t =1 D mb

t , so as to prevent forgetting of the old tasks.

However, due to the limited storage space, only a few original data can be saved in the memory buffer,
namely,N mb

t � N t . Although numerous efforts in memory replay attempted to more effectively
exploit the memory buffer, such as by alleviating the data imbalance between the old and new classes,
this strategy of building memory buffer is less effective for remembering the old data distribution.

4 METHOD

In this section, we �rst present memory replay with data compression for continual learning. Then,
we empirically validate that there is a trade-off between the quality and quantity of compressed data,
which is highly nontrivial for memory replay, and propose a novel method to determine it ef�ciently.

4.1 MEMORY REPLAY WITH DATA COMPRESSION

Inspired by the biological memory replay that is in a highly compressed form (Carr et al., 2011), we
propose an important baseline for memory replay, that is, using data compression to increase the
amount of old training samples that can be stored in the memory buffer, so as to more effectively
recover the old data distribution. Data compression can be generally de�ned as a functionF c

q (�) of
compressing the original datax t;i to xq;t;i = F c

q (x t;i ) with a controllable qualityq. Due to the smaller
storage cost of eachxq;t;i thanx t;i , the memory buffer can maintain more old training samples for
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