
DECO-Bench: Unified Benchmark for Decoupled
Task-Agnostic Synthetic Data Release

Farzaneh Askari‹,1,2, Lingjuan Lyu1, Vivek Sharma‹,:,1

1Sony AI, Sony Research,
2McGill University

farzaneh.askari@mail.mcgill.ca, lingjuan.lv@sony.com, viveksharma@sony.com

Abstract

In this work, we tackle the question of how to systematically benchmark task-
agnostic decoupling methods for privacy-preserving machine learning (ML). Shar-
ing datasets that include sensitive information often triggers privacy concerns,
necessitating robust decoupling methods to separate sensitive and non-sensitive
attributes. Despite the development of numerous decoupling techniques, a stan-
dard benchmark for systematically comparing these methods remains absent. Our
framework integrates various decoupling techniques along with synthetic data
generation and evaluation protocols within a unified system. Using our framework,
we benchmark various decoupling techniques and evaluate their privacy-utility
trade-offs. Finally, we release our source code, pre-trained models, datasets of
decoupled representations to foster research in this area.

1 Introduction

The advancement of machine learning and its integration into real-world applications are rapidly
accelerating due to globalization and the abundance of data. However, the use of all data sources
remains limited because of compliance with modern privacy standards. The privacy-preserving
machine learning community has addressed this issue by proposing decoupling techniques for raw
data. These methods aim to alleviate privacy concerns by separating sensitive from non-sensitive
information and anonymizing the sensitive data.

Imagine a party owning a large dataset of face images with well-annotated attributes (e.g., race, age,
gender, emotions). This data could benefit many research studies and applications, such as face
recognition and age prediction. However, privacy concerns hinder the sharing of this data. The data
holder cannot foresee all potential use cases before releasing the dataset, making it essential to employ
task-agnostic decoupling methods as a privacy-preserving measure. The representation decoupling
studies often utilize adversarial representation learning [32, 52, 17, 44, 31, 37, 38, 45, 35, 47, 48],
including non-linear neural networks and non-convex optimization. Consequently, they lack formal
privacy guarantees (in contrast with differential privacy, [14, 15]) and their privacy and utility
performance is evaluated empirically and varies across studies.

Our goal is to propose a benchmarking framework to systematically evaluate decoupling techniques.
By benchmarking these techniques, we aim to accelerate privacy-preserving research and create a
level playing field for researchers. While our framework is designed to be task and data agnostic, this
study focuses on visual data, specifically image datasets and image classification for benchmarking
and dataset release.

‹Equal contribution. 2 This work was conducted while FA was doing internship at Sony AI. :VS started
and led the project. Correspondence to: Vivek Sharma.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

Our approach includes several steps. First, we elaborate on current decoupling techniques and
their implementation. Second, we discuss synthetic image generation with decoupled attributes
and the practical aspects of this process. Third, we introduce metrics and evaluation protocols for
comparing the performance of decoupling methods. Finally, we conduct extensive experiments
using our framework and provide a detailed discussion on the use of our benchmarking framework.
We want to emphasize that our motivation for this benchmark is to provide a systematic evaluation
of various decoupling techniques, especially when offering a theoretical guarantee is not feasible.
We meticulously design various aspects of our experiments and highlight the significance of each
component while benchmarking decoupling techniques. The summary of our contribution is as
follows:

DECO
Bench

Dec
ou

pli
ng

Algo
rith

ms Data splits

Image

Generation

Pipeline Eva
lua

tio
n

Metr
ic

Figure 1: Architecture of DECO-Bench. Our
framework has four main components. i) Decou-
pling algorithms, ii) Image generation pipeline, iii)
Structured data splits, and iv) Evaluation metrics
for utility and privacy. Our framework provides the
users with all the key modules to train and evaluate
their decoupling technique. For more information,
see Sec. 2 and 3.

1. Framework: We develop a comprehen-
sive framework that integrates various decou-
pling techniques, a synthetic image generation
pipeline, and standardized evaluation metrics.
Fig. 1 demonstrates various components of our
framework. 2. Decoupling and Synthesizing
Integration: we integrate the decoupling meth-
ods, in the context of synthetic image gener-
ation, and discuss the practical considerations
around them. 3. Dataset: We have released
a dataset of images with decoupled attributes,
generated using our image generation pipeline.
This dataset enables researchers to evaluate de-
coupling methods within our framework, uti-
lizing the provided metrics. 4. Benchmark:
We establish a comprehensive benchmark by
extensively evaluating several decoupling tech-
niques for privacy-preserving image classifica-
tion. This benchmark systematically quantifies
the privacy-utility trade-off and highlights the
impact of practical design decisions on privacy
while evaluating decoupling techniques.

2 Decoupling Algorithms

In this section, we review the adversarial representation-learning-based decoupling algorithms
integrated in our framework, including their formulas and the underlying intuition. Consider a
party holding dataset Dprivate “ tX,Au with N pair of samples px, aq where x P X and a P A. For
example, x represents an image of a person’s face with attributes such as age, gender, race, emotions,
etc. denoted as a. The data holder party views certain attributes as sensitive (e.g., race) and others as
non-sensitive (e.g., age); denoted as aS and aNS respective. The attributes aS and aNS are mutually
exclusive, such that a “ taS Y aNSu.

In order to protect the sensitive attributes, the data holder party refrains from releasing their dataset.
This caution is especially warranted because releasing only the non-sensitive attributes (i.e., x, aNS)
may still allow for the retrieval of sensitive attributes through existing correlations in the data samples.
For example, having the original image of a person’s face, one can readily infer their race, age, etc.
Therefor, the problem of protecting sensitive attributes in not trivial.

The goal of attribute decoupling techniques is to acquire a decoupled version of Dprivate (noted as
Ddeco) with the same distribution and N pair of samples, px1, a1q where the sensitive information is
anonymized (i.e. privacy). While it is crucial for Ddeco to protect private information, it is equally
important for it to maximally preserve the usability of dataset in other tasks such as reconstructions
and the use of non-sensitive attributes. In attribute decoupling, this is referred to as utility. Given
that sensitive and non-sensitive attributes might be correlated, there is often a privacy-utility trade-off
using decoupling techniques.

Assume that a model fθpxq “ z is trained with the objective of learning the latents to maximize a
utility task. The decoupling methods aim to learn a model that separates the input x into sensitive and

2

non-sensitive latents, denoted as zS and, zNS respectively (zS , zNS P z). Assuming that an adversary
will attempt to infer aS from zS , the goal is to decouple the zS latent space so that reconstructing
the sensitive attributes is not possible. The decoupling methods, introduce a proxy adversary during
training (with gradient propagation) that attempts to recover the sensitive attributes aS from z. Then
an implicit min-max optimization takes place, where the main objective’s loss is minimized (utility)
while the adversary’s loss is maximized (privacy). Intuitively, the goal is to restructure the latent
space, such that aS is not retrievable. Below, we review some of the decoupling methods.

Cross-Entropy Decoupling (CE): Consider an adversary model that attempt in recognizing sensitive
attributes from the latent space in the form of a classification task: fa

ϕpzq “ aS . Given the model and
the proxy adversary, CE decoupling minimizes the utility loss while maximizing the adversary classifi-
cation loss. The overall objective can be summarized as minθ,ϕLutilpθ, ϕq ` maxθ,ϕLpriv,CEpθ, ϕq.
As a result, during the training, the latent space is arranged in such a way that the adversary’s ability
to infer yS is restricted [47].

Cross-Entropy and masking Decoupling (CE + Mask): In addition to maximizing a cross en-
tropy loss for the proxy adversary, some studies [47] include a dynamic Filter Generating Network
(FGN) [25, 46]. FGN is a learnable mechanism, trainable end-to-end with the base and adversary
model, that generates binary masks to zero out the feature map channels contributing to attribute
leakage while preserving those crucial to the utility task.

Metric Learning: With the same principal as CE decoupling method, the decoupling algorithms
using metric learning [11] aims to decouple the latent space, so that sensitive attributes are not
retrievable from the latents. In supervised metric learning [12, 20], the goal is to learn a distance
metric and organize the latent space such that the latent representations for examples in the same
class (positive pairs) are brought closer together, while those in different classes (negative pairs) are
pushed further apart. To anonymize the representation space with respect to the sensitive attribute aS ,
a metric loss is maximized so that the positive pairs are distanced while the negative pairs are brought
closer together.

The methods we described above are the underlying methods that are used in decoupling or ob-
fuscation studies. Although, DECO-Bench is inspired by them; none of these studies address the
decoupling problem in synthetic image generation setup. Therefore, one of our contribution is
generating synthetic images while preserving privacy using the decoupling techniques. In Sec. 4.2
we elaborate on how we integrate these techniques in synthetic image generation setup and discuss
the practical implication.

3 Framework Setup

In this section, we employ image classification and datasets of face images as a use-case to detail our
framework. We elaborate on its various components and their practical considerations.

Base Model: our base model in this benchmark is based on Latent Diffusion Model (LDM) [22, 42];
which means, the base training objective is to denoise and reconstruct the input by predicting the
noise added during the forward diffusion process. The input to an LDM is the noisy representation of
the image in the latent space of pretrained autoencoders. Therefore, during training, the objective is to
minimize the mean squared error loss between the original and the predicted noise pfθq. To integrate
the decoupling technique, we add the mechanisms discussed in Sec. 2 pfϕq to the main objective.

Image Generation: LDM is a powerful tool for synthetic image generation, conditioned on an
initial input such as image prompt, text prompt or both. Using the trained base model parameters,
we generate a synthetic dataset, conditioned on the original private dataset Dprivate. This synthetic
dataset includes images with sensitive and non-sensitive attributes decoupled, serving as Ddeco.

Data Splits: An important and often overlooked practical consideration in benchmarking is the
data splits. In our framework, we define clear splits of datasets and ensure the equal distributions
of attributes among the sets using multi-label stratification [49]. Specifically, we define four main
data portions: Dtrain pTrq, Dval pV q, Dgen pGq (gen, short for generation), and Dtest pTestq. For
the remaining of the paper, when we mention G, we refer to the synthetic version; unless otherwise
mentioned (i.e., Greal).

3

Using Tr we train the base and adversary model and validate it on V . We then generate G from Greal

using our trained LDM. This decoupled dataset is used to train the utility and privacy evaluation
classifiers. Finally, the classifiers are tested on Test. Creating distinct splits of data, allows for fair
and structured evaluation of methods.

Evaluation and Metrics: The decoupling method results in a privacy-utility trade-off. While it is
important to decouple the attributes and anonymize the sensitive attributes; it is equally important to
maintain the utility quality. Therefore, the evaluation metrics need to address both privacy and utility
performance.

´ Utility FID Evaluation: We measure the utility performance by assessing the quality of generated
images in G. Fréchet Inception Distance (FID) [21] is a popular metric for measuring the quality of
generated images created by generative models. In our case, we use FID to compare the distribution
similarity between G and Greal.

´ Utility CLS Evaluation: Another metric to measure the utility performance is to quantify the
classification of non-sensitive attributes from synthetic images. To measure the reconstruction of
non-sensitive information from generated decoupled data; we train a classifier on the sample pairs
px1, a1

NSq from G and evaluate it on the unseen test portion of Test. We can say the utility is
preserved if the classifier has a high classification accuracy.

´ Privacy CLS Evaluation: Different from the traditional definition of privacy in differential privacy
literature [14, 15]; we measure the privacy by the ability to recognize the sensitive attribute from G.
To do this, we train a classifier to classify sensitive attributes from generated images. Ideally, the
classification accuracy should be around random, indicating that it is not possible to recognize the
sensitive attribute from the generated dataset.

´ Privacy Pretrained (PT) Evaluation: we propose a second criterion to evaluate privacy perfor-
mance. Using the trained base and adversary model, we run inference on Greal (before synthesizing)
and measure classification accuracy. This pretrained evaluation protocol quantifies privacy perfor-
mance in isolation from the effect of image generation pipeline and serves as a complementary metric
to privacy CLS evaluation.

4 Experiments and Results

In this section, we first introduce the datasets and the design decisions we applied. We then elaborate
on training and generation pipelines and our experiment details. Finally, we conclude the section by
sharing the quantitative and qualitative results and discussing our findings.

4.1 Datasets:

In our setup, we do not collect real world data and instead propose our benchmark using public image
classification datasets. We specifically use the FairFace [29] and UTKFace [56], datasets of face
images with annotated attributes. For both of these datasets, we used cropped and aligned versions,
ensuring the person’s face is positioned in the center of the image.

FairFace: [29] is a dataset of face images created to address the ethnicity imbalance present in other
face datasets. The dataset includes 108,501 images of people’s faces, annotated with age, gender, and
race, comprising nine, two, and seven classes, respectively. In our decoupling experiments, we use
race as the sensitive attribute, while gender and age are treated as non-sensitive attributes.

UTKFace: [56] is another popular face datasets containing 20,000 face images and includes annota-
tions for person ethnicity, race, and gender. We use race as a sensitive attribute and gender and age as
utility attributes.

Cross Label Mapping: To facilitate cross-evaluation across the datasets, we defined common sets
of labels for both datasets. Specifically, we mapped the UTKFace age labels to match the FairFace
age labels. Similarly, we grouped the race labels in FairFace to correspond with the UTKFace race
labels. More specifically, for FairFace race labels, we grouped "East Asian" and "Southeast Asian"
into one label corresponding to the "Asian" label in UTKFace, and grouped "Latino_Hispanic" and
"Middle Eastern" together to represent the "Other" category in UTKFace. Likewise, we mapped the

4

Table 1: Dataset Statistics for FairFace and UTKFace datasets. The number of classes for the datasets
after cross label mapping are demonstrated (see Sec. 4.1).

Dataset Train (Tr) Val (V) Gen (G) Test Privacy Utility Eval
Samples Samples Samples Samples Attr. (#Classes) Attr. (#Classes) Metric

FairFace 15614 1735 6953 (691 val) 3833 Race (C=5) Age (C=9), Gender (C=2) Accuracy
UTKFace 12694 1410 6044 (604 val) 3566 Race (C=5) Age (C=9), Gender (C=2) Accuracy

Fa
irF

ac
e

U
TK

Fa
ce

high quality images low quality images

Figure 2: High and low quality samples in FairFace and UTKFace datasets.

age annotations from UTKFace (i.e., 0-116) to match the FairFace age annotations (i.e., 0-2, 3-9, and
so on).

Dataset Statistics: As discussed earlier, a key component of our framework, is the definition and
structuring of data splits to report results clearly, keeping the dataset size in mind. Specially, since
the CLS evaluation protocol requires training a classifier, the size of data plays an important role
and should not be overlooked. In our setup for each dataset, we allocate 0.60, 0.25, and 0.15 of
dataset for Tr, G, and Test respectively. From, Tr we reserve 0.1 of the split as validation set (V q.
Likewise, we reserve 0.1 of the G split for validation. It is crucial to note that each dataset is split
using its original label set (without grouping) and based on multi-label stratification [49]. To ensure
corresponding splits include a similar number of examples, we use only a portion of the FairFace
dataset. Tab. 1 summarizes the datasets statistics. Fig. 2 shows a few examples from both datasets
with high quality and low quality images.

4.2 Experiment Setup

Training: For our base model, we train a Stable Diffusion (SD) v1-5 [42, 1] with conditional Unet
backbone model [43] using Low Rank Adaption (LoRA) [23]. Using the SD model with conditional
Unet backbone, we add the LoRA adaptors to the last convolutional projection layer of every cross-
attention block in the backbone (i.e., downsample blocks, mid blocks, and upsample blocks). The
idea is to have the adaptors right at the output of each transformer-based cross attention layer. We
apply these layers in a balanced manner across the down, mid, and upsampling blocks. In total, we
add 4.5% to 4.7% the total number of model parameters as LoRA adapters and finetune the model on
our datasets. During training in addition to finetuning the model on training split of our dataset in
hand, our goal is to restructure the learned latent space, such that the sensitive attribute is anonymized.
To achieve this, we average the output of these LoRA layers (LoRA features) to handle varying
resolution across cross attention layers of conditional Unet and follow the decoupling methods.

The images from Tr are first mapped to the latent space using a pretrained variational autoencoder [28]
(frozen during training). The latents are diffused with noise using a DDPM noise scheduler [22]. The
output of this model is the prediction of the initial noise that was added to the latents. In addition to
noisy latents, the model also receives a text prompt, as a condition. Using all the attributes in the
dataset, we form a simple prompt in the format of "A {Age} year-old {Race} {Gender}". A
pretrained CLIP tokenizer and encoder [39] is used for text encoding (frozen during training). We
train the base model using the objectives discussed in Sec. 2. We benefit from an LR scheduler and
early stopping criterion and save the LoRA weights before the model overfit on the V split. It is
important to note that the base SD model is pretrained on laion-aesthetics dataset [30].

Decoupling Methods: Although the decoupling methods discussed in Sec. 2 are existing studies; to
the best of our knowledge, none is used in the context of synthetic image generation. In this section,
we elaborate on the integration of each method in our pipeline. CE: during the training, we extract

5

the LoRA features. Given the block from different depth of Unet backbone have various spatial
size, we apply an adaptive average pool on LoRA features. The average pooled representations
are input to a Fully Connected layer (FC) for classification of sensitive attribute, followed by a CE
loss. During training, we maximize this classification CE loss while minimizing the diffusion MSE
loss. The intuition behind this method is obfuscating the latent space such that the sensitive attribute
cannot be discriminated using the latent representations. CE+Mask: this method is built upon the
CE, with an additional FGN [47, 46] to apply masking on the output of the first LoRA adapter. We
add a trainable FC layer right after the first LoRA adapter, that outputs a feature map score. These
feature map scores are weakly discretized (using temperature sigmoid) and thresholded to output a
binary mask. Finally the binary mask is applied to the output of the first LoRA layer pL1q which is
passed down to the rest of the model. The masked out L1 is also input to the adversary classification
along with the rest of LoRA features. The ratio of masked channels is a hyperparameter. The idea
of CE+mask is to apply a data driven channel pruning method such that the sensitive information is
selectively obfuscated. Metric Learning: supervised metric learning aims to learn a metric such
that the samples with same labels are brought closer together and pushed apart from samples with
different labels. However, we seek the opposite effect; meaning, we aim to bring different labels of
sensitive attributes (e.g., ethnicity) closer together in the latent space such that the latent space cannot
be used to discriminate between them. Therefore, we use a semi-hard negative and positive miner
[20, 36] on the average pooled LoRA features to retrieve the negative pairs and positive pairs. We
make a triplet where the anchor remains the same, while we swap negative and positive pairs. These
triplets are input to a triple margin loss which is minimized as usual, with the only difference that
positive and negative pairs are swapped. This will apply the desired effect of restructuring the latent
space so that the sensitive attribute (anchor) is not easily recognizable. In all the methods discussed
above, once the training is complete using each of these methods, we save the LoRA weights and
load them in the generation pipeline. For each layer that we created a LoRA adapter, we completely
replace the weights with LoRA weights.

Synthetic Image Generation: In order to generate the decoupled dataset, we use images in Greal

as initial images along with a prompt using the sensitive and non-sensitive attributes. Using the
pretrained model and the LoRA weights (with LoRA weights fused to the base model), we generate
synthetic images from Greal. Each image sample from the Greal set along with its text prompt
(similar to prompts used during training) is input to the generation pipeline. The result is a synthetic
dataset, pGq. Given the training and decoupling process, ideally, the images in G should not represent
the same sensitive attribute (in our setup, race) as the original image while retaining the non-sensitive
attributes according to the original prompt image. The synthetic images are saved for the remaining
of the pipeline.

Training and Generation Setups: Since our goal is to offer a benchmark to comprehensively
evaluate various aspects of decoupling methods, we design three setups to train and evaluate our
models. Setup A: Our first setup is using different non-overlapping splits of the FairFace dataset to
train pTrq, validate pV q, generate pGq from pGrealq, and evaluate pTestq. Setup B: In this setup B,
we evaluate the generalization abilities of the model across datasets; where the base model is trained
and validated on Tr, V of Fairface dataset and G is generated and evaluated on Greal and Test splits
of UTKFace dataset. Setup C: provides a comparison for both setup A and B, by training the base
model jointly on the Tr splits of FairFace and UTKFace. The trained model is used to generate G
from Greal split of each dataset and be used for evaluating on Test split of the respective dataset.
It is important to note both Greal and Tr have a held out validation sets to be used during training.
During the generation, the validation set of Greal remains untouched, to match the data distribution
of Test.

Privacy, Utility Evaluation Setup: Finally, we train the utility and privacy classifiers on the G
dataset and test it on the Test. For PT evaluation (see Sec. 3), we take the trained model on Tr set and
evaluate it on Greal. For utility and privacy CLS evaluation, we train a ResNet18 [18] classifier on
the G dataset for each setup and report the classification accuracy on the Test. We use learning-rate
scheduler along with early stopping based on validation loss and save the best model to report the
performance. It is important to note that the classification labels are cross mapped across the two
datasets.

Other Experiments: Given that quantification of the privacy-utility performance of decoupling
method, involves an extra step of training a classifier; the size of Greal and in turn G plays a crucial
role in reporting performance. Therefore, we design a set of experiments to emphasize the importance

6

Table 2: Setup A: Trained and Tested on the Fairface dataset. Classification accuracy percentage
(CLS and PT) for privacy leakage and utility on synthetic data.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 50.12 36.60 72.94
CE 19.27 41.64 33.81 70.47
CE + Mask 14.18 37.07 34.44 68.77
Metric Learning ´ 45.40 34.20 69.42

V
+G

Baseline (Real) ´ 55.86 39.45 74.69
CE 19.22 46.23 34.44 73.13
CE + Mask 14.59 38.22 35.30 73.99
Metric Learning ´ 37.49 28.72 75.16

Table 3: Setup B: Trained Fairface and Tested on UTKFace dataset. Cross generalization classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 72.30 49.47 86.19
CE 42.52 64.26 41.31 84.36
CE + Mask 16.87 63.72 43.87 83.77
Metric Learning ´ 63.10 41.03 85.07

V
+G

Baseline (Real) ´ 75.79 51.1 86.7
CE 42.50 66.62 42.46 84.96
CE + Mask 16.70 65.61 43.76 84.84
Metric Learning ´ 64.15 40.52 83.69

of data splits size on the reported performance of decoupling methods. V+G: In this setup, we
generate synthetic images on the V data split of each dataset and add it to the G. We then carry out
the rest of the pipeline as before. The only difference in this setup is the newly added portion of the
dataset. Baseline: Lastly, for each setup, we train the utility and privacy classifiers on the real (not
synthetic) version of the G as well as V ` G setup, as the task baseline.

Experiment Details: Despite the common practice to use only the front face images in studies, in our
work we report the performance on both front and profile faces. In the Supplementary Material,
you can find the performance of some of our experiments using only front faces. We use 1xH100
GPU to train models and generate synthetic images. For each method, training the LoRA layers took
2 Hours (23 GB), image generation 4 Hours (13 GB), and the classifiers 0.5 Hour. We appended the
extensive details of our experiment setups, hyperparameters, and computational complexity of our
models in the Supplementary Material.

4.3 Results and Discussion

We perform our experiments as detailed out in Sec. 4.2, and report the classification accuracy in
Tab. 2 to 7. Similar as before, in this section, when we mention G it means the synthetic decoupled
version of this split; otherwise we clarify it by noting it as Greal. The V ` G refers to experiments
where we use V in addition to G for synthetic image generation (see "Other Experiments" under
Sec. 4.2 for more details).

Impact of the amount of data: In decoupling methods, the effect of amount of data is twofold;
first, it affects the training/decoupling process; and second, it effects the privacy-utility metrics while
training the privacy-utility classifiers. In Tab. 1 and. 4 we observe in setup G, the small amount of
data for training the privacy-utility classifiers, results in overfitting. However, once the classifiers
have more training data available V ` G, the baseline performance on real data is increased, and the
privacy leakage drops (20% is random and ideal performance with five race classes) demonstrating
larger gap with baseline. This emphasizes on the importance of having access to enough amount
of data and clearly defining the splits while reporting privacy-utility performance of decoupling
methods. We additionally experimented with a setup where we increased the amount of synthetic

7

Table 4: Setup A: Trained UTKFace and Tested on UTKFace dataset. Classification accuracy
percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 72.30 49.47 86.19
CE 13.69 62.63 41.17 81.72
CE + Mask 7.67 63.64 40.21 83.55
Metric Learning ´ 63.81 43.50 82.82

V
+G

Baseline (Real) ´ 75.79 51.1 86.7
CE 13.82 64 39.99 82.90
CE + Mask 7.64 64.85 41.45 83.91
Metric Learning ´ 59.73 41.56 83.69

Table 5: Setup B: Trained UTKFace and Tested on FairFace dataset. Classification accuracy
percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 50.12 36.60 72.94
CE 26.03 42.21 29.95 72.99
CE + Mask 26.25 44.14 33.29 73.34
Metric Learning ´ 43.15 34.28 70.60

V
+G

Baseline (Real) ´ 55.86 39.45 74.69
CE 26.09 34.5 29.92 73
CE + Mask 26.12 38.14 29.48 71.61
Metric Learning ´ 26.32 32.09 74.35

data by generating images from Tr split (i.e., Tr ` V ` G). These experiments confirm our finding
regarding the amount of data (see Supplementary Material).

Privacy (PT) vs Privacy (C): Although, one can use only PT to report the privacy performance, our
tables demonstrate, only the PT measure will not be sufficient. In most of the setups, PT reports a
perfect privacy number p„ 20%q; however, once the privacy classifier is trained on the generated
dataset, the performance is not as perfect. We believe this is due to information leakage during the
generation process. It is important to note that while training the LoRA adapters, they make for only
„ 4.5 ´ 4.7% of the total number of parameters. However, when these adapters are loaded during
the sampling and generation process, the rest of the pretrained (non- LoRA layers) contribute to
reconstructing the original signal from the initial image and text prompts. This information leakage
hinders the privacy preservation of race (sensitive attribute). This issue can be mitigated by training a
full model from scratch which raise computation limitations, specially for training LDMs.

Cross Generalization: Tab. 3 and. 5 show the result of our cross-generalization when the model is
trained on one dataset (e.g., FairFace dataset) and tested on another dataset (e.g., UTKFace). As we
observe (Tab. 3 VS. 2 and Tab. 5 VS. 4), across both G and V ` G setups, the privacy and utility
performances are comparable, meaning the methods can generalize well to unseen data. We observe
more degradation in utility performance, which is expected, given the distribution differences between
the two datasets. In. 6 and. 7 we attempt at improving the cross generalization by training/decoupling
the base model using data from both FairFace and UKTFace datasets. The joint training, expectedly,
results in improvement in baseline performance and CE, and CE + Mask methods when tested on
FairFace and UTKFace datasets, specially in V ` G setups.

Privacy-Utility Trade off: We report the utility performance for non-sensitive attributes using the
classification accuracy of utility classifier. Compared to the baseline, in all setups, the utility is
persevered. Note that the base model training is based on denoising and preserving the privacy.
Therefore, a slight drop in utility is expected. Additionally, it is important to note that the Age
attributes had 9 classes, therefore it is a more difficult task compared to gender classification; thus the
lower baseline and utility performance.

8

Table 6: Setup C: Trained (Fairface + UTKFace) and Tested on Fairface dataset. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 55.05 40.46 78.29
CE 26.03 26.48 35.12 75.87
CE + Mask 14.18 31.1 35.61 74.82
Metric Learning ´ 38.82 34.44 72.5

V
+G

Baseline (Real) ´ 58.21 41.95 76.88
CE 26.41 36.68 33.5 75.14
CE + Mask 14.59 45.94 34.44 76.02
Metric Learning ´ 50.07 37.7 72.11

Table 7: Setup C: Trained (Fairface + UTKFace) and Tested on UTKFace dataset. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 75.82 49.89 87.12
CE 13.69 52.14 40.38 85.77
CE + Mask 16.87 55.01 40.72 84.65
Metric Learning ´ 53.01 42.94 84.48

V
+G

Baseline (Real) ´ 77.67 51.04 87.94
CE 13.88 51.07 36.02 83.21
CE + Mask 16.70 50.67 40.64 86.47
Metric Learning ´ 64.29 40.78 84.45

R
ea

l
C

E
C

E
+M

as
k

M
at

ric

Le
ar

ni
ng

FairFace UTKFace

Figure 3: Generated Examples. See
Supplementary for better resolution.

Differential Privacy Experiment: It is impor-
tant to note that Deco-Bench is flexible and it is
readily possible to add Differential Privacy (DP)
module on top of any of the methods and offer a
formal privacy guarantee. We include the results
in the Supplementary Material.

Synthetic and Real Data Distribution: We
measure the quality of generated images using
FID score computed between synthetic and real
images from Greal and G for CE and CE + Mask
protocols. The FID scores in Tab. 8 shows a dis-
crepancy between the distribution of real and
generated data. We pose this is due to base
model (and in turn generation) model is pre-
trained on laion-aesthetics dataset [30] and then
„ 4.5% of LoRA parameters are not enough to
shift the generation distribution. Fig. 3 shows
some examples of our generated images.

5 Related work

In this section, we discuss prior work on synthetic data and fairness; benchmark datasets and type of
data release techniques for protecting sensitive information.

Synthetic Data and Fairness. Synthetic data, created using techniques like generative adversarial
networks (GANs) [16], variational autoencoders (VAEs) [28, 48], Stable Diffusion (SD) [22, 42],
procedural generation methods [7], or simulations [8], emulates real-world data while avoiding
privacy concerns. This data is crucial for training models when real data is scarce or sensitive [13].
However, the domain gap and potential biases in synthetic data generation pose challenges [6].
Fairness techniques strive to make models unbiased towards protected groups, often through censoring

9

Table 8: FID Computation on synthetic vs real G split (Lower score is better).

Model Dataset Method UTKFace FairFace
(G set) (Real) (Real)

Fa
ir

Fa
ce FairFace CE ´ 37.24

UTKFace CE 32.06 ´

FairFace CE + Mask ´ 19.11
UTKFace CE + Mask 17.77 ´

sensitive information [10, 54, 51, 5, 55, 11]. Our benchmark focuses on anonymizing sensitive data
rather than censoring it, ensuring that models maintain original data characteristics while protecting
privacy.

Benchmark Datasets. Over the past two decades, several real-world datasets have been made
publicly available for evaluating the utility of privacy-preserving ML algorithms. Key datasets include
the US Census Bureau [3], Colorado (NIST, Differential Privacy Synthetic Data Challenge, 2018)
dataset [41, 9], Medical Information Mart for Intensive Care III (MIMIC-III) [26], n2c2: National
NLP Clinical Challenges [19], and mobility [2]. While these datasets have been used for various
privacy-preserving techniques, our goal is to build a benchmark specifically for decoupling techniques
in computer vision tasks. Unlike previous benchmarks focused on synthetic data generation [50] or
federated learning [24], we emphasize benchmarking privacy on anonymizing sensitive data.

Types of Synthetic Data Release. The release of privacy-preserving data can be broadly categorized
into two types: task-specific and task-agnostic. Task-specific techniques transform data to suit a
specific task, ensuring the data is optimized for that particular purpose. In contrast, task-agnostic
techniques share data in a non-interactive manner, making the data suitable for a variety of tasks
without prior knowledge of the specific application. Task-specific data release techniques [14, 15, 4]
often use central differential privacy (DP) to transform data for specific tasks, like answering aggregate
queries or training models. Recent advancements in adversarial learning have led to task-specific
latent representations to protect sensitive information [32, 52, 17, 44, 31, 37, 38, 45, 35, 47]. Our
work focuses on task-agnostic techniques that share data non-interactively, similar to local DP [40].
By integrating various decoupling techniques [48, 11, 47], our unified system benchmarks these
methods, evaluating their privacy-utility trade-offs. Our framework releases source code, pre-trained
models, and datasets of decoupled representations to foster further research in privacy-preserving
ML.

6 Conclusion

In this work, we took a step toward benchmarking decoupling techniques and evaluating their
performance within a systematic framework. We emphasized the importance of clearly defining
every aspect of evaluation. We tested our framework and demonstrated a step-by-step protocol for
training and evaluating decoupling techniques. We want to emphasize, although we use face images
with certain attributes as our use-case; the same principal and methods stand for other types of data
and attributes. Future Work: In our current study, we distributed and added the LoRA layers in a
balanced way across the backbone. However, one can study and find the most effective layers for
adding the LoRA weights considering privacy-utility trade off. Since most of the human attributes
include rather high frequency features this task is not trivial and requires in depth study of internal
diffusion mechanisms. Additionally, it is desirable to add stronger anonymization methods taking
into consideration regulations such as the General Data Protection Regulation (GDPR) and add
interpretability for privacy leakage. Lastly, it is of interest to add attack/defense mechanisms to our
framework and study the interaction of each attack mechanism with the decoupling algorithm.

Broader Impact: We hope this research encourages future efforts to enhance privacy protection in
digital media and guides the ethical use and development of privacy preserving image generation
technologies. This benchmark is designed for the empirical evaluation of decoupling algorithms.
Consequently, any conclusions drawn from the benchmark results should also consider the theoretical
and worst-case guarantees of the algorithms. Since our dataset is compiled exclusively from publicly
accessible, non-private sources, we do not anticipate any privacy issues related to its release.

10

References
[1] URL https://huggingface.co/runwayml/stable-diffusion-v1-5.

[2] Nys annual average daily traffic (aadt). https://www.kaggle.com/new-york-state/
nys-annual-average-daily-traffic-aadt, 2019.

[3] Us census bureau. https://www.usa.gov/statistics, 2020.

[4] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar,
and Li Zhang. Deep learning with differential privacy. Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Oct 2016. URL http://dx.doi.
org/10.1145/2976749.2978318.

[5] Ehsan Adeli, Qingyu Zhao, Adolf Pfefferbaum, Edith V Sullivan, Li Fei-Fei, Juan Carlos
Niebles, and Kilian M Pohl. Bias-resilient neural network. 2019.

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In International conference on machine learning, pages 214–223. PMLR, 2017.

[7] Manel Baradad, Richard Chen, Jonas Wulff, Tongzhou Wang, Rogerio Feris, Antonio Torralba,
and Phillip Isola. Procedural image programs for representation learning. Advances in Neural
Information Processing Systems, 35:6450–6462, 2022.

[8] John M Blain. The complete guide to Blender graphics: computer modeling & animation. AK
Peters/CRC Press, 2019.

[9] Claire McKay Bowen and Joshua Snoke. Comparative study of differentially private synthetic
data algorithms from the nist pscr differential privacy synthetic data challenge. arXiv preprint
arXiv:1911.12704, 2019.

[10] Simon Caton and Christian Haas. Fairness in machine learning: A survey. arXiv preprint
arXiv:2010.04053, 2020.

[11] Ayush Chopra, Abhinav Java, Abhishek Singh, Vivek Sharma, and Ramesh Raskar. Learning
to censor by noisy sampling. In European Conference on Computer Vision, pages 378–395.
Springer, 2022.

[12] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discriminatively,
with application to face verification. In 2005 IEEE computer society conference on computer
vision and pattern recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[13] Chris Clifton, Bradley Malin, Anna Oganian, Ramesh Raskar, and Vivek Sharma. A roadmap
for greater public use of privacy-sensitive government data: Workshop report. arXiv preprint
arXiv:2208.01636, 2022.

[14] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography conference, 2006.

[15] Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Founda-
tions and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural
information processing systems, 27, 2014.

[17] Jihun Hamm. Minimax filter: Learning to preserve privacy from inference attacks. Journal
of Machine Learning Research, 18(129):1–31, 2017. URL http://jmlr.org/papers/v18/
16-501.html.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

11

https://huggingface.co/runwayml/stable-diffusion-v1-5
https://www.kaggle.com/new-york-state/nys-annual-average-daily-traffic-aadt
https://www.kaggle.com/new-york-state/nys-annual-average-daily-traffic-aadt
https://www.usa.gov/statistics
http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
http://jmlr.org/papers/v18/16-501.html
http://jmlr.org/papers/v18/16-501.html

[19] Sam Henry, Yanshan Wang, Feichen Shen, and Ozlem Uzuner. The 2019 national natural
language processing (nlp) clinical challenges (n2c2)/open health nlp (ohnlp) shared task on
clinical concept normalization for clinical records. Journal of the American Medical Informatics
Association, 27(10):1529–1537, 2020.

[20] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In defense of the triplet loss for person
re-identification. arXiv preprint arXiv:1703.07737, 2017.

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium, 2018.

[22] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[23] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[24] Yangsibo Huang, Samyak Gupta, Zhao Song, Kai Li, and Sanjeev Arora. Evaluating gradient
inversion attacks and defenses in federated learning. In NeurIPS, 2021.

[25] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. In
Advances in neural information processing systems, pages 667–675, 2016.

[26] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-Wei, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii,
a freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

[27] Davis E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research,
10:1755–1758, 2009.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[29] Kimmo Kärkkäinen and Jungseock Joo. Fairface: Face attribute dataset for balanced race,
gender, and age, 2019.

[30] LAION. Laion-aesthetics v2 5+. https://laion.ai/blog/laion-aesthetics/, 2022.
Accessed: 2024-06-05.

[31] Ang Li, Jiayi Guo, Huanrui Yang, and Yiran Chen. Deepobfuscator: Adversarial training
framework for privacy-preserving image classification, 2019.

[32] Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. Deeprotect: Enabling inference-
based access control on mobile sensing applications. CoRR, 2017.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[34] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano
Ermon. Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv
preprint arXiv:2108.01073, 2021.

[35] Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash Ramrakhyani, Dean M.
Tullsen, and Hadi Esmaeilzadeh. Shredder: Learning noise to protect privacy with partial
DNN inference on the edge. CoRR, abs/1905.11814, 2019. URL http://arxiv.org/abs/
1905.11814.

[36] Kevin Musgrave, Serge J. Belongie, and Ser-Nam Lim. Pytorch metric learning. ArXiv,
abs/2008.09164, 2020.

[37] Seyed Ali Osia, Ali Taheri, Ali Shahin Shamsabadi, Kleomenis Katevas, Hamed Haddadi, and
Hamid R. Rabiee. Deep private-feature extraction, 2018.

12

https://laion.ai/blog/laion-aesthetics/
http://arxiv.org/abs/1905.11814
http://arxiv.org/abs/1905.11814

[38] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis Katevas,
Hamid R. Rabiee, Nicholas D. Lane, and Hamed Haddadi. A Hybrid Deep Learning Architecture
for Privacy-Preserving Mobile Analytics. IEEE Internet of Things Journal, 7(5):4505–4518,
May 2020. ISSN 2327-4662, 2372-2541. doi: 10.1109/JIOT.2020.2967734. URL http:
//arxiv.org/abs/1703.02952. arXiv: 1703.02952.

[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

[40] Sofya Raskhodnikova, Adam Smith, Homin K Lee, Kobbi Nissim, and Shiva Prasad Ka-
siviswanathan. What can we learn privately. In FOCS, 2008.

[41] Diane Ridgeway, Mary Theofanos, Terese Manley, and Christine Task. Challenge design and
lessons learned from the 2018 differential privacy challenges. https://doi.org/10.6028/
NIST.TN.2151, 2021.

[42] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[43] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9,
2015, proceedings, part III 18, pages 234–241. Springer, 2015.

[44] Proteek Chandan Roy and Vishnu Naresh Boddeti. Mitigating information leakage in image
representations: A maximum entropy approach. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[45] Mohammad Samragh, Hossein Hosseini, Aleksei Triastcyn, Kambiz Azarian, Joseph Soriaga,
and Farinaz Koushanfar. Unsupervised information obfuscation for split inference of neural
networks. arXiv preprint arXiv:2104.11413, 2021.

[46] Vivek Sharma, Ali Diba, Davy Neven, Michael S Brown, Luc Van Gool, and Rainer Stiefelhagen.
Classification-driven dynamic image enhancement. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4033–4041, 2018.

[47] Abhishek Singh, Ayush Chopra, Vivek Sharma, Ethan Garza, Emily Zhang, Praneeth
Vepakomma, and Ramesh Raskar. Disco: Dynamic and invariant sensitive channel obfus-
cation for deep neural networks. arXiv:2012.11025, 2020.

[48] Abhishek Singh, Ethan Garza, Ayush Chopra, Praneeth Vepakomma, Vivek Sharma, and
Ramesh Raskar. Decouple-and-sample: Protecting sensitive information in task agnostic data
release. In European Conference on Computer Vision, pages 499–517. Springer, 2022.

[49] Piotr Szymański and Tomasz Kajdanowicz. A network perspective on stratification of multi-
label data. In First International Workshop on Learning with Imbalanced Domains: Theory and
Applications, pages 22–35. PMLR, 2017.

[50] Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau.
Benchmarking differentially private synthetic data generation algorithms. arXiv preprint
arXiv:2112.09238, 2021.

[51] Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced
datasets are not enough: Estimating and mitigating gender bias in deep image representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5310–5319,
2019.

[52] Zhenyu Wu, Zhangyang Wang, Zhaowen Wang, and Hailin Jin. Towards privacy-preserving
visual recognition via adversarial training: A pilot study. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 606–624, 2018.

13

http://arxiv.org/abs/1703.02952
http://arxiv.org/abs/1703.02952
https://doi.org/10.6028/NIST.TN.2151
https://doi.org/10.6028/NIST.TN.2151

[53] Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad,
Mani Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode,
and Ilya Mironov. Opacus: User-friendly differential privacy library in PyTorch. arXiv preprint
arXiv:2109.12298, 2021.

[54] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning fair representa-
tions. In International conference on machine learning, pages 325–333. PMLR, 2013.

[55] Brian Hu Zhang, Blake Lemoine, and Margaret Mitchell. Mitigating unwanted biases with
adversarial learning. In Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and
Society, pages 335–340, 2018.

[56] Zhifei Zhang, Yang Song, and Hairong Qi. Age progression/regression by conditional adver-
sarial autoencoder. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017.

14

A Appendix / supplemental material

In this section, we present our supplementary materials that expand on details of our experiments
and further discuss our results. In Sec. A.1 we describe our Tr ` V ` G setup and present the
results. Sec. A.2 focuses on our experiments using only front faces of each dataset. In Sec. A.3, we
elaborate on our setups and hyperparameters in details. And finally, Fig. 4 presents the high-resolution
equivalent of Fig. 3 from the main paper.

A.1 Tr+V+G Experiments

In the main section of the paper, we observed the beneficial effect of adding V split while training the
privacy and utility classifiers (i.e., V ` G vs G). As we discussed in the main paper, the increased
amount of data during classifiers training helps alleviate overfitting and allows for a better observation
of the privacy-utility trade-off. To further investigate this, we generated synthetic images from the Tr
split and trained the classifiers. Tab. 9 to Tab. 14 extend the results from Tab. 2 to Tab. 7 respectively.
We observe that only some setups demonstrate improvement. We suggest this may be due to the fact
that, despite the significant increase in data, we used the same backbone as before, ResNet18, which
might not have sufficient capacity to benefit from the additional Tr set. It is also important to note,
that since the base model is trained on Tr, we do not evaluate the privacy using PT for this setup.

Table 9: Setup A: Trained Fairface and Tested on Fairface dataset. Classification accuracy percentage
for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G

Baseline (Real) ´ 62.38 44.8 83.36
CE ´ 51.03 32.72 80.25
CE + Mask ´ 48.87 38.09 79.81
Metric Learning ´ 54.89 29.56 76.47

Table 10: Setup B: Trained FairFace and Tested on UTKFace dataset. Classification accuracy
percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G

Baseline (Real) ´ 81.24 56.02 90.55
CE ´ 69.71 46.65 85.97
CE + Mask ´ 61.22 44.35 87.2
Metric Learning ´ 61.33 39.31 84.79

Table 11: Setup A: Trained UTKFace and Tested on UTKFace dataset. Classification accuracy
percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G

Baseline (Real) ´ 81.24 56.02 90.55
CE ´ 61.36 41.23 86.16
CE + Mask ´ 73.31 38.95 87.82
Metric Learning ´ 61.75 45.16 86.81

A.2 Front Face Experiments

In many studies utilizing datasets of face images, it is common practice to use only front faces. In
our main paper, we presented results using both front and profile faces. To accommodate a variety
of experimental setups in our benchmark and to study the effect of using only front faces on the
privacy-utility trade-off, we repeat our experiments in this section using only front faces.

15

Table 12: Setup B: Trained UTKFace and Tested on FairFace dataset. Classification accuracy
percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G
Baseline (Real) ´ 62.38 44.8 83.36
CE ´ 49.7 36.03 77.38
CE + Mask ´ 46.96 36.29 78.87
Metric Learning ´ 52.05 36.34 78.97

Table 13: Setup C: Trained (Fairface + UTKFace) and Tested on FairFace dataset. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G

Baseline (Real) ´ 65.74 44.53 84.63
CE ´ 46.91 39.42 81.45
CE + Mask ´ 56.35 38.46 79.89
Metric Learning ´ 57.92 41.27 80.9

Table 14: Setup C: Trained (Fairface + UTKFace) and Tested on UTKFace dataset. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

Tr
+V

+G

Baseline (Real) ´ 81.81 54.84 91
CE ´ 62.01 40.75 88.19
CE + Mask ´ 57.73 42.35 88.92
Metric Learning ´ 66.28 49.49 87.46

A.2.1 Front Face Detection:

To detect images with front faces, we processed all splits of the FairFace and UTKFace datasets using
dlib library [27]. We perform front face detection both in original image size and also in 128 ˆ 128
resolution; given this is the image resolution we train our base model with. Below, we present the
statistics of front faces in each data split of the FairFace and UTKFace datasets. As observed, the
FairFace dataset contains more profile images compared to the UTKFace dataset.

Table 15: Dataset Statistics for Front Faces of FairFace and UTKFace datasets. The number of classes
for the datasets after cross label mapping are demonstrated (see Sec.4.1, main paper).

Dataset Train (Tr) Val (V) Gen (G) Test Privacy Utility Eval
Samples Samples Samples Samples Attr. (#Classes) Attr. (#Classes) Metric

FairFace 11263 1256 4480 2747 Race (C=5) Age (C=9), Gender (C=2) Accuracy
UTKFace 12374 1372 5307 3478 Race (C=5) Age (C=9), Gender (C=2) Accuracy

A.2.2 Front Face Evaluation:

In our first round of experiments, we maintain the entire pipeline from the main paper, with the
exception of using only front faces in the Test split. Specifically, we train the base model on Tr
using both front and profile images. We then generate synthetic images from Greal, and V , Tr splits
using both profile and front images and train the privacy and utility classifiers on them. In the final
step, we use only front faces in Test split for evaluation and report the privacy leakage and utility
performance. Similarly, for PT evaluation, we use only front faces. The results are presented in
Tab. 16 to Tab. 19.

16

Table 16: Setup A : Trained Fairface and Tested on Fairface dataset Front Faces only. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 57.66 39.86 76.01
CE 18.71 42.34 35.86 78.59
CE + Mask 15.13 47.11 37.31 72.12
Metric Learning ´ 50.86 32.65 73.79

V
+G

Baseline (Real) ´ 58.54 41.9 78.05
CE 18.56 49.91 36.55 75.83
CE + Mask 15.34 50.24 37.6 80.42
Metric Learning ´ 53.91 37.57 76.37

Tr
+V

+G

Baseline (Real) ´ 67.24 49.33 87.08
CE ´ 45.94 40.84 82.34
CE + Mask ´ 28.76 36.59 82.64
Metric Learning ´ 53.66 40.01 82.71

Table 17: Setup B : Trained Fairface and Tested on UTKFace dataset Front Faces only. Classification
accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 73.23 48.33 86.83
CE 42.87 66.1 42.9 81.94
CE + Mask 16.90 52.04 44.31 84.39
Metric Learning ´ 59.8 39.07 83.58

V
+G

Baseline (Real) ´ 72.94 50.72 85.48
CE 42.82 69.58 44.77 84.91
CE + Mask 16.74 57.82 39.59 84.68
Metric Learning ´ 61.18 43.16 83.84

Tr
+V

+G

Baseline (Real) ´ 81.68 56.41 91.14
CE ´ 69.47 46.75 86.06
CE + Mask ´ 61.33 44.51 87.9
Metric Learning ´ 62.13 39.25 84.85

Table 18: Setup C: Trained Fairface+UTKFace Tested on FairFace dataset Front Faces only. Classifi-
cation accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 56.28 43.54 81.43
CE 26.25 48.02 36.33 79.87
CE + Mask 15.13 46.81 35.57 76.3
Metric Learning ´ 45.61 28.69 73.97

V
+G

Baseline (Real) ´ 59.23 47.36 83.15
CE 26.87 50.16 37.02 80.31
CE + Mask 15.34 42.81 38.26 79.32
Metric Learning ´ 56.13 33.71 78.01

Tr
+V

+G

Baseline (Real) ´ 71.06 50.38 87.19
CE ´ 57.41 42.88 82.71
CE + Mask ´ 55.08 41.35 80.82
Metric Learning ´ 59.56 43.17 83.4

17

Table 19: Setup C: Trained Fairface+UTKFace Tested on UTKFace dataset Front Faces only.
Classification accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 76.57 50.86 88.18
CE 13.64 59.49 43.42 85.51
CE + Mask 16.90 58.77 42.32 87.21
Metric Learning ´ 51.04 41.17 82.78

V
+G

Baseline (Real) ´ 76.88 52.67 88.04
CE 13.82 62.1 42.21 86.83
CE + Mask 16.74 64.17 43.67 87.98
Metric Learning ´ 55.15 42.73 84.88

Tr
+V

+G

Baseline (Real) ´ 80.71 55.78 90.8
CE ´ 62.39 41.09 88.13
CE + Mask ´ 58.05 42.73 89.13
Metric Learning ´ 66.53 49.74 87.61

A.2.3 Front Face Training and Evaluation

In this section, we extend our front face experiments by repeating the entire pipeline using only front
faces. Specifically, we train the base model using only front faces of Tr set, followed by generating
synthetic images from only front faces of Greal, V and Tr splits. We then train the privacy and utility
classifiers using these generated images and, finally, evaluate the models on only the front faces of
Test split. Tab. 20 to Tab. 23 demonstrate the results.

Table 20: Setup A (Front Faces only): Trained Fairface Front Faces only and Tested on Fairface
dataset Front Faces only. Classification accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 54.42 34.55 71.17
CE 18.70 42.52 34.44 72.52
CE + Mask 15.13 46.01 35.02 72.26
Metric Learning ´ 51.18 36.08 72.84

V
+G

Baseline (Real) ´ 56.75 38.7 79.43
CE 18.54 33.49 35.24 72.04
CE + Mask 15.34 40.88 37.5 76.77
Metric Learning ´ 45.18 36.4 76.88

Tr
+V

+G

Baseline (Real) ´ 67.53 45.9 85.84
CE ´ 56.57 41.32 81.58
CE + Mask ´ 45.69 35.27 82.82
Metric Learning ´ 46.09 40.52 80.85

18

Table 21: Setup B (Front Faces only): Trained Fairface Front Faces only and Tested on UTKFace
dataset Front Faces only. Classification accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 72.83 48.88 83.32
CE 42.87 63.02 43.93 81.08
CE + Mask 16.90 52.59 38.47 86.26
Metric Learning ´ 60.7 34.76 83.29

V
+G

Baseline (Real) ´ 74.24 48.91 87.72
CE 42.82 66.07 41.35 83.84
CE + Mask 16.74 61.96 44.13 85.48
Metric Learning ´ 62.33 42.73 83.73

Tr
+V

+G

Baseline (Real) ´ 79.61 54.17 88.9
CE ´ 61.87 46.18 84.73
CE + Mask ´ 65.96 47.18 87.26
Metric Learning ´ 63.89 44.48 89.1

Table 22: Setup C (Front Faces only): Trained Fairface + UTKFace Front Faces only and Tested on
Fairface dataset Front Faces only. Classification accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G

Baseline (Real) ´ 59.96 42.77 78.96
CE 26.25 45.58 35.35 78.41
CE + Mask 15.13 51.62 38.11 77.18
Metric Learning ´ 42.34 31.67 77.25

V
+G

Baseline (Real) ´ 59.05 44.05 83.29
CE 26.87 43.79 39.79 77.9
CE + Mask 15.34 44.99 39.06 75.06
Metric Learning ´ 45.03 37.68 76.45

Tr
+V

+G

Baseline (Real) ´ 67.09 49.22 86.71
CE ´ 50.16 38.48 80.74
CE + Mask ´ 51.58 41.35 82.64
Metric Learning ´ 57.04 43.17 81.87

A.3 Experiment Details:

In this section, we provide detailed training information and hyperparameters for every component
in our pipeline, supplementing Sec.4.2 of the main paper. Base model: to train the base model, we
resize all images to 128 ˆ 128. The LoRA adapter layers are initialized with Gaussian distribution,
and their rank is set to 4. The base model is trained for 15 epochs using a batch size of 128 and the
AdamW [33] optimizer with weight decay of 0.01. The learning rate is 1e ´ 5 for CE and CE+Mask,
and 1e ´ 4 for Metric learning. We stop training before overfitting occurs. We employ a constant
learning rate scheduler with 200 warm-up steps and apply gradient clipping with maximum grad norm
of 1. The margin for triplet margin loss (metric learning) is 0.3. The masking ratio for CE+Mask
setup is 0.6 and the sigmoid temperature in FGN is 1/30. A LoRA adapter is added to the learnable
layer of FGN. The configurations for variational autoencoder and CLIP remain unchanged after
loading the pretrained models [1].

Generation: During generation, we load our pretrained base model with trained LoRA adaptors
into the SD image-to-image pipeline [34]. The strength and guidance scale are set to 0.75 and 7.5,
respectively. We fuse the LoRA weights with the scale of 1, meaning the LoRA weights completely
replace the weights of the base layer they were added to.

Classification: The classifiers are trained using an image resolution of 128 ˆ 128 and a batch size of
128. The ResNet18 weights are initialized randomly. We use an SGD optimizer with weight decay
of 5e ´ 4, momentum of 0.9, and learning rate of 0.1. An exponential learning rate scheduler with

19

Table 23: Setup C (Front Faces only): Trained Fairface + UTKFace Front Faces only and Tested on
UTKFace dataset Front Faces only. Classification accuracy percentage for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

G
Baseline (Real) ´ 76.77 52.19 86.69
CE 13.64 63.77 39.59 85.85
CE + Mask 16.90 58.8 44.88 85.34
Metric Learning ´ 58.05 43.3 84.73

V
+G

Baseline (Real) ´ 73.75 51.44 88.5
CE 13.82 67.94 44.45 85.83
CE + Mask 16.74 53.54 40.91 85.34
Metric Learning ´ 66.5 44.42 84.96

Tr
+V

+G

Baseline (Real) ´ 82.58 56.12 91.17
CE ´ 64.09 45.95 87.92
CE + Mask ´ 64.26 48.39 87.67
Metric Learning ´ 67.4 44.22 88.59

gamma of 0.9 is employed, and the models are trained for 100 epochs, stopping training after 20
epochs of no improvement (delta 0.01) in validation loss.

A.3.1 Computational Complexity:

As mentioned earlier we use 1xH100 GPU. Training LoRA: the conditional Unet number of
parameters including added LoRA layers is 859.62M from which 99.840K are for trainable LoRA
adapters. For CE an additional FC layer is added which adds 1.5K number of parameters (using
128x128 image resolution). In the CE+mask model the filter generation network adds 90K trainable
parameters. The overall model including image encoder (VAE) and text encoders with batch size
of 128 takes 23 GB GPU memory and 2 Hours to train for 15 epochs. In this setup, the number of
FLOPs are: 4.33 TFLOPs for VAE, 2.89 TFLOPs for Unet backbone, and 0.85 TFLOPs for text
encoder. Image Generation: the image generation pipeline occupies 13 GB of GPU memory and
takes 4 Hours to generate images from G split (6K images) with batch size of 1, which approximately
translates to 1-2 seconds per image on H100 with 74.68 TFLOPs. Classifiers: we use ResNet18
(from scratch) to train privacy and utility classifiers which has 11M parameters, 151 GFLOPs and
occupy 2.5 GB of GPU memory with batch size of 128. The training on G split takes 0.5 Hours and
the inference time is less than 1 minute on the test set.

A.4 Differential Privacy:

In order to showcase, we used Opacus privacy engine [53] with epsilon ´ tolerance “ 0.1,
target´delta “ 1e´5, and epsilon “ 5. We add DP on top of CE methods for setup A of FairFace
datasets trained on V ` G splits. We report the following results:

Table 24: Setup A: Trained Fairface and Tested on Fairface dataset. Classification accuracy percent-
age for privacy leakage and utility.

Method Privacy Privacy Util Util
(PT, Race, Ó) (CLS,Race,Ó) (CLS,Age,Ò) (CLS,Gender, Ò)

V
+G

Baseline (Real) ´ 55.86 39.45 74.69
CE 19.22 46.23 34.44 73.13
CE + DP 26.18 39.21 35.04 73.78

20

R
ea

l
C

E
C

E
+M

as
k

M
at

ric

Le
ar

ni
ng

FairFace UTKFace

Figure 4: Generated Examples. High resolution image from main paper.

B NeurIPS Paper Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[NA] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes]

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [NA]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract and introduction accurately describe our
core contributions.

(b) Did you describe the limitations of your work? [Yes] We discuss the limitations of our
work, and assumptions of our empirical methods throughout the work.

(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [NA] No formal
results.

(b) Did you include complete proofs of all theoretical results? [NA] No formal results.

21

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] our analysis
code and data will be available online.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We provided a anonymous link with our synthetic synthetic dataset and annotations.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [NA]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [NA]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [NA]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [NA]

22

	Introduction
	Decoupling Algorithms
	Framework Setup
	Experiments and Results
	Datasets:
	Experiment Setup
	Results and Discussion

	Related work
	Conclusion
	Appendix / supplemental material
	Tr+V+G Experiments
	Front Face Experiments
	Front Face Detection:
	Front Face Evaluation:
	Front Face Training and Evaluation

	Experiment Details:
	Computational Complexity:

	Differential Privacy:

	NeurIPS Paper Checklist

