
Towards Improving Calibration in Object Detection
Under Domain Shift

Muhammad Akhtar Munir1,2∗ , Muhammad Haris Khan2, M. Saquib Sarfraz3,4, Mohsen Ali1
1 Information Technology University of Punjab, 2 Mohamed bin Zayed University of Artificial Intelligence,

3 Karlsruhe Institute of Technology, 4Mercedes-Benz Tech Innovation

Abstract

With deep neural network based solution more readily being incorporated in real-
world applications, it has been pressing requirement that predictions by such
models, especially in safety-critical environments, be highly accurate and well-
calibrated. Although some techniques addressing DNN calibration have been
proposed, they are only limited to visual classification applications and in-domain
predictions. Unfortunately, very little to no attention is paid towards addressing
calibration of DNN-based visual object detectors, that occupy similar space and
importance in many decision making systems as their visual classification coun-
terparts. In this work, we study the calibration of DNN-based object detection
models, particularly under domain shift. To this end, we first propose a new,
plug-and-play, train-time calibration loss for object detection (coined as TCD). It
can be used with various application-specific loss functions as an auxiliary loss
function to improve detection calibration. Second, we devise a new implicit tech-
nique for improving calibration in self-training based domain adaptive detectors,
featuring a new uncertainty quantification mechanism for object detection. We
demonstrate TCD is capable of enhancing calibration with notable margins (1)
across different DNN-based object detection paradigms both in in-domain and
out-of-domain predictions, and (2) in different domain-adaptive detectors across
challenging adaptation scenarios. Finally, we empirically show that our implicit
calibration technique can be used in tandem with TCD during adaptation to further
boost calibration in diverse domain shift scenarios.

1 Introduction

Owing to the success of deep neural network in last decade, they have been progressively becoming
part of different safety-critical applications, including autonomous driving [5], healthcare [2, 32], and
legal research [40]. In such high-stake applications, it is of paramount importance that the model
predictions are not only correct, but also well-calibrated. For a calibrated model, probability of being
correct across all confidence levels and the predictions-confidence should be aligned [6, 35] It is
desired that the incorrect predictions have low-confidence, however, a poorly calibrated model is
prone to have confident but incorrect predictions.

We have witnessed tremendous effort towards improving the predictive accuracy of models, however,
considerably less attention is devoted to model calibration. Among a few works addressing model
calibration, the majority of them focus on classification tasks [6, 17, 20, 22, 35]. A dominant class
of methods address calibration by proposing different post-hoc approaches [28, 6], The core idea
is to transform model outputs by a single parameter which is optimized on a validation set, with

∗Corresponding author, Intelligent Machines Lab, Department of Computer Science, Information Tech-
nology University of the Punjab, Lahore, Pakistan. Email: akhtar.munir@itu.edu.pk Project Page:
http://im.itu.edu.pk/towards-improving-calibration/

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

an objective to improve the calibration of in-domain predictions. Such methods involve limited
parameters while calibrating the outputs of the models. Further, they are restrictive, since in many
real-world scenarios, a validation set is not always available. To involve all model parameters, some
methods propose train-time calibration techniques [17, 20, 22] by constraining that for a given sample,
the predicted class confidence and likelihood for that class should be minimized. The model could
remain poorly calibrated for the classes with non-maximum prediction confidences [7].

Surprisingly, little to no attention has been paid towards addressing the calibration of deep learning
based visual object detection methods, that form an important part of many decision making systems.
Also, most current efforts aim at improving model calibrations only for in-domain predictions.
However, in many real-world scenarios, owing to domain shift, the distribution of the data received
by a deployed model can be very different to the distribution of its training data. Therefore for
several practical scenarios, a model should be well-calibrated for both in-domain and out-of-domain
predictions. Besides carrying scientific value, well-calibrated object detectors, especially under
domain drift, will substantially improve overall trust in many vision-based safety-critical applications
and will be of great value to industry practitioners.

In this paper, we study the calibration of object detection models for both in-domain and out-of-
domain detections. We observe that: (1) detection models demonstrate poor calibration for in-domain
and out-of-domain detections (see Fig. 1), and (2) unsupervised domain adaptive detection models
are rather miscalibrated when compared to their predictive accuracy in a target domain.

Towards developing well-calibrated object detection models, for both in-domain and out-of-domain
scenarios, we propose a new plug-and-play loss formulation, termed as train-time calibration for
detection (TCD). It can be used with task-specific loss functions during training phase and acts
as a regularization for detections. In addition, we develop an implicit calibration technique for
self-training based domain adaptive detectors. Finally, we empirically show that this technique is
complementary to our loss function and they both can be utilized during adaptation to further boost
calibration under challenging domain shift detection scenarios. We validate the effectiveness of our
loss function towards improving calibration of different DNN-based object detection paradigms and
different domain adaptive detection models under challenging domain shift scenarios.

2 Related Work

Below we survey different techniques in literature aimed at addressing the calibration of deep neural
networks. Broadly, the existing calibration techniques can be divided into post-hoc and train-time
calibration methods. The former estimates a transformation through a hold-out data after training,
whereas the latter involves model parameters during the training. Further, there are methods that
achieve implicit calibration through using model’s uncertainty or learning to reject OOD samples.

Post-hoc calibration methods: Post-hoc calibration methods are post processing methods that
leverage a hold-out validation data to optimize the calibration parameters for transforming the outputs
of trained deep neural networks. A popular post-hoc calibration approach is temperature scaling
(TS) [6] (an extension of Platt Scaling [28]) that re-scales the logits by an optimal temperature (T)
parameter which is estimated on a validation set. The overall accuracy of the model remains unaffected
by temperature scaling, but the logits values are modulated in such a way that confidence scores are
reduced. Temperature scaling along with other methods like vector scaling and matrix scaling extends
Platt scaling to multiclass setting. [11] introduced bin wise temperature scaling that incorporates
different temperatures for different confidence intervals. To mitigate miscalibration under long-tailed
distribution scenarios, Islam et al. [10] used class frequency information. Specifically, the model
is calibrated using class distribution-aware temperature scaling and label smoothing. The Dirichlet
calibration (DC) [15] is derived from Dirichlet distributions and extends the beta calibration method
[16] to multi-class setting. This is achieved by training an extra neural network layer, that inputs
log-transformed class probabilities, over the hold-out validation data. Recently, [35] generalizes
existing post-hoc calibration methods, to address the poor calibration of out-of-domain predictions,
by applying post-hoc calibration step after transforming validation set. In general, post-hoc methods
for model calibration require hold-out validation set. Also, the majority of post-hoc methods perfrom
model calibration for in-domain predictions.

Train-time Calibration methods: Negative log-likelihood (NLL) is the most popular approach to
train a DNN based classifier. Recent work shows that NLL-based training results in overconfident

2

(a) Calibration performance (ECE) of a DNN-based detector (FCOS [34]) trained using task-specific detection
loss and our method (task-specific detection loss+TCD), where TCD is the proposed auxiliary loss.

(b) Reliability diagrams. Top row: DNN-based detector (FCOS [34]) trained using task-specific loss. Bottom
row: Ours, trained with adding the proposed TCD loss.

Figure 1: DNN-based object detectors trained with our proposed calibration loss results in better calibration.

scores [6]. To this end, various methods presented additional loss formulations that can be used
with task-specific losses during the training procedure. For instance, [27] penalized overconfident
predictions by adding the negative of entropy to the loss function. Similarly, Liang et al. [20]
improved calibration by proposing the difference of accuracy and confidence as an auxiliary loss to
the cross-entropy loss. Whereas, [17] proposed an auxiliary loss, for obtaining improved calibration,
which is quantified with the help of reproducing kernel in a Hilbert space. Recently, [7] developed
an auxiliary loss formulation for calibrating non-predicted labels along with the predicted one. It
has been shown that methods which attempt to reduce overconfidence by modifying the hard-labels
can achieve better model calibration. Mukhoti et. al. [23], hypothesized that minimizing focal loss
[21] increases the predicted distribution’s entropy while trying to minimize KL divergence between
the predicted and ground-truth distribution. Replacing cross entropy with Focal loss results in a
well-calibrated classification model. [24] empirically showed that label smoothing (LS), originally
proposed by [33], helps in improving calibration. [14] calibrated uncertainty by relating accuracy
and uncertainty, that yields accurate predictions to be more certain while inaccurate predictions to be
more uncertain.

Other relevant methods: A recent work [37] based on empirical results proposed a unified framework
that includes training and post-hoc calibration for better calibration. Hein et al. [8] identified that
ReLU activation (or similar piece-wise linear functions) is a core reason behind the overconfident
predictions of DNNs far away from the training data. To overcome this, the data augmentation
is incorporated using adversarial learning. [13] detected OOD samples by performing spectral
analysis over initial CNN layers, resulting in much better calibrated model. Finally, some works
report implicitly calibrating DNNs via some loss function [24] or selecting pseudo-labels during
self-training based on model’s uncertainty [25].

Note that, almost all aforementioned techniques for analyzing and improving DNN calibration focus
on classification tasks. There is little to no literature studying the calibration of DNN-based object

3

detectors, including under domain shift. Toward this aim, inspired by the train-time calibration
methods, we propose a new auxiliary loss formulation (TCD) for DNN-based object detection
calibration that can be integrated with any task-specific loss function while training. It is capable
of significantly calibrating in-domain and out-of-domain object detections. In addition, we develop
an implicit calibration technique, that is also complementary to our loss formulation, to boost the
calibration of self-training based domain adaptive object detectors.

3 Improving Calibration in Object Detectors

3.1 Definitions of Calibration

Calibration for classification: Let D = ⟨(xi, y
∗
i)⟩Ni=1 be a dataset ofN image and ground-truth pairs

from a joint distribution D(X ,Y). Where xi ∈ RH×W×C is an image, and y∗i ∈ Y = 1, 2, ...,K is
the associated ground-truth class label. H , W , and C represent the width, height and the number
of channels of an image respectively. For a classification model Fcls, that predicts a label ŷ with a
confidence score ŝ, we can define a perfect calibration as [6]:

P(ŷ = y∗|ŝ = s) = s ∀s ∈ [0, 1]. (1)

Where P(ŷ = y∗|ŝ = s) is the accuracy for a particular confidence score s. For the model to be
calibrated, this accuracy should match with the predicted confidence.

Calibration for object detection: For training an object detection model, the ground-truth an-
notations include object’s localization information along with their associated categories. Let
b∗ ∈ B = [0, 1]4 be the bounding box annotation of the object and y∗ be the corresponding class
label. We assume that an object detection model Fdet predicts the object location b̂ and the class
label ŷ with confidence ŝ. This prediction is accurate, if the Intersection-over-Union (IoU) between b̂

and b∗ is larger than some threshold γ, and ŷ is same as y∗, i.e. 1[IoU(b̂,b∗) ≥ γ]1[ŷ = y∗]. Then,
for object detection, a perfect calibration can be expressed as [19] 2:

P(U = 1|ŝ = s) = s ∀s ∈ [0, 1]. (2)

Where U = 1 denotes a correctly classified prediction.

Expected calibration error for classification and object detection: For a classification model, the
absolute difference between the confidence score and the accuracy corresponding to that confidence
score (eq. 2) is considered Calibration Error. The miscalibration of the model is quantified by
computing the expectation of calibration error over predicted confidence ŝ [26, 6, 18].

Eŝ [|P(ŷ = y∗|ŝ = s)− s|] (3)

The continuous confidence space of ŝ is divided into M equally spaced bins to approximate ECE:

ECE =

M∑
m=1

|I(m)|
|D|

|acc(m)− conf(m)| , (4)

where I(m) is the set of samples in mth bin, and |D| is the total number of samples. acc(m) and
conf(m) denote the average accuracy and average confidence in mth bin, respectively. Along similar
lines, ECE for the object detection (D-ECE) can be defined as the expected deviation of precision
from the predicted confidence [19]:

Eŝ [|P(U = 1|ŝ = s)− s|] (5)

As in classification ECE, confidence space is divided into M equally spaced bins to approximate
D-ECE :

2Note that, Eq.(2) can also be extended to location-dependent calibration.

4

D− ECE =

M∑
m=1

|I(m)|
|D|

|prec(m)− conf(m)| , (6)

where prec(m) denotes the average precision in a bin.

3.2 Train-time Calibration for Detection: TCD

In this section we detail our proposed train-time calibration mechanism for object detection. It features
a novel auxiliary loss function that involves both the classification and localization components. DNN-
based object detectors predict a bounding box and corresponding class confidences for a detected
region. In order to achieve detection calibration, it is imperative to take into account both of them.
Our core idea is to jointly calibrate the estimated (class-wise) confidences and predicted bounding
boxes. To achieve this, we propose to compute two quantities over a mini-batch during training:
(1) the difference between the classification accuracy and the confidence, and (2) the deviation
between the predicted bounding box overlap and the predicted class confidence. Specifically, there
are two components in our loss formulation. Inspired by the train-time calibration techniques for
classification, we adapt the confidence calibration loss [7] and develop the first component dcls. It
measures the absolute difference between the average confidence and average accuracy.

dcls =
1

K

K∑
k=1

∣∣∣∣ 1

L×R

L∑
l=1

R∑
r=1

sl,r[k]−
1

L×R

L∑
l=1

R∑
r=1

ql,r[k]

∣∣∣∣. (7)

Where R is the number of locations in the output class confidences channel map and L is number
of images in mini-batch. ql,r[k] = 1 if label k is the ground-truth label for sample l in location
r, and 0 otherwise. sl,r[k] denotes kth class confidence for rth location in sample l. The second
component ddet computes the mean of the absolute difference between the bounding box overlap
(with the ground-truth/pseudo ground-truth) and the confidence of the predicted class over all the
positive regions. Let N l

pos denotes the number of positive regions in the sample l. The loss is defined
as:

ddet =
1

L

L∑
l=1

1

N l
pos

N l
pos∑

n=1

∣∣∣∣[IoU(b̂n,b
∗
n)− ŝn]

∣∣∣∣ (8)

LTCD =
1

2
(dcls + ddet) (9)

The dcls component in the proposed loss is capable of not only calibrating the confidence of the
predicted class but also for the non-predicted classes. It penalizes the model, if for a given class
k, the average confidence across mini-batch samples and possible output locations deviates from
the average occurrence across mini-batch of this class. On the other hand, the ddet component
penalizes the deviation between the IoU score (computed between the ground-truth bounding box
and predicted one) and its corresponding predicted confidence for positive regions. It explicitly
forces the object detector to match the confidence, of the predicted class, with the tightness of the
predicted bounding-box over the detected object. Since above components are not based on binning,
like Eqs.(4,6), as such, it avoids the non-differentibility issue

Note that, both loss components, ddet and dcls, operate over the mini-batch constructed during
training and so the LTCD can be used as an auxiliary train-time calibration loss for calibrating object
detectors, including domain-adaptive ones, in conjunction with various task-specific loss functions
(secs. 4.1, 4.2). Further, we show that the proposed loss formulation can also be used with the pseudo-
labels used in self-training based unsupervised domain-adaptive detection algorithms for improving
calibration in target domain (sec.4.2). Finally, we show that our loss formulation is complementary to
implicit calibration techniques and so can be deployed to further enhance calibration (sec.4.3).

5

3.3 Implicitly Calibrating Self-Training based Domain Adaptive Detectors

We propose a technique aimed at implicitly improving the calibration of self-training based domain
adaptive detectors. Mostly, self-training based domain adaptive detectors involve constructing pseudo
instance-level labels (termed pseudo-labels thereafter) corresponding to detections in a target domain.
Based on these pseudo-labels, pseudo-targets are formed for computing (classification) loss during the
adaptation phase. We observe that, these pseudo-targets are constructed as one-hot encoded channels,
and so they struggle to reflect the predictive confidence or uncertainty of detections. As a result, the
adaptation model fails to account for the noise in detections, mostly prevalent under domain shift, and
could inadvertently learn to make overconfident predictions, hence negatively affecting calibration.
To this end, we first present a new uncertainty quantification mechanism for object detection and then
leverage this to modulate the one-hot encoded pseudo-targets.

Quantifying uncertainty in object detection: To quantify model’s uncertainty for detections, we
follow a three-step process [25]. First, given an arbitrary image, we perform N stochastic forward
passes (inferences) over the one-stage object detector using Monte-Carlo dropout [3]. Specifically,
we apply spatial MC-dropout [36] over the convolutional filters after the feature extraction layer
[25]. Let b̂n,m ∈ R4 be the mth predicted bounding box during nth inference, sn,m be the
corresponding confidence vector, and ĉn,m be the predicted class corresponding to the highest
confidence ŝn,m ∈ sn,m. We define ẑn,m = (b̂n,m, ĉn,m) be the prediction pair. Second, we
identify and group the detections corresponding to ẑn,m across the inference space that have the same
predicted class and an overlap with its bounding box greater than a certain threshold. Specifically, we
create a set An,m for each ẑn,m. This set consists of all predictions ẑk,l such that ĉn,m = ĉk,l and
IoU between b̂n,m and b̂k,l is larger than some threshold γ (set to 0.5 throughout experiments) [25].
Here k ̸= n and l is an arbitrary detection in kth MC forward pass.

An,m = {∀k ̸=n ∪ (b̂k,l, ĉk,l), | IoU(b̂n,m, b̂k,l) > γ , ĉk,l = ĉn,m }. (10)

Finally, An,m is utilized to estimate the uncertainty in ẑn,m. We aim to capture uncertainty in
predicted confidences and localization. So, we first estimate the variance in predicted (class) con-
fidences, center x, center y, and aspect ratio of the bounding boxes predictions in An,m and later
aggregate them to construct a joint measure of uncertainty. Let {ψ}Jj=1 and {Ψ}Jj=1 be the vectors
(J denotes the length) containing variances and means of predicted confidences, center-x, center-y,
and aspect ratio of the predicted bounding boxes in An,m, respectively. Let Ψagg be the combined
mean, computed as Ψagg = 1

J

∑J
j=1 Ψj . Then, the combined variance representing a single, joint

measure of uncertainty is computed as:

un,m =
1

J

J∑
j=1

[ψj + (Ψj −Ψagg)
2]. (11)

Uncertainty-guided soft pseudo-targets: We leverage (joint) uncertainty to modulate the one-hot
encoded pseudo-targets, formed according to (selected) pseudo-labels, to account for the entropy in
object detections under target domain. Let Hk

i be ith location in the class k one-hot encoded channel
map corresponding to a detected bounding box, with uncertainty uki and (pseudo) class label k. The
uncertainty-guided soft pseudo-target is constructed as:

Ĥk
i =

{
Hk

i .(1− uki) if s̄ki ≥ κ1
Hk

i .s̄
k
i .(1− uki) if κ2 ≤ s̄ki < κ1

(12)

Where s̄ki = 1
T

∑
j ŝ

j
i is the mean (class) confidence of the predicted bounding boxes in Ai. κ1 is

threshold for ranking between highly confident and relatively less confident detections, and κ2 is the
confidence threshold below which there is no detection considered.

6

Methods Sim10k KITTI Cityscapes
D-ECE ↓ AP@0.5 ↑ D-ECE ↓ AP@0.5 ↑ D-ECE ↓ AP@0.5 ↑

In-domain Detections
Single-stage 16.1 79.2 15.1 94.1 15.1 44.9

Single-stage + post-hoc 23.4 78.7 22.8 94.1 25.3 44.3
Single-stage + TCD 14.9 83.4 12.6 94.7 9.4 48.3

Out-of-domain Detections
Sim10K→CS KITTI→CS CS→CS-foggy CS→BDD100K

Single stage 12.2 37.6 13.0 37.4 18.4 20.4 19.5 19.5
Single-stage + post-hoc 20.7 38.1 23.2 37.5 22.7 20.3 27.4 19.3

Single-stage + TCD 9.6 42.4 8.9 40.3 5.5 22.4 12.4 22.0

Table 1: Calibration performance and test accuracy with single-stage detector (FCOS [34]) trained with its
application specific losses. Calibration with post-hoc temperature scaling and with our proposed TCD loss.

4 Experiments

Datasets: Cityscapes dataset [1] consists images of road and street scenes with bounding box
annotations of following object categories: person, rider, car, truck, bus, train, motorbike, and
bicycle. KITTI dataset [4] offers images of road scenes, captured from different viewing angle than
Cityscapes and encompass wide-view of the area. Foggy Cityscapes dataset [31] is constructed
by simulating foggy-weather, using depth maps, over the images in Cityscapes dataset. From the
available three levels of fog, per the norm, we use the one with most dense fog. Sim10k dataset [12]
is a collection of 10K images, synthesized from Grand Theft Auto V, and corresponding bounding
box annotations of cars in those images. Follow prior works, while adapting from KITTI or Sim10k,
only car-class is considered. Following prior works, car-class is BDD100k dataset [39] contains 100k
annotated images with bounding boxes and category labels. 70k images are used for training and 30k
are used for validation. Following [38] we only consider daylight images to create a training subset
of 36.7k images and a validation subset of 5.2k images. Note that, the validation subset is used as an
evaluation set.

Evaluation and implementation details: We report calibration performance using detection expected
calibration error (D-ECE) and also report test accuracy. Further, we also plot reliability diagrams
for visualizing calibration. Our TCD loss is developed to be used with the task-specific loss of
DNN-based object detectors, including the SOTA domain-adaptive ones. For instance, the task
specific losses for single-stage detectors use Focal loss [21] and IoU loss. Similarly Smooth L1 loss
and Cross-Entropy are used in training the two-stage detectors. Let LD be the task-specific loss, then
the total loss in our method is computed as: L = LD + LTCD. For further implementation details,
refer to the supplementary.

Considered object detectors: Most current state-of-the-art (SOTA) object detectors are built on either
a single-stage or a two-stage backbone. To include a representative detector models, from single-stage
detectors we consider a state-of-the-art detector FCOS [34] and from multi-stage detectors we choose
Faster-RCNN [29]. Our choice is partially motivated by the fact that the same backbones are also
used in the current SOTA domain-adaptive object detectors. For the domain adaptive detectors we
include EPM [9] and also SSAL [25] which are among the best performing single-stage domain
adaptive detectors built on FCOS as source model. For the two-stage domain adaptive variant we
include SWDA [30] that is built on FasterRCNN.

4.1 Experiments with One-stage and Two-stage Detectors

In this setting, we train a DNN-based object detector (1) with its task-specific loss functions and (2)
after adding our TCD auxiliary loss function. For comparison we also include a post-hoc calibration
technique based on temperature scaling. The temperature parameter T is obtained using a hold-out
validation set to perform temperature scaling at inference time in the target domain. We measure the
performance and calibration errors in two settings. Here we measure the performance on the test set
belonging to the same domain from which training dataset was sampled In-domain Detection: Here
we measure the performance over the test-set partition of same dataset from which training set was
extracted and Out-of-domain Detection: where we test it on an unseen target domain i.e., a different
dataset.

7

Methods Sim10K CS
D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5

In-domain Detections
Two-stage 23.7 66.2 16.2 38.3 - -
Two-stage + post-hoc 15.0 66.3 13.6 38.0 - -
Two-stage + TCD 14.5 66.7 11.0 39.9 - -

Out-of-domain Detections
Sim10K → CS CS → CS-foggy CS → BDD100K

Two-stage 13.9 33.9 8.4 22.7 16.3 23.3
Two-stage + post-hoc 11.9 34.1 6.3 22.7 13.7 23.3
Two-stage + TCD 11.1 33.9 5.7 25.2 9.6 23.5

Table 2: Calibration results
with a two-stage detector
(Faster-RCNN [29]) trained
with its task-specific loss, ap-
plying post-hoc temperature
scaling on a pre-trained two-
stage detector, and training
two-stage detector after adding
our TCD loss.

Methods Sim10K→CS CS→CS-foggy
D-ECE AP@0.5 D-ECE AP@0.5

Single-stage Domain Adaptive Detectors
EPM [9] 16.0 46.7 15.7 38.6
EPM + TCD 9.9 47.7 14.8 39.9
SSAL(UGPL) [25] 13.6 49.5 22.1 35.0
SSAL(UGPL) + TCD 8.5 51.4 19.1 35.2

Two-stage Domain Adaptive Detectors
Sim10K→CS CS→CS-foggy

SWDA [30] 14.6 40.9 11.2 36.6
SWDA + TCD 13.8 40.0 9.3 37.5

Table 3: Calibration results with two different
single-stage domain-adaptive detectors, EPM [9]
and SSAL(UGPL) [25], and a two-stage detector
SWDA [30]. We report both calibration perfor-
mance (ECE) and test accuracy (AP@0.5).

Table 1 reports results with a one-stage detector (FCOS [34]) trained with its task-specific losses
i.e. Focal loss and IoU loss. We report calibration errors (D-ECE) and performance of the model.
We show the impact on calibration after adding and training with the proposed auxiliary loss TCD.
For comparison we include post-hoc temperature scaling based calibration method. For in-domain
detections, we see that our proposal, single-stage detector trained after adding TCD, achieves the best
D-ECE score across all datasets. Furthermore, our proposal allows boosting the detection performance
by notable margins compared to a single-stage detector in all datasets. For out-of-domain detections,
we significantly improve the calibration performance over baselines in all domain shift scenarios. For
instance, it decreases the D-ECE score by 12.9% and 7.1% compared to the single-stage detector
in CS→CS-foggy and CS→BDD100K, respectively. At the same time, it provides notable gains in
detection performance over single-stage detector e.g., a 4.8% gain (AP@0.5) in Sim10K→CS.

We report results with a two-stage detector Faster-RCNN [29], trained with a task-specific loss, taking
a pre-trained two-stage detector and applying post-hoc temperature scaling, and a two-stage trained
with task-specific loss and our TCD loss (Table 2). For both in-domain and out-of-domain detections,
we observe that our proposal, two-stage detector trained after adding TCD, delivers the best D-ECE
score across all datasets.

4.2 Experiments with Domain-adaptive Detectors

In this setting, we incorporate our TCD auxiliary loss in the recent SOTA domain-adaptive detectors
and observe impact on calibration performance. In single-stage paradigm, we chose EPM [9], which
accounts for pixel-wise centerness and objectness for target domain images in an adversarial alignment
framework. Further, we also choose a method from the line of self-training based domain-adaptive
detectors. Particularly, we select uncertainty-guided pseudo-labelling (UGPL) from SSAL [25]. In
two-stage paradigm, we choose SWDA [30], which proposes strong local alignment and weak global
alignment in an adversarial alignment framework.

Table 3 reports results with two single-stage domain-adaptive detectors: EPM [9], UGPL from [25].
After adding our proposed loss TCD, the calibration performance for both domain-adaptive detectors
is significantly improved. In Sim10K→CS, both EPM+TCD and SSAL(UGPL)+TCD reduce ECE
score by 6.1% and 5.1%, respectively. Further, we observe that after adding our auxiliary loss (TCD),
there are notable gains in AP@0.5.

We show the impact of our TCD loss on the calibration performance of a two-stage domain-adaptive
detector (SWDA [30]) in Table 3. Upon adding our loss TCD in SWDA, we observe that the
calibration of SWDA is improved in both adaptation scenarios.

4.3 Experiments with Implicit Calibration Technique

We validate the effectiveness of our implicit calibration technique (ICT) (sec. 3.3) by integrating
in a self-training based uncertainty-guided pseudo-labelling baseline (UGPL)) from [25]. UGPL
is a strong baseline in terms of benchmarking model calibration because it leverages uncertainty

8

Method/Shift scenarios Sim10k → CS CS → CS-foggy
D-ECE AP@0.5 D-ECE mAP@0.5

SSAL(UGPL) [25] 13.6 49.5 22.1 35.0
SSAL(UGPL)+ICT 12.7 51.3 19.5 34.2
SSAL(UGPL)+TCD 8.5 51.4 19.1 35.2

SSAL(UGPL)+ICT+TCD 7.9 50.7 16.7 36.9

Table 4: Calibration results with our implicit calibration technique (ICT).

Figure 2: Class-wise reliability diagrams. Top row: One-stage detector trained with task-specific loss. Bottom
row: One-stage detector trained with task-specific loss and our loss TCD.

to select pseudo instance-level labels in an unlabelled target domain for self-training. Table 4
reports results for following methods: SSAL(UGPL) [25], SSAL(UGPL)+ICT, SSAL(UGPL)+TCD,
SSAL(UGPL)+ICT+TCD. We see that SSAL(UGPL)+ICT decreases D-ECE by 0.9% in Sim10→CS
shift. Further, adding TCD shows significant improvement in calibration performance (D-ECE).
Finally, using both ICT and TCD achieves the best calibration scores in both Sim10K→CS and
CS→CS-foggy shifts, thereby revealing that ICT and TCD are complementary.

4.4 Ablation Study and Analysis

For ablation experiments with TCD, we use one-stage detector (FCOS [34]. For ICT ablation
experiments, we use the UGPL component of SSAL [25], which is a domain-adaptive detector.

Mitigating Under/Over-Confidence: Fig. 2 shows that our proposal, task-specific loss in conjunction
with proposed TCD loss, facilitates a one-stage detector in mitigating both under-confident and over-
confident detections in two different multi-class shift scenarios.

Impact on test accuracy: We observe the impact on test accuracy after adding our TCD loss with
the task-specific loss of one-stage detector in Table 5. Our proposal is capable of providing gains in
test accuracy with visible margins over higher IoU thresholds and over the spectrum of large, medium
and small objects.

Shift scenario Method AP(mean) AP@0.5 AP@0.75 AP@S AP@M AP@L
One-stage 17.8 37.6 14.9 3.8 19.7 36.6

Sim10K → CS
One-stage+TCD 22.5 42.4 21.4 4.2 24.8 46.5

One-stage 9.5 19.5 7.9 3.5 11.7 20.0
CS → BDD100K

One-stage+TCD 10.7 22.0 9.0 3.2 13.2 23.7

Table 5: Test accuracy after adding our TCD loss with the task-specific loss of one-stage detector (FCOS [34]).

Without detection component ddet: Table 6 shows the impact on calibration performance without
ddet component in TCD. We see that without ddet, the calibration performance (D-ECE) degrades.

Scenarios Sim10k to CS CS to CS-foggy KITTI to CS CS to BDD100K
OOD In-domain OOD In-domain OOD In-domain OOD In-domain

D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5 D-ECE AP@0.5
w/o d_det 10.3 44.9 15.2 82.3 8.1 23.8 13.3 44.8 11.4 38.7 13.0 94.3 16.5 19.8 13.3 44.8
with d_det 9.6 42.4 14.9 83.4 5.5 22.4 9.4 48.3 8.9 40.3 12.6 94.7 12.4 22.0 9.4 48.3

Table 6: Impact on calibration performance without ddet component of TCD in four domain shift scenarios.

On different uncertainty quantification methods for ICT: Table 7 reports the calibration perfor-
mance of ICT with different methods of quantifying uncertainty. We use variances across: predicted
confidences only [25] uconf.; predicted confidences and center-x,center-y uconf.,x,y; predicted confi-
dences and center-x,center-y, aspect-ratio (ours) uconf.,x,y,ar. Among different methods, our proposed
technique of estimating detection uncertainty in ICT provides the lowest D-ECE score.

9

Methods (Sim10K→CS) D-ECE AP@0.5
SSAL(UGPL) [25] 13.6 49.5
SSAL(UGPL)+ICT(uconf.) 13.0 50.5
SSAL(UGPL)+ICT(uconf.,x,y) 12.8 51.1
SSAL(UGPL)+ICT(uconf.,x,y,ar) 12.7 51.3

Table 7: Calibration performance of ICT when us-
ing different ways of quantifying detection uncer-
tainty. See text for details.

Limitation: Current study does not explore the impact on calibration with respect to objects sizes.
Further, our train-time calibration loss could potentially result in less improvement in classes with
relatively less instances.

5 Conclusion

In this paper, we approached the challenging problem of calibrating DNN-based object-detectors for
in-domain and out-of-domain detections and improving their calibration in the domain-adaptation
context. We proposed an auxiliary train-time calibration loss TCD that jointly calibrates the class-wise
confidences and localization performance. Further, we develop an implicit calibration technique
(ICT) for self-training based domain adaptive detectors. Results show that TCD loss is capable of
improving calibration of both one-stage and two-stage detectors. Finally, we show that ICT and TCD
together results in well-calibrated domain-adaptive detectors.

References
[1] Cordts, M., M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele

(2016). The cityscapes dataset for semantic urban scene understanding. In Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[2] Dusenberry, M. W., D. Tran, E. Choi, J. Kemp, J. Nixon, G. Jerfel, K. Heller, and A. M. Dai (2020).
Analyzing the role of model uncertainty for electronic health records. In Proceedings of the ACM Conference
on Health, Inference, and Learning, pp. 204–213.

[3] Gal, Y. and Z. Ghahramani (2016). Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In international conference on machine learning, pp. 1050–1059. PMLR.

[4] Geiger, A., P. Lenz, and R. Urtasun (2012). Are we ready for autonomous driving? the kitti vision benchmark
suite. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pp. 3354–3361. IEEE.

[5] Grigorescu, S., B. Trasnea, T. Cocias, and G. Macesanu (2020). A survey of deep learning techniques for
autonomous driving. Journal of Field Robotics 37(3), 362–386.

[6] Guo, C., G. Pleiss, Y. Sun, and K. Q. Weinberger (2017). On calibration of modern neural networks. In
International Conference on Machine Learning, pp. 1321–1330. PMLR.

[7] Hebbalaguppe, R., J. Prakash, N. Madan, and C. Arora (2022). A stitch in time saves nine: A train-time
regularizing loss for improved neural network calibration. arXiv preprint arXiv:2203.13834.

[8] Hein, M., M. Andriushchenko, and J. Bitterwolf (2019). Why relu networks yield high-confidence predictions
far away from the training data and how to mitigate the problem. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 41–50.

[9] Hsu, C.-C., Y.-H. Tsai, Y.-Y. Lin, and M.-H. Yang (2020). Every pixel matters: Center-aware feature
alignment for domain adaptive object detector. In European Conference on Computer Vision, pp. 733–748.
Springer.

[10] Islam, M., L. Seenivasan, H. Ren, and B. Glocker (2021). Class-distribution-aware calibration for long-
tailed visual recognition. arXiv preprint arXiv:2109.05263.

[11] Ji, B., H. Jung, J. Yoon, K. Kim, and Y. Shin (2019). Bin-wise temperature scaling (bts): Improvement
in confidence calibration performance through simple scaling techniques. 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), 4190–4196.

[12] Johnson-Roberson, M., C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan (2017). Driving
in the matrix: Can virtual worlds replace human-generated annotations for real world tasks? In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 746–753. IEEE.

10

[13] Karimi, D. and A. Gholipour (2022). Improving calibration and out-of-distribution detection in deep
models for medical image segmentation. IEEE Transactions on Artificial Intelligence.

[14] Krishnan, R. and O. Tickoo (2020). Improving model calibration with accuracy versus uncertainty
optimization. Advances in Neural Information Processing Systems.

[15] Kull, M., M. Perello Nieto, M. Kängsepp, T. Silva Filho, H. Song, and P. Flach (2019). Beyond temperature
scaling: Obtaining well-calibrated multi-class probabilities with dirichlet calibration. Advances in neural
information processing systems 32.

[16] Kull, M., T. Silva Filho, and P. Flach (2017). Beta calibration: a well-founded and easily implemented
improvement on logistic calibration for binary classifiers. In Artificial Intelligence and Statistics, pp. 623–631.
PMLR.

[17] Kumar, A., S. Sarawagi, and U. Jain (2018). Trainable calibration measures for neural networks from
kernel mean embeddings. In International Conference on Machine Learning, pp. 2805–2814. PMLR.

[18] Kuppers, F., J. Kronenberger, A. Shantia, and A. Haselhoff (2020). Multivariate confidence calibration for
object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, pp. 326–327.

[19] Küppers, F., J. Kronenberger, A. Shantia, and A. Haselhoff (2020, June). Multivariate confidence calibration
for object detection. In The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops.

[20] Liang, G., Y. Zhang, X. Wang, and N. Jacobs (2020). Improved trainable calibration method for neural
networks on medical imaging classification. arXiv preprint arXiv:2009.04057.

[21] Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollár (2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on computer vision, pp. 2980–2988.

[22] Maroñas, J., D. Ramos, and R. Paredes (2021). On calibration of mixup training for deep neural networks.
In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural
and Syntactic Pattern Recognition (SSPR), pp. 67–76. Springer.

[23] Mukhoti, J., V. Kulharia, A. Sanyal, S. Golodetz, P. Torr, and P. Dokania (2020). Calibrating deep neural
networks using focal loss. Advances in Neural Information Processing Systems 33, 15288–15299.

[24] Müller, R., S. Kornblith, and G. E. Hinton (2019). When does label smoothing help? Advances in neural
information processing systems 32.

[25] Munir, M. A., M. H. Khan, M. Sarfraz, and M. Ali (2021). Ssal: Synergizing between self-training
and adversarial learning for domain adaptive object detection. Advances in Neural Information Processing
Systems 34.

[26] Naeini, M. P., G. Cooper, and M. Hauskrecht (2015). Obtaining well calibrated probabilities using bayesian
binning. In Twenty-Ninth AAAI Conference on Artificial Intelligence.

[27] Pereyra, G., G. Tucker, J. Chorowski, Ł. Kaiser, and G. Hinton (2017). Regularizing neural networks by
penalizing confident output distributions. arXiv preprint arXiv:1701.06548.

[28] Platt, J. et al. (1999). Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers 10(3), 61–74.

[29] Ren, S., K. He, R. Girshick, and J. Sun (2015). Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in neural information processing systems, pp. 91–99.

[30] Saito, K., Y. Ushiku, T. Harada, and K. Saenko (2019). Strong-weak distribution alignment for adaptive
object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6956–6965.

[31] Sakaridis, C., D. Dai, and L. Van Gool (2018). Semantic foggy scene understanding with synthetic data.
International Journal of Computer Vision 126(9), 973–992.

[32] Sharma, M., O. Saha, A. Sriraman, R. Hebbalaguppe, L. Vig, and S. Karande (2017). Crowdsourcing
for chromosome segmentation and deep classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition workshops, pp. 34–41.

11

[33] Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna (2016). Rethinking the inception architecture
for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
2818–2826.

[34] Tian, Z., C. Shen, H. Chen, and T. He (2019). Fcos: Fully convolutional one-stage object detection. In
Proceedings of the IEEE international conference on computer vision, pp. 9627–9636.

[35] Tomani, C., S. Gruber, M. E. Erdem, D. Cremers, and F. Buettner (2021). Post-hoc uncertainty calibration
for domain drift scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10124–10132.

[36] Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and C. Bregler (2015). Efficient object localization using
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 648–656.

[37] Wang, D.-B., L. Feng, and M.-L. Zhang (2021). Rethinking calibration of deep neural networks: Do not be
afraid of overconfidence. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan (Eds.),
Advances in Neural Information Processing Systems, Volume 34, pp. 11809–11820. Curran Associates, Inc.

[38] Xu, C.-D., X.-R. Zhao, X. Jin, and X.-S. Wei (2020). Exploring categorical regularization for domain
adaptive object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11724–11733.

[39] Yu, F., W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell (2018). Bdd100k: A diverse driving
video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687 2(5), 6.

[40] Yu, R. and G. S. Alì (2019). What’s inside the black box? ai challenges for lawyers and researchers. Legal
Information Management 19(1), 2–13.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Since

our work belongs to the fundamental problem in machine learning, it inherits all the
benefits of object detection.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [No] Our work is

not theoretical.
(b) Did you include complete proofs of all theoretical results? [No] Our work is not

theoretical.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [No]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] In supplementary.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] In supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We are using

implementations of existing published works, and those are cited.
(b) Did you mention the license of the assets? [No] We are citing the previous work whose

publicly shared code we use for reporting baselines.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

	Introduction
	Related Work
	Improving Calibration in Object Detectors
	Definitions of Calibration
	Train-time Calibration for Detection: TCD
	Implicitly Calibrating Self-Training based Domain Adaptive Detectors

	Experiments
	Experiments with One-stage and Two-stage Detectors
	Experiments with Domain-adaptive Detectors
	Experiments with Implicit Calibration Technique
	Ablation Study and Analysis

	Conclusion

