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Abstract
Unsupervised pre-training and transfer learning
are commonly used techniques to initialize train-
ing algorithms for neural networks, particularly
in settings with limited labeled data. In this paper,
we study the effects of unsupervised pre-training
and transfer learning on the sample complexity
of high-dimensional supervised learning. Specifi-
cally, we consider the problem of training a single-
layer neural network via online stochastic gradient
descent. We establish that pre-training and trans-
fer learning (under concept shift) reduce sample
complexity by polynomial factors (in the dimen-
sion) under very general assumptions. We also un-
cover some surprising settings where pre-training
grants exponential improvement over random ini-
tialization in terms of sample complexity.

1. Introduction
The canonical pipeline of modern supervised learning is as
follows: given supervised data, (i) choose an appropriate
model/estimator (usually specified by a deep neural net-
work), (ii) choose a loss function and set up a suitable em-
pirical risk minimization problem, and (iii) minimize this
(possibly non-convex) empirical risk using stochastic gra-
dient descent (SGD). Extensions of this “basic” approach
have been successfully deployed to train state-of-the-art
models in diverse domains. As deep learning models be-
come larger and more complex, one has to wrestle with the
issue of model weight initialization during training. With-
out additional information, one usually resorts to random
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initialization. However, access to additional data opens the
door to other avenues for initializing model weights.

A prominent setting with additional data is semi-supervised
learning, where one might have an abundance of unlabeled
data. Unsupervised pre-training has emerged as a popular
strategy in this context (Devlin et al., 2019; Brown, 2020).
The core idea behind pre-training is to train a model (on
the unlabeled data) on a task that is related or, even bet-
ter, a necessary precursor to the supervised task of interest.
Initializing from a pre-trained model, the hope is that the
model will have already learned useful features from the
unlabeled data and hence solve the supervised task with
reduced sample complexity. The model trained in this way
can then be used to initialize a model for the supervised
task in various ways e.g., by removing the final layer of the
network and replacing it with an output head relevant to the
labeled task, such as a classification head.

Another prominent setup with additional data is transfer
learning (Pan & Yang, 2009), where one has access to sam-
ples from related supervised tasks. In this case, a natural
idea is to initialize the model weights on the target dataset
using the model trained on the upstream task.

The precise scheme for unsupervised pre-training or trans-
fer learning can vary significantly across applications. For
example, BERT models employ self-supervised representa-
tion learning by predicting “masked” tokens based on the
observed ones (Devlin et al., 2019). Similar self-supervised
pre-training algorithms form core components in the train-
ing of modern language models such as GPT (Radford et al.,
2019; Brown, 2020; Achiam et al., 2023) and have attracted
widespread attention recently. Many other forms of both
pre-training and transfer leaning are applied in countless
works spanning many different fields within machine learn-
ing (Wang et al., 2016; He et al., 2017; Devlin et al., 2019;
Schneider et al., 2019). Their popularity underscores the
importance of understanding the effects of these different
methods of weight initialization on supervised tasks.

The main goal of this work is to build towards a theoretical
understanding of the benefits of pre-training, particularly
in terms of the effect on sample complexity for solving
supervised learning tasks in high dimension that involve
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optimizing non-convex losses. In general, characterizing
the performance of neural networks on supervised learn-
ing tasks is a challenging problem. Recent works focus on
specific classes of problems such as single-index models
learned with single-layer networks (Ben Arous et al., 2021)
or two-layer networks (Lee et al., 2024), and characterize
the number of samples required for recovery of the latent
signal. We study the effects of distinct initializations on the
sample complexity for a closely related class of problems.
Specifically, we show provable benefits of pre-training and
transfer learning in terms of reducing sample complexity
for single-layer networks. We also highlight surprising com-
plexities and powerful benefits of pre-training—we discover
simple scenarios under which one cannot hope to succeed
with random initialization, but the problem can be solved
easily with suitable pre-training. Finally, we demonstrate
our findings empirically in finite dimensional settings with
simulations.

2. Related Work
We summarize some related works in this section, and com-
pare these prior works with the contributions in this article.

2.1. Pre-training and Transfer Learning Theory

There has been significant recent progress in understanding
the benefits of distinct unsupervised pre-training methods.
In Lee et al. (2021), the authors provide rigorous evidence
of the benefits of self-supervised pre-training (SSL). They
explain the benefits of SSL via specific conditional indepen-
dence relations between two sets of observed features, given
the response. In a related direction, Arora et al. (2019);
Tosh et al. (2021a;b) examine the benefits of contrastive
pretraining, while Zhai et al. (2023) examines the effects of
augmentation-based self-supervised representation learning.
In Wei et al. (2021), the authors explore the benefits pre-
trained language models, while Zhang & Hashimoto (2021),
explores the inductive bias of masked language modeling by
connecting to the statistical literature on learning graphical
models. Finally, we highlight the work (Azar & Nadler,
2025), which exhibits provable computational benefits of
semi-supervised learning under the low-degree likelihood
hardness conjecture.

The paucity of high-quality labeled data has directly moti-
vated inquiries into the properties of transfer learning across
diverse application domains. The recent literature focuses
on several distinct notions of transfer learning (e.g., covari-
ate shift (Heckman, 1979; Huang et al., 2006; Shimodaira,
2000), model shift (Wang & Schneider, 2015; Wang et al.,
2014), target shift (Maity et al., 2022), conditional shift
(Quiñonero-Candela et al., 2022; Storkey, 2008) etc) and de-
velops distinct rigorous methods to ensure successful knowl-
edge transfer in these settings (see Shimodaira (2000); ?);

Long et al. (2017); Wu et al. (2019); Sagawa et al. (2019);
Gerace et al. (2022) and the references therein for an in-
complete list). From a learning theoretic perspective, recent
works study the generalization performance as a function of
the discrepancy between the source and the target domains
(Albuquerque et al., 2019; Ben-David et al., 2010; David
et al., 2010; Hanneke & Kpotufe, 2019; Tachet des Combes
et al., 2020; Zhao et al., 2019).

In (Damian et al., 2022), the authors study the benefits of
transfer learning in the setting of single/multi-index models.
They keep the representation fixed across the source and
target, and vary the link function across the two tasks. In
contrast, we keep the link function constant (and assume
that the link is known), and study settings with distinct (but
correlated) representations in the source and target tasks.

2.2. Understanding Sample Complexity for single-index
models

Single-index models have emerged as popular toy-models
for understanding the sample complexity of training of neu-
ral networks. This is due to the fact that they are both
high-dimensional and non-convex. From a statistical per-
spective there has been work on the fundamental thresholds
of inference in these problems (Barbier et al., 2019; Maillard
et al., 2020b) and its landscape geometry (Sun et al., 2018;
Maillard et al., 2020a; Dudeja & Hsu, 2018). From the per-
spective of sample complexity, a substantial amount of deep
work in this direction focused on the sample complexity
of spectral methods or related algorithms, particularly in
relation to the Phase Retrieval problem, (Candes et al., 2015;
Barbier et al., 2019; Lu & Li, 2020).

More recently there have been tight analyses of the sample
complexity for online stochastic gradient descent from ran-
dom initialization. In particular, it was shown in (Ben Arous
et al., 2021) that the sample complexity in the online set-
ting is characterized by the Information Exponent. Since
then there has been a tremendous body of work around
complexity exponents, such as the Information Exponent,
Leap Exponent (Abbe et al., 2023), or Generative Exponent
(Damian et al., 2024b). In particular, these exponents have
enabled studies which contrast the performance of various
learning paradigms such as Correlational Statistical Query
(CSQ) versus Statistical Query (SQ) bounds (Damian et al.,
2024b), feature learning versus kernel methods (Ba et al.,
2024), better choices of loss function (Damian et al., 2024a),
and the importance of data reuse (Dandi et al., 2024; Lee
et al., 2024; Arnaboldi et al., 2024). We note here that there
has been quite a lot of recent important work on the case of
multi-index models which we do not explore here, see, e.g.,
(Abbe et al., 2023; Bietti et al., 2023; Ren & Lee, 2024) for
a small selection of this rich literature.

To our knowledge, most of this work has focused largely
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on the setting of isotropic Gaussian features (though note
Zweig et al. (2024); Pesce et al. (2023) for work on univer-
sality). However, given that pre-training only has access
to the features, one requires that the features have some
correlation with the underlying spike. Inspired by the re-
cent works of (Mousavi-Hosseini et al., 2023; Ba et al.,
2024), we model this via a spiked covariance model. There
are some additional recent works citedandi2024random,
cui2024asymptotics, ba2022high which analyze the high
dimensional asymptotics of neural network training after a
single gradient step and also consider spiked and isotropic
index models.

3. Pre-Training
3.1. Problem Set Up and Notation

We consider a single layer supervised network with specified
activation function f . We consider Gaussian features with
spiked covariance, where the spike is correlated with the
parameter vector of interest.

Let the labeled data be (yi, ai)
N
i=1, with each (yi, ai) inde-

pendent and identically distributed. We have the following
relationship between a and y: yi = f(ai · v0)+ ϵi, for some
ϵi independent of ai, with mean 0 and finite fifth moment.
The parameter vector we wish to estimate is v0 and f is a
known activation function. Throughout we assume that f
is twice differentiable almost everywhere with f, f ′, f ′′ of
at most polynomial growth. We would like the model we
consider to capture the essence of pre-training. To perform
pre-training, one should have access to additional unlabeled
data. We thus assume access to some unlabeled (a′i)

N ′

i=1

with a′i
D
= ai. In order for pre-training to be useful, there

is an implicit assumption that the unlabeled data contains
some information in its structure that is related to the su-
pervised task. We thus let ai ∼ N(0, Id + λvvT ), with
v · v0 = η1 ∈ [0, 1], λ > 0 (η1, λ are dimension indepen-
dent) and v, v0 ∈ Sd−1 (the unit sphere in Rd). Thus, the
features are Gaussian with spiked covariance, where the
spike vector has some correlation with the unknown param-
eter vector of interest v0. In this way, our model captures
the significance of pre-training by allowing the unlabeled
feature data to contain information hidden in its covariance
structure that is directly correlated with the solution of the
supervised learning problem. The value of η1 measures the
strength of this correlation. We define η2 =

√
1− η21 .

Our goal is to estimate the unknown vector v0 with parame-
ter vector X ∈ Sd−1, by using SGD on the following loss
function: L(X, y) = [f(X · a) − y]2. We use spherical
gradient descent with step-size δ/d to optimize parameters
X , given by the following stochastic updates:

Xt+1 =
Xt − δ

d∇L(Xt, y)

∥Xt − δ
d∇L(Xt, y)∥2

with initialization X0, where ∇ denotes the spherical gradi-
ent with respect to the parameters X .

We want to understand the benefit of pre-training and
so we consider two methods of initializations, random
and with pre-training. For random initializations we let
X0 ∼ Uniform(Sd−1). To model pre-training, we use Prin-
cipal Component Analysis (PCA) on the unlabeled data
(a′i)

N ′

i=1, to obtain an estimate v̂ of the spike direction v.
We then use this to initialize SGD for our supervised task,
that is we let X0 = v̂. PCA is arguably the ideal starting
point for a rigorous investigation into unsupervised pre-
training. From a statistical perspective, PCA is the sim-
plest dimension-reduction algorithm; further, it’s properties
are well-understood in high-dimensions (Bai & Silverstein,
2010). More importantly, it has been shown that more
advanced representation learning algorithms, such as re-
construction autoencoders, also implement PCA in certain
regimes (Bourlard & Kamp, 1988; Baldi & Hornik, 1989;
Nguyen, 2021). In this light, we will restrict ourselves to
PCA-based pre-training in this paper. We note that this
approach is distinct from the spectral methods introduced
for single-index models and, in particular, phase retrieval.
There, the methods are supervised in that they use both
knowledge of the label and features, whereas in unsuper-
vised pre-training one only has access to the features.

With these two methods of initialization, our goal is to
contrast their respective sample complexity requirements
for solving the supervised learning task (recovering the un-
known vector v0). We are in particular interested in the high
dimensional regime. We consider spherical SGD (hence
forth referred to as simply SGD) with the total number of
steps (and samples of (yi, ai)) given by N = αdd. Thus
the number of samples we observe is a function of the di-
mension, and we are then interested in analyzing the high
dimensional limit d → ∞.

3.2. Main Results

In this section we state our main results. Firstly we state a
few definitions and assumptions. We defer the proofs of all
results to Appendix A. Throughout we will often refer to
the ‘population loss’:

Φ(X) = E[f(X · a)− y]2

= E[f(X · a)− f(v0 · a)]2 + Eϵ2

We note that there are two important directions of interest
in this problem, namely v0 and the residual direction of
the spike vector, after subtracting off the projection onto
v0, that is 1

η2
(v − η1v0). Without loss of generality, we

let the first two basis vectors be written as e1 = v0 and
e2 = 1

η2
(v − η1v0), so that v = η1e1 + η2e2. We can

rewrite the population loss which is a function of X , solely
through the correlation of X with each of these directions.
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Let m1(X) = X · e1 = x1 and m2(X) = X · e2 = x2,
then

Φ(X) = E[f(a ·X)− f(a · e1)]2 + Eϵ2

= E[f(a1x1 + a2x2 +
√
1− x2

1 − x2
2g)− f(a1)]

2 + Eϵ2

= ϕ(x1, x2)

where [a1, a2, g] is jointly Gaussian with mean 0 and g ⊥
a1, a2 and Eg2 = 1. The covariance of a1, a2 is given by:(

1 + λη21 λη1η2
λη1η2 1 + λη22

)

Throughout we will use the term ‘population flow’ which is
simply the discretized gradient flow on the population loss
Φ.

Definition 3.1. A sequence of initializations (X(d)
0 )d≥1 is

Effective for SGD with N = αdd steps of stepsize δ/d if
m1(X

(d)
N ) → 1 in probability as d → ∞.

A sequence of initializations is considered Effective if SGD
with some number of steps and stepsize, initialized from
the given sequence, recovers the true solution in the high
dimensional limit. To that end, we say that a sequence of
initializations is Ineffective if it is not effective. We have
defined Effective initializations for SGD based on the con-
vergence of the SGD process, and we can also consider these
definitions for initializations of population flow, defined by
the convergence of the population flow process in place of
SGD.

Assumption 3.2. We say that Assumption 3.2 holds with
point m∗ = (m∗

1,m
∗
2) ∈ B2(0, 1) if there exists a point m∗,

such that:

∇Φ(X) · e1 > 0

sgn(m2(X))∇Φ(X) · e2 < 0

for all X such that (m1(X),m2(X)) ∈ B2(0, 1) :
m1(X) ≥ m∗

1, |m2(X)| < m∗
2. Where B2(0, 1) is the

2-d unit ball.

We note that the ability of Φ to meet Assumption 3.2 de-
pends entirely on the choice of activation function f . It is
clear that population flow, initialized within the rectangle
defined by the points m∗ and (1, 0) will recover the correct
solution (see Figure 1 for an example), hence (emphasizing
that m∗ is independent of the dimension) this assumption
provides a simple way to verify that a sequence of initial-
izations is Effective for population flow. Now we state our
main result regarding initializing with pre-training.

Theorem 3.3. Suppose that Assumption 3.2 holds with point
m∗. Further η1 ≥ m∗

1 and |η2| ≤ m∗
2. Then for spherical

SGD on the given loss with N = αd steps where α = ω(1),
αδ2 = o(1), we have that the sequence of initializations
X

(d)
0 = v̂d, the PCA estimators of vd obtained with N ′ =

α′d unlabeled samples where α′ = ω(1), are Effective.

The theorem above states sufficient conditions on Φ and the
correlation between v and v0 such that with pre-training,
we are able to recover the true parameter vector with high
probability in large enough dimensions. Further, we see that
α = ω(1), and hence our recovery with N = αd steps is
just beyond linearly many steps in the dimension.

For our next two results we will work with activations f
which satisfy

Ef ′′(g) = Ef ′(g) = 0, E
∂2

∂g2
f(g)2 > 0 (1)

for g ∼ N (0, 1). Recalling the notion of information ex-
ponent from Ben Arous et al. (2021) which is restated in
the following section, (1) is equivalent to requiring the in-
formation exponent 3 or greater for f and the information
exponent less than or equal to 2 for f2. We now consider our
second main result which considers recovery from random
initializations.

Theorem 3.4. Suppose that f satisfies (1). Then for spher-
ical SGD with N = αd steps where α ≪ d, αδ2 = O(1),
for the sequence of initializations X(d)

0 ∼ Uniform(Sd−1)
we have that m1(XN ) → 0 in probability, as d → ∞.

Our second main result states that under appropriate moment
conditions on f , we have that in order to recover the un-
known parameter vector v0, we require at least N = Ω(d2)
samples. We emphasize that this result does not inform us
of when we can recover the true parameter vector, only suf-
ficient conditions for showing that we cannot recover with
less than quadratic samples in the dimension.

We now state our third main theorem which is the most
surprising result and brings to light the complexity of the
single layer supervised network with Gaussian features and
spiked covariance. Let Hd

r = {X ∈ Sd−1 : |m1(X)| < r}.

Theorem 3.5. Suppose that f satisfies (1) for g ∼ N (0, 1).
When η1 = 1, for spherical SGD with N = αd steps where
α = ω(1), αδ2 ≪ d1/3 , we have that there exists some
dimension independent value r > 0 such that for all se-
quences of initializations X(d)

0 ∈ H
(d)
r , then we have that:

m1(XN ) → 0 in probability as d → ∞. Further we have
that for all ϵ > 0:

P(sup
t≤N

|m1(Xt)| > r + ϵ) → 0

in probability as d → ∞.

This result demonstrates the surprising fact that in the sim-
ple scenario where the spike is perfectly aligned with the
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unknown parameter vector, recovery is not possible from
random initializations with any amount of data, given appro-
priate stepsize. Even more surprising, not only is recovery
not possible from random initialization, but even initializing
with some fixed correlation, can result in not only a failure to
recover but further a loss of the initial correlation. We also
have that the maximum correlation attained over the course
of SGD is contained in a ball around 0 with radius slightly
larger than the ball containing the initializations. Taking
into account Theorem 3.3, we see that there exists problems
such that pre-training can allow us to solve the problem in
linear time, whereas the problem is unsolvable from random
initialization in the given scaling regime, regardless of the
amount of labeled data.

It is important here to note that a similar negative result was
observed by Mousavi-Hosseini et al. (2023) for population
gradient flow when fitting a two-layer network with ReLU
activation. There the authors propose to correct for this via
preconditioning the gradient. By contrast, here we use this
to illustrate the power of pre-training.

3.3. Discussion

Together, the first two theorems above tell us that for cer-
tain activation functions f such that both the assumptions
of Theorem 3.3 and the assumptions of Theorem 3.4 are
met, we establish a significant separation of the required
samples for recovering the unknown parameter vector. With
pre-training, we can achieve convergence with N = αd
whenever α = ω(1). That is, we can recover with less than
log-linear samples in the dimension. For random initializa-
tions, we require N = Ω(d2) at minimum. This gives us a
separation of dζ for all ζ < 1. Theorem 3.5 not only high-
lights the complex scenarios that can arise by introduction of
a spike vector but also serves as a demonstration of the pow-
erful effects of pre-training. In the scenario where the spike
vector is equal to the parameter vector, pre-training alone is
sufficient for solving the problem (of course this information
would not be available to any practitioner) and without pre-
training, no amount of data is enough to solve the problem
from random initialization under the given regime. How-
ever, provided enough correlation between the spike vector
and unknown parameter vector, the problem is solvable via
pre-training with just over linearly many samples.

We point out that Theorems 3.3 and 3.4 have established a
lower bound on the benefit of pre-training. As we see from
Theorem 3.5, there are scenarios which deviate significantly
from the lower bound provided here. Past works (Ben Arous
et al., 2021) have shown that when the features are isotropic
Gaussian, the sample complexity is governed by a quantity
called the information exponent, which is essentially the
order of the first non-zero term in the Taylor expansion of
the population loss. In the case of single-index models the

information exponent can be written in terms of the Her-
mite coefficients of the activation function f , which can be
similarly expressed as moment conditions on f . In light
of the results in the isotropic Gaussian case, Theorems 3.3
and 3.4 may not seem that surprising. We emphasize here
that the introduction of the spike to the covariance, makes
the problem much more complicated. This is made clear
by Theorem 3.5, where in contrast to the isotropic feature
case where initializing with some fixed correlation puts us
immediately into the descent phase allowing for recovery
with near linear sample complexity (Ben Arous et al., 2021),
with the introduction of the spike with any positive magni-
tude, a local minima appears around m1(X) = 0 and hence
with random initialization or initializing with some fixed
correlation that is within the attractor region of the local
optima, SGD tends to the local optima, in effect learning
nothing and perhaps destroying the initial information.

We quickly point out that Theorem 3.5 holds even with
exponential data, stating that with the given stepsize, SGD
does not recover the unknown parameter vector. We also
note that the step-size specified in Theorem 3.5 is in fact
more general than in 3.3 and 3.4. Hence, this is a reasonable
range of stepsizes for which one would expect to solve the
problem with sufficiently many samples.

3.4. Meeting Assumptions

We now take a moment to consider the assumptions in our
theorems. Assumption 3.2 requires the existence of some
point m∗ such that within the rectangle defined by this
point and the global optima (m1(X),m2(X)) = (1, 0),
the population dynamics are well behaved, tending to the
global optima at (m1(X),m2(X)) = (1, 0) in linear time.
When it comes to the moment conditions on f required
to apply Theorems 3.4 and 3.5, one can easily check (see
Lemma A.10 in the supplementary material) that the Her-
mite polynomials with degree ≥ 3 satisfy them. While this
claim does not extend to all linear combinations of Hermite
Polynomials, it can be extended to linear combinations of
Hermite Polynomials of degrees 3 or greater, with the added
constraint that any two coefficients in the Hermite expansion
that are exactly 2 degrees apart, must have the same sign,
i.e. Ef(g)hk(g)Ef(g)hk−2(g) ≥ 0. This provides a class
of functions which demonstrate our Theorems and thus the
effects of pre-training.

4. Transfer learning
We also consider a related problem which we find lends
itself better to the notion of transfer learning. We con-
sider a related scenario under which we once again have
labeled data (yi, ai)

N
i=1 according to a single layer network

with known activation function f and unknown parame-
ter vector v0. We assume that f is differentiable almost
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everywhere with f, f ′ of at most polynomial growth. How-
ever, we now consider the case of isotropic Gaussian fea-
tures: ai ∼ N (0, Id). Without the spike in the covariance,
there is only one correlation variable of interest, namely
m1(X) as previously defined. It can be shown that for f
differentiable almost everywhere and f ′ of at most polyno-
mial growth, the population loss Φ(X) can be expressed as
ϕ(m1(X)) ∈ C1, with ϕ′(x) < 0,∀x ∈ (0, 1) and further,
the sample complexity for solving this problem with SGD
is well understood (Ben Arous et al., 2021).

To introduce the notion of transfer learning, we consider the
scenario where we have access to some sequence of vectors
v(d) with v(d) ·v(d)0 = ηd. We may consider these correlated
vectors v(d) to be a sequence of estimates of some vector
correlated to v0 which were obtained via SGD on some
related task. For the sake of analysis we are not concerned
with how these correlated vectors are obtained, only the
benefit provided by having access to them for initializing
SGD. We are again interested in the sample complexity as a
function of dimension and how this complexity is affected
by initializing with transfer learning in contrast to uniform
random initializations.

Recall the information exponent from (Ben Arous et al.,
2021).
Definition 4.1. We say that a population loss ϕ has infor-
mation exponent k if ϕ ∈ Ck+1([−1, 1]) and there exist
C, c > 0 such that:

dℓϕ
dmℓ (0) = 0 for 1 ≤ ℓ < k,
dkϕ
dmk (0) ≤ −c < 0,∥∥∥ dk+1ϕ
dmk+1 (m)

∥∥∥
∞

≤ C.

We now state a result concerning transfer learning with
isotropic Gaussian features as described above. The details
on sample complexity for this model are well understood
from the work of Ben Arous et al. (2021), which allows us
to easily analyze the effects of transfer learning.
Theorem 4.2. Let k ≥ 2 be the information exponent of
ϕ. Let v(d) · v(d)0 = ηd = θ(d−ζ), with ζ ∈ [0, 1/2).
Then for spherical SGD with N = αd steps with α ≫
d2ζ(k−2)(log d)21[ζ>0] and α−1 ≪ δ ≪ α−1/2, X0 = v,
we have that: m1(X) → 1 in probability as d → ∞. Here
1[ζ > 0] is the indicator function, taking value 0 if ζ = 0
and 1 otherwise.

The proof of this theorem follows almost exactly from
(Ben Arous et al., 2021), noting that their arguments still
hold under slightly different initializations. Contrasting
this theorem with the results of (Ben Arous et al., 2021),
we notice that when v(d) · v(d)0 = ηd = O(d−ζ) for
some ζ ∈ (0, 1/2) and the information exponent is 3 or
greater, we benefit from a polynomial sample reduction

from α ≫ dk−2(log d)2 to α ≫ d2ζ(k−2)(log d)2. Fur-
ther in the case that ζ = 0, i.e., we initialize with a fixed
correlation independent of the dimension, we see that only
α = ω(1) is required, and hence we can recover in nearly
linear sample complexity regardless of the information ex-
ponent. This offers a substantial polynomial reduction in
the event that the information exponent is large. We do
note however that even in the case the of the information
exponent 2, we still benefit from a complexity reduction of a
factor of (log d)2. In the case of information exponent 1, we
do not benefit from transfer learning, however, in this case
we already recover with nearly linear sample complexity,
hence we have no need to perform transfer learning. We
also note here that the reduction in sample complexity is the
same as observed in Theorem 7 of Mousavi-Hosseini et al.
(2023).

5. Examples
In this section we show some examples of our theorems and
provide simulations to empirically verify our claims in large
finite dimensions.

5.1. The Third Hermite Polynomial

We will now show how one can apply our theorems from
the past section. As noted in the past section, for all Hermite
polynomials with degree 3 or greater, all assumptions are
met for applying Theorems 3.4 and 3.3, provided a large
enough correlation between v and v0, ie for large enough η1.
Hence in order to apply our theorems to a specific problem
set up with some Hermite polynomial in place of f and
some values of λ, η1 we must simply verify whether or not
η1 is large enough. To do this, we must identify the region of
Effective initializations for population flow and determine
whether (η1, η2) falls inside.

Note that taking f to be any polynomial function, we solve
for Φ(X) explicitly, by expanding and computing the mo-
ments of Gaussian random variables. After computing the
explicit loss, one can compute the spherical gradients with
respect to x1 and x2 and analyze their signs in order to iden-
tify a value of m∗ to apply Assumption 3.2. Below we plot
the phase diagram for population flow when f(x) = x3−3x,
the third Hermite polynomial. We identify a point m∗ to
Apply assumption 3.2.

5.2. Simulations

We conduct a few simulations to empirically demonstrate
our claims in finite dimensions. In the first simulation, we
consider letting f(x) = x3 − 3x and setting λ = 1, η1 =
0.45. We then conduct SGD from both random initializa-
tions and from estimates of v obtained via PCA. We use
dimension d = 1000 and let SGD run for 3

2d
2 = 1, 500, 000
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steps of size 1
10d2 = (10, 000, 000)−1. We select the param-

eters such that we would expect to be able to recover the true
parameter vector from a random initialization had we been
in the case λ = 0. We determine this scaling based on the
results of Ben Arous et al. (2021) and some experimenting.
See Figure 1.

We also perform simulations under the setting λ = 0.5 and
η1 = 1 as in Theorem 3.5. We then perform SGD with the
dimension, step size and number as steps as given above,
only we consider initializing uniform randomly, conditional
on fixing the correlation m1(X0) = 0.1. See Figure 1.

6. Proof Ideas
We make use of the ‘bounding flows’ approach from
Ben Arous et al. (2020b), Ben Arous et al. (2020a), and
Ben Arous et al. (2021). This approach was applied to
Single-Index Models in (Ben Arous et al., 2021). The key
difference here is that the populations dynamics here cannot
be reduced to a 1-dimensional correlation variable but a
2-dimensional vector of correlations. As such more delicate
analysis of the phase portrait and the martingale fluctuations
are involved.

6.1. Theorem 3.3

Our first main theorem, provides a sufficient condition to
check when pre-training for initializing SGD can recover
the unknown parameter vector in almost linear time. The
proof of has two main components. First note that under
Assumption 3.2, there exists a rectangle that, when initial-
ized within, the population dynamics will find the global
optima. Next Lemma A.3 shows that when initializing with
some fixed initial correlations, SGD behaves like the pop-
ulation dynamics, which under Assumption 3.2 converge
to the global optima when initialized in the rectangle. The
second part of the proof of Theorem 3.3 is simply applying
a few well-known facts regarding PCA in high dimensions
(see Appendix B). These facts along with the assumption
on the strength of the correlation of the spike to the un-
known parameter vector, tell us that when initializing with
pre-training, we find ourselves in the region of effective
initializations as given by Assumption 3.2 and hence we
can recover the unknown parameter vector in approximately
linear time.

6.2. Theorem 3.4

We consider the Taylor expansion of the population loss in
the two correlation variables of interest around 0. Recall that
random uniform initializations yield initial correlations on
the order of m1(X0),m2(X0) = O( 1√

d
) (Vershynin, 2018).

Under the Assumptions on f of Theorems 3.4 and 3.5 we
have the following system for the population dynamics:

∂ϕ(x1, x2)

∂x1
= 2λη21cx1 + 2λη1η2cx2 +O(∥(x1, x2)∥22)

∂ϕ(x1, x2)

∂x2
= 2λη22cx2 + 2λη1η2cx1 +O(∥(x1, x2)∥22)

for some positive constant c. We remind the reader here
of the definition (x1, x2) = (m1(X),m2(X)). Analyzing
the linearized system, we see that the first-order terms are
orthogonal to (and point towards) the line L = {(x1, x2) :
x1 = −η2

η1
x2}, and are equal to 0 on L. Letting T⊥

L (x1, x2)

measure the distance of (x1, x2) to L, we have that the
first terms exceed higher order terms when outside the set
C = {(x1, x2) : T⊥

L (x1, x2) > c1∥(x1, x2)∥22} for some
constant c1. This set provides a cusp surrounding the line L.
To prove our result, we carefully construct stopping times
in order to observe the process over specific regions of the
space, such as the Cartesian quadrants and positioning rel-
ative to the set C. We show that in quadrants 1 and 3, the
process tends to quadrant 2 or quadrant 4. Once in these
quadrants we bound the distance of the process to the line
L, ultimately ensuring the process gets close to L. Once
this happens we show that the given sample complexity is
not sufficient to leave some fixed ball around the origin.
The proof of this theorem is the most involved. While this
idea can be understood at the population level, the extension
to SGD requires controlling the variance of the martingale
along various important directions with martingale inequali-
ties.

6.3. Theorem 3.5

When η1 = 1 (and hence η2 = 0) as in Theorem 3.5, the
system no longer depends on x2 (Recall the definition of ϕ
in the start of section 3.2). We then have the following 1-d
system:

∂ϕ(x1, x2)

∂x1
= 2λη21cx1 +O(∥(x1, x2)∥22)

From this system we see there is a local optima at m1(X) =
0, whose attractor region is fixed and not dependent on the
dimension. Hence the remainder of the proof of Theorem
3.5 is showing that in the high dimensional limit, the ran-
domness of SGD is insufficient to escape the attractor region
in the given scaling regime.

7. Conclusion
In this paper we consider natural statistical models for which
one can analyze the effects of pre-training and transfer learn-
ing. Namely single-index models with Gaussian features
with spiked covariance and isotropic covariance. We ana-
lyze the ability to recover the unknown parameter vector

7
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(a) (b)

(c) (d)

Figure 1. The figures on the left correspond to η1 = 0.45, λ = 1 and the right correspond η1 = 1, λ = 0.5. Each figure displays 4 SGD
runs. One random initialization, one initialization via pre-training with PCA and 2 fixed initializations. The left figures feature fixed
initializations of (m1(X0),m2(X0)) = (0.25,

√
1− 0.252) and (m1(X0),m2(X0)) = (0.25,−0.75). We observe that pre-training

results in finding the global optima at (m1(X0),m2(X0)) = (1, 0) and random initialization makes little to no progress. Fixing the value
of m1(X0), we also observe very different behaviors simply by varying the value of m2(X0) highlighting the complexity that arises
when introducing a second dimension to the population dynamics. In the case of η1 = 1 the fixed initializations are m1(X0) = 0.1 and
m1(X0) = 0.25. In addition to noticing the behavior of random initialization versus pre-training, we observe very different behavior for
fixed initializations. For small enough m1(X0) SGD tends towards the local optima at m1(X) = 0 as suggested by Theorem 3.5. For
larger enough m1(X0), SGD tends towards the global optima.

in these models using stochastic gradient descent and the
required sample complexity in the high dimensional regime,
from both random initializations and with pre-training /
transfer learning. In both scenarios we prove polynomial
separation in the sample complexity as a function of the
dimension required to solve, for a class of functions which
contains the Hermite polynomials of degree 3 or greater.
We also highlight the complexity of analyzing recovery un-
der a single-index model with Gaussian features and spiked
covariance, by highlighting a simple case (the case where
the spike vector is equal to the parameter vector) in which
a local optima arises and traps random initializations. This
paper contributes to the growing body of work attempting
to add theoretical justification for common practices of pre-

training and transfer learning.
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A. Proofs of Main Results
For convenience we define the sample wise error as H(X, y) = L(X, y)− Φ(X). We first prove a lemma which is used
throughout our proofs.

Lemma A.1. There exist constants C1, C2 > 0 such that the following moment bounds hold uniformly in d:

sup
x,θd∈Sd−1

E[(∇Hd(x, y) · θd)2] ≤ C1

sup
x∈Sd−1

E[∥∇Hd(x, y)∥4+C2
2 ] ≤ C1d

(4+C2)/2

Proof. See the proof of proposition B.1 in (Ben Arous et al., 2021) and not that similar arguments apply when the features
have spiked covariance.

A.1. Proof of Theorem 3.3.

We first prove Theorem 3.3.

Theorem 3.3. Suppose that Assumption 3.2 holds with point m∗. Further η1 ≥ m∗
1 and |η2| ≤ m∗

2. Then for spherical
SGD on the given loss with N = α ∗ d steps where α = ω(1), αδ2 = o(1), we have that the sequence of initializations
X

(d)
0 = v̂d, the PCA estimators of vd obtained with N ′ = α′d unlabeled samples where α′ = ω(1), are Effective.

Proof. The proof of Theorem 3.3 is an immediate consequence of the sequence of PCA initializations being Effective for
population flow as given by Proposition A.4 and the convergence between SGD and population flow as given by Lemma A.3
(below).

Lemma A.3. Suppose that Assumption 3.2 holds with point m∗. Fix any point (minit
1 ,minit

2 ) with minit
1 > m∗

1,m
init
2 < m∗

2.
For a sequence of initializations (m1(X

d
0 ),m2(X

d
0 ))d≥1 converging to (minit

1 ,minit
2 ), spherical SGD on the given loss

with the given initializations and N = αd steps where α = ω(1), αδ2 = o(1) yields the following:

sup
t≤N

∥(m1(Xt),m2(Xt))− (m1(X̄t),m2(X̄t))∥2 → 0

in probability as d → ∞. Here X̄t is population flow with the same initialization.

We will show that the spherical projections are negligible (arbitrarily small with probability 1 - o(1)). We can then consider
the linearized paths of (m1(Xt),m2(Xt)) and (m1(X̄t),m2(X̄t)). Bounding their difference with Gronwall’s inequality
(Gross, 1967) and Doob’s Inequality (Williams, 1991) to control the martingale term.

Proof. Let ∇E denote the usual Euclidean gradient. Then consider the spherical gradient:

∇Φ(X) = ∇EΦ(X)− (∇EΦ(X) ·X)X

That is the euclidean gradient projected onto the orthogonal space of X . We know that the population loss can be written as
a function of (m1(X), m2(X)) = (x1, x2) (recall that (m1(X), m2(X)) = (x1, x2) due to the without loss of generality
assumption that v0 = e1 and (η2)

−1(v − η1v0) = e2). Hence:

sup
X∈Sd−1

∥∇Φ(X)∥2 = sup
X∈Sd−1

∥∇EΦ(X)− (
∂ϕ(x1, x2)

∂x1
x1 +

∂ϕ(x1, x2)

∂x2
x2)X∥2 ≤ A (2)

where A is some constant independent of d, using that Φ ∈ C1 and X ∈ Sd−1 (compact). Additionally with the above, one
can show that there exists K (independent of d) such that for X,Y ∈ Sd−1

∥∇Φ(X)−∇Φ(Y )∥2 ≤ K∥X − Y ∥2 (3)
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We will use this fact later. Now let

rt+1 = ∥Xt −
δ

d
(∇Φ(Xt)−∇H(Xt, yt))∥2

≤
√

1 +
δ

d
(∥∇Φ(Xt)∥22 + ∥∇H(Xt, yt)∥22) (4)

≤ 1 + δ2(
A

d2
+

Lt

d
) (5)

In (4) we use that Xt and δ
d (∇Φ(Xt) − ∇H(Xt, yt)) are orthogonal as the gradient is spherical. In (5) we use that for

u > 0,
√
1 + u < 1 + u and the spherical gradient has bounded norm shown in (2). Lt = ∥∇H(Xt, yt)/

√
d∥22, noting that

while Lt is random, it’s expectation is bounded by a constant independent of d by Lemma A.1. Note that the quantity we
have defined rt+1 is simply the radius of Xt after the gradient update, but before projecting back onto the sphere. We have
that |rt+1 − 1| ≤ δ2( A

d2 + Lt

d ). This bounds the distance between Xt with itself, had it not been projected onto the sphere
after the last gradient update:

∥Xt − (Xt−1 −
δ

d
∇Φ(Xt−1) +

δ

d
∇H(Xt−1, yt−1))∥2 =

|rt − 1|
rt

∥Xt∥2 ≤ δ2(
A

d2
+

Lt

d
)

By iterating this bound, we have the following:

sup
t≤N

∥Xt − (X0 −
δ

d

t−1∑
i=0

∇Φ(Xi) +
δ

d

t−1∑
i=0

∇H(Xi, yi))∥2 ≤
N−1∑
i=0

δ2(
A

d2
+

Li

d
)

By Markov’s inequality, the probability that the right hand side is greater than some ϵ > 0 is:

P(
N−1∑
i=0

δ2(
A

d2
+

Li

d
) > ϵ) ≤ ϵ−1αδ2(

A

d
+ sup

t≤N
ELt)

Which is o(1) given αδ2 = o(1) and supt≤N ELt < ∞ by Lemma A.1. It thus suffices to consider the linearization of
(Xt)

N
t=0, which for the two correlation variables of interest, we denote:

Yt = m⃗(X0 −
δ

d

t−1∑
i=0

(∇Φ(Xi)−∇H(Xi, yi)))

where m⃗(x) = (m1(x),m2(x)). We note that this linearization (Yt)
N
t=0 is not the same as linear SGD. This process is

equivalent to performing spherical SGD, but adding back all of the projection vectors at each stage, that were used to map
Xt to the sphere after each gradient update. Which is also not equivalent to doing regular gradient descent with spherical
gradients. Redoing the above computations with respect to X̄t one would see that deterministically, for large enough d we
have that X̄t is also within ϵ of Ȳt, the linearization of gradient flow, given by:

Ȳt = m⃗(X̄0 −
δ

d

t−1∑
i=0

∇Φ(X̄i))

Hence to prove our result it is enough to show the convergence in probability between Yt and Ȳt. To do so, let us consider
the martingale term given by δ

d

∑t
i=0 ∇H(Xt, yt). Applying Doob’s inequality with p = 2 we see that

P(sup
t≤N

δ

d
∥

t∑
i=0

m⃗(∇H(Xt, yt))∥2 > ϵ) ≤ 2Cαδ2

ϵ2d
= o(1/d)

13
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for some constant C, independent of the dimension. To show that supt≤N ∥Yt − Ȳt∥2 → 0, we first consider for some fixed
T , the quantity: supt≤Tδ−1d ∥Yt − Ȳt∥2. Then on the set

{
∥Xt − Yt∥2 ∨ ∥X̄t − Ȳt∥2 < ϵ

}
, for all t ≤ Tδ−1d:

∥Yt − Ȳt∥2 ≤ δ

d

t−1∑
i=0

∥m⃗(∇Φ(Xi)−∇Φ(X̄i))∥2 +
δ

d

t−1∑
i=0

∥m⃗(∇H(Xi, yi))∥2

≤ δ

d

t−1∑
i=0

K∥m⃗(Xi − X̄i)∥2 +
δ

d

t−1∑
i=0

∥m⃗(∇H(Xi, yi))∥2

≤ 2TKϵ+
δ

d

t−1∑
i=0

K∥Yi − Ȳi∥2 +
δ

d

t−1∑
i=0

∥m⃗(∇H(Xi, yi))∥2

≤ (2TK + 1)ϵ+
δ

d

t−1∑
i=0

K∥Yi − Ȳi∥2

with probability 1− o(1), by applying Doob’s inequality and noting the use of (3). Thus applying the discrete Gronwall
inequality (Gross, 1967), we obtain:

sup
t≤Tδ−1d

∥Yt − Ȳt∥2 ≤ (2TK + 1)ϵeKT (6)

For any γ > 0 the above can be made less than γ/5 by choice of ϵ(γ, T ). We now let T be such that

sup
Tδ−1d≤t≤N

∥(m1(Ȳt),m2(Ȳt))− (1, 0)∥2 < γ/5 (7)

This T exists as a constant (which is independent of d) as a result of Assumption 3.2 and the fact that
(m1(Ȳ

d
0 ),m2(Ȳ

d
0 ))d≥1 → (minit

1 ,minit
2 ). To better understand this, recall that with constant initialization, the 2-d

population dynamics of m1 and m2 are otherwise unaffected (other than through stepsize and number of steps) by the
dimension. By Assumption 3.2, we have that the population dynamics converge to the intended solution at (m1,m2) = (1, 0)
as d → ∞. Now consider:

sup
Tδ−1d≤t≤N

∥Yt − (1, 0)∥2 ≤ ∥YTδ−1d −
δ

d

t−1∑
i=Tδ−1d

m⃗(∇Φ(Xi))− (1, 0)∥2 + ∥ δ
d

t−1∑
i=Tδ−1d

m⃗(∇H(Xi, yi))∥2

≤ 2γ/5 + ∥ δ
d

t−1∑
i=Tδ−1d

m⃗(∇H(Xi, yi))∥2

The above bound comes from applying triangle inequality to separate out the martingale term and then noting that at time
Tδ−1d we have Yt is within γ/5 of Ȳt which is within γ/5 of (1, 0) and the gradient with respect to the population loss
only moves Yt closer to (1, 0).

sup
Tδ−1d≤t≤N

∥Yt − Ȳt∥2

≤ sup
Tδ−1d≤t≤N

(∥Yt − (1, 0)∥2 + ∥Ȳt − (1, 0)∥2)

≤2γ/5 + ∥ δ
d

t−1∑
i=Tδ−1d

m⃗(∇H(Xi, yi))∥2 + γ/5 ≤ γ

with probability 1 − o(1). This follows from another application of Doob’s inequality onto the projection of the high
dimensional martingale onto the two fixed directions of interest e1, e2 keeping in mind Lemma A.1. We have thus shown that
for any γ > 0, with probability 1− o(1), that supt≤N ∥(m1(Xt),m2(Xt))− (m1(X̄t),m2(X̄t))∥2 < γ which concludes
the proof.

14
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Proposition A.4. Suppose Assumption 3.2 holds with point m∗. Further η1 ≥ m∗
1 and η2 ≤ m∗

2. The the sequence of PCA
estimators (v̂d)d≥1 of vd each obtained with Nd = α ∗ d samples,α = ω(1), is Effective for population flow.

Proof. We will use well-known facts about PCA in high dimensions, which we recall for the reader’s convenance in section
B of the appendix. If we consider using a fixed linear portion of our samples for conducting PCA, we can choose the fraction
γ = d/N to be any constant we desire. Choosing γ sufficiently small, we can ensure both that γ < λ2 and m1(v̂) > m∗

1 and
m2(v̂) < m∗

2. To see this consider the following: Let △1 = |m∗
1 − η1|, △2 = |m∗

2 − η2| , ϵ = 1
8 min(△2

1,△2)
2. We have:

∥v̂ − v∥22 = ∥v∥22 + ∥v̂∥22 − 2v · v̂ ≤ 2(1− 1− γ/λ2

1 + γ/λ2
) + ϵ <

1

4
min(△2

1,△2
2)

for small enough γ. The second equality follows for large d using a well known result regarding the limiting correlation of v
and v̂ as can be seen in Bandeira et al. (2020).

Thus by triangle inequality, we have that m1(v̂) ≥ m∗
1 and |m2(v̂)| ≤ m∗

2 for sufficiently large d. Letting the choice of γ
tend to 0, it is clear the limit of (m1(X

(d)
0 ),m2(X

(d)
0 )) exists and is equal to (m1(v),m2(v)) = (η1, η2).

A.2. Proof of Theorem 3.4

Theorem 3.4. Suppose that f satisfies the following:

Ef ′′(g) = Ef ′(g) = 0, E
∂2

∂g2
f(g)2 > 0

for g ∼ N (0, 1). Then for spherical SGD with N = αd steps where α ≪ d, αδ2 = O(1), for the sequence of initializations
X

(d)
0 ∼ Uniform(Sd−1) we have that: |m1(XN )| → 0 in probability, as d → ∞.

The overall strategy of the proof is to show that for for any γ > 0, if X̂t = (m1(Xt),m2(Xt)) is in the d−1/6-ball, i.e.
{x ∈ R2 : ∥x∥2 < d−1/6}, we have that X̂t enters the 1

2d
−1/6-ball or ’times out’ at t = N , before it leaves the γ-ball with

probability 1− o(1).

We want to analyze the population dynamics and we will consider doing so via a second order Taylor expansion of the
population loss

ϕ(x1, x2) = E[f(a1x1 + a2x2 +
√
1− x2

1 − x2
2g)− f(a1)]

2 + Eϵ2

in (m1(X),m2(X)) = (x1, x2), around the origin. Noting that, under our assumptions on f , we can differentiate under the
expectation, we perform the following computations:

∂ϕ(0, 0)

∂x1
= E2[f(g)f ′(g)a1 − f(a1)f

′(g)a1]

∂ϕ(0, 0)

∂x2
= E2[f(g)f ′(g)a2 − f(a1)f

′(g)a2]

∂2ϕ(0, 0)

∂x2
1

= E2[(f ′(g)2 + f ′′(g)f(g))a21 − f(g)f ′(g)g − f(a1)f
′′(g)a21 + f(a1)f

′(g)g]

∂2ϕ(0, 0)

∂x2
2

= E2[(f ′(g)2 + f ′′(g)f(g))a22 − f(g)f ′(g)g − f(a1)f
′′(g)a22 + f(a1)f

′(g)g]

∂2ϕ(0, 0)

∂x1∂x2
= E2[(f ′(g)2 + f ′′(g)f(g))a1a2 − f(a1)f

′′(g)a1a2]

Evaluating the expectations we have:

∂

∂x1
ϕ(0, 0) = E2[f(g)f ′(g)a1 − f(a1)f

′(g)a1] = −2(1 + λη21)Ef ′(a1)Ef ′(g)
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Using that a1 ⊥ g, Ea1 = 0, and Gaussian integration by parts: Ef(a1)a1 = var(a1)Ef ′(a1) for a1 Gaussian

∂

∂x2
ϕ(0, 0) = E2[f(g)f ′(g)a2 − f(a1)f

′(g)a2] = −2λη1η2Ef ′(a1)Ef ′(g)

Using that Ef(a1)a2 = E[f(a1)Ea2|a1] = λη1η2

1+λη2
1
Ef(a1)a1. Which follows by another application of Gaussian integration

by parts and given the following decomposition of a2:

a2 =
λη1η2
1 + λη21

a1 +

√
1 + λη22 −

(λη1η2)2

1 + λη21
a⊥1

where a⊥1 ⊥ a1 and var(a⊥1 ) = 1.

∂2

∂x2
1

ϕ(0, 0) = E2[(f ′(g)2 + f ′′(g)f(g))a21 − f(g)f ′(g)g − f(a1)f
′′(g)a21 + f(a1)f

′(g)g] (8)

= 2[(1 + λη21)(Ef ′(g)2 + f ′′(g)f(g))− Egf(g)f ′(g)− Ef ′′(g)E(f(a1)(a21 − 1)] (9)

= 2[(1 + λη21)Egf(g)f ′(g)− Egf(g)f ′(g)− Ef ′′(g)E(f(a1)(a21 − 1)] (10)

= 2[λη21Egf(g)f ′(g)− Ef(g)(g2 − 1)E(f(a1)(a21 − 1)]

From (8) to (9) above, we used the fact that Ef ′(g)2 + f ′′(g)f(g) = Egf(g)f ′(g) which simply follows from Gaussian
integration by parts. From (9) to (10) we used the fact that Ef ′′(g) = Ef(g)(g2 − 1) which follows from two applications
of Gaussian integration by parts.

∂2

∂x2
2

ϕ(0, 0) = E2[(f ′(g)2 + f ′′(g)f(g))a22 − f(g)f ′(g)g − f(a1)f
′′(g)a22 + f(a1)f

′(g)g]

= 2[λη22Egf(g)f ′(g)− Ef ′′(g)Ef(a1)(a22 − 1)]

∂2

∂x1∂x2
ϕ(0, 0) = E2[(f ′(g)2 + f ′′(g)f(g))a1a2 − f(a1)f

′′(g)a1a2]

= 2λη1η2[Egf(g)f ′(g)− Ef ′′(g)Ef(a1)a21(1 + λη21)
−1]

Using that Ef(a1)a1a2 = λη1η2

1+λη2
1
Ef(a1)a21 by tower property and decomposition of a2. We use the above calculations to

compute the second order Taylor expansion of ϕ around (0, 0):

ϕ(x1, x2) = ϕ(0, 0) +
∂

∂x1
ϕ(0, 0)x1 +

∂

∂x2
ϕ(0, 0)x2

+
1

2
(
∂2

∂x2
1

ϕ(0, 0)x2
1 +

∂2

∂x2
2

ϕ(0, 0)x2
2 + 2

∂2

∂x1∂x2
ϕ(0, 0)x1x2) +R(x1, x2)

where R(x1, x2) = O(∥(x1, x2)∥32). Which allows us to compute the derivatives of ϕ(x1, x2) as follows:

∂ϕ(x1, x2)

∂x1
=

∂

∂x1
ϕ(0, 0) +

∂2

∂x2
1

ϕ(0, 0)x1 +
∂2

∂x1∂x2
ϕ(0, 0)x2 +O(∥(x1, x2)∥22)

= −2(1 + λη21)Ef ′(a1)Ef ′(g)

+ 2[λη21Egf(g)f ′(g)− Ef(g)(g2 − 1)E(f(a1)(a21 − 1)]x1

+ 2λη1η2[Egf(g)f ′(g)− Ef ′′(g)Ef(a1)a21(1 + λη21)
−1]x2 +O(∥(x1, x2)∥22)
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∂ϕ(x1, x2)

∂x2
=

∂

∂x2
ϕ(0, 0) +

∂2

∂x2
2

ϕ(0, 0)x2 +
∂2

∂x1∂x2
ϕ(0, 0)x1 +O(∥(x1, x2)∥22)

= −2λη1η2Ef ′(a1)Ef ′(g)

+ 2[λη22Egf(g)f ′(g)− Ef ′′(g)Ef(a1)(a22 − 1)]x2

+ 2λη1η2[Egf(g)f ′(g)− Ef ′′(g)Ef(a1)a21(1 + λη21)
−1]x1 +O(∥(x1, x2)∥22)

Using our assumptions on Ef ′′(g),Ef ′(g), we have the simplified system:

∂ϕ(x1, x2)

∂x1
= 2λη21Egf(g)f ′(g)x1 + 2λη1η2Egf(g)f ′(g)x2 +O(∥(x1, x2)∥22) (11)

∂ϕ(x1, x2)

∂x2
= 2λη22Egf(g)f ′(g)x2 + 2λη1η2Egf(g)f ′(g)x1 +O(∥(x1, x2)∥22) (12)

We recall that the spherical gradient correction term is higher order:

(
∂ϕ(x1, x2)

∂x1
x1 +

∂ϕ(x1, x2)

∂x2
x2)X

Analyzing the linearized system, given by (11) and (12), we see that the first order terms are orthogonal to the line
L = {tv⊥2 : t ∈ R} = {(x1, x2) : x2 = −η1

η2
x1}, where v⊥2 = (η2,−η1). On the line L, the first order terms are both 0,

and hence the magnitude of the first order effects tends to 0 as (x1, x2) tends to the line L. The magnitude of the first order
terms, exceeds the magnitude of all higher order terms when the distance of (x1, x1) to the line L, exceeds c∥(x1, x2)∥22 for
some constant c.

Before proceeding we define some notation. Let us introduce the four quadrants Q1 = {(x, y) : x > 0, y > 0}, Q2 =
{(x, y) : x < 0, y > 0}, Q3 = {(x, y) : x < 0, y < 0}, Q4 = {(x, y) : x > 0, y < 0}. We will consider the variable
X̂t = m⃗(Xt) = (m1(Xt),m2(Xt)) = (x1, x2)t.

We define two operators TL1 and TL2 as follows: TL1(X̂) = v⊥2 · PL where PL is the orthogonal projection operator
onto L. TL1 is defined such that for X̂ in Q4, TL1(X̂) > 0. We define TL2 = −TL1 so that TL2(X̂) > 0 for X̂ ∈ Q2.
We also define the ’left and right half-spaces’ with respect to L as follows: Hl = {(x1, x2) : x2 < −η1

η2
x1} and

Hr = {(x1, x2) : x2 > −η1

η2
x1}.

We now define two additional operators T⊥
r and T⊥

l as follows. Let v2 = (η1, η2) and then let T⊥
r (X̂) = v2 · (I − PL)(X̂).

T⊥
r measures the signed distance of X̂ to the line L, with T⊥

r (X̂) > 0 when X̂ ∈ Q1. Note that TL1, TL2, T
⊥
r , T⊥

l are all
linear operators.

With our notation above we now define the following set: C = {(x1, x2) : |T⊥
l (x1, x2)| < c∥(x1, x2)∥22}. For X̂ /∈ C, we

have that the first order terms in the gradient of the population loss, exceed the higher order terms.

Let L∗
1 be the line {(x1, x2) : x2 = −η1/2η2x1} if η1 > η2 or {(x1, x2) : x2 = −2η1/η2x1} if η1 < η2. In essence this

line is the line half way between L and whichever quadrant boundary is closer to L. We define it’s counter part L∗
2 as the

line with the reciprocal slope, i.e. the slope of L∗
2 is 1 over the slope of L∗

1. Without loss of generality we assume η1 < η2.
Similar to the ’left and right half-spaces’ with respect to L defined above, we can define the left and right half-spaces of L∗

1

and L∗
2, Hl1, Hr1, Hl2, Hr2. Then we consider the set Q∗ = (Hl2 ∩Hr1)∪ (Hr2 ∩Hl1). We now notice that if we consider

the set C intersect the γ-ball, that for sufficiently small γ, the intersection is a subset of Q∗. For a better understanding of the
definitions given above see Figure 2. We will make use of the set C in Lemma A.7 below.

We now state three lemmas which we will use to complete our proof of Theorem 3.4. We defer the proofs of these lemmas
until after the proof of Theorem 3.4. Lemma A.8 will tell us that when X̂t is in Q1 or Q3, it must leave, entering Q2 or Q4

before it’s norm grows by d−1/3. Lemma A.6 will tell us that X̂ cannot leave the γ-ball through Q2 or Q3 without first
exiting the quadrant, provided it arrived small enough. Lemma 3.4 provides a bound on how far X̂ can move away from the
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line L before entering the set C defined above. Together these lemmas allow us to control the magnitude of X̂t before it
enters the set C, and then show that once X̂t is in C it cannot escape the γ-ball before re-entering the 1/2d−1/6-ball.

Figure 2. A visual to help guide in understanding the definitions of L1, L2 and the set C. It is clear that regardless of η1, by decreasing the
vale of γ, we find that C intersect the γ-ball is a subset of Q∗

18
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Figure 3. A visual to help guide in the understanding of the proof of Theorem 3.4 and the use of the three lemmas. When initialized in Q3

in the d−1/6-ball, X̂ must leave Q3 before leaving the 3/2d−1/6-ball. Suppose it enters Q4, the red line provides a boundary X̂t cannot
cross before entering the set C (see Figure 2).

Lemma A.6. There exists some sequence Kd growing to infinity such that under the assumptions of Theorem 3.4 and
restricting to the set E1 = {supt≤N | δd

∑t
i=1 ∇TL1m⃗((H(Xi)))| < 1

2Kd/
√
d}, we have that if X̂t∗ ∈ Q4, and ∥X̂t∗∥2 ≤

d−1/10, then
∥X̂t∥2 < γ, ∀t ∈ [t∗,min(τQ−

4
, N)] (13)

where τQ−
4

is the stopping time for the next time X̂t leaves Q4. On that event, the same statement is true with Q2 in place of
Q4 as well. Further, the P(E1) = 1− o(1).
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This lemma says that under the set E1, for X̂t with norm less than d−1/10 and in Q4, X̂t must leave the quadrant Q4 before
it leaves the γ-ball. Similarly, for X̂ in Q2 with norm less than d−1/10, X̂ exits Q2 before it leaves the γ-ball.

Lemma A.7. Letting X̂⊥ = T⊥
l (X̂), under the assumptions of Theorem 3.4 under the event: E2 =

{supt≤N ∥ δ
d

∑t
i=1 ∇T⊥

l (m⃗(H(Xi)))∥2 < 1
2d

−1/3}, when X̂t∗ ∈ Hl, ∥X̂t∗∥2 ≤ 2d−1/6 we have that:

∥X̂⊥
t ∥2 ≤ ∥X̂⊥

t∗∥2 + d−1/3,∀t ∈ [t∗,min(τC , τ1/2d−1/6 , N)]

where τC is the next time X̂t enters the set C and τ1/2d−1/6 is the next time X̂t enters the 1/2d−1/6-ball. Further, the same
statement holds when replacing T⊥

l with T⊥
r and Hl with Hr.

This lemma says that if X̂t is in the 2d−1/6 ball, then it’s distance from the line L can only increase by up to d−1/3 before it
enters the set C or re-enters the 1/2d−1/6-ball.

Lemma A.8. Under the assumptions of Theorem 3.4 and on the sets E∗
j = {supt≤N | δd

∑t
i=1 ∇H(Xi) · ej | <

1
10d

−2/5}, j = 1, 2, when X̂t∗ ∈ Q3, we have that:

∥X̂t∥2 ≤ ∥X̂t∗∥2 + d−1/5,∀t ∈ [t∗, τQ−
3
]

Where τQ−
3

is the stopping time for the next time X̂t leaves the quadrant Q3. Further the above statement holds replacing
Q3 with Q1.

This lemma says that the maximum amount the norm of X̂t can increase while in Q3 before leaving is d−1/5.

Proof of Theorem 3.4. We intend to show that for any γ > 0, P(supt≤N ∥(m1(Xt),m2(Xt)))∥2 > γ) → 0 as d → ∞.

The proof of this result will make use of the three lemmas above to show that if X̂t is in the d−1/6-ball, it will re-
enter the d1/2−1/6 ball before it leaves the γ ball. To make use of the three lemmas above, we note that the sets
considered in these lemmas: E1, E2, E

∗
1 , E

∗
2 are all probability 1 − o(1) by Doob’s inequality and hence so is their

intersection E = E1 ∩ E2 ∩ E∗
1 ∩ E∗

2 . We now remind the reader that random initializations yield correlations on the
order of m1(X0),m2(X0) = O( 1√

d
) ≪ d−1/6. We now argue that under the set E for X̂t in the d−1/6 − ball, we have

deterministically that X̂t re-enters the 1/2d−1/6 ball or reaches t = N before it leaves the γ-ball, hence by the Markov
property, this will conclude the proof.

We will prove this in a case by case manner, firstly considering the case that X̂t is in the d−1/6-ball and in Q3.

By Lemma A.8, X̂t must leave Q3 before it can leave the 3/2d−1/6-ball. Hence for X̂t to leave the γ-ball, it must first exit
the quadrant. So suppose X̂t enters Q4 (the case where X̂t enters Q2 follows by a similar argument). Since it entered small
enough (by small enough we mean ∥X̂t∥2 ≤ d−1/10, allowing us to invoke lemma A.6), by Lemma A.6, it cannot leave the
γ-ball before exiting the quadrant. Additionally, by Lemma A.7, it’s distance from L cannot increase by more than d−1/3

before entering the set C. Now also notice that for X̂t to enter Q3 \ 2d−1/6-ball, it would require it’s distance from L to
increase by a quantity that is order d−1/6 ≫ d−1/3 which cannot happen before X̂t enters C. Thus X̂t cannot exit the γ-ball
through Q3 until entering C. X̂t may re-enter Q3 or even Q2, but any entry to Q4 or Q2 requires ∥X̂t∥2 ≤ d−1/10 and
hence by by lemma A.6, X̂t cannot exit the γ-ball through quadrants Q2 or Q4. Hence X̂t cannot exit the γ-ball through
any quadrant without re-entering the 1/2d−1/6-ball, timing out or first entering the set C. So suppose X̂t enters C in Q4. X̂t

still cannot leave the γ − ball until first leaving the quadrant. But now recall that C is contained in Q∗ and hence to leave the
quadrant without first re-entering the 1/2d−1/6-ball, requires X̂t to exit Q∗, and further move a distance on the order of
d−1/6 away from the line, which by lemma A.7 cannot happen. This completes the proof for the case where X̂t is in Q3.
Note that the case where X̂t is in Q1 follows by symmetric arguments. Now finally notice that the cases where X̂t is in
either Q2 or Q4 follow by the same arguments as above, noting that the Q1 and Q3 cases reduce to the Q2 and Q4 cases.

Proof of Lemma A.6. We will prove the case where X̂ ∈ Q4 using TL1 and simply note that the case of X̂ ∈ Q2 with TL2

follows by the same arguments.
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Note that for any η1 and any value γ > 0, ∃ϵγ such that for x ∈ Q4, ∥x∥2 > γ ⇒ TL1(x) > ϵγ . We will now show that the
event E1 contains the following event:

{TL1X̂t < ϵγ ,∀t ∈ [t∗,min(τQ−
4
, N)]}

Observe that for such t ∈ [t∗,min(τQ−
4
, N)]:

TL1(X̂t) ≤ TL1(X̂t−1 −
δ

d
m⃗(∇Φ(Xt−1))−

δ

d
m⃗(∇H(Xt−1)))

≤ TL1(X̂t∗)− TL1(
δ

d

t−1∑
i=t∗

m⃗(∇Φ(Xi)) +
δ

d

t−1∑
i=t∗

m⃗(∇H(Xi)))

Note that this follows from the fact that TL1X̂t > 0 for as long as X̂t ∈ Q4, and that the radius of Xt plus a gradient step, is
deterministically greater than one as it is a spherical gradient. Now given X̂t ∈ Q4 and recalling that the first order terms in
the gradient are orthogonal to the line L, we have that TL1(m⃗(∇Φ(Xt))) is at most second order in TL1(X̂t). Hence:

TL1(X̂t) ≤ TL1(X̂t∗) + c
δ

d

t−1∑
i=t∗

|TL1X̂i|2 − TL1(
δ

d

t−1∑
i=t∗

m⃗(∇H(Xi))))

For some constant c. Note that the event{supt≤N | δd
∑t

i=1 ∇TL1(m⃗(H(Xi)))| < 1
2Kd/

√
d} contains the event

{supj,t:1≤i≤t≤N | δd
∑t

i=j ∇TL1(m⃗(H(Xi)))| < Kd/
√
d}. Thus we have that:

TL1(X̂t) ≤ TL1(X̂t∗) + c
δ

d

t−1∑
i=t∗

|TL1X̂i|2 +Kd/
√
d,∀t ∈ [t∗,min(τQ−

4
, N)]

It follows from this inequality that TL1X̂t < ϵγ , ∀t ∈ [t∗,min(τQ−
4
, N)]. To see this, observe that by the discrete

Bihari-LaSalle inequality C that for some constant c1:

TL1(X̂t) ≤ 2
Kd√
d
(1− c1δKdd

−3/2t)−1

so long as TL1(X̂t∗) ≤ Kd√
d

(which is true so long as d−
1
10 ≤ Kd√

d
). For sufficiently large d, the right hand side above is

smaller than ϵγ for all t ≤ t̂ where:
t̂ = K−ϵ

d δ−1d3/2

for some ϵ > 0 sufficiently small, provided Kd is growing slower than d1/2−ζ for some ζ > 0.

Thus if we choose Kd to be diverging appropriately slowly, we have that t̂ > N (recalling that
√
α = o(

√
d) and√

α = O(δ−1)). We thus choose Kd such that TL1(X̂t∗) ≤ d−
1
10 ≤ Kd√

d
and Kd ≤ d1/2−ζ (for some ζ > 0), for example

Kd = d1/2−1/11, then Kd/
√
d = d−1/11 ≫ d−1/10 and further P(supt≤N | δd

∑t
i=1 ∇TL1m⃗((H(Xi)))| < 1

2Kd/
√
d) ≥

1−O(αδ2/K2
d) = 1− o(1).

Proof of Lemma A.7. We prove the result in the case that X̂t∗ ∈ Hl where X̂⊥
t∗ = T⊥

l (X̂t∗) noting that this implies
X̂t ∈ Hl ∀t ∈ [t∗,min(τC , τ1/2d−1/6 , N)]. The case where X̂t∗ ∈ Hr and replacing T⊥

l with T⊥
r , follows by an identical

argument. Observe that

X̂⊥
t ≤ X̂⊥

t−1 − T⊥
l (m⃗(

δ

d
∇Φ(Xt−1)))− T⊥

l (m⃗(
δ

d
∇H(Xt−1))) ≤ X̂⊥

t−2 − T⊥
l (m⃗(

δ

d
∇H(Xt−1) +

δ

d
∇H(Xt−2)))

Once again the first inequality comes from the fact that the spherical gradient is always greater than 1 and X̂⊥
t > 0 for X̂t in

Hl. The second inequality follows from two observations. The first observation is that removing the spherical projections
provides an upper bound given X̂⊥

t > 0 in the time interval considered here. The second observation is that removing
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the gradient of the population loss term, also provides an upper bound. This follows from our analysis of the population
dynamics (provided in the discussion before the proof), which told us that the first order terms in the population dynamics,
point orthogonally towards the line L. Hence when the first order terms exceed the higher order terms (i.e. when X̂t /∈ C),
the gradient of the population loss term, is negative under the operator T⊥

l when X̂ ∈ Hl.

Expanding the above we have:

∥X̂⊥
t ∥2 ≤ ∥X̂⊥

t∗∥2 + ∥T⊥
l (

δ

d

t∑
i=t∗

∇H(Xi))∥2 ≤ ∥X̂⊥
t∗∥2 + d−1/3

under E2.

Proof of Lemma A.8. We prove the case of Q1 and make note that the case of Q3 follows by a symmetric argument. We note
that in Q1 we have that m1(Xt), m2(Xt) > 0 and ∇Φ(Xt) · e1 > 0,∇Φ(Xt) · e2 > 0 (this follows from the discussion on
the population dynamics, given prior to the proof of 3.4). We now consider m1(Xt) = Xt · e1:

Xt · e1 ≤ Xt−1 · e1 −
δ

d
∇Φ(Xt−1) · e1 −

δ

d
∇H(Xt−1) · e1

≤ Xt∗ · e1 −
δ

d

t∑
i=t∗

∇Φ(Xi) · e1 −
δ

d

t∑
i=t∗

∇H(Xi) · e1

≤ Xt∗ · e1 −
δ

d

t∑
i=t∗

∇H(Xi) · e1

≤ Xt∗ · e1 +
1

5
d−2/5

The inequalities above follow by similar arguments to the previous two lemmas noting that the sign of Xt · e1 and the
gradients are always the same while in Q1. The bound on the martingale term follows under the set E∗

1 . A similar argument
follows for Xt · e2. We conclude the proof noting that:

∥X̂t∥2 ≤
√
(Xt∗ · e1 +

1

5
d−2/5)2 + (Xt∗ · e2 +

1

5
d−2/5)2

≤
√
(Xt∗ · e1)2 + (Xt∗ · e2)2 + d−2/5

≤
√
∥X̂t∗∥22 + d−2/5 + 2d−1/5∥X̂t∗∥2

=

√
(∥X̂t∗∥2 + d−1/5)2

= ∥X̂t∗∥2 + d−1/5

A.3. Proof of Theorem 3.5

Theorem 3.5. Suppose that f satisfies the following:

Ef ′′(g) = Ef ′(g) = 0, E
∂2

∂g2
f(g)2 > 0

for g ∼ N (0, 1). When η1 = 1, for spherical SGD with N = αd steps where α = ω(1), αδ2 ≪ d1/3 , we have that there

exists some r > 0 such that for all sequences of initializations X(d)
0 :

∣∣∣m1(X
(d)
0 )

∣∣∣ < r ∀ d, then we have that:

|m1(XN )| → 0
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in probability as d → ∞. Further we have that for all ϵ > 0:

P(sup
t≤N

|m1(Xt)| > r + ϵ) → 0

in probability as d → ∞.

Proof. From the Taylor expansion used in the proof of Theorem 3.4, specifically equations (11) and (12), we see that
for η1 = 1 ⇒ η2 = 0, the first order term in the population dynamics sends x1 to 0. This is to say that ∃r > 0 :
∀X s.t. m1(X) ∈ B(0, 2r) (the 1-dimensional open ball of radius 2r) we have that ∇Φ(X) · v0sgn(X · v0) > 0. This
tells us that the population gradient step sends x1 towards 0, for all x1 in the specified ball. We note that the value of r is
independent of the dimension.

We now start by restricting to the set E = {supt≤N | δd
∑t

i=1 ∇H(Xi) · v0| < d−1/3} . We note that by Doob’s inequality
we have that:

P(sup
t≤N

| δ
d

t∑
i=1

∇H(Xi) · v0| > d−1/3) ≤ C
αδ2

d1/3
= o(1)

(recalling the assumption that αδ2 ≪ d1/3. Then note that the set E implies the set {sup0≤j≤t≤N | δd
∑t

i=j ∇H(Xi) · v0| <
2d−1/3}.

We now claim that under the set E, we have that deterministically m1(XN ) → 0 as d → ∞. Consider the sequence of
stopping times, (τk)k≥1, corresponding to where m1(Xt) crosses zero, i.e., let τk = inf{t > τk−1 : sgn(m1(Xt)) ̸=
sgn(m1(Xt−1))} and τ0 = 0. Note the maximum single step that m1(Xt) can take is bounded and tending to 0 in the
dimension (recall the stepsize is δ

d and the gradient of the loss is bounded, as seen in Lemma A.1 and the proof of Theorem
3.3 . Thus we have that m1(Xτk) → 0 as d → ∞ whenever τk < N . This is because the distance of m1(Xτk) to 0 is
bounded by the maximum single step.

We will proceed by breaking up the interval [0, N ] into the union of ∪k≥0[τk,min(τk+1, N + 1)). We separately consider
the first interval [0,min(τ1, N + 1)) and each other interval [τk,min(τk+1, N + 1)), k ≥ 0, starting with the latter.

Fix k > 0 and suppose that t ∈ [τk,min(τk + 1, N + 1)). Suppose, without loss of generality, that m1(Xτk) ≥ 0. Now for
t ∈ [τk,min(τk+1, N + 1)), this process remains positive and we have that:

m1(Xt+1) = Xt+1 · v0

=

(
Xt − δ

d (∇Φ(Xt) +∇H(Xt))
)
· v0

∥Xt − δ
d (∇Φ(Xt) +∇H(Xt)) ∥2

≤
(
Xt −

δ

d
(∇Φ(Xt) +∇H(Xt))

)
· v0

≤ (Xτk − δ

d

t∑
i=τk

(∇Φ(Xi) +∇H(Xi))) · v0

≤ (Xτk − δ

d

t∑
i=τk

∇Φ(Xi)) · v0 + 2d−1/3

≤ m1(Xτk) + 2d−1/3

≤ 4d−1/3

The first inequality follows from the fact that the spherical gradient step always results in a point with norm greater than or
equal to 1. The second inequality follows from the fact that removing the spherical projections for each m1(Xt) provides an
upper bound as the process is positive over the time interval considered. The third inequality simply applies the restricting
set E. The fourth inequality comes from the fact that the ∇Φ(Xt)) · v0 > 0 whenever 0 < m1(Xt) < 2r. The final
inequality comes from the maximum one step change of m1(Xt) (which is O( δd ) ≪ d−1/3) which provides an upper bound
on m1(Xτk) for k > 0.
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Now to see that m1(Xt) < 2r, ∀t ∈ [τk,min(τk+1, N +1)), we suppose for the sake of a contradiction, that m1(Xt) > 2r
for some time t∗ ∈ [τk,min(τk+1, N + 1)) and further t∗ is the first time m1(Xt) exceeds 2r. Repeating the inequalities
above (noting that m1(Xt) < 2r, ∀t ∈ [τk, t

∗)) we have that

m1(Xt∗) ≤ 4d−1/3 ≤ 2r

a contradiction. We thus have that for any interval [τk,min(τk+1, N+1)), the value of m1(Xt) is upper bounded by 4d−1/3.
Note that we only showed this for the case m1(Xτk) > 0, but the case m1(Xτk) < 0 follows by a similar argument.

The first statement of the proof, i.e. that m1(XN ) → 0 in probability as d → ∞ would then follow so long as τ1 < N + 1.
Which is to say that if the process m1(Xt) crosses 0 at least once, it will remain within d−1/3 of 0 and hence be there
at time N , proving the first statement of the Theorem. The second statement of the proof would also follow so long as
supt≤min(τ1,N+1) |m1(Xt)| < r + ϵ for any fixed ϵ > 0, deterministically under the restricted set E, which has probability
1− o(1).

We now proceed to finish the proof by considering the time interval [0,min(τ1, N + 1)). We once again assume without
loss of generality that m1(X0) > 0, i.e. that the process is positive over the time interval considered. Then we again have
for t in this interval:

m1(Xt+1) = Xt+1 · v0

=

(
Xt − δ

d (∇Φ(Xt) +∇H(Xt))
)
· v0∥∥(Xt − δ

d (∇Φ(Xt) +∇H(Xt))
)
· v0

∥∥
2

≤
(
Xt −

δ

d
(∇Φ(Xt) +∇H(Xt))

)
· v0

≤ (X0 −
δ

d

t∑
i=0

∇Φ(Xi)) · v0 +
δ

d

t∑
i=0

∇H(Xi) · v0

≤ (X0 −
δ

d

t∑
i=0

∇Φ(Xi)) · v0 + 2d−1/3

Once again, so long as m1(Xt) ≤ 2r, we have that ∇Φ(Xi)) · v0 > 0. By the same contradiction based argument as before,
we can show that m1(Xt) ≤ 2r for all t ∈ [0,min(τ1, N + 1)) (recalling that m1(X0) < r). Hence we have the bound:

m1(Xt+1) ≤ r + 2d−1/3

Which completes the proof of the second statement of the Theorem, i.e. that for all ϵ > 0:

P(sup
t≤N

|m1(Xt)| > r + ϵ) → 0

in probability as d → ∞. We now complete the proof of the first statement of the theorem by showing that m1(XN ) → 0 in
probability as d → ∞ in the case that τ1 > N . Suppose for the sake of contradiction that there exists some c > 0 such that:

lim sup
d→∞

P( inf
t≤N

|m1(Xt)| > c) > 0 (14)

Before proceeding, consider the converse of this assumption which is that for every c > 0:

lim sup
d→∞

P( inf
t≤N

|m1(Xt)| > c) = 0

⇒ P( inf
t≤N

|m1(Xt)| ≤ c) = 1− o(1)

Then fixing any c > 0 and restricting to the 1 − o(1) probability set {inft≤N |m1(Xt)| ≤ c} ∩ E, let τc = inf{t :
|m1(Xt)| ≤ c}. Assume without loss of generality that m1(Xt) > 0, t ∈ [0, τc]. Once again repeating the same sequence
of inequalities used previously and the same contradiction argument that allows us to invoke those inequalities, we have that:

m1(XN ) ≤ m1(Xτc) + 2d−1/3 ≤ c+ 2d−1/3 ≤ 2c
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Which is to say that for any c > 0, m1(XN ) ≤ 2c with probability 1− o(1), which would complete the proof. Hence, we
return to the assumption given by (14). Now recall that we have already shown that restricting to E ∩{τ1 < N +1} we have
m1(Xt) ≤ 4d−1/3 deterministically, we thus restrict to the set E ∩{τ1 > N}. Now we may assume that 0 ≤ m1(Xt) ≤ 2r
for all t ∈ [0, N). The lower bound follows under {τ1 < N + 1}, the upper bound m1(Xt) < 2r holds generally with
probability 1− o(1) due to the second statement of the theorem with ϵ = r, which has already been proven at this point.
Now by the previous analysis of the population loss via Taylor expansion, we have that there exists some constant c1 such
that ∇Φ(Xt) · v0 ≥ c1m1(Xt) for all t ∈ [0, N) and further on the subsequence dk, k ≥ 1 such that:

lim
dk→∞

P( inf
t≤N

|m1(Xt)| > c) > 0

if we restrict to the positive probability set that {inft≤N |m1(Xt)| > c} again assuming without loss of generality
m1(Xt) > 0 ∀ t ∈ [0, N ], we have Φ(Xt) · v0 ≥ c1c for all t ∈ [0, N). We then see:

m1(Xt) ≤ (X0 −
δ

d

t∑
i=0

∇Φ(Xi)) · v0 + 2d
−1/3
k

≤ (X0 −
δ

d

N∑
i=0

c1c) · v0 + 2d
−1/3
k

≤ m1(X0)− cc1αδ + 2d
−1/3
k

Which is diverging to −∞ as dk → ∞. This is a contradiction as this places a negative upper bound on m1(Xt) which is
strictly positive on the positive probability set considered. This completes the proof.

A.4. Proof of Lemma A.10 and Theorem 4.2

Lemma A.10. For all Hermite Polynomials with degree 3 or greater, hk(x), k ≥ 3:

Eh′′
k(g) = Eh′

k(g) = 0, E
∂2

∂g2
f(g)2 > 0

for g ∼ N (0, 1)

Proof. For all Hermite polynomials with degree 1 or greater, Ehk = 0. Further it is well known the Hermite polynomials
satisfy the following:

h(k)
n (x) =

n!

(n− k)!
hn−k(x)

⇒Eh(k)
n (g) =

k!

(n− k)!
Ehn−k(g) = 0,∀k < n

This gives us that Eh′′
k(g) = Eh′

k(g) = 0. Now consider E ∂2

∂g2 f(g)
2 = Eh′

k(g)
2 + Eh′′

k(g)hk(g). Now we have that:

Eh′′
k(g)hk(g) = k(k − 1)Ehk(g)hk−1(g) = 0

by orthogonality. This completes the claim.

Proof of Theorem 4.2. The proof of this theorem follows from (Ben Arous et al., 2021). Specifically in section 2.1 of their
paper they show that the single-index model covered here meets the assumptions required for there main results which apply
more generally. Then noting that by replacing a random uniform initialization of order d−1/2 with a fixed initialization of
order d−ζ , all their arguments for Theorem 1.3 of their paper still hold, with the new sample complexity provided above
(depending on ζ). In the case of ζ = 0, the result simply follows by applying Theorem 3.2 of their paper, noting the
arguments used to prove this theorem apply just as well when considering a sequence of initializations which itself is not
constant but is bounded above and below by constants.
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B. PCA in High Dimensions
We consider applying PCA in high dimensions in Theorem 3.3. There are a number of well known results about applying
PCA in the high dimensional limit including the BBP transition(Baik et al., 2005). We informally state a few of these results
here for completeness, however, we refer the reader to Bandeira et al. (2020) for more details.

Consider a d-dimensional isotropic Gaussian vector Z ∼ N(0, Id). Letting X ∈ Rd×n denote the data matrix (n rows
of observations of Z). If we let both n and d grow to infinity, keeping their ratio fixed d/n = γ, the distribution of the
eigenvalues of the matrix 1

nX
TX (the sample covariance) will in the limit, follow the Marcenko-Pastur distribution given

by:

dFγ(x) =
1

2πγx

√
(γ+ − x)(x− γ−)(γx)1[γ−, γ+](x)dx

with γ+ = (1 + γ)2 and γ− = (1− γ)2. Thus in high dimensions, we can expect to observe top eigenvalues of 1
nX

TX up
to size (1 + d

n )
2, even when there is no covariance structure on X at all. In order to detect the spike we require λ ≥

√
d/n.

The limiting squared correlation between the top eigenvector of the sample covariance matrix and the true spike can be
shown to be |v · v̂|2 = 1−γ/λ2

1+γ/λ2 when λ ≥
√
d/n and 0 otherwise.

C. Discrete Bihari-LaSalle Inequality
The discrete Bihari-LaSalle Inequality claims that for a sequence mt satisfying the following for some k ≥ 2, a, b > 0:

mt ≤ a+

t−1∑
i=0

bmk−1
i

then we have that mt ≥ a

(1−bak−2t)
1

k−2

For a proof see Appendix C of (Ben Arous et al., 2021).

D. Effect of η on Learning
To investigate the impact of the strength in correlation between the spike and parameter vectors, η1, we run the following
experiment. We fix a function f which we again take as the third Hermite polynomial, and we vary the value of η1 and
perform training with PCA initialization (and all other settings the same as described in section 5.2. We observe as expected
that for large enough values of η1 SGD with PCA initialization is able to recover the unknown parameter vector and there is
a point at which η1 becomes too small and SGD is unable to recover even with PCA initialization. See the figure below.
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Figure 4. The figure above displays the correlation values of M1(Xt) over the course of training via SGD with PCA initializations.
As expected we see that there is some threshold for η1, below which the spike vector provides insufficient information about the final
parameter vector at initialization for SGD to realize the true parameter vector on a reasonable time scale.
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