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Abstract
This paper introduces a novel methodology for
Feature Selection for Functional Classification,
FSFC, that addresses the challenge of jointly per-
forming feature selection and classification of
functional data in scenarios with categorical re-
sponses and multivariate longitudinal features.
FSFC tackles a newly defined optimization prob-
lem that integrates logistic loss and functional
features to identify the most crucial variables for
classification. To address the minimization pro-
cedure, we employ functional principal compo-
nents and develop a new adaptive version of the
Dual Augmented Lagrangian algorithm. The com-
putational efficiency of FSFC enables handling
high-dimensional scenarios where the number of
features may considerably exceed the number of
statistical units. Simulation experiments demon-
strate that FSFC outperforms other machine learn-
ing and deep learning methods in computational
time and classification accuracy. Furthermore, the
FSFC feature selection capability can be lever-
aged to significantly reduce the problem’s dimen-
sionality and enhance the performances of other
classification algorithms. The efficacy of FSFC
is also demonstrated through a real data applica-
tion, analyzing relationships between four chronic
diseases and other health and demographic fac-
tors. FSFC source code is publicly available at
https://github.com/IBM/funGCN.

1. Introduction
Many contemporary scientific domains that require the inte-
gration and interpretation of time-dependent variables have
recently benefited from Functional Data Analysis (FDA)
(Ramsay & Silverman, 2005; Horváth & Kokoszka, 2012),
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an active domain within statistics and Machine Learning
(ML) that allows working with multivariate longitudinal
measurements by estimating smooth curves from multiple
observations over a continuous domain. This functional
representation facilitates the comparison of different sta-
tistical units and variables throughout the entire temporal
domain. FDA has demonstrated its effectiveness in many
recent applications where the emergence of novel technolo-
gies, such as brain sensors, DNA sequencers, and wearable
devices, has facilitated the measurement of a large number
of longitudinal variables (Shcherbina et al., 2017; Cremona
et al., 2019; Smuck et al., 2021). In these modern domain
specific applications of FDA, two criticality emerge: 1) high
dimensionality, the number of features may significantly
exceed the number of statistical units (Ovsyannikova et al.,
2020; Paul et al., 2014), 2) data scarcity (Brigato & Iocchi,
2021). The first issue may lead ML and Deep Learning
(DL) models to overfit, the second may lead current feature
selection models to sub-optimal efficiency.
Hence, there is a growing demand for new algorithms able
to i) effectively reduce problem dimensionality and feature
complexity, ii) deal with data scarcity (Zhu et al., 2023),
and iii) preserve computational efficiency (Brigato & Iocchi,
2021).

To address these challenges in instances characterized by
multivariate longitudinal variables and binary categorical
responses, we introduce a new feature selection methodol-
ogy called Feature Selection for Functional Classification
(FSFC). The key innovative aspects of our work are the
following:
• FSFC has a unique capability to concurrently solve fea-

ture selection and classification for multivariate longitu-
dinal data across multiple statistical units.

• FSFC effectively reduces problem dimensionality by iden-
tifying the most relevant variables that allow two classes
to be distinguished. This capability makes it particularly
suitable for high-dimensional scenarios where the number
of features exceeds the number of statistical units.

• We demonstrate the efficacy of FSFC both as a standalone
tool and as a pre-processing step to enhance other ML
and DL methods.

To achieve these objectives, we develop a new optimization
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problem that integrates logistic loss and multivariate func-
tional features. Specifically, we employ Functional Principal
Components (FPC) and introduce an innovative adaptive ver-
sion of the Dual Augmented Lagrangian (DAL) algorithm.
FPC are used to simplify the complexity of each feature
while retaining its longitudinal representation. On the other
hand, DAL employs the sparsity structure of the problem
to reduce its dimensionality. This combination of FPC and
DAL makes FSFC highly computationally efficient.

We validate our approach through simulations and a real
data application. In the real data application, we examine
the relationships between four chronic diseases and other
health and socio-demographic factors, demonstrating FSFC
adaptability to multi-modal data scenarios.

Related Work. Feature selection has been a fertile field
of research and development since the 1970s and is now
among the most renowned and widely utilized techniques
in ML and DL to decrease the dimensionality of optimiza-
tion problems, remove irrelevant and redundant features,
improve efficiency in learning and predictive tasks, and en-
hance model interpretability (Blum & Langley, 1997; Dash
& Liu, 1997). It has been applied to several tasks, including
linear regression (Tibshirani, 1996; Zou & Hastie, 2005),
and classification (Cai et al., 2018) to handle a vast number
of instances and when dealing with high-dimensional data
(Liu et al., 2002; Das, 2001). Additionally, feature selection
has been extensively studied also in the context of linear
functional regression (Chen et al., 2016; Parodi et al., 2018;
Boschi et al., 2021). While there are numerous existing
methods for classifying longitudinal observations, including
supporting vector machines (SVM) (Müller et al., 1997),
long short-term memory (LSTM) networks (Hochreiter &
Schmidhuber, 1997), shapelets (Ye & Keogh, 2009), and
functional classification (Leng & Müller, 2006; Fraiman
et al., 2016), to the best of our knowledge, no study to date
has enabled simultaneous feature selection and classification
within the framework of multivariate functional data. Estab-
lished techniques like Variational AutoEncoders (Kingma
et al., 2019) and Time Series Feature Extraction (Barandas
et al., 2020) can reduce the complexity of each longitudinal
feature by identifying key attributes. Similarly, (Torrecilla
& Suárez, 2016) and (Blanquero et al., 2019) focus on iden-
tifying salient attributes within individual sets of curves,
such as time intervals or important patterns. However, these
approaches are neither designed to reduce the total num-
ber of variables by detecting the most relevant ones, nor to
work in scenarios where the number of variables exceeds
the sample size. Finally, although novel studies have ex-
tended various DL architectures to multivariate time series,
such as transformers (Jiang et al., 2022; Vijay et al., 2023;
Zhou et al., 2024) and graph convolutional networks (Lang-
bridge et al., 2023), they do not address problems involving

multiple statistical units.

In the remainder of this paper, we first present our method-
ology in Section 2, and then we benchmark its performance
against SVMs and LSTMs via simulations (Section 3) and
a real-world application on the longitudinal SHARE dataset
(Section 4). We draw our conclusions in Section 5.

2. Methods
2.1. Problem definition

FSFC introduces a novel optimization problem that can be
described as follows. Let the number of observations and
features be denoted by n and p, respectively. Let T = [a, b]
be a closed bounded interval. Without loss of general-
ity, we consider T = [0, 1]. The categorical responses are
represented by Yi ∈ {−1, 1}, the functional features by
Xij ∈ L2(T ), and the functional model coefficients by
Bj ∈ L2(T ), for i = 1, . . . , n and j = 1, . . . , p. It is
assumed, without loss of generality, that Xij is standard-
ized with a mean function of 0 and standard deviation of
1. Finally, for a generic function f ∈ L2(T ) the squared
L2-norm is defined as ∥f∥2L2 = ⟨f, f⟩L2 =

∫
T f

2(t)dt. The
FSFC optimization problem is then formulated as follows:

min
B1,...,Bp

[
n∑
i=1

log

(
1 + exp

(
− Yi

p∑
j=1

∫
T
Bj(t)Xij(t)dt

))

+

p∑
j=1

ωj

(
λ1∥Bj∥L2 +

λ2

2
∥Bj∥2L2

)]
(1)

The first term of the objective function (1) is the logistic
loss with functional features and enables classification. The
second term comprises two different penalties that induce
sparsity to facilitate feature selection. The parameters λ1
and λ2 control the global importance of the penalties with
respect to the logistic loss. The feature-specific weights ωj
extend the adaptive LASSO and Elastic Net (Zou, 2006;
Zou & Zhang, 2009) to the functional classification settings
and can improve feature selection by reducing the active set
cardinality.

In order to solve (1), first, we approximate the functional
variables via the Functional Principal Components (FPC)
method (see, e.g. Horváth & Kokoszka, 2012), and sub-
sequently, perform the minimization process using a Dual
Augmented Lagrangian (DAL) algorithm. The DAL algo-
rithm was introduced Tomioka & Sugiyama (2009); Li et al.
(2018) to solve LASSO and Elastic-Net problems and has
been extended by Boschi et al. (2023) to accommodate func-
tional linear regression cases. DAL leverages the intrinsic
sparsity of the problem and the sparsity induced by the Hes-
sian matrix information, resulting in a substantial reduction
in computational cost. In this work, we devise a novel adap-
tive version of DAL and develop the mathematical theory
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underpinning the algorithm to incorporate logistic loss and
functional features within the objective function.

2.2. Matrix representation

To address (1), we employ a matrix representation obtained
by expressing functional variables as linear combinations of
basis functions (Ramsay & Silverman, 2005; Kokoszka &
Reimherr, 2017). Specifically, we represent the functional
features using their first k FPCs. FPCs are a well-established
technique to solve the functional regression (Reiss & Ogden,
2007) and classification (Preda et al., 2007; Wang et al.,
2016) problems. We now show how to use FPCs to obtain a
matrix representation of (1).

Consider Xj = [X1j | . . . | Xnj ]T representing the set of n
curves of the j-th feature. Let ej =

[
ej1 | . . . | e

j
k

]
denote

the matrix containing the first k FPCs of Xj . Define X =[
X[1]| . . . |X[p]

]
∈ Rn×pk and B =

(
BT1 , . . . , B

T
p

)T ∈
Rpk, where X[j] ∈ Rn×k and Bj ∈ Rk are the score matrix
of Xj and the score vector of Bj with respect to the same
basis system ej , respectively, for j = 1, . . . , p. Specifically,
X[j](is) = ⟨Xji, ejs⟩L2 andBj,s = ⟨Bj , ejs⟩L2 . Then, we can
approximate Xj(t) ≈ X[j]e

j(t)T , Bj(t) ≈ ej(t)Bj , and∫
T Bj(t)Xij(t)dt ≈ X[j](i)

(∫
ej(t)T ej(t)dt

)
Bj . Note

that we use the notation Bj,s and X[j](i) to indicate the
s-th element of the vector Bj and i-row of the matrix
X[j], respectively. Since ej are orthonormal bases, then∫
e(t)T e(t)dt = Ik, i.e., the identity matrix of order k.

Moreover, for a generic function f ∈ L2([0, 1]), one has
that ∥f∥2L2 =

∑∞
i=1⟨f, ei⟩L2 (Kokoszka & Reimherr, 2017).

Thus, we can approximate the L2 functional norm and the
standard l2 vector norm, i.e., the Frobenius norm, denoted
by ∥·∥2. We can now express (1) in a matrix form as:

min
B

[
n∑
i=1

log

(
1 + exp

(
− Yi ·

(
X(i)B

)))

+

p∑
j=1

ωj

(
λ1∥Bj∥2 +

λ2

2
∥Bj∥22

)]
,

(2)

where X(i) indicates the i-th row of X . Mimicking the
Group Elastic Net regularization (Zou & Hastie, 2005; Si-
mon et al., 2013), Equation (2) combines two penalties: the
first is non-differentiable, creating sparsity, while the second
(Ridge-like) is differentiable, controlling multicollinearity
and accelerating the convergence of the optimization algo-
rithm. Once we obtain an estimate of the score vector B̂, the
coefficient curves can be recovered as B̂j(t) = ej(t)B̂j(t),
the class probability as p̂i = 1/

(
1 + exp

(
X(i)B̂

))
, and

the categorical response as Ŷi = 1 if p̂i > 0.5 and −1
otherwise.

Selection of K. The selection of k determines the extent to
which Equation (2) approximates Equation (1). FPCs have

the significant advantage of being the most parsimonious
orthonormal basis system: in most instances, a few com-
ponents capture more than 90% of the curves’ variability.
As discussed in the next section, using a small k is critical
for the efficiency of the DAL algorithm. The choice of k
also accounts for the trade-off between computational effi-
ciency and approximation accuracy. In the current version
of FSFC, we require k to be identical across all features,
i.e., one must use the same number of basis components for
all features. In the Discussion section, we further detail the
possibility of accommodating a distinct k for each feature.

2.3. Dual Augmented Lagrangian (DAL) Algorithm

The core idea underlying the DAL methodology involves
minimizing the Augmented Lagrangian function associated
with the dual problem. Prior to defining the dual problem,
note that (2) can be expressed as

min
B

[
h(XB) + π(B)

]
, (P)

where h(XB) =
∑n
i=1 log

(
1+exp

(
−Yi·(X(i)B)

))
is the

logistic loss function and π(B) =
∑p
j=1 ωj(λ1∥B[j]∥2 +

λ2

2 ∥B[j]∥22) is the adaptive Elastic Net-type penalty. Note
that the penalty π(B) is the same as that employed by
Boschi et al. (2023) in the scalar-on-function regression
scenario. Although their results can be utilized for penalty-
related operators, a novel theoretical framework must be
developed for the functional logistic loss. In particular, one
needs to redefine a set of mathematical operators in broader
dimensions while maintaining the DAL sparsity structure
and efficiency.

Dual problem. A potential dual representation of the pri-
mal (P) can be derived from (Boyd & Vandenberghe, 2004;
Tomioka et al., 2011) as:

min
V,Z

[
h∗(V ) + π∗(Z)

]
s.t. XTV + Z = 0 . (D)

In this formulation, V ∈ Rn and Z ∈ Rpk are the dual
variables. Following the notation introduced for B, we can
express Z =

(
ZT1 , . . . , Z

T
p

)T
, where Zj ∈ Rk denotes the

sub-vector of Z corresponding to the j-th feature. h∗ and
π∗ denote the Fenchel-conjugate functions (Fenchel, 1949)
of h and π, respectively. The computation of π∗ is derived
in (Boschi et al., 2023) as

π∗(Z) =

p∑
j=1

π∗(Zj) =

p∑
j=1

(2ωjλ2)
−1
([

∥Zj∥2 − ωjλ1

]
+

)2
,

(3)

where [ · ]+ is the positive part operator: [s]+ = s if
s > 0, and 0 otherwise. The form of h∗ is given in the next
Proposition (a proof can be found in the Appendix, Section
A).
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Algorithm 1 DAL Method

GOAL: minimize Lσ(V,Z,B). Start from the initial values
V 0, Z0, B0, σ0

WHILE NOT CONVERGED:

(1) Given Bs, find V s+1 and Zs+1 which approximately
solve: (

V s+1, Zs+1) ≈ argmin
V,Z

Lσ
(
V,Z | Bs

)
(6)

Inner sub-problem: to find (V s+1, Zs+1),
update V and Z independently:

WHILE NOT CONVERGED

V m+1 = argminV Lσ(V |Zm, Bs)
−→ Newton method - see Proposition (2)

Zm+1 = argminZ Lσ(Z, |V m+1, Bs)
−→ closed-form - see (7)

(2) Update the Lagrangian multiplier B and the parameter σ:

Bs+1 = Bs − σs
(
XTV s+1 + Zs+1), σs ≤ σs+1 <∞

Proposition 2.1. Considering h as in Equation (P), then
the function h∗ is defined for |YiVi| < 1 as follows:

h∗(V ) =

n∑
i=1

(1− |YiVi|) log(1− |YiVi|) + |YiVi| log(|YiVi|) .

(4)

We are now ready to define the Dual Augmented Lagrangian
function as

Lσ(V,Z,B) = h∗(V ) + π∗(Z)

−
p∑
j=1

⟨Bj , V TXj + Zj⟩+
σ

2

p∑
j=1

∥V TXj + Zj∥22 ,
(5)

with σ > 0. Note that the Dual Augmented Lagrangian
is defined by augmenting the dual objective function with
a penalization term that accounts for the violation of the
problem constraint. Our DAL implementation is outlined
in Algorithm 1, as adapted from Boschi et al. (2023). The
core part of the algorithm involves solving the inner sub-
problem (6), which entails minimizing the Dual Augmented
Lagrangian with respect to the dual variables V and Z.
To obtain an approximate solution of (6), V and Z can
be updated independently (Tomioka & Sugiyama, 2009).
The primal variable B and the parameter σ are updated
according to standard rules (Li et al., 2018). The choice of
σ0 is empirically studied in Tomioka et al. (2011): starting
from very small values of σ results in an increased number
of iterations required for convergence; however, if σ0 is
excessively large or increases too rapidly, the DAL method
fails to converge to the optimal solution.

Update of Z. The minimization with respect to Z has
a closed-form solution Z̄, which is computed in Boschi
et al. (2023) based on the proximal operator (Rockafellar,
1976b;a) of π, denoted as proxσπ. Specifically, the follow-
ing holds:

Z̄ = proxπ∗/σ

(
B/σ −XT V̄

)
= B/σ −XT V̄ − proxσp

(
B − σXT V̄

)
/σ , (7)

where proxσπ(B) =
(
proxσπ(B1), . . . ,proxσπ(Bp)

)T
,

and for each j

proxσπ(Bj) = (1 + σωjλ2)
−1 [1− ∥Bj∥−1

2 σωjλ1

]
+
Bj .

(8)

Update of V. Given that the minimization with respect to
V lacks a closed-form solution, we update V applying the
Newton Method (Nocedal & Wright, 1999) to the function
ψ(V ) := Lσ(V | Z̄, B). The Newton update is expressed
by V m+1 = V m + sD, where D ∈ Rn represents the
descent direction and s the step-size. To obtain D, we solve
the linear system

Hψ(V )D = −∇ψ(V ) , (9)

where Hψ ∈ Rn×n and ∇ψ ∈ Rn are the Hessian matrix
and the gradient vector of ψ, respectively. To determine the
step size, we implement the line-search strategy proposed
by Li et al. (2018). Starting with s = 1, we iteratively
reduce it by a factor of 0.5 until the condition

ψ
(
V m+1

)
≤ ψ(V m) + µs∇ψT (V m)D (10)

is met, with µ ∈ (0, 0.5). Solving the linear system (9) is the
most computationally demanding step in the DAL algorithm.
However, the following proposition leverages the sparsity
structure ofHψ to significantly reduce the system dimension
and computational complexity (a proof can be found in the
Appendix, Section A).
Proposition 2.2. Let T = B − σXTV , Tj = Bj −XT

[j]V ,
J =

{
j : ∥Tj∥2 ≥ σωjλ1

}
, and r = |J | be the cardi-

nality of J . Next, let XJ ∈ Rn×rk be the sub-matrix of X
restricted to the blocks Xj , j ∈ J . Define the square k × k
matrix P[j] as

P[j] = (1 + σωjλ2)
−1

((
1− σωjλ1

∥Tj∥2

)
Ik +

σωjλ1

∥Tj∥32
TjT

T
j

)
.

Finally, let QJ ∈ Rrk×rk be the block-diagonal matrix
formed by the blocks P[j], j ∈ J . Then:

(i) ψ(V ) = h∗(V )

+
1

2σ

p∑
j=1

(
(1 + σωjλ2)

∥∥proxσπ (Tj)∥∥22 − ∥Bj∥22
)
,

(ii) ∇ψ(V ) = ∇h∗(V )−X proxσπ(T ) ,

(iii)Hψ(V ) = Hh∗(V ) + σXJQJX
T
J ,
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where ∇h∗(V ) ∈ Rn and Hh∗(V ) ∈ Rn×n are the gra-
dient vector and the Hessian matrix of h∗, respectively.
Specifically, when |YiVi| < 1, each element i of ∇h∗(V ) is
equal to

Yi log
(
(1− |YiVi|)−1 |YiVi|

)
,

and Hh∗(V ) is a diagonal matrix with elements given by(
|YiVi| (1− |YiVi|)

)−1
.

Computational efficiency. As stated in Proposition 2,
the DAL algorithm takes advantage of the sparsity in-
formation embedded within the Hessian matrix, select-
ing a subset J of r active features, with r decreas-
ing at each iteration. By selecting an r-feature subset,
the overall computational expense of solving the linear
system (9) is reduced from O

(
n(n2 + npk + p2k2)

)
to

O
(
n(n2 + nrk + r2k2)

)
with r < p. In sparse scenar-

ios, where the number of active features is low, r might
be significantly smaller than n, further reducing the com-
putational burden through the application of the Sherman-
Morrison-Woodbury formula (Van Loan & Golub, 1983):(
Hh∗ + σXJQJX

T
J
)−1

= H−1
h∗ −H−1

h∗ XJ
(
(σQJ )

−1
+

XT
JH

−1
h∗ XJ

)−1
XT

JH
−1
h∗ . This equivalence enables the fac-

torization of an rk × rk matrix, resulting in a total cost of
O
(
rk(k2 + nrk + r2k2 + n2)

)
since Hh∗ is diagonal and

computing its inverse is straightforward. Remarkably, the
computational burden is not dependent on the total number
of features p, but solely on the number of active features r.
Provided that sparsity is maintained (i.e., r remains small),
the number of features can grow without impacting the
efficiency of the linear system resolution. However, it is
important to acknowledge that a larger p increases the cost
of the principal components computation during the matrix
representation stage, since the FPC scores have to be derived
for each feature. Note that the computational cost depends
on k3. By maintaining a small value for k, which describes
the number of bases used to represent the functional features,
the efficiency of the method is significantly enhanced.

Convergence criteria. DAL’s convergence properties
have been studied in both classical (Tomioka & Sugiyama,
2009; Li et al., 2018) and functional (Boschi et al., 2023)
contexts. In order to guarantee the DAL super-linear conver-
gence rate, we must implement consistent stopping-criteria
to evaluate the convergence of both the inner sub-problem
and the overall algorithm. With respect to the inner sub-
problem, Z and V are updated iteratively until the following
condition is satisfied (Tomioka et al., 2011):

∥∥∇ψ(V s)∥∥
2
≤ 2σ1/2

p∑
j=1

∥∥(XTV s+1 + Zs+1)
j

∥∥
2
.

For the overall algorithm’s convergence, we monitor one
of the Karush-Kuhn-Tucker (KKT) conditions associated

with the dual problem (D), namely, XTV = −Z. This
condition is exclusively satisfied by the optimal solutions of
(D) (Boyd & Vandenberghe, 2004). Then, the algorithm is
halted when the standardized residual of the KKT equation
is less than a specified tolerance tol, as follows:(

1+∥V ∥2+
p∑
j=1

∥Zj∥2
)−1

p∑
j=1

∥∥∥(XTV + Z)j

∥∥∥
2
< tol . (11)

2.4. Model selection and adaptive implementation

To assess the solution of (2) with varying values of the
penalty parameter λ1, we implement a path search mech-
anism. We perform the search for λ1 using the formula
λ1 = cλλmax, with cλ belonging to a grid of 100 val-
ues evenly spaced on a logarithmic scale from 1 to 0.01,
and λmax = 0.5maxj∥(XTY )(j)/ωj∥. For cλ = 1 (i.e.,
λ1 = λmax), 0 active features are selected, and as λ1 de-
creases for further values of cλ, the number of features
selected by the solution increases. At this stage, the weights
wj’s in (2) are all equal to 1. We select λ1 along the path
that minimizes a 5-fold cross-validation classification ac-
curacy score, denoting the optimal value of λ1 and the
corresponding solution as λ̃1 and B̃, respectively. The
adaptive solution is then computed starting from B̃. We
set ωj = sdB/∥B̃j∥2, where sdB is the standard devia-
tion of

(
∥ B̃1∥2, . . . , ∥B̃r∥2

)
, and we execute a single DAL

minimization considering λ1 = λ̃1. The adaptive feature-
specific weights wj’s allow for imposing a greater penalty
on the coefficient curves that, despite a small norm, have
not been screened out by the unweighted minimization, thus
promoting their removal from the active set.

3. Simulation Study
Settings. In this section, we evaluate the performance of
FSFC using synthetic data. We benchmark FSFC against
two representative techniques for longitudinal data clas-
sification: a kernlab R package (Karatzoglou et al.,
2023) implementation of SVM, and a TensorFlow (Abadi
et al., 2015) implementation of LSTM. Furthermore, we
apply SVM and LSTM on a reduced streamlined problem
that considers solely the active features identified by FSFC
and their FPC representation – essentially, employing the
FSFC output as input. Notably, SVM and LSTM do not have
any selection or problem-reduction capabilities. These ap-
proaches are called r-SVM and r-LSTM, respectively. The
hyper-parameters used for all the methods are discussed and
detailed in the Appendix, Section B.

We consider two distinct scenarios: one with n = 300
and p = 800, and another with n = 600 and p = 2000.
We denote the number of active features (i.e., non-zero
regression coefficient curves) as p0. For each scenario, we
examine four different levels of sparsity by setting p0 =

5



Feature Selection for Functional Data Classification

Table 1. Simulation results. Average CPU processing time, mea-
sured in seconds, for 50 instances in each scenario. All the com-
putations were executed on a MacBookPro 2021 with an M1 Max
processor and 32GB of RAM.

p0 LSTM SVM FSFC rLSTM rSVM

n = 300
p = 800

2 140.61 16.17 1.44 5.56 0.01
5 141.25 16.19 1.72 5.61 0.01

10 139.93 16.17 1.84 5.66 0.02
20 140.05 16.12 2.11 5.72 0.04

n = 600
p = 2000

2 355.66 144.18 5.44 9.52 0.01
5 354.16 142.14 7.09 9.65 0.02

10 348.51 141.96 7.58 9.86 0.05
20 349.58 142.82 8.16 10.11 0.13

2, 5, 10, 20. The synthetic data are generated as described
in Appendix Section C.

We assess FSFC in terms of selection performance, while
all the methods are evaluated with respect to classification
accuracy and computational efficiency. To assess selection
performance, we compute the recall and precision scores.
Classification accuracy is computed as the proportion of
observation correctly classified, in both the training and the
test sets, where the latter is generated independently from
the former. We set the size of the test set ntest = n/3, with
n being the size of the training set.

Results. The simulation study results are presented in
Figure 1. The displayed boxplots are derived from the distri-
bution of the various scores obtained across 50 replications
of each scenario. In terms of FSFC feature selection perfor-
mance, the recall score consistently surpasses the precision
score, maintaining an average above 80%, except for the sce-
nario with n = 600, p = 2000, and p0 = 20. This suggests
that while FSFC might occasionally select non-relevant fea-
tures, it is proficient in identifying the active ones. Both
metrics show a decline as the number of active features
grows, indicating challenges in more complex scenarios.

Except for LSTM, all models exhibit high classification accu-
racy in the training set. FSFC outperforms all competitors in
the test set, with an average accuracy larger than 85% when
p0 = 2, 5, 10. As the proportion of active features increases,
i.e., in scenarios characterized by larger p0 and smaller p,
distinguishing non-relevant information becomes more chal-
lenging also for FSFC. Notably, r-SVM and r-LSTM test
accuracy outperforms the standard SVM and LSTM (espe-
cially in the scenario with a larger p): employing FSFC
for a preliminary feature screening and problem dimension
reduction results in a significant performance enhancement,
potentially mitigating overfitting.

The average CPU time reported in Table 1 demonstrates that
FSFC is significantly more efficient than SVM and LSTM.
This difference is even larger when p increases. As expected,

FSFC’s computational cost does not depend on p, but only
on the number of active features p0. By exploiting the prop-
erties of DAL optimization, FSFC can solve a problem with
a large number of features (p = 2000) in under 10 seconds.
Given that a 5-fold cross-validation is implemented on a
grid of 100 values, this implies that solving DAL takes, on
average, less than 0.2 seconds per repetition. Moreover,
leveraging FSFC as a preliminary reduction step signifi-
cantly trims the CPU time for both r-SVM and r-LSTM,
given the much smaller feature set they operate upon.

Finally, in Appendix Table E1, we report the accuracy and
the CPU time related to a hybrid approach that combines
Feature Extraction (Barandas et al., 2020) with LSTM and
SVM. This approach does not reduce the number of features
but simplifies the longitudinal variables by extracting salient
attributes before performing the classification algorithms.
Contrary to rLSTM and rSVM, results indicate that Feature
Extraction does not enhance the accuracy of LSTM and SVM
while significantly increasing the computation time.

Additional analyses. In addition to the above classifica-
tion accuracy analysis, we have included further analyses
in the Appendix that also consider the average AUC score
as a new evaluation metric. Our findings demonstrate that
both metrics consistently align.

In Appendix Table E2, we include random forest (Breiman,
2001) and multilayer perceptron networks (Popescu et al.,
2009) in the comparison. These approaches do not naturally
account for temporal dependencies, and consequently the
longitudinal data need to be flattened into single-dimension
vectors, which results in the loss of time-dependent infor-
mation. FSFC still outperforms these competitors. Notably,
leveraging FPC coefficients and FSFC-selected features as
input significantly increases their performance (as observed
for LSTM and SVM).

Appendix Table E3 showcases how varying the hyper-
parameters k and λ2 – set to (1 − α)λ1 – do not impact
FSFC selection and classification performances. As dis-
cussed in Subsection 2.4 and in Appendix Section B, the
most critical FSFC tuning parameter is λ1, which is linked
to the Lasso-penalty and creates sparsity, determining the
number of features in the model. The ridge penalty λ2 influ-
ences convergence speed and addresses feature collinearity
without notably affecting feature selection.

Appendix Table E4 presents FSFC performance across three
varying noise level scenarios for k = 5, 10. Appendix Fig-
ure E1 depicts a sample of 10 curves for each noise scenario.
For k=5, the average explanation of curve variability is 95%,
70%, and 50%, respectively. For k=10, these figures rise to
99%, 95%, and 80%. In less smooth scenarios, FPCs are less
effective, and more components are required to reconstruct
the curves accurately. Despite a slight performance drop in
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Figure 1. Simulation results. Boxplots generated from the distribution obtained across 50 replications of each scenario, with gray diamonds
and horizontal lines indicating means and medians of the distributions, respectively. Selection performances (precision and recall) are
computed just for FSFC, while classification accuracy in the training/test set is reported for all the examined algorithms (LSTM, SVM,
r-LSTM, r-SVM, FSFC). The rows illustrate two distinct scenarios (n = 300, p = 800, and n = 600, p = 2000). In each scenario,
we investigate p0 = 2, 5, 10, 20 (x-axes).

noisier settings, FSFC still achieves high accuracy. Notably,
classification metrics and recall values remain stable across
varying k. Even if the first five components capture less
variability, they still effectively identify crucial features and
perform classification accurately.

4. SHARE Application
The Survey of Health, Ageing and Retirement in Europe
- SHARE (Alcser et al., 2005) is a research infrastructure
that aims to investigate the effects of health, social, eco-
nomic, and environmental policies on the life course of
European citizens (Börsch-Supan et al., 2013; Bergmann
et al., 2017; Börsch-Supan, 2020). SHARE is a longitudi-
nal study, where the same subjects are followed over mul-
tiple years. Specifically, eight surveys or “waves” were
conducted from 2004 to 2020 (see Appendix Figure E2
for the SHARE timeline). We focus on the 1518 subjects
who participated in at least seven out of the eight waves,
ensuring a sufficient number of measurements for reliable
curve estimation. We investigate a subset of p = 36 vari-
ables from the EasySHARE dataset (Gruber et al., 2014),
a preprocessed version of the SHARE data. In our appli-
cation, we aim to study the relationship between 4 chronic
diseases – i.e., diabetes, myocardial infarction, high choles-
terol, and hypertension – and various physical and mental
health, socio-demographic, and healthcare factors (a com-
prehensive list of the examined variables can be found in

Appendix Table E5). While some of them are described
by values that change over time (e.g., CASP index, max
grip) and are suitable for a functional representation, others
are scalar (e.g., education years) or categorical (e.g., gen-
der) and do not evolve over different waves. We smoothed
time-varying variables using cubic B-splines with knots
at each survey date and roughness penalty on the curve’s
second derivative (Ramsay & Silverman, 2005). For each
curve, the smoothing parameter was selected by minimizing
the average generalized cross-validation error (Craven &
Wahba, 1978). Although the surveys’ dates and the amount
of measurements may vary across subjects, the functional
representation provides a natural imputation for missing
values and facilitates the comparison of different statistical
units across the entire temporal domain. Scalar and cate-
gorical variables were treated as constant functions over
the time domain, facilitating their inclusion in the analy-
sis without compromising feature selection consistency and
showing FSFC’s proficiency in dealing with multi-modal
data scenarios. This adjustment results in FSFC estimat-
ing functional coefficients for these features rather than
real numbers. These coefficients will be constant functions
across the domain where the function’s value aligns with the
conventional logistic coefficient. We indicate the models
for the selected categorical response variables as md (dia-
betes), minf (myocardial infarction), mc (high cholesterol),
and mhyp (hypertension).

We explore two different experiment settings, detailed in
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Figure 2. Experiment 1 (upper panel) and Experiment 2 (lower panel) SHARE results. The test set classification accuracy boxplots (on
the left) are generated from 100 replications. The dots and the horizontal lines indicate the means and medians of the distributions,
respectively. On the right, features selected by FSFC for more than 80 out of 100 replications are displayed for each response variable.
The bar plots illustrate the average ratio of λmax at which each feature entered the active set. The higher the ratio, the earlier the feature is
included in the model during the λ path search.

Appendix Section D. In Experiment 1, we limit our analysis
to a subset of 20 subjects to replicate a scenario where
p > n. In Experiment 2, we consider the complete data. In
this case, n > p. For each response, in both experiments,
all the methods were executed for 100 replications using the
hyper-parameters detailed in the Appendix, Section B.

Classification results. Figure 2 presents classification and
selection results. In Experiment 1, FSFC achieves the best
median accuracy and boosts the performance of SVM and
LSTM. In Experiment 2, SVM and FSFC achieve superior
and comparable outcomes. In this setting, with n > p,
applying FSFC as a pre-processing step improves the ef-
fectiveness of LSTM and does not significantly impact SVM.
Applying FSFC as a pre-processing step improves the ef-
fectiveness of LSTM – which already avoids model over-
fitting. Nonetheless, FSFC still has the unique capability
of identifying crucial features and producing insightful and
meaningful outcomes.

Appendix Table E6 presents the accuracy results from in-
tegrating Feature Extraction with LSTM and SVM. In situ-
ations where the number of features is comparable to the
sample size, Feature Extraction significantly boosts the per-
formance of SVM, especially in the Experiment 2 settings.

However, this approach does not identify the key features
related to the binary response and does not preserve their
longitudinal nature.

Feature selection results. It is worth noticing that the
most frequently selected features by the four models are
consistent across the two experiments, showing FSFC fea-
ture selection efficiency even when the number of samples
is small. Moreover, Appendix Table E7 displays the top five
selected features for each disease when pre-processing the
SHARE dataset with three different smoothing levels. No-
tably, the selected features for each disease are remarkably
consistent across the three scenarios, underlying FSFC’s
robustness in selection across varying smoothness and noise
levels.

Comparing FSFC selection results with medical literature,
one can find evidence of the model’s accuracy in identi-
fying important connections between features. The four
examined chronic diseases exhibit strong interconnectivity.
Both md and minf identify hypertension and high choles-
terol as crucial features, while mc and mhyp incorporate the
remaining three investigated diseases in the model. Sub-
stantial medical literature supports the association between
these diseases, including the following studies: Kearney
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et al. (2005); Collaboration et al. (2010); Cosentino et al.
(2020); Baigent et al. (2010). Gender has been identified
as significant in diabetes (Kautzky-Willer et al., 2016) and
myocardial infarction (i.e. hearth attack) (Vaccarino et al.,
1999; Bairey Merz et al., 2006); age is associated with my-
ocardial infarction (White et al., 1996; Avezum et al., 2005)
and hypertension (Franklin et al., 1997; Vasan et al., 2002);
bmi is related to diabetes (Chan et al., 1994; Mokdad et al.,
2003) and hypertension (Chobanian et al., 2003; Gelber
et al., 2007); and the level of mobility and recall test score
are factors relevant to myocardial infarction (Mora et al.,
2007; Haring et al., 2013). Model mc also selects drinking
behavior and quality of life factors such as income percep-
tion, findings supported in Rimm et al. (1999); Hare et al.
(2014). Lastly, the number of doctor visits is selected as a
relevant factor by all models, aligning with multiple studies
that document the significant impact of chronic diseases on
healthcare utilization (Hoffman et al., 1996; Lehnert et al.,
2011).

5. Conclusions
In this paper, we present an innovative method, FSFC, that
jointly performs feature selection and classification of mul-
tivariate functional data. We utilize the properties of Func-
tional Principal Components and implement a novel variant
of the DAL algorithm that leverages the sparsity structure
of the dual Hessian information to significantly reduce the
problem’s dimensionality. FSFC’s computational efficiency
enables (i) handling high-dimensional scenarios where the
number of features may far exceed the number of statisti-
cal units, (ii) performing an exhaustive search through the
algorithm’s hyperparameters.

A simulation study demonstrates that FSFC outperforms
SVM and LSTM in terms of classification accuracy and com-
putational time when the number of features is much larger
than the sample size. Moreover, FSFC’s unique feature
selection capability reduces problem dimensionality and
enhances the efficacy of the competing methods. By ap-
plying FSFC to data from the SHARE study, we identify
well-documented relationships between four chronic dis-
eases in the literature. Furthermore, FSFC uncovers other
critical health and socio-demographic factors that play a
significant role in differentiating between the healthy and
affected groups, as supported by numerous research studies.

Future work and limitations. A detailed exploration
of FSFC’s performance on non-smooth data, backed by
theoretical insights, is a promising avenue for future re-
search. This would significantly enhance our understanding
of FSFC’s reliability in various data conditions. For in-
stance, FSFC’s performance tends to decline in unbalanced
datasets. To mitigate this issue, we recommend to con-

sider balancing techniques, such as oversampling the under-
represented class or undersampling the over-represented
class.

Moreover, while the SHARE application showcases FSFC’s
capability with longitudinal, scalar, and categorical data,
modern applications often involve diverse data types like
text and images. Future implementations of FSFC should
consider developing specific embeddings for each data
modality, allowing for a unified representation. Another
limitation of the current FSFC implementation concerns the
parameter k, i.e., the number of principal components used
to approximate the functional features. Currently, k must be
the same for all features. Adapting FSFC to accommodate
varying dimensions for different modalities would broaden
its applicability and facilitate the integration of heteroge-
neous data types.

Finally, we plan to incorporate functional responses in the
model. Instead of a static category, the response would
describe a class-belonging probability that evolves over
time, and it could also consider more than two different
classes, similar to multinomial regression (Kwak & Clayton-
Matthews, 2002).

Impact Statement
While the primary goal of this paper is to advance the field
of Machine Learning, FSFC has the potential to improve
analysis processes in sectors that rely on complex, high-
dimensional data, such as healthcare, environmental sci-
ence, and economics. For instance, in healthcare, FSFC can
help identify critical health factors from longitudinal patient
data, leading to more accurate diagnoses and personalized
treatment plans. As FSFC is applied in real-world scenar-
ios, for a positive societal impact it is essential to ensure
data privacy, prevent biases, and promote transparency and
interpretability of the results.
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Börsch-Supan, A., Brandt, M., Hunkler, C., Kneip, T., Ko-
rbmacher, J., Malter, F., Schaan, B., Stuck, S., and Zuber,
S. Data resource profile: the survey of health, ageing
and retirement in europe (share). International journal of
epidemiology, 42(4):992–1001, 2013.

Boschi, T., Reimherr, M., and Chiaromonte, F. A highly-
efficient group elastic net algorithm with an application
to function-on-scalar regression. Advances in Neural
Information Processing Systems, 34, 2021.

Boschi, T., Testa, L., Chiaromonte, F., and Reimherr, M. Fas-
ten: an efficient adaptive method for feature selection and
estimation in high-dimensional functional regressions.
arXiv preprint arXiv:2303.14801, 2023.

Boyd, S. and Vandenberghe, L. Convex optimization. Cam-
bridge university press, 2004.

Breiman, L. Random forests. Machine learning, 45:5–32,
2001.

Brigato, L. and Iocchi, L. A close look at deep learning with
small data. In 2020 25th International Conference on
Pattern Recognition (ICPR), pp. 2490–2497, 2021. doi:
10.1109/ICPR48806.2021.9412492.

Cai, J., Luo, J., Wang, S., and Yang, S. Feature selection in
machine learning: A new perspective. Neurocomputing,
300:70–79, 2018.

Chan, J. M., Rimm, E. B., Colditz, G. A., Stampfer, M. J.,
and Willett, W. C. Obesity, fat distribution, and weight
gain as risk factors for clinical diabetes in men. Diabetes
care, 17(9):961–969, 1994.

Chen, Y., Goldsmith, J., and Ogden, R. T. Variable selection
in function-on-scalar regression. Stat, 5(1):88–101, 2016.

Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman,
W. C., Green, L. A., Izzo Jr, J. L., Jones, D. W., Mater-
son, B. J., Oparil, S., Wright Jr, J. T., et al. Seventh
report of the joint national committee on prevention, de-
tection, evaluation, and treatment of high blood pressure.
hypertension, 42(6):1206–1252, 2003.

Collaboration, E. R. F. et al. Diabetes mellitus, fasting
blood glucose concentration, and risk of vascular disease:
a collaborative meta-analysis of 102 prospective studies.
The lancet, 375(9733):2215–2222, 2010.

Cosentino, F., Grant, P. J., Aboyans, V., Bailey, C. J.,
Ceriello, A., Delgado, V., Federici, M., Filippatos, G.,
Grobbee, D. E., Hansen, T. B., et al. 2019 esc guidelines
on diabetes, pre-diabetes, and cardiovascular diseases de-
veloped in collaboration with the easd: The task force for

10

https://www.tensorflow.org/


Feature Selection for Functional Data Classification

diabetes, pre-diabetes, and cardiovascular diseases of the
european society of cardiology (esc) and the european
association for the study of diabetes (easd). European
heart journal, 41(2):255–323, 2020.

Craven, P. and Wahba, G. Smoothing noisy data with spline
functions. Numerische mathematik, 31(4):377–403, 1978.

Cremona, M. A., Xu, H., Makova, K. D., Reimherr, M.,
Chiaromonte, F., and Madrigal, P. Functional data anal-
ysis for computational biology. Bioinformatics (Oxford,
England), 35(17):3211, 2019.

Cressie, N. and Huang, H.-C. Classes of nonseparable,
spatio-temporal stationary covariance functions. Journal
of the American Statistical Association, 94(448):1330–
1339, 1999.

Das, S. Filters, wrappers and a boosting-based hybrid for
feature selection. In Icml, volume 1, pp. 74–81, 2001.

Dash, M. and Liu, H. Feature selection for classification.
Intelligent data analysis, 1(1-4):131–156, 1997.

Fenchel, W. On conjugate convex functions. Canadian
Journal of Mathematics, 1(1):73–77, 1949.

Fraiman, R., Gimenez, Y., and Svarc, M. Feature selection
for functional data. Journal of Multivariate Analysis, 146:
191–208, 2016.

Franklin, S. S., Gustin IV, W., Wong, N. D., Larson, M. G.,
Weber, M. A., Kannel, W. B., and Levy, D. Hemodynamic
patterns of age-related changes in blood pressure: the
framingham heart study. Circulation, 96(1):308–315,
1997.

Gelber, R. P., Gaziano, J. M., Manson, J. E., Buring, J. E.,
and Sesso, H. D. A prospective study of body mass index
and the risk of developing hypertension in men. American
journal of hypertension, 20(4):370–377, 2007.

Gruber, S., Hunkler, C., and Stuck, S. Generating easyshare:
guidelines, structure, content and programming. Techni-
cal report, SHARE Working Paper Series 17-2014. Mu-
nich, 2014.

Hare, D. L., Toukhsati, S. R., Johansson, P., and Jaarsma, T.
Depression and cardiovascular disease: a clinical review.
European heart journal, 35(21):1365–1372, 2014.

Haring, B., Leng, X., Robinson, J., Johnson, K. C., Jackson,
R. D., Beyth, R., Wactawski-Wende, J., von Ballmoos,
M. W., Goveas, J. S., Kuller, L. H., et al. Cardiovascular
disease and cognitive decline in postmenopausal women:
Results from the w omen’s h ealth i nitiative m emory s
tudy. Journal of the American Heart Association, 2(6):
e000369, 2013.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Hoffman, C., Rice, D., and Sung, H.-Y. Persons with chronic
conditions: their prevalence and costs. Jama, 276(18):
1473–1479, 1996.
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Appendix

A. Proofs
A.1. Proof of Proposition 1

Note that h(XB) can be expressed as a separable sum, i.e.: h(XB) =
∑n
i=1 h(X(i)B), with h(X(i)B) = log

(
1+exp

(
−

Yi · (X(i)B)
))

, where Yi ∈ {−1, 1}. Hence, we have (Boyd & Vandenberghe, 2004):

h∗(V ) =

n∑
i=1

h∗(Vi) .

By definition, h∗(Vi) = g
(
b̃
)
, where g(b) = bVi − h(b) and b̃i = maxb g(b).

Case Yi = −1, Vi ∈ (0, 1)

We have g(b) = bVi − log
(
1 + eb

)
. To find b̃, we derive g(b) and set the derivative equal to 0, obtaining:

Vi =
(
1 + eb̃

)−1
eb̃ . (12)

To solve for b̃, we take the logarithm of both side and note log
(
1 + eb̃

)
= h

(
b̃
)
. Therefore,

b̃ = log(Vi) + h
(
b̃
)
.

To find an explicit form for h
(
b̃
)
, we manipulate (12):

(12) ⇔ 1− Vi = 1−
(
1 + eb̃

)−1
eb̃ ⇔ log(1− Vi) = − log

(
1 + eb̃

)
.

The last equality gives us h
(
b̃
)
= − log(1− Vi). Then, we can compute:

h∗(Vi) = g
(
b̃
)
= Vi

(
log(Vi)− log(1− Vi)

)
+ log(1− Vi) = Vi log(Vi) + (1− Vi) log(1− Vi) .

Case Yi = 1, Vi ∈ (−1, 0)

We have g(b) = bVi − log (1 + eb). Following the same steps of the previous case, we obtain:

h∗(Vi) = −Vi log(−Vi) + (1 + Vi) log(1 + Vi) .

Considering |Y1, V1| < 1 and combining the two cases, we finally obtain the desired result:

h∗(Vi) = (1− |YiVi|) log(1− |YiVi|) + |YiVi| log(|YiVi|) .

A.2. Proof of Proposition 2

A significant part of this proof relies on the results of Boschi et al. (2023). The authors prove a similar proposition in the
case of a scalar-on-function linear regression scenario where the same penalty π is considered.

(i) We need to compute ψ(V ) = Lσ(V | Z̄, B). Plugging Z̄ in Equation (5) , we get:

ψ(V ) = h∗(V ) + π∗(Z̄) +
1

2σ

p∑
j=1

∥∥proxσπ (Tj)∥∥22 − 1

2σ

p∑
j=1

∥Bj∥22 . (13)

Next, from (Boschi et al., 2023), we know:

π∗(Z̄j) = (ωjλ2/2)
(
(1 + σωjλ2)

−1
(
∥Tj∥2 − σωjλ1

))2
.
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Furthermore, starting from the definition of proxσπ given in Equation (8) , we have:

∥proxσπ (Tj)∥
2
2 =

(
(1 + σωjλ2)

−1
(
1− ∥Tj∥−1

2 σωjλ1

)
∥Tj∥2

)2
=
(
(1 + σωjλ2)

−1
(
∥Tj∥2 − σωjλ1

))2
.

Therefore,
π∗(Z̄j) = (ωjλ2/2)

∥∥proxσπ (T[j])∥∥22 ,
which leads to π∗(Z̄) =

∑p
j=1(ωjλ2/2) ∥proxσπ (Tj)∥

2
2. If we plug this expression of π∗(Z̄) in (13), we obtain the

desired result.

(ii) Again, from (Boschi et al., 2023), we know:

∇V

 1

2σ

p∑
j=1

(1 + σωjλ2)
∥∥proxσπ (Tj)∥∥22

 = −X proxσπ(T ) .

To complete the proof, it is sufficient to note that the derivative of h∗(Vi) = (1− |YiVi|) log(1− |YiVi|)+ |YiVi| log(|YiVi|)
is:

∇h∗i (V ) = Yi log
(
(1− |YiVi|)−1 |YiVi|

)
.

(iii) From (Boschi et al., 2023) we have :

∇V

(
−X proxσπ(T )

)
= σXJQJX

T
J .

Note that ∇ih
∗(V ) in (ii) depends only on Vi, which implies that all the off-diagonal elements of Hh∗ are 0. The i-th

diagonal element of Hh∗ is then computed as follows:

Hh∗(ii) = ∇V

(
Yi log

(
(1− |YiVi|)−1 |YiVi|

))
=
(
|YiVi| (1− |YiVi|)

)−1
.

Combining the two equations, we complete the proof.

B. Algorithms’ hyper-parameters
For both SVM and LSTM, the inputs are the functional features evaluated on a grid of 100 uniformly spaced time points for
the simulations scenarios, and 192 uniformly spaced time points (one for each month) for the SHARE application.

The SVM method utilizes the default parameters from the kernlab R package, with kernel = rbfdot.

The LSTM architecture consists of two layers with 50 units each, activated by the relu function. This is followed by a
dense layer that outputs class probabilities and is activated by the softmax function. Training is conducted over 200
epochs, utilizing batches of 32 and the adam optimizer.

In all scenarios, FSFC performs a path search on a grid of 100 different λ1 values. Specifically, λ1 = cλλmax and
λ2 = (1 − α)λ1, where λmax = 0.5maxj∥(XTY )(j)/ωj∥, cλ belongs to a grid of 100 values spaced on a logarithmic
scale from 1 to 0.01, and α is set to 0.2. After selecting the model that minimizes a 5-fold cross-validation criterion, the
adaptive procedure is implemented as detailed in the main text. For each instance, FSFC starts from an initial value of
σ0 = 0.1cλ/λmax increased by a factor of max(min(5, 1 + 10cλ), 1.1) at each iteration. Choosing σ0 based on λmax
and cλ is a common practice in the DAL optimization literature (Tomioka et al., 2011). The tolerance in Equation (11),
employed for determining algorithm convergence, is set to 10−4, and the parameter µ in the line-search procedure in
Equation (10) is set to 0.2. Finally, we set k = 5. Across all examined scenarios and for every feature, five functional
principal components are enough to capture more than 95% of the curves’ variability, allowing for a good approximation of
the features while maintaining manageable problem dimensions.
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C. Synthetic data generation
Following other work on functional regression (Parodi et al., 2018), we draw each functional feature Xj and each non-zero
regression coefficient curve Bj from a zero-mean Gaussian process with a Matern covariance function (Cressie & Huang,
1999) of the form

C(t, s) =
η2

Γ(ν)2ν−1

(√
2ν

l
|t− s|

)ν
Kν

(√
2ν

l
|t− s|

)
,

where Kν is a modified Bessel function. We employ point-wise variance η2 = 1, range l = 0.25, and smoothness
parameter ν = 3.5 for both the X ’s and the B’s. Before running FSFC, we standardize each feature individually as
(Xj − mean(t)) /sd(t), where mean(t) and sd(t) are the point-wise average and standard deviation of all instances computed
at t. Appendix Figure E2 shows some instances of X and B for one specific scenario. The categorical response Y is
generated according to the logistic regression procedure: each Yi is drawn from a Bernoulli distribution on {−1, 1} with
probability p̂i = 1/

(
1 + exp

(
X(i)B̂

))
.

D. SHARE experiment settings
In Experiment 2, the cardinalities of the “affected” and “healthy” subject groups, denoted as na and nh, are as follows: na =
89, 102, 313, 419 and nh = 1235, 1160, 747, 577 for diabetes, myocardial infarction, high cholesterol, and hypertension,
respectively. To prevent unbalanced scenarios, for each replication we randomly select na subjects from the healthy pool,
resulting in a total of n = 2na observations evenly balanced between the two classes. The observations are then divided into
training and test sets, with ntest = n/4.

In Experiment 1, each replication uses a training set of only 20 random subjects. All the other observations are part of the
testing set.

E. Additional figures and tables

Table E1. Simulation results for the integration of Feature Extraction with LSTM (feLSTM) and SVM (feSVM). For each curve, the
following 12 attributes have been extracted: mean, variance, median, maximum, minimum, skewness, kurtosis, zero crossing rate, spectral
entropy, spectral kurtosis, area under the curve, and autocorrelation. The table reports the average classification test accuracy and CPU
processing time (in seconds) for 50 instances in each scenario.

Accuracy test CPU time (s)
p0 feLSTM feSVM feLSTM feSVM

n = 300
p = 800

2 0.535 0.495 67.7 52.6
5 0.532 0.504 67.8 52.9

10 0.538 0.502 67.7 52.6
20 0.539 0.514 67.8 52.6

n = 600
p = 2000

2 0.526 0.504 298.1 271.2
5 0.526 0.509 298.1 273.5

10 0.531 0.504 298.2 271.2
20 0.530 0.505 297.9 271.3
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Table E2. Additional metrics and competitors. The table reports the averages of two classification metrics: the average test accuracy, and
the test AUC average score. Additionally, we investigate two new competitors: Random Forests (RF) and Multilayer Perceptron networks
(MLP). The experiment also includes the approaches that leverage FSFC reduced-spaced output as a pre-processing step, denoted asr-RF
and r-MLP, respectively. The analysis focuses on the scenario with n = 300, p = 800, and p0 = 2, 5, 10, 20 with hyperparameters
detailed in Appendix Section B.

p0 = 2 p0 = 5 p0 = 10 p0 = 20

accuracy AUC accuracy AUC accuracy AUC accuracy AUC
FSFC 0.958 0.993 0.949 0.991 0.889 0.961 0.814 0.906
SVM 0.540 0.549 0.554 0.601 0.558 0.592 0.548 0.534

r-SVM 0.899 0.971 0.856 0.943 0.790 0.887 0.750 0.841
LSTM 0.491 0.491 0.499 0.504 0.488 0.489 0.498 0.506

r-LSTM 0.893 0.947 0.850 0.922 0.727 0.806 0.669 0.724
RF 0.828 0.914 0.741 0.833 0.666 0.732 0.614 0.658

r-RF 0.860 0.943 0.806 0.897 0.722 0.800 0.664 0.724
MLP 0.566 0.590 0.577 0.603 0.580 0.606 0.576 0.615

r-MLP 0.901 0.971 0.845 0.933 0.748 0.838 0.693 0.767

Table E3. Varying α and k. The table presents the average FSFC performance over 20 replications in terms of classification (accuracy
and AUC) and selection (recall and precision) metrics for various values of α (0.2, 0.5, 0.8) and k (3, 5, 10), with α = 0.2 and k = 5
being the settings investigated in the main text. The analysis focuses on the scenario with n = 300, p = 800, and p0 = 2, 5, 10, 20.

Different α, k = 5
p0 = 2 p0 = 5 p0 = 10 p0 = 20

accuracy AUC accuracy AUC accuracy AUC accuracy AUC
α=0.2 0.958 0.993 0.949 0.991 0.889 0.961 0.814 0.906
α=0.5 0.956 0.976 0.954 0.993 0.895 0.969 0.819 0.910
α=0.8 0.942 0.952 0.949 0.982 0.896 0.969 0.820 0.909

recall prec recall prec recall prec recall prec
α=0.2 0.875 0.858 0.910 0.507 0.845 0.431 0.702 0.365
α=0.5 0.844 1.00 0.911 0.799 0.842 0.604 0.700 0.439
α=0.8 0.773 1.00 0.911 0.876 0.847 0.651 0.690 0.454

Different k, α = 0.2
p0 = 2 p0 = 5 p0 = 10 p0 = 20

accuracy AUC accuracy AUC accuracy AUC accuracy AUC
k=3 0.938 0.986 0.948 0.989 0.890 0.962 0.814 0.908
k=5 0.958 0.993 0.949 0.991 0.889 0.961 0.814 0.906

k=10 0.958 0.991 0.946 0.991 0.892 0.963 0.818 0.907

recall prec recall prec recall prec recall prec
k=3 0.850 0.752 0.910 0.416 0.845 0.370 0.718 0.326
k=5 0.875 0.858 0.910 0.507 0.845 0.431 0.702 0.365

k=10 0.921 0.886 0.910 0.623 0.845 0.478 0.690 0.417
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Table E4. Varying noise levels. The table shows the average FSFC performance over 20 replications in terms of classification (accuracy
and AUC) and selection (recall and precision) metrics for k = 5, 10. Data generation follows the procedure outlined in Appendix Section
C but with range parameter l = 0.1, 0.05 and smoothness parameter ν = 2.5, 1.5, resulting in rougher and noisier curves. Appendix
Figure E1 depicts a sample of 10 curves for the first feature under each scenario. The analysis focuses on the scenario with n = 300,
p = 800, and p0 = 2, 5, 10, 20 with hyperparameters detailed in Appendix B.

l = 0.1, ν = 2.5
p0 = 2 p0 = 5 p0 = 10 p0 = 20

accuracy AUC accuracy AUC accuracy AUC accuracy AUC
k=5 0.948 0.991 0.928 0.986 0.872 0.953 0.767 0.863
k=10 0.956 0.992 0.927 0.983 0.876 0.950 0.749 0.848

recall prec recall prec recall prec recall prec
k=5 0.925 0.596 0.920 0.436 0.850 0.358 0.656 0.341
k=10 0.950 0.787 0.905 0.578 0.826 0.492 0.622 0.388

l = 0.05, ν = 1.5
p0 = 2 p0 = 5 p0 = 10 p0 = 20

accuracy AUC accuracy AUC accuracy AUC accuracy AUC
k=5 0.906 0.973 0.898 0.965 0.825 0.913 0.748 0.837
k=10 0.923 0.980 0.897 0.970 0.821 0.920 0.739 0.825

recall prec recall prec recall prec recall prec
k=5 0.950 0.551 0.940 0.364 0.826 0.305 0.606 0.319
k=10 0.925 0.803 0.916 0.485 0.788 0.403 0.560 0.339

! = 0.2, ' = 3.5 ! = 0.1, ' = 2.5 ! = 0.05, ' = 1.5

Figure E1. Varying noise levels. The figure depicts a sample of 10 curves for the first feature across three distinct noise scenarios,
differentiated by range parameter l = 0.2, 0.1, 0.05 and smoothness parameter ν = 3.5, 2.5, 1.5. The main text experiments use the
parameters l = 0.2 and ν = 3.5.
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Table E5. List of the variables analyzed within the SHARE application. The letter adjacent to the variable name denotes whether it is longi-
tudinal (l), scalar (s), or categorical (c). The letter (a) denotes a scalar variable obtained taking an average across the waves where the values
were available. For more detailed information, the reader should consult the SHARE project website: https://share-eric.eu/

Variable Short description
CASP (l) Quality of life index
doctor visits (l) Number of doctor visits within the past year
recall test (l) Number of words recalled in the first trial
bmi (l) Body mass index
adlwa (l) Activities of daily living index
adla (l) Sum of five daily activities
lgmuscle (l) Large muscle index
mobilityind (l) Mobility index
grossmotor (l) Grossmotor skills index
finemotor (l) Finemotor skills index
income perception (l) Household able to make ends meet
eurod (l) Depression index with EURO-D scale
income pct (l) Household income percentiles
heart attack (l) 1 if the subject ever had the disease, 0 o.w.
high cholesterol (l) 1 if the subject ever had the disease, 0 o.w.
stroke (l) 1 if the subject ever had the disease, 0 o.w.
diabetes (l) 1 if the subject ever had the disease, 0 o.w.
COPD (l) 1 if the subject ever had the disease, 0 o.w.
cancer (l) 1 if the subject ever had the disease, 0 o.w.
ulcer (l) 1 if the subject ever had the disease, 0 o.w.
parkinson (l) 1 if the subject ever had the disease, 0 o.w.
cataracts (l) 1 if the subject ever had the disease, 0 o.w.
hip fracture (l) 1 if the subject ever had the disease, 0 o.w.
age (l) Age of the subject
education years (s) Years of education
number of children (a) Number of children that are still alive
numeracy test 1 (a) Mathematical performance
numeracy test 2 (a) Mathematical performance
drinking behavior (a) Times a patient drunk in the last 6 months
hospitalization days (a) Days spent at the hospital in the last 6 months
number of hospitalization (a) Number of hospitalizations in the last 6 months
gender (c) Female or male
vaccinated (c) Being vaccinated during childhood
ever smoked (c) Ever smoked daily

Table E6. SHARE results for the integration of Feature Extraction with LSTM (feLSTM) and SVM (feSVM). For each curve, the
extracted attributes are the ones listed in Table E1. The table reports the average classification test accuracy for 100 instances for each
response.

feLSTM feSVM

Experiment 1

Diabetes 0.603 0.731
Heart Attack 0.612 0.732
High Colesterol 0.556 0.659
Hypertension 0.614 0.703

Experiment 2

Diabetes 0.652 0.979
Heart Attack 0.632 0.974
High Colesterol 0.596 0.985
Hypertension 0.675 0.987
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Table E7. Varying smoothness in SHARE data analysis. The table replicates the SHARE analysis from the main text, exploring three
distinct smoothness levels: unsmoothed data (s = 0), data smoothed according to a GCV-criterion optimal level (s = sopt) utilized in the
main analysis, and smoothing parameter s = 104, exceeding sopt by at least an order of magnitude. For each disease and smoothing level,
we present the top five variables based on the highest average λmax-ratio (indicated in parentheses) over 100 replications. The higher the
ratio, the earlier the feature is included in the model during the λ path search.

DIABETES
s = 0 s = sopt s = 104

hypertension (0.87) hypertension (0.87) hypertension (0.86)
bmi (0.79) bmi (0.80) bmi (0.80)

high cholesterol (0.79) high cholesterol (0.79) high cholesterol (0.79)
doctor visits (0.45) doctor visits (0.46) doctor visits (0.52)

gender (0.44) gender (0.45) gender (0.45)

HIGH CHOLESTEROL
s = 0 s = sopt s = 104

hypertension (0.97) hypertension (0.97) hypertension (0.97)
diabetes (0.71) diabetes (0.71) diabetes (0.71)

heart attack (0.58) heart attack (0.58) heart attack (0.58)
lgmuscle (0.36) lgmuscle (0.39) lgmuscle (0.43)

casp (0.32) age (0.45) casp (0.34)

HEART ATTACK
s = 0 s = sopt s = 104
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Figure E2. On the left, a sample of 50 curves from the first feature of the design matrix X (top) and the 10 non-zero B coefficients (bottom)
are displayed for the given scenario with n = 300, p = 800, p0 = 10. On the right, the SHARE project timeline is depicted, which has
been sourced from the SHARE website: https://share-eric.eu/data/data-documentation/waves-overview/
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