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NO POSE, NO PROBLEM: SURPRISINGLY SIMPLE 3D
GAUSSIAN SPLATS FROM SPARSE UNPOSED IMAGES
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Figure 1: NoPoSplat. Given sparse unposed images, our method reconstructs 3D Gaussians of
different views in a canonical space using a feed-forward network. The resulting 3D Gaussians can
be utilized for accurate relative camera pose estimation and high-quality novel view synthesis. The
input images for illustration are extracted from a Sora-generated video.

ABSTRACT

We introduce NoPoSplat, a feed-forward model capable of reconstructing 3D scenes pa-
rameterized by 3D Gaussians from unposed sparse multi-view images. Our model, trained
exclusively with photometric loss, achieves real-time 3D Gaussian reconstruction during
inference. To eliminate the need for accurate pose input during reconstruction, we anchor
one input view’s local camera coordinates as the canonical space and train the network
to predict Gaussian primitives for all views within this space. This approach obviates the
need to transform Gaussian primitives from local coordinates into a global coordinate sys-
tem, thus avoiding errors associated with per-frame Gaussians and pose estimation. To
resolve scale ambiguity, we design and compare various intrinsic embedding methods,
ultimately opting to convert camera intrinsics into a token embedding and concatenate it
with image tokens as input to the model, enabling accurate scene scale prediction. We uti-
lize the reconstructed 3D Gaussians for novel view synthesis and pose estimation tasks and
propose a two-stage coarse-to-fine pipeline for accurate pose estimation. Experimental re-
sults demonstrate that our pose-free approach can achieve superior novel view synthesis
quality compared to pose-required methods, particularly in scenarios with limited input
image overlap. For pose estimation, our method, trained without ground truth depth or
explicit matching loss, significantly outperforms the state-of-the-art methods with sub-
stantial improvements. This work makes significant advances in pose-free generalizable
3D reconstruction and demonstrates its applicability to real-world scenarios. The source
code and trained models will be made available to the public.

1 INTRODUCTION

We address the problem of reconstructing a 3D scene parameterized by 3D Gaussians from unposed
sparse-view images (as few as two) using a feed-forward network. While current SOTA generaliz-
able 3D reconstruction methods (Charatan et al., 2024; Chen et al., 2024), which aim to predict 3D
radiance fields using feed-forward networks, can achieve photorealistic results without per-scene
optimization, they require accurate camera poses of input views as input to the network. These
poses are typically obtained from dense videos using structure-from-motion (SfM) methods, such
as COLMAP (Schonberger & Frahm, 2016). This requirement is impractical for real-world applica-
tions, as these methods necessitate poses from dense videos even if only two frames are used for 3D
reconstruction. Furthermore, relying on off-the-shelf pose estimation methods increases inference
time and can fail in textureless areas or images without sufficient overlap.

1
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Figure 2: Comparison with pose-required sparse-view 3D Gaussian splatting pipeline. Previ-
ous methods first generate Gaussians in each local camera coordinate system and then transform
them into a world coordinate system using camera poses. In contrast, NoPoSplat directly outputs
3D Gaussians of all views in a canonical space, facilitating a more coherent fusion of multi-view
geometric content (see Sec. 3.3 for details). Furthermore, our backbone does not incorporate geom-
etry priors that rely on substantial image overlap (such as epipolar geometry in pixelSplat (Charatan
et al., 2024) or cost volume in MVSplat (Chen et al., 2024)). Consequently, NoPoSplat demonstrates
better geometric detail preservation when the overlap between input views is limited.

Recent methods (Chen & Lee, 2023; Smith et al., 2023; Hong et al., 2024a) aim to address this
challenge by integrating pose estimation and 3D scene reconstruction into a single pipeline. How-
ever, the quality of novel view renderings from these methods lags behind SOTA approaches that
rely on known camera poses (Chen et al., 2024). The performance gap stems from their sequential
process of alternating between pose estimation and scene reconstruction. Errors in pose estimation
degrade the reconstruction, which in turn leads to further inaccuracies in pose estimation, creating
a compounding effect. In this work, we demonstrate that reconstructing the scene entirely without
relying on camera poses is feasible, thereby eliminating the need for pose estimation. We achieve
this by directly predicting scene Gaussians in a canonical space, inspired by the success of the recent
3D point cloud reconstruction methods (Wang et al., 2024b; Leroy et al., 2024). However, unlike
DUSt3R, we show that the generalizable reconstruction network can be trained with photometric
loss only without ground truth depth information and thus can leverage more widely available video
data (Zhou et al., 2018; Liu et al., 2021; Ling et al., 2024).

Specifically, as shown in Fig. 2 (b), we anchor the local camera coordinate of the first view as the
canonical space and predict the Gaussian primitives (Kerbl et al., 2023) for all input views within
this space. Consequently, the output Gaussians will be aligned to this canonical space. This contrasts
with previous methods (Charatan et al., 2024; Chen et al., 2024), as illustrated in Fig. 2 (a), where
Gaussian primitives are first predicted in each local coordinate system and then transformed to the
world coordinate using the camera pose and fused together. Compared to the transform-then-fuse
pipeline, we require the network to learn the fusion of different views directly within the canonical
space, thereby eliminating misalignments introduced by explicit transformations (see Fig. 5).

Although the proposed pose-free pipeline is simple and promising, we observe significant scale
misalignment in the rendered novel views compared to the ground truth (see Fig. 8), i.e., the scene
scale ambiguity issue. Upon analyzing the image projection process, we find that the camera’s focal
length is critical to resolving this scale ambiguity. This is because the model reconstructs the scene
solely based on the image appearance, which is influenced by the focal length. Without incorporating
it, the model struggles to recover the scene at the correct scale. To address this issue, we design and
compare three different methods for embedding camera intrinsics and find that simply converting
the intrinsic parameters into a feature token and concatenating it with the input image tokens enables
the network to predict the scene of a more reasonable scale, yielding the best performance.

Once the 3D Gaussians are reconstructed in the canonical space, we leverage it for both novel view
synthesis (NVS) and pose estimation. For pose estimation, we introduce a two-stage pipeline: first,
we obtain an initial pose estimate by applying the PnP algorithm (Hartley & Zisserman, 2003) to the
Gaussian centers. This rough estimate is then refined by rendering the scene at the estimated pose
and optimizing the alignment with the input view using photometric loss.

Extensive experimental results demonstrate that our method performs impressively in both NVS and
pose estimation tasks. For NVS, we show for the first time that, when trained on the same dataset un-
der the same settings, a pose-free method can outperform pose-dependent methods, especially when
the overlap between the two input images is small. In terms of pose estimation, our method signif-
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icantly outperforms prior SOTA across multiple benchmarks. Additionally, NoPoSplat generalizes
well to out-of-distribution data. Since our method does not require camera poses for input images,
it can be applied to user-provided images to reconstruct the underlying 3D scene and render novel
views. To illustrate this, we apply our model to sparse image pairs captured with mobile phones, as
well as to sparse frames extracted from videos generated by Sora (OpenAI, 2024).

The main contributions of this work are:

• We propose NoPoSplat, a feed-forward network that reconstructs 3D scenes parameterized by
3D Gaussians from unposed sparse-view inputs, and demonstrate that it can be trained using
photometric loss alone.

• We investigate the scale ambiguity issue of the reconstructed Gaussians, and solve this problem
by introducing a camera intrinsic token embedding.

• We design a two-stage pipeline that estimates accurate relative camera poses using the recon-
structed Gaussian field.

2 RELATED WORK

Generalizable 3D Reconstruction and View Synthesis. NeRF (Mildenhall et al., 2020) and 3D
Gaussian Splatting (3DGS) (Kerbl et al., 2023) have significantly advanced 3D reconstruction and
novel view synthesis. However, these methods typically require dense posed images (e.g., hundreds)
as input and minutes to hours of per-scene optimization, even with improved techniques (Chen et al.,
2022; Fridovich-Keil et al., 2023; Müller et al., 2022). This limits their practical applications. To ad-
dress these limitations, recent approaches focus on generalizable 3D reconstruction and novel view
synthesis from sparse inputs (Yu et al., 2021; Wang et al., 2021a; Xu et al., 2024b; Johari et al., 2022;
Charatan et al., 2024; Chen et al., 2024). They typically incorporate task-specific backbones that
leverage geometric information to enhance scene reconstruction. For instance, MVSNeRF (Chen
et al., 2021) and MuRF (Xu et al., 2024b) build cost volumes to aggregate multi-view information,
while pixelSplat (Charatan et al., 2024) employs epipolar geometry for improved depth estimation.
However, these geometric operations often require camera pose input and sufficient camera pose
overlap among input views. In contrast, our network is based solely on a vision transformer (Doso-
vitskiy et al., 2021) without any geometric priors, making it pose-free and more effective in handling
scenes with large camera baselines. Some recent approachs (Xu et al., 2024c; Tang et al., 2024;
Zhang et al., 2025) also employ a simple backbone, but still require the camera pose as input.

Pose-Free 3D Scene Reconstruction. Classical NeRF or 3DGS-based methods require accurate
camera poses of input images, typically obtained through Structure from Motion (SfM) methods
like COLMAP (Schonberger & Frahm, 2016), which complicates the overall process. Recent per-
scene optimization works (Wang et al., 2021b; Lin et al., 2021; Chng et al., 2022; Truong et al.,
2023) jointly optimize camera poses and neural scene representations, but they still require rough
pose initialization or are limited to small motions. Others (Bian et al., 2023; Fu et al., 2024) adopt
incremental approaches from (Zhu et al., 2022; 2024; Matsuki et al., 2024), but they only allow
image/video sequences as input. Moreover, for generalizable sparse-view methods, requiring cam-
era poses during inference presents significant challenges, as these poses are often unavailable in
real-world applications during testing. Although sparse-view pose estimation methods (Wang et al.,
2024b; Zhang et al., 2022; Lin et al., 2023; Zhang et al., 2024; Jiang et al., 2024a) can be used,
they are prone to failure in textureless regions or when images lack sufficient overlap. Addition-
ally, the initial pose estimation stage introduces noise into the reconstruction process. Some recent
generalizable pose-free novel view synthesis methods (Chen & Lee, 2023; Smith et al., 2023; Hong
et al., 2024a; Xu et al., 2024a) attempt to address this but typically break the task into two stages:
first estimate camera poses, then construct the scene representation. This two-stage process still lags
behind pose-required methods because the initial pose estimation introduces noise, degrading recon-
struction quality. Some methods (Sajjadi et al., 2022; Nagoor Kani et al., 2024) transform images
into latent representations. However, these methods exhibit poor performance and cannot be used
for pose estimation, limiting their applications. LEAP (Jiang et al., 2024b) and PF-LRM (Wang
et al., 2024a) share a similar approach of lifting multi-view unposed images to a NeRF representa-
tion. However, their low volumetric rendering efficiency and resolution constraints hinder training
effectiveness and limit scalability for complex scene-level reconstruction. In contrast, our method
completely eliminates camera poses by directly predicting 3D Gaussians in a canonical space, avoid-
ing potential noise in pose estimation and achieving better scene reconstruction.
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Figure 3: Overview of NoPoSplat. We directly predict Gaussians in a canonical space from a
feed-forward network to represent the underlying 3D scene from the unposed sparse images. For
simplicity, we use a two-view setup as an example, and the RGB shortcut is omitted from the figure.

One concurrent work, Splatt3R (Smart et al., 2024)1, also predicts Gaussians in a global coordinate
system but relies on the frozen MASt3R (Leroy et al., 2024) model for Gaussian centers. This is
unsuitable for novel view synthesis, as MASt3R struggles to merge scene content from different
views smoothly. Moreover, in contrast to us, Splatt3R requires ground truth depth during training,
so it cannot utilize large-scale video data without depths or ground truth metric camera poses. An-
other concurrent work, ReconX (Liu et al., 2024), also reconstructs 3D Gaussians from unposed
images. However, its approach relies on per-scene optimization and multi-stage inference, making
it significantly less efficient compared to our feedforward pipeline.

3 METHOD

3.1 PROBLEM FORMULATION

Our method takes as input sparse unposed multi-view images and corresponding camera intrinsic
parameters {Iv,kv}Vv=1, where V is the number of input views, and learn a feed-forward network
fθ with learnable parameters θ. The network maps the input unposed images to 3D Gaussians in a
canonical 3D space, representing the underlying scene geometry and appearance. Formally, we aim
to learn the following mapping:

fθ : {(Iv,kv)}Vv=1 7→
{
∪
(
µv

j , α
v
j , r

v
j , s

v
j , c

v
j

)}v=1,...,V

j=1,...,H×W
, (1)

where the right side represents the Gaussian parameters (Kerbl et al., 2023). Specifically, we have
the center position µ ∈ R3 , opacity α ∈ R, rotation factor in quaternion r ∈ R4, scale s ∈ R3,
and spherical harmonics (SH) c ∈ Rk with k degrees of freedom. Note that, in line with common
practice in pose-free scene reconstruction methods (Hong et al., 2024a; Fu et al., 2024; Smith et al.,
2023; Chen & Lee, 2023), we assume having camera intrinsic parameters k as input, as they are
generally available from modern devices (Arnold et al., 2022).

By training on large-scale datasets, our method can generalize to novel scenes without any opti-
mization. The resulting 3D Gaussians in the canonical space directly enable two tasks: a) novel
view synthesis given the target camera transformation relative to the first input view, and b) relative
pose estimation among different input views. Next, we will introduce our overall pipeline.

3.2 PIPELINE

Our method, illustrated in Fig. 3, comprises three main components: an encoder, a decoder, and
Gaussian parameter prediction heads. Both encoder and decoder utilize pure Vision Transformer
(ViT) structures, without injecting any geometric priors (e.g. epipolar constraints employed in pix-
elSplat (Charatan et al., 2024), or cost volumes in MVSplat (Chen et al., 2024)). Interestingly, we
demonstrate in Sec. 4 that such a simple ViT network shows competitive or superior performance
over those dedicated backbones incorporating these geometric priors, especially in scenarios with
limited content overlap between input views. This advantage stems from the fact that such geometric
priors typically necessitate substantial overlap between input cameras to be effective.

ViT Encoder and Decoder. The RGB images are patchified and flattened into sequences of image
tokens, and then concatenated with an intrinsic token (details in Sec. 3.4). The concatenated tokens

1Arxiv submitted on August 25, 2024

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

from each view are then fed into a ViT (Dosovitskiy et al., 2021) encoder separately. The encoder
shares the same weights for different views. Next, the output features from the encoder are fed into a
ViT decoder module, where features from each view interact with those from all other views through
cross-attention layers in each attention block, facilitating multi-view information integration.

Gaussian Parameter Prediction Heads. To predict the Gaussian parameters, we employ two pre-
diction heads based on the DPT architecture (Ranftl et al., 2021). The first head focuses on predict-
ing the Gaussian center positions and utilizes features extracted exclusively from the transformer
decoder. The second head predicts the remaining Gaussian parameters and, in addition to the ViT
decoder features, also takes the RGB image as input. Such RGB image shortcut ensures the direct
flow of texture information, which is crucial for capturing fine texture details in 3D reconstruction.
This approach compensates for the high-level features output by the ViT decoder, downsampled by
a factor of 16, which are predominantly semantic and lack detailed structural information. With
these prediction heads in place, we now analyze how our method differs from previous approaches
in terms of the output Gaussian space and the advantages this brings.

3.3 ANALYSIS OF THE OUTPUT GAUSSIAN SPACE

While our method shares a similar spirit with previous works (Charatan et al., 2024; Zheng et al.,
2024; Szymanowicz et al., 2024) in predicting pixelwise Gaussians for input images, we differ in the
output Gaussian space. In this section, we first discuss the local-to-global Gaussian space in prior
methods and its inherent limitations, and introduce our canonical Gaussian space.

Baseline: Local-to-Global Gaussian Space. Previous methods first predict the corresponding
depth of each pixel, then lift the predicted Gaussian parameters to a Gaussian primitive in the lo-
cal coordinate system of each individual frame using the predicted depth and the camera intrinsics.
These local Gaussians are then transformed into a world coordinate system using the given camera
poses [Rv | tv] for each input view. Finally, all transformed Gaussians are fused to represent the
underlying scene.

However, this strategy has two main issues: a) Transforming Gaussians from local to world coordi-
nates requires accurate camera poses, which are difficult to obtain in real-world scenarios with sparse
input views. b) The transform-then-fuse method struggles to combine 3D Gaussians from different
views into a cohesive global representation, especially when the overlap among input views is small,
or when generalizing to out-of-distribution data (as shown in Fig. 5 and Fig. 6).

Proposed: Canonical Gaussian Space. In contrast, we directly output Gaussians of different views
in a canonical coordinate system. Specifically, we anchor the first input view as the global reference
coordinate system. Therefore, the camera pose for the first input view is [U | 0], where U is the
unit/identity matrix for rotation, and 0 is the zero translation vector. The network outputs Gaussians
under this canonical space for all input views. Formally, for each input view, we predict the set{
µv→1

j , rv→1
j , cv→1

j , αj , sj
}

, where the superscript v → 1 denotes that the Gaussian parameters
corresponding to pixel pj in view v, are under the local camera coordinate system of view 1.

Predicting directly under the canonical space offers several benefits. First, the network learns to fuse
different views directly within the canonical space, eliminating the need for camera poses. Second,
bypassing the transform-then-fuse step results in a cohesive global representation, which further
unlocks the application of pose estimation for input unposed views.

3.4 CAMERA INTRINSICS EMBEDDING

As discussed in Eq. 1, our network inputs also include the camera intrinsics k of each input view.
This is required to resolve the inherent scale misalignment and provide essential geometric infor-
mation that improves 3D reconstruction quality (cf . “No Intrinsics” in Fig. 8 and Tab. 5). Although
intrinsic embedding has been employed in previous NeRF-based methods, both pose-free (Wang
et al., 2024a) and pose-required (Hong et al., 2024b), its necessity for generalizable pose-free Gaus-
sian Splatting prediction and optimal embedding approaches remain unexplored. Therefore, we
introduce three different encoding strategies for injecting camera intrinsics into our model.

Global Intrinsic Embedding - Addition. A straightforward strategy is to feed camera intrinsics
k = [fx, fy, cx, cy] into a linear layer to obtain a global feature. This feature is broadcast and added
to the RGB image features after the patch embedding layer of the ViT.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Global Intrinsic Embedding - Concat. After obtaining the global feature, we instead treat it as an
additional intrinsic token, and concatenate it with all image tokens.

Dense Intrinsic Embedding. For each pixel pj in the input view, we can obtain the camera ray di-
rection as K−1pj , where K is the matrix form of k. These per-pixel camera rays are then converted
using spherical harmonics to higher-dimension features and concatenated with the RGB image as
the network input. Note that the pixel-wise embedding can be viewed as a simplification of the
widely-used Plücker ray embedding (Xu et al., 2023; Tang et al., 2024), as it does not require cam-
era extrinsic information.

By default, we adopt the “global intrinsic embedding - concat” option since it is not only an elegant
way to inject camera intrinsic into the network, but also yields the best performance. (see Tab. 5).

3.5 TRAINING AND INFERENCE

Training. The predicted 3D Gaussians are rendered at novel viewpoints using their corresponding
ground-truth camera poses. Our network is end-to-end trained using ground truth target RGB im-
ages as supervision. Following Chen et al. (2024), we also use a linear combination of MSE and
LPIPS (Zhang et al., 2018) loss with weights of 1 and 0.05, respectively.

Relative Pose Estimation. As mentioned in Sec. 3.3, since our 3D Gaussians are in the canonical
space, they can be directly used for relative pose estimation. To facilitate efficient pose estimation,
we propose a two-step approach. First, we estimate the initial related camera pose of the input two
views using the PnP algorithm (Hartley & Zisserman, 2003) with RANSAC (Fischler & Bolles,
1981), given the Gaussian centers of the output Gaussians in world coordinates. This step is highly
efficient and done in milliseconds. Next, while keeping Gaussian parameters frozen, we refine the
initial pose from the first step by optimizing the same photometric losses used for model training,
along with the structural part of the SSIM loss (Wang et al., 2004). During the optimization, we
calculate the camera Jacobian to reduce the computational overhead associated with automatic dif-
ferentiation and decrease optimization time as in Matsuki et al. (2024).

Evaluation-Time Pose Alignment. Given unposed image pairs, our method learns to reconstruct a
plausible 3D scene that aligns with the given inputs. However, 3D scene reconstruction with just two
input views is inherently ambiguous as many different scenes can produce the same two images. As
a result, though the scene generated by our method successfully explains the input views, it might
not be exactly the same as the ground truth scene in the validation dataset. Thus, to fairly compare
with other baselines, especially ones that utilize ground truth camera poses(Du et al., 2023; Charatan
et al., 2024), we follow previous pose-free works (Wang et al., 2021b; Fan et al., 2024) and optimize
the camera pose for the target view. Specifically, for each evaluation sample, we first reconstruct 3D
Gaussians using the proposed method. We then freeze the Gaussians and optimize the target camera
pose such that the rendered image from the target view closely matches the ground truth image. It
is important to note that this optimization is solely for evaluation purposes and is not required when
applying our method in real-world scenarios (e.g., Fig. 7).

4 EXPERIMENTS

Datasets. To evaluate novel view synthesis, we follow the setting in (Charatan et al., 2024; Chen
et al., 2024) and train and evaluate our method on RealEstate10k (RE10K) (Zhou et al., 2018) and
ACID (Liu et al., 2021) datasets separately. RE10K primarily contains indoor real estate videos,
while ACID features nature scenes captured by aerial drones. Both include camera poses calculated
using COLMAP (Schonberger & Frahm, 2016). We adhere to the official train-test split as in pre-
vious works (Charatan et al., 2024; Hong et al., 2024a). To further scale up our model (denoted
as Ours*), we also combine RE10K with DL3DV (Ling et al., 2024), which is an outdoor dataset
containing 10K videos, which includes a wider variety of camera motion patterns than RE10K.

To assess the method’s capability in handling input images with varying camera overlaps, we gen-
erate input pairs for evaluation that are categorized based on the ratio of image overlap: small (5% -
30%), medium (30% - 55%), and large (55% - 80%), determined using SOTA dense feature match-
ing method, RoMA (Edstedt et al., 2024). More details are provided in the appendix.

Furthermore, for zero-shot generalization, we also test on DTU (Jensen et al., 2014) (object-centric
scenes), ScanNet (Dai et al., 2017) and ScanNet++ (Yeshwanth et al., 2023) (indoor scenes with

6
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Table 1: Novel view synthesis performance comparison on the RealEstate10k (Zhou et al.,
2018) dataset. Our method largely outperforms previous pose-free methods on all overlap settings,
and even outperforms SOTA pose-required methods, especially when the overlap is small.

Small Medium Large Average
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Pose-
Required

pixelNeRF 18.417 0.601 0.526 19.930 0.632 0.480 20.869 0.639 0.458 19.824 0.626 0.485
AttnRend 19.151 0.663 0.368 22.532 0.763 0.269 25.897 0.845 0.186 22.664 0.762 0.269
pixelSplat 20.263 0.717 0.266 23.711 0.809 0.181 27.151 0.879 0.122 23.848 0.806 0.185
MVSplat 20.353 0.724 0.250 23.778 0.812 0.173 27.408 0.884 0.116 23.977 0.811 0.176

Pose-
Free

DUSt3R 14.101 0.432 0.468 15.419 0.451 0.432 16.427 0.453 0.402 15.382 0.447 0.432
MASt3R 13.534 0.407 0.494 14.945 0.436 0.451 16.028 0.444 0.418 14.907 0.431 0.452
Splatt3R 14.352 0.475 0.472 15.529 0.502 0.425 15.817 0.483 0.421 15.318 0.490 0.436
CoPoNeRF 17.393 0.585 0.462 18.813 0.616 0.392 20.464 0.652 0.318 18.938 0.619 0.388
Ours 22.514 0.784 0.210 24.899 0.839 0.160 27.411 0.883 0.119 25.033 0.838 0.160

Table 2: Novel view synthesis performance comparison on the ACID (Liu et al., 2021) dataset.
Small Medium Large Average

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Pose-
Required

pixelNeRF 19.376 0.535 0.564 20.339 0.561 0.537 20.826 0.576 0.509 20.323 0.561 0.533
AttnRend 20.942 0.616 0.398 24.004 0.720 0.301 27.117 0.808 0.207 24.475 0.730 0.287
pixelSplat 22.053 0.654 0.285 25.460 0.776 0.198 28.426 0.853 0.140 25.819 0.779 0.195
MVSplat 21.392 0.639 0.290 25.103 0.770 0.199 28.388 0.852 0.139 25.512 0.773 0.196

Pose-
Free

DUSt3R 14.494 0.372 0.502 16.256 0.411 0.453 17.324 0.431 0.408 16.286 0.411 0.447
MASt3R 14.242 0.366 0.522 16.169 0.411 0.463 17.270 0.430 0.423 16.179 0.409 0.461
CoPoNeRF 18.651 0.551 0.485 20.654 0.595 0.418 22.654 0.652 0.343 20.950 0.606 0.406
Ours 23.087 0.685 0.258 25.624 0.777 0.193 28.043 0.841 0.144 25.961 0.781 0.189

different camera motion and scene types from the RE10K). We also demonstrate our approach on
in-the-wild mobile phone capture, and images generated by a text-to-video model (OpenAI, 2024).

Evaluation Metrics. We evaluate novel view synthesis with the commonly used metrics: PSNR,
SSIM, and LPIPS (Zhang et al., 2018). For pose estimation, we report the area under the cumulative
pose error curve (AUC) with thresholds of 5◦, 10◦, 20◦ (Sarlin et al., 2020; Edstedt et al., 2024).

Baselines. We compare against SOTA sparse-view generalizable methods on novel view synthesis:
1) Pose-required: pixelNeRF (Yu et al., 2021), AttnRend (Du et al., 2023), pixelSplat (Charatan
et al., 2024), and MVSplat (Chen et al., 2024); 2) Pose-free: DUSt3R (Wang et al., 2024b),
MASt3R (Leroy et al., 2024), Splatt3R (Smart et al., 2024), CoPoNeRF (Hong et al., 2024a), and
RoMa (Edstedt et al., 2024). For relative pose estimation, we also compare against methods in 2).

Implementation details. We use PyTorch, and the encoder is a vanilla ViT-large model with a
patch size of 16, and the decoder is ViT-base. We initialize the encoder/decoder and Gaussian center
head with the weights from MASt3R, while the remaining layers are initialized randomly. Note
that, as shown in the appendix, our method can also be trained with only RGB supervision–without
pre-trained weight from MASt3R–and still achieve similar performance. We train models at two
different resolutions, 256 × 256 and 512 × 512. For a fair comparison with baseline models, we
report all quantitative results and baseline comparisons under 256×256. However, qualitative results
for the 512× 512 model are presented in the supplementary video and Fig. 7. Additional details on
model weight initialization and training resolution can be found in the appendix.

4.1 EXPERIMENTAL RESULTS AND ANALYSIS

Novel View Synthesis. As demonstrated in Tab. 1, Tab. 2, and Fig. 4, NoPoSplat significantly
outperforms all SOTA pose-free approaches. Note that DUSt3R (and MASt3R) struggle to fuse input
views coherently due to their reliance on per-pixel depth loss, a limitation Splatt3R also inherits from
its frozen MASt3R module. On the other hand, we achieve competitive performance over SOTA
pose-required methods (Charatan et al., 2024; Chen et al., 2024), and even outperform them when
the overlap between input images is small, as shown in Fig.4 first row (the left side of Fig. 4 displays
the overlap ratio). This clearly shows the advantages of our model’s 3D Gaussians prediction in the
canonical space over baseline methods’ transform-then-fuse strategy, as discussed in Sec. 3.3.

Relative Pose Estimation. The proposed method can be applied to pose estimation between
input views on three diverse datasets. Our method is trained either on RE10K (denoted as Ours)
or a combination of RE10K and DL3DV (denoted as Ours*). Tab. 3 shows that the performance
consistently improves when scaling up training with DL3DV involved. This can be attributed to the
greater variety of camera motions in DL3DV over in RE10K. It is worth noting that our method
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Ref. pixelSplat MVSplat CoPoNeRF DUSt3R Splatt3R Ours GT

Figure 4: Qualitative comparison on RE10K (top three rows) and ACID (bottom row). Com-
pared to baselines, we obtain: 1) more coherent fusion from input views, 2) superior reconstruction
from limited image overlap, 3) enhanced geometry reconstruction in non-overlapping regions.

Table 3: Pose estimation performance in AUC with various thresholds on RE10k, ACID, and
ScanNet-1500 (Dai et al., 2017; Sarlin et al., 2020). Our method achieves the best results across
all datasets. Notably, our model is not trained on ACID or ScanNet. Furthermore, our method does
not require an explicit matching loss during training, meaning no ground truth depth is necessary.

RE10k ACID ScanNet-1500

Method 5◦ ↑ 10◦ ↑ 20◦ ↑ 5◦ ↑ 10◦ ↑ 20◦ ↑ 5◦ ↑ 10◦ ↑ 20◦ ↑
CoPoNeRF 0.161 0.362 0.575 0.078 0.216 0.398 - - -
DUSt3R 0.301 0.495 0.657 0.166 0.304 0.437 0.221 0.437 0.636
MASt3R 0.372 0.561 0.709 0.234 0.396 0.541 0.159 0.359 0.573
RoMa 0.546 0.698 0.797 0.463 0.588 0.689 0.270 0.492 0.673
Ours (RE10k) 0.672 0.792 0.869 0.454 0.591 0.709 0.264 0.473 0.655
Ours* (RE10k+DL3DV) 0.691 0.806 0.877 0.486 0.617 0.728 0.318 0.538 0.717

Table 4: Out-of-distribution performance comparison. Our method shows superior performance
when zero-shot evaluation on DTU and ScanNet++ using the model solely trained on RE10k.

Training Data Method DTU ScanNet++

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
ScanNet++ Splatt3R 11.628 0.325 0.499 13.270 0.507 0.445

RealEstate10K
pixelSplat 11.551 0.321 0.633 18.434 0.719 0.277
MVSplat 13.929 0.474 0.385 17.125 0.686 0.297

Ours 17.899 0.629 0.279 22.136 0.798 0.232

even shows superior zero-shot performance on ACID and ScanNet-1500, even better than the SOTA
method RoMa that is trained on ScanNet. This indicates not only the efficacy of our pose estimation
approach, but also the quality of our output 3D geometry. The next part verifies this point.

Geometry Reconstruction. Our method also outputs noticeably better 3D Gaussians and depths
over SOTA pose-required methods, as shown in Fig. 5. Looking closely, MVSplat not only suffers
from the misalignment in the intersection regions of two input images (indicated by blue arrows),
but also distortions or incorrect geometry in regions without sufficient overlap (indicated by magenta
arrows). These issues are largely due to the noises introduced in their transform-then-fuse pipeline.
Our method directly predicts Gaussians in the canonical space, which faithfully solves this problem.

Cross-Dataset Generalization. We also evaluate the zero-shot performance of the model, where we
train exclusively on RealEstate10k and directly apply it to ScanNet++ (Yeshwanth et al., 2023) and
DTU (Jensen et al., 2014) datasets. The results in Fig. 6 and Tab. 4 indicate that NoPoSplat demon-
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Ours (pose-free) MVSplat (pose-required) pixelSplat (pose-required)Input

Figure 5: Comparisons of 3D Gaussian and rendered results. The red and green indicate input
and target camera views, and the rendered image and depths are shown on the right side. The
magenta and blue arrows correspond to the distorted or misalignment regions in baseline 3DGS.
The results show that even without camera poses as input, our method produces higher-quality 3D
Gaussians resulting in better color/depth rendering over baselines.
Ref. pixelSplat MVSplat Ours GT

(a) Cross-Dataset Generalize: RE10K → DTU

Ref. pixelSplat MVSplat Ours GT

(b) Cross-Dataset Generalize: RE10K → ScanNet++

Figure 6: Cross-dataset generalization. Our model can better zero-shot transfer to out-of-
distribution data than SOTA pose-required methods.

strates superior performance on out-of-distribution data compared to SOTA pose-required methods.
This advantage arises primarily from our minimal geometric priors in the network structure, allow-
ing it to adapt effectively to various types of scenes. Notably, our method outperforms Splatt3R even
on ScanNet++, where Splatt3R was trained.

pixelSplat MVSplat Ours

0.02

0.04

0.06

0.08
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0.081

0.028

0.015

Model Efficiency. As shown on the right, our method can predict 3D
Gaussians from two 256 × 256 input images in 0.015 seconds (66 fps),
which is around 5× and 2× faster than pixelSplat and MVSplat, on the
same RTX 4090 GPU. This further shows the benefits of using a standard
ViT without incorporating additional geometric operations.

Apply to In-the-Wild Unposed Images. One of the most important advantages of our method is
that it can directly generalize to in-the-wild unposed images. we test on two types of data: images
casually taken with mobile phones, and image frames extracted from videos generated by Sora (Ope-
nAI, 2024). Results in Fig. 7 show that our method can be potentially applied for text/image to 3D
scene generations, e.g., one can first generate sparse scene-level multi-view images using text/image
to multi-image/video models (Gao et al., 2024; OpenAI, 2024), then feed those extracted unposed
images to our model and obtain 3D models.

4.2 ABLATION STUDIES

Ablation on Output Gaussian Space. To demonstrate the effectiveness of our canonical Gaussian
prediction, we compare it with the transform-then-fuse pipeline commonly used by pose-required
methods (Charatan et al., 2024; Chen et al., 2024). Specifically, it first predicts Gaussians in each
local camera coordinate system which was transformed to the world coordinate using camera poses.
For fair comparisons, both methods use the same backbone and head but differ in the prediction of
Gaussian space. The results in row (f) of Tab. 5 show that our pose-free canonical space predic-
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Unposed Inputs 3DGS Novel Views

(a) Input Images taken with mobile phones
Unposed Inputs 3DGS Novel Views

(b) Input Images generated by SORA

Figure 7: In-the-wild Data. We present the results of applying our method to in-the-wild data,
including real-world photos taken with mobile phones and multi-view images extracted from videos
generated by the Sora text-to-video model. See the video supplementary for more results.

tion method outperforms such pose-required strategy. Fig. 8 illustrates that the transform-then-fuse
strategy leads to the ghosting artifacts in the rendering, because it struggles to align two separate
Gaussians of two input views when transformed to a global coordinate.

Ref. No Intrinsic No RGB Short Trans-then-fuse Ours GT

Figure 8: Ablations. No intrinsic results in blurriness due to
scale misalignment. Without the RGB image shortcut, the ren-
dered images are blurry in the texture-rich areas. Using the
transform-then-fuse strategy causes ghosting problem.

Num Design PSNR SSIM LPIPS

(a) Ours 25.033 0.838 0.160
(b) No intrinsic emb. 23.543 0.780 0.186
(c) w/ dense emb. 24.809 0.832 0.166
(d) w/ global emb. - add. 24.952 0.836 0.161

(e) No RGB shortcut 24.279 0.810 0.183

(f) Transform-then-fuse 24.632 0.834 0.167

(g) 3 input views 26.619 0.872 0.127

Table 5: Ablations. intrin-
sic embeddings are vital for
performance and using intrin-
sic tokens performs the best.
Adding the RGB image short-
cut also improves the qual-
ity of rendered images. Our
method achieves better perfor-
mance compared with the pose-
required per-local-view Gaus-
sian field prediction method.

Ablation on Camera Intrinsic Embedding. Here we study three intrinsic encodings described in
Sec. 3.4 as well as inputting no intrinsic information. First, we can see in Tab. 5 row (b) and Fig. 8
that no intrinsic encodings lead to blurry results as the scale ambiguity confuses the learning process
of the model. Second, we notice that the intrinsic token constantly performs the best marginally
among these three proposed intrinsic encodings, so, we use it as our default intrinsic encoding.

Importance of RGB Shortcut. As discussed in Sec. 3.2, in addition to the low-res ViT features,
we also input RGB images into the Gaussian parameter prediction head. As shown in Fig. 8, when
there is no RGB shortcut, the rendered images are blurry in the texture-rich areas, see the quilt in
row 1 and chair in row 3.

Extend to 3 Input Views. For fair comparisons with baselines, we primarily conduct experiments
using two input view settings. Here we present results using three input views by adding an addi-
tional view between the two original input views. As shown in row (g) of Tab. 5, the performance
significantly improves with the inclusion of the additional view.

5 CONCLUSION

This paper introduces a simple yet effective pose-free method for generalizable sparse-view 3D
reconstruction. By predicting 3D Gaussians directly in a canonical space from any given unposed
multi-view images, we demonstrate superior performance in novel view synthesis and relative pose
estimation. While our method currently applies only to static scenes, extending our pipeline to
dynamic scenarios presents an interesting direction for future work.
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A MORE IMPLEMENTATION DETAILS

More Training Details. We first describe the process for training the 256 × 256 model, which
serves as the basis for all baseline comparisons. Following Chen et al. (2024), when training on
RealEstate10K (Zhou et al., 2018) and ACID (Liu et al., 2021) separately, the model is trained
on 2.4× 106 input image pairs, randomly sampled from training video clips to ensure diverse input
coverage. We employ the AdamW optimizer (Loshchilov & Hutter, 2018), setting the initial learning
rate for the backbone to 2× 10−5 and other parameters to 2× 10−4. When trained on the combined
RealEstate10k and DL3DV (Ling et al., 2024) datasets, we sample image pairs evenly from both
datasets and double the training steps.

We then train the 512 × 512 model using the pre-trained weights of the 256 × 256 model. The
512 × 512 model is also trained on the combined RealEstate10K and DL3DV datasets, following
the same training procedure. Since no fair baseline model is available for comparison, we focus
primarily on the qualitative results of the 512 × 512 model. For instance, the results presented in
Fig. 7 are obtained using the 512× 512 model.

For the 256×256 version of the model, training was conducted on 8 NVIDIA GH200 GPUs (each
with >80 GB memory) for approximately 6 hours. We also experimented with training our model
on a single A6000 GPU (48 GB memory). While this setup required more time (approximately
90 hours), it achieved comparable performance (PSNR on RE10K: 25.018 with A6000 vs. 25.033
with GH200). For the 512×512 version, training was performed on 16 NVIDIA GH200 GPUs and
required approximately one day.

Evaluation Set Generation. For the evaluation of the novel view synthesis task, we randomly select
one image pair from each video sequence in the official test splits of RealEstate10K (Zhou et al.,
2018) and ACID (Liu et al., 2021). We then randomly sample three frames between the input views
as target views. For the pose estimation task, we use the same input image pair as in the novel view
synthesis task, and employ the COLMAP pose as the ground truth.

To determine the overlap ratio of image pairs, we employ RoMa (Edstedt et al., 2024), a state-of-
the-art dense feature matching method. The process for calculating the overlap ratio for an image
pair

{
I1, I2

}
is as follows:

1. Obtain dense image matching from I1 to I2 and vice versa.

2. Consider matching scores above 0.005 as valid.

3. Calculate the overlap ratio ri→j for image Ii to image Ij as:

ri→j =
Number of valid matched pixels

Total number of pixels

4. Compute r1→2 and r2→1.

5. Define the final overlap ratio as:
roverlap = min(r1→2, r2→1)

The resulting evaluation set and the code used for its generation will be made publicly available to
facilitate further research in this area.

Statistics on the Evaluation Set. The number of scenes in RealEstate10K (Zhou et al., 2018) for
each overlap category is as follows: 1403 for small, 2568 for medium, and 1630 for large overlaps.
In the ACID dataset (Liu et al., 2021), the number of scenes for each overlap category is: 249 for
small, 644 for medium, and 448 for large overlaps.

Baseline Setup for Pose Estimation Tasks. For a fair comparison with RoMa (Edstedt et al.,
2024), we first resize and center-crop the input images to match the dimensions used in our model
(256×256), then resize them to a coarse resolution (560 × 560) and an upsampled resolution (864 ×
864) to fit RoMa’s requirements. However, since DUSt3R (Wang et al., 2024b) and MASt3R (Leroy
et al., 2024) are not trained with square image inputs, simply setting the input resolution to 256×256
leads to poor pose estimation performance. Therefore, we resize and center-crop their input images
to 512 × 256, as officially supported by their models. Consequently, the image content visible to
DUSt3R and MASt3R is greater than that seen by RoMa and our model.
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4 Input Views LEAP Ours GT

Figure 9: Object-level comparison on Objaverse dataset. Compared with the pose-free baseline
method, LEAP, our method shows significantly better novel view synthesis results on object-level
data.

Table 6: Performance comparison on Objaverse dataset.
PSNR↑ SSIM↑ LPIPS↓

LEAP 20.559 0.853 0.144
Ours 28.378 0.935 0.053

Details on Pose Estimation. After obtaining the coarse camera pose, we apply photometric loss-
based optimization to refine it. This optimization is performed for 200 steps per input image pair
with a learning rate of 5× 10−3, taking approximately 2 seconds. Notably, our pose estimation can
also operate without the optimization refinement process, resulting in an acceptable performance
degradation but decreasing inference time. As shown in Tab. 9, despite the performance drop, our
method still performs comparably to RoMa, which is trained on ScanNet, even in a zero-shot setting.

Details on Applying to In-the-Wild Data. Our method requires camera intrinsic information as
input for rendering novel views. When testing our model on out-of-distribution datasets, such as
Tanks and Temples (Knapitsch et al., 2017), we simply use the ground truth intrinsic data provided
by the dataset. When tested on photos taken with mobile phones, we extract the focal length from
their EXIF metadata. For data generated by SORA (OpenAI, 2024), we set the focal length to
(H +W )/2. We found that this heuristic setting works quite well, as our model is relatively robust
to focal length variations after training.

B APPLY TO OBJECT-LEVEL DATA

To demonstrate our method’s generalizability to object-level data, we evaluate its performance on the
commonly used Objaverse dataset. Our experiments utilize four 256× 256 unposed images as input
for each object. Direct performance comparison with PF-LRM is not feasible due to its unavailable
source code and evaluation dataset. Therefore, we compare our method with LEAP, the state-of-
the-art open-source pose-free method for object-level reconstruction. To ensure a fair comparison,
we retrain LEAP on the Objaverse dataset using their official implementation, maintaining identical
training iterations and input image resolutions. The qualitative and quantitative results are presented
in Fig. 9 and Tab. 6 respectively. Our approach demonstrates significant performance improvements
over LEAP, with the PSNR increasing from 20.559 to 28.378, highlighting robust generalization
capabilities for object-level reconstruction.

C MORE EXPERIMENTAL ANALYSIS

Ablations on Backbone Initialization. We initialize our backbone network with MASt3R (Leroy
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Table 7: Ablation on different weight initialization. The results show that our method effectively
learns pose-free inference capabilities during training, with appropriate weight initialization further
enhancing performance. Notably, even with random initialization, our method significantly outper-
forms the pose-free baseline (CoPoNeRF). Moreover, utilizing CroCov2 and DINOv2 pre-trained
weights enables our method to surpass the previous SOTA pose-required method (MVSplat), despite
neither initialization method providing prior knowledge of pose or depth information.

PSNR↑ SSIM↑ LPIPS↓
MASt3R 25.033 0.838 0.160
DUSt3R 24.553 0.823 0.169
CroCov2 24.559 0.818 0.171
DINOv2 24.094 0.812 0.176
Random 23.487 0.779 0.189

Table 8: Ablation on adding additional pose condition. We incorporate Plucker ray pose embed-
dings into our pose-free model as additional input. The results show a small performance gap after
adding the embeddings, indicating the strong capability of our method in estimating pose.

Init Weights Pose Condition PSNR↑ SSIM↑ LPIPS↓

MASt3R Yes 25.033 0.838 0.160
No 25.080 0.844 0.158

Random Yes 23.708 0.788 0.173
No 23.487 0.779 0.189

et al., 2024) pre-trained weights in our main experiment. MASt3R is trained on datasets with ground
truth depth annotation, but notably, its training data has no overlap with the training and evaluation
datasets used in our experiments. Here, we also investigate the impact of different backbone initial-
ization methods. Specifically, we compare the performance of our method using pre-trained weights
from DUSt3R (Wang et al., 2024b), CroCo V2 (Weinzaepfel et al., 2023), and DINOv2 (Oquab
et al., 2023) (DINOv2 is only used to initialize the encoder, the decoder is randomly initialized), as
well as randomly initialized weights. DUSt3R is also trained with depth supervision but without fea-
ture matching loss compared with MASt3R. CroCoV2 is pre-trained with pure 2D image pairs with
reconstruction loss (He et al., 2022), while DINOv2 (Oquab et al., 2023) is a self-supervised method
trained on 2D images. Note that for CroCoV2, DINOv2, and random initialization, we warm up the
training by adding point cloud distillation loss from the DUSt3R model for 1,000 steps, this aims to
tell the network the goal is to predict the Gaussians in the canonical space, otherwise, the learning
target is too hard for the network to understand as we only train our network with photometric loss.
These results in Tab. 7 demonstrate that our method effectively learns pose-free inference capabili-
ties during training, with appropriate weight initialization further enhancing performance. Notably,
even with random initialization, our method significantly outperforms the pose-free baseline (Co-
PoNeRF). Moreover, utilizing CroCov2 and DINOv2 pre-trained weights enables our method to
surpass the previous SOTA pose-required method (MVSplat), despite neither initialization method
providing prior knowledge of pose or depth information.

Ablations on Pose Condition. To further demonstrate the effectiveness of our method in inferring
geometry without pose information, we conducted an ablation study by incorporating additional
pose conditioning into our network. Keeping all other factors constant, we converted the pose in-
formation into Plucker ray representations and concatenated them with the RGB images as network
input. The experimental results, shown in Tab. 8, reveal that while pose conditioning slightly im-
proves performance compared to our pose-free method, the enhancement is small especially when
initialized with MASt3R weights. This highlights our method’s robust ability to correlate image
pairs even in the absence of explicit pose information.

Ablations on the Effectiveness of Two-Stage Pose Estimation. As shown in Tab. 9, relying
solely on PnP-RANSAC results in inaccurate pose estimates. However, if we skip the coarse camera
pose estimation stage and only use photometric loss-based optimization starting from [I | 0], the
performance significantly degrades when using the same number of optimization steps (200 steps).
This is because optimizing from an initial pose far from the target is more challenging.
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Table 9: Ablation on the pose estimation method.

PnP Photometric 5◦ ↑ 10◦ ↑ 20◦ ↑
✓ ✓ 0.318 0.538 0.717
✓ 0.287 0.506 0.692

✓ 0.017 0.027 0.051

Table 10: Performance comparison on the evaluation set of pixelSplat.
PSNR↑ SSIM↑ LPIPS↓

pixelNeRF 20.43 0.589 0.55
GPNR 24.11 0.793 0.255
AttnRend 24.78 0.82 0.213
pixelSplat 26.09 0.863 0.136
MVSplat 26.39 0.869 0.128
Ours 26.786 0.878 0.124

Evaluate on the Evaluation Set of pixelSplat. We also present results based on the evaluation set
used by pixelSplat (Charatan et al., 2024) and MVSplat (Chen et al., 2024). The results are shown in
Tab. 10. However, we do not prioritize this evaluation set as it is relatively simple, with most input
pairs exhibiting significant overlap, making it less suitable for more advanced future research.

Details on Extension to 3 Input Views. Our method can be extended to an arbitrary number of
input views. As shown in Tab. 5, using three input views improves the results. Specifically, we add
the middle frame between the original two input frames as an additional view. For three-input set-
tings, when generating the Gaussians of each view, we concatenate the feature tokens from all other
views and perform cross-attention with these concatenated tokens in the ViT decoder stage, keeping
all other operations the same as with two input views. Fig. 13 provides a qualitative comparison
between using two and three input views.

Experiments with More Input Views. We further evaluate the performance with varying numbers
of input views. We train separate models for each configuration. The quantitative results are pre-
sented in Fig. 10. To ensure fair comparison, we maintain consistent first and last views across all
experiments, while sampling intermediate views as the number of input views increases. The results
demonstrate significant performance improvements when increasing the input views from two to
three or four. However, additional input views beyond four yield comparable performance. This
is because four views are sufficient to capture most of the scene information. This finding under-
scores our method’s robust capability to effectively process sparse input images. Figure 11 provides
qualitative examples across different view configurations, corroborating the quantitative results.

Geometry Comparison with Splatt3R and MASt3R. In Figure 5, we compare our generated 3D
Gaussians with state-of-the-art pose-required feedforward 3D Gaussian Splatting methods, namely
pixelSplat and MVSplat. Additionally, we compare the geometric representations with MASt3R and
Splatt3R. Specifically, we compare our 3D Gaussians with Splatt3R’s 3D Gaussians and MASt3R’s
point cloud, as MASt3R only outputs point cloud representations. Notably, our method is trained
solely using photometric loss, without ground truth point cloud supervision, whereas MASt3R uti-
lizes ground truth point cloud for training, and Splatt3R directly employs MASt3R’s point cloud
outputs as Gaussian centers. The results in the first row of Figure 12 demonstrate that our method
achieves better geometric details (e.g., straighter wall edges) despite the absence of point cloud
supervision. The second row reveals that our method more coherently fuses the content of two in-
put images, while significant quality discontinuities exist in the intersection areas of MASt3R and
Splatt3R. Furthermore, MASt3R fails to capture the geometric relationships of distant objects, re-
sulting in severe blurring in these regions when Splatt3R directly uses its point cloud as Gaussian
centers.

Addtional Comparison with Splatt3R. In Tab.1 of the main paper, we compare our method
with the official model provided by the authors of Splatt3R(Smart et al., 2024), which freezes the
MASt3R model and is then trained on the ScanNet++ (Yeshwanth et al., 2023) dataset. Here, we
also train it on the RealEstate10K (Zhou et al., 2018) dataset at the same resolution as other base-
lines (256 × 256). However, when attempting to retrain it using the official code provided by the
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Figure 10: Novel view synthesis results with different number of input views.
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Figure 11: RealEstate10k performance with different number of input views.

authors on RealEstate10k, we find that the training fails because the original Splatt3R can only be
trained on datasets with metric pose ground truth. This limitation arises because Splatt3R relies on
a fixed pre-trained MASt3R (Leroy et al., 2024) model and its capability for metric depth predic-
tion. As MASt3R is trained on ScanNet++ (Yeshwanth et al., 2023) using ground truth metric depth
information, the poses in ScanNet++ are also metric. Consequently, the original Splatt3r cannot be
trained on video datasets without metric pose information. We identify two main issues:

1. The camera poses provided by RealEstate10K are up-to-scale, as they are estimated using
COLMAP (Schonberger & Frahm, 2016). This results in a scale misalignment between the
ground truth pose and the scale of the estimated Gaussian field. Although Splatt3r predicts ad-
ditional point offsets based on the point cloud estimated by MASt3R as the final Gaussian cen-
ter, these offsets are typically small and unable to resolve the misalignment problem. This issue
persists even in datasets with metric camera poses, as the point cloud provided by MASt3R is
imperfect and not fully aligned with the ground truth pose scale. The training fails if the pro-
vided COLMAP target camera poses are used to render target views for the 3D Gaussians.
To address this, we first estimate the camera poses of two input views using the point cloud
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Input Views Ours Splatt3R MASt3R

Figure 12: Geometry comparison with Splatt3R and MASt3R.

Table 11: Performance of retrained Splatt3R (Smart et al., 2024) model.
Small Medium Large Average

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Ours 22.514 0.784 0.210 24.899 0.839 0.160 27.411 0.883 0.119 25.033 0.838 0.160
Splatt3R Official 14.352 0.475 0.472 15.529 0.502 0.425 15.817 0.483 0.421 15.318 0.490 0.436
Splatt3R Retrain 17.987 0.616 0.385 19.362 0.657 0.327 20.518 0.685 0.288 19.354 0.655 0.330

from MASt3R, which is scale-consistent with the Gaussians. We then align the scale of the
COLMAP target poses with the scale of the MASt3R point cloud by adjusting the scale of the
input view poses to match the MASt3R-estimated ones.

2. We also find that the intrinsic parameters estimated by MASt3R (Leroy et al., 2024) do not
align well with the ground truth intrinsic parameters. Using the ground truth intrinsic during
training also causes failure. As a result, we opt to use the intrinsics estimated by MASt3R.

Additionally, we ignore the loss mask used in the original Splatt3R as it requires ground truth depth
to generate the mask, but the RealEstate10K dataset lacks ground truth depth. The mask is unnec-
essary for training on video datasets like RealEstate10K, since during training, we use intermediate
frames between the two input frames as targets, and most of the image content in the target frames
is well covered by the input frames. For a fair comparison during evaluation, we apply the same
evaluation-time pose alignment technique used in our method. The results are presented in Tab. 11.
Although retraining the model on the RealEstate10K dataset yields improved performance, it still
significantly lags behind our approach. This performance gap can be attributed to the misalignment
issues inherent in the fixed MASt3R model and the persistent scale ambiguity problem.

D LIMITATIONS

Our approach, like previous pose-free methods (Hong et al., 2024a; Fu et al., 2024), assumes known
camera intrinsics. Although heuristically set intrinsic parameters prove effective for in-the-wild
images, relaxing this requirement would enhance the robustness of real-world applications. Ad-
ditionally, as our feedforward model is non-generative, it lacks the ability to reconstruct unseen
regions of a scene with detailed geometry and texture, as demonstrated in the results of the 2-view
model shown in Fig. 13. This limitation could potentially be mitigated by incorporating additional
input views, which would enhance scene coverage. Finally, the current training data (limited to
RealEstate10K, ACID, and DL3DV) constrains the model’s generalizability to diverse in-the-wild
scenarios. Future work could explore training our model on large-scale, diverse indoor and out-
door datasets, leveraging our method’s independence from ground-truth depth information during
training.

E MORE VISUAL COMPARISONS

We present an additional comparison with previous SOTA pose-dependent and pose-free methods
across various levels of image overlap: Fig.14 for small input image overlap, Fig.15 for medium
input image overlap, and Fig.16 for large input image overlap. Furthermore, we provide additional
comparisons on the ACID dataset (Liu et al., 2021) in Fig.17.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Ref. Target View Ours (3 Views) Ours (2 Views)

Figure 13: Qualitative comparison on different numbers of input views. The model with 2 input
views utilizes only the top and bottom reference images, whereas the 3-view model incorporates
an additional intermediate view. Adding this extra reference view improves the quality of rendered
novel views significantly, as it captures finer spatial details and reduces occlusion effects.
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Ref. pixelSplat MVSplat CoPoNeRF Splatt3R Ours GT

Figure 14: More comparisons of the RealEstate10K dataset with small overlap of input images.
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Ref. pixelSplat MVSplat CoPoNeRF Splatt3R Ours GT

Figure 15: More comparisons of the RealEstate10K dataset with medium overlap of input
images.
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Ref. pixelSplat MVSplat CoPoNeRF Splatt3R Ours GT

Figure 16: More comparisons of the RealEstate10K dataset with large overlap of input images.
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Ref. pixelSplat MVSplat CoPoNeRF DUSt3R Splatt3R Ours GT

Figure 17: More comparisons on the ACID dataset.
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