
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

METAAGENT: AUTOMATICALLY BUILDING MULTI-
AGENT SYSTEM BASED ON FINITE STATE MACHINE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can solve various practical tasks via a multi-
agent system. However, existing human-designed multi-agent systems can only
adapt to a limited number of pre-defined scenarios. Current auto-designed meth-
ods also have several drawbacks, including no tool support, reliance on external
data, and inflexible communication structure. Therefore, we propose MetaAgent,
a novel framework to automatically generate a multi-agent system based on a fi-
nite state machine. Given a task description, MetaAgent will design a multi-agent
system and polish it through self-generated test queries. When the multi-agent
system is deployed, the finite state machine, which supports the traceback and
is more suitable for tool-using, will control the process of problem-solving. To
evaluate our framework, we conduct experiments on both practical tasks and ba-
sic NLP tasks, the results indicate that the generated multi-agent system surpasses
other auto-designed methods and can achieve a comparable performance with the
human-designed multi-agent system which is polished for those specific tasks.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI et al. (2024); Zhao et al. (2024)) show a spring-up of
intelligence, containing strong ability of coding, reasoning, and numerous compressed knowledge.
Utilizing LLM as the brain to build agents can complement various complex tasks, which requires
the agent to plan, utilize tools, and make reflections. (Yao et al. (2023); Shinn et al. (2023); Wang
et al. (2024a); Qin et al. (2023)). To further improve the performance, the multi-agent system
has proposed, which improves and enlarges the abilities of the agent by assigning different roles
and skills to LLMs and designing effective cooperation mechanisms to organize them (Hong et al.
(2023); Qian et al. (2024); Yan et al. (2024); Huang et al. (2024)). Despite the success, most of the
existing multi-agent are still manually designed, introducing human efforts to implement the com-
plex codebase and needing several iterations of human polishing. Moreover, these frameworks are
built only to solve tasks in some specific scenarios, further enhancing the design cost.

To address it, a few works try to build multi-agent systems automaticallyChen et al. (2024a); Wang
et al. (2024d); Yuan et al. (2024). However, current works have failed to construct a complete
and practical multi-agent system due to several reasons. SPP, AutoAgents, and EvoAgent (Chen
et al. (2024a); Wang et al. (2024d); Yuan et al. (2024)) design multi-agent systems for each specific
case. In other words, the produced multi-agent system can only handle the specific case and lacks
generalization to other cases in the same task domain. Some of them do not support tool-using as
well. ADAS and Symbolic-Learning (Hu et al. (2024); Zhou et al. (2024)) build multi-agent systems
automatically based on self-iteration algorithms. However, tons of iterations and external data are
needed for optimization. Moreover, following the communication structure of human-designed
multi-agent systems (Hong et al. (2023); Qian et al. (2024); Du et al. (2023)), current works use
a linear cooperation structure to organize agents, simulating Standardized Operating Procedures
(SOPs) in human society, which can not trace back to previous steps when encountering errors or
misunderstanding.

To address the limitations of human-designed multi-agent systems and drawbacks of existing auto-
design methods, we introduce MetaAgent: A framework that can automatically design finite state
machine based multi-agent system for various types of tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Framework MetaGPT AutoAgents SPP EvoAgent ADAS Symbolic MetaAgent

Auto-Designed ✗ ✓ ✓ ✓ ✓ ✓ ✓

Generalization ✓ ✗ ✗ ✗ ✓ ✓ ✓

Tool Enabled ✗ ✓ ✗ ✓ ✗ ✓ ✓

Traceback Ability ✗ ✗ ✗ ✗ ✗ ✗ ✓

Non-External Data Depend ✓ ✓ ✓ ✓ ✗ ✗ ✓

Table 1: Comparison of existing and proposed Multi-Agent Frameworks

Figure 1: The above part shows an example of what is a state, and how our finite state machine
structure works. The blow part shows how other linear-structured Multi-Agent Systems work.

Specifically, given a general description of a type of task, the MetaAgent will first design several
agents needed to solve the task. Then, to organize these agents, several states are summarized based
on the possible steps involved in solving the task. Each state includes the corresponding task-solving
agent, the instructions for the task-solving agent, the condition verifier who checks whether the
output meets certain state transition conditions, and the listener agents who will receive the output
of the state. This design leverages the LLM’s decision-making ability to dynamically manage the
problem-solving process when encountering different cases within the given type of task.

The definition of state is inherently suitable for tool usage because it supports a multi-turn and
dynamic environment. The condition verifier checks whether the previous action needs refinement
or is complete to proceed to the next state. If errors occur during the tool-using process, the task-
solving agent can refine its actions over several turns, enhancing robustness. Similarly, the condition
verifier can trace the state back to the previous one if it detects errors or misunderstandings, ensuring
a flexible workflow within the finite state machine. This machine acts as a guideline for problem-
solving. In specific cases, the agent follows state instructions to generate state-by-state outcomes
until reaching the final stage, where it submits the solutions to the user.

Before deploying the finite state machine based multi-agent system to solve practical tasks, we
design a self-iteration mechanism to refine the system. A test generator is tasked with writing
both primary and edge cases based on the tasks and initial design. The failure trajectories of these
generated tests are analyzed by an adaptor, and the finite state machine is revised. Unlike relative
works (Hu et al. (2024); Zhou et al. (2024)), the iteration method does not need external data as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

well as numerous training steps. That’s because the self-generated test which mainly helps optimize
the FSM structure to avoid trivial states and long chains, is enough to ensure robust performance
without needing carefully designed tests from external data or benchmarks.

When deployed, the multi-agent system can efficiently handle most cases within the task domain
due to the finite state machine mechanism and prior testing on primary and edge cases. The user
query, combined with the current state’s instructions, serves as the input for the task-solving agent.
The agent’s output is sent to the state’s condition verifier, which has several pre-defined state tran-
sition conditions in its system prompt. If a condition is met, the current state transitions to the
corresponding state, which can also be a previous state, enabling the finite state machine’s state
traceback capability. Before the transition, the task-solving agent’s output is sent to listeners as
memory. Figure 1 illustrates the working mechanism of the finite state machine and compares it
with other multi-agent systems with linear structures.

To verify that our MetaAgent is a general and robust framework capable of automatically pro-
ducing customized multi-agent systems for various scenarios, we conduct experiments on realistic
tasks. These include Machine Learning Bench (Hong et al. (2024)), software development tasks
(Zhou et al. (2024)), and NLP tasks like Trivial Creative Writing (Wang et al. (2024d)), which
are widely used to evaluate other auto-design multi-agent systems. The experiments indicate that
the multi-agent system produced by the MetaAgent framework surpasses other automatic systems
and achieves performance levels comparable to manually designed systems tailored for the tasks.In
the Machine Learning tasks, the multi-agent system generated by MetaAgent achieved 97% of the
average performance of the best human-designed multi-agent system, surpassing all other human-
designed and multi-designed frameworks. In the software development task, MetaAgent passed 50%
more checkpoints than the human-designed system. Our ablation study on tool usage, iteration, and
traceback shows a 10% to 50% decrease in performance on the aforementioned tasks, highlighting
the critical importance of these features.

2 RELATED WORKS

2.1 MULTI-AGENT SYSTEM

Previous works have discussed multi-agent systems in various scenarios. One category of Multi-
Agent System is designed to simulate real-world scenarios (Park et al. (2023); Xu et al. (2024); Hua
et al. (2024)). Researchers can find some rules or conduct social experiments in these systems.

In this research, we focus on the multi-agent system which builds for problem-solving. Early works
use merely the reasoning ability of LLM to build systems like debating, voting, and negotiating.
(Wu et al. (2023); Du et al. (2023); Yan et al. (2024); Bianchi et al. (2024)) Later works implement
tool-using and more complex communication structures for the system. MetaGPT and ChatDev
(Qian et al. (2024); Hong et al. (2023)) build a Multi-Agent System for software development and
introduce a message pool to manage communication. DataInterpreter and AgentCoder (Hong et al.
(2024); Huang et al. (2024)) focus on data science or Python code problems but are also limited
to pre-defined scenarios. There are a few works that apply the finite state machine to control the
agentic system. (Wu et al. (2024); Liu et al. (2024); Chen et al. (2024b)) But they are limited to
certain scenarios as well as using a fixed method to detect certain output strings as the transition
function, which is hard to adapt to complex real-world scenarios.

As the growing trend of automatic design, SPP (Wang et al. (2024d)) introduces a prompt-based
method to build a linear multi-agent system for each case of task, invoking the compressed knowl-
edge by assigning the roles. AutoAgents (Chen et al. (2024a)) is built on the codebase of MetaGPT
and further improves the Multi-Agent System by adapting planning and multi-turn cooperation be-
tween agents. ADAS and Symbolic Learning (Hu et al. (2024); Zhou et al. (2024)) try to optimize
a multi-agent system from a given simple system, but they need many iterations and focus more
on the inner structure of each single agent. However, there is a lack of a method to efficiently and
automatically build a tool-enabled multi-agent system that can handle a specific domain.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 TOOL LLM

Utilizing tools is a significant feature of LLM Agent as well as our MetaAgent Framework, for it
enables the Agents to interact with external worlds, enlarging their ability scope. Previous works
on tool LLM can be divided into two categories. The first category (Patil et al. (2023); Qin et al.
(2023)) teaches LLMs to utilize a wide range of real-world APIs via function-calling, with a focus
on the breadth of tools. The second category focuses on the usage of some specific tools like search
engines and code interpreters that can complete multiple tasks. CodeAct (Wang et al. (2024b)) first
assigned code as actions and integrated various functions into the Python code snippet. PyBench and
MINT (Zhang et al. (2024); Wang et al. (2024c)) evaluate LLM equipped with code interpreter on
multiple tasks. Gao et al. (2024) shows LLM Agent equipped with a search engine has a significant
ability growth in numerous information-seeking tasks. Our MetaAgent, mainly equipped the agents
with code interpreter and search engine, promoting the tool-using ability to the area of automatic
multi-agent system.

3 METHOD

3.1 BACKGROUND

We first introduce the finite state machine to describe a multi-agent system. A finite state machine
(FSM) is a computational model consisting of a finite number of states, and transition functions
between those states (Hopcroft et al. (2001); Carroll & Long (1989)). In our setting, a state means
one possible step when solving a problem, containing the task-solving agent, the condition verifier,
the state instruction, and the listeners who receive the output when the state is complete. The state
transition conditions are described by strings, which will be the basis for decision-making for the
condition verifier. Hence, an FSM can be defined by a tetrad: {Σ, S, s0, con}. The key concepts of
a finite state machine consist of the following:

• Σ: The input string of the finite state machine.
• S: The set of states.
• s0: The initial state, an element of S.
• con: State transition conditions.

The FSM will start at the initial state and transition between states under the control of state transition
conditions until it either reaches the final state, indicating task completion or hits the maximum
number of transitions, indicating task failure.

3.2 CONSTRUCTION STAGE

Agents Design Given the general descriptions of the task, the designer will first design several
required agents that may be needed to solve the task. Each agent has the name, system prompt, and
equipped tools selected from a pre-defined pool.

Finite State Machine Design The designer generates a finite state machine based on the agents
and task description. This finite state machine includes descriptions of each state and the conditions
for state transitions. The design process involves several steps. Firstly, the designer should consider
the various scenarios that may arise while solving different cases within the task domain. Based on
these potential situations, several states that reflect these scenarios are created. For each state, the
corresponding agent capable of addressing the situation is assigned, along with specific instructions
for the agent. Next, the designer ensures that each state’s output is received by the relevant agents by
setting up listeners for each state. Finally, the states are connected by defining the conditions under
which one state should transition to another.

Test Case Generation After the first version of the multi-agent system is generated, the test gen-
erator designs several test queries based on the task description and the multi-agent system. To
identify the drawbacks of the current system, the generator writes two types of queries. The first
type covers the primary cases in the task domain, aiming to test the robustness of the current system.
The second type consists of edge cases, which help the system become more complete.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: The construction stage of MetaAgent

Self-Iteration By testing the multi-agent system on generated queries, we obtain the trajectories of
bad cases. The adaptor is then prompted to update the multi-agent system from several aspects. First,
identify any overlap in the agents’ roles and determine if the agents can be combined. Next, detect
any unnecessary states causing redundant information flow and simplify the states. Additionally,
update the instructions or system prompts to handle edge cases. After these updates, the new multi-
agent system is sent back to the test generator for targeted test queries. The multi-agent system can
be fine-tuned after one or two iterations.

3.3 DEPLOYMENT STAGE

After the construction stage, the multi-agent system is fixed and ready for deployment in practical
scenarios. In a specific task domain, the finite state machine operates according to Algorithm 1.
Initially, the state is set to s0, and the agent in this state acts based on the given instructions and
query. The output, which is a combination of LLM text and tool responses (if used), is evaluated by
the condition verifier using the system prompt containing the transition conditions. Given the output
and conditions, the verifier assesses whether a condition is met and identifies the target state for
transition. If a condition is met, the state transitions to the detected target state and the output of the
current state is inserted into the memory of the listener agent, ensuring the flow of information. If
the transition function indicates that the state is not complete for no condition is met, the finite state
machine will continue to call the current agent until a transition condition is met or the maximum
number of interactions M is exceeded. Figure 1 shows an example of how a finite state machine
works.

3.4 FEATURES OF METAAGENT

We discuss key features of MetaAgent that distinguish it from other human-design or auto-design
multi-agent systems in this section.

Suitable for Tool-Using In the area of utilizing LLM to solve complex and practical tasks, it is
crucial to have the opportunity to refine or debug as well as call the tool for multi-turns to solve com-
plex tasks that can not be solved in one turn. The structure of the finite state machine is naturally
suitable for the above features because the condition verifier can continually urge the task-solving
agent to debug or go a step further whenever the output does not match any state transition condi-
tions.

Enable State Traceback In the general problem-solving process, it is inevitable to encounter er-
rors or misunderstandings from previous steps. Existing multi-agent systems with linear structures,
such as SOPs, do not account for this, as they only support a predefined linear pipeline. To address

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Deployment Stage
Require: specific case Q, max iterations M , Finite State Machine {Σ, S, s0, con}. A

state s contains the corresponding agent s.Agent, the instruction to the agent s.Ins,
the listener agent who will receive the state output s.Lis and the condition verifier for
the state s.V er

1: s← s0
2: c← 0
3: while c < M do
4: output← s.Agent(s.Ins,Q)
5: starget ← s.V er(output)
6: if starget = None then
7: output← s.Agent(s.Ins, output)
8: c← c+ 1
9: else

10: s← starget
11: c← c+ 1
12: for Lis in s.Lis do
13: memory insert(Lis, output)
14: end for
15: end if
16: end while

this weakness, our finite state machine enables state traceback. When the condition verifier identi-
fies dilemmas caused by misunderstandings or failures in previous states, it transitions back to the
previous state for refinement. For example, in a software development task, if the QA Test Agent
finds that a file has not been written, it can trace back to the stage where the programmer writes the
software to the file and provides debug information to the programmer.

Interation by itself Compared to other works that depend on external and even in-bag data for
training or optimization, MetaAgent can generate test queries on itself. We the initial version of
FSM always failed because the designed agent and state are too trivial, which leads to an extremely
long chain from the initial state to the final state. This also caused a large overlap in the work of
many agents, which affected the efficiency of cooperation and task completion. Thus, the main
purpose of iteration is to optimize the structure of FSM, ensuring it can work robustly. In other
words, the self-generated test is enough for the iteration, and there is no need to carefully design
tests from the external data or benchmarks.

Handle Every Case in the Domain Figure 3 illustrates the various configurations of our MetaA-
gent compared to other Auto-Design Frameworks, including SPP, EvoAgent, and AutoAgents.
Given a task domain, such as ”A multi-agent system for software development” or ”A multi-agent
system for machine learning tasks,” our MetaAgent designs a unified Multi-Agent System capable
of addressing every case within the domain and generating corresponding solutions. In contrast, the
other frameworks mentioned design distinct multi-agent systems for each specific case, which is less
practical and more costly.

4 EXPERIMENT

We conduct a series of experiments on different tasks to show the versatility and robustness of our
framework. We first compare MetaAgent on practical tasks including machine learning and soft-
ware development tasks to show that the generated FSM-based multi-agent system surpasses other
auto-design methods significantly and has comparable performance with a human-designed multi-
agent system. After that, we also conducted experiments on Trivial Creative Writing, an NLP task
requiring the Agent to gather knowledge in various domains, aiming to compare MetaAgent with
other auto-design multi-agent systems. Ablation studies on tool-using, traceback, and iteration are

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: The difference between Task-Level Design (Left) and Case-Level Design (Right)

also conducted to reveal their impacts. We selected GPT-4o as the foundation model in experiments.
The code interpreter and search engine are listed in the tool pool for selection.

4.1 REAL-WORLD CODING TASKS

4.1.1 MACHINE LEARNING BENCH

Machine Learning Bench(ml bench) (Hong et al. (2024)) is a benchmark that requires agents to
train a machine-learning model for regression or classification. We use the normalized performance
score (NPS) as the metric to evaluate the quality of the trained machine learning model on the given
evaluation datasets.

Baselines We select both human-designed and auto-designed Frameworks as baselines. AutoGen
(Wu et al. (2023)), OpenIterpreter (Lucas (2023)), TaskWeaver (Qiao et al. (2024)), and DataIn-
terpreter (Hong et al. (2024)) are typical human-designed multi-agent frameworks. We then adapt
SPP (Wang et al. (2024d)) and AutoAgents (Chen et al. (2024a)) to the ml bench by extracting the
generated code and getting the execution result.

Results and Analysis Table 2 presents the results on ml bench. The multi-agent system generated
by MetaAgent outperforms all other auto-designed frameworks, which lack the mechanism to utilize
tool feedback and thus process the dataset with hallucinations. MetaAgent also surpasses most
human-designed multi-agent systems, demonstrating the robustness of its finite state machine. It
achieves state-of-the-art (SOTA) performance on the Titanic and House Prices datasets and secures
the second-highest scores on other datasets, showing comparable performance to DataInterpreter, a
multi-agent system specifically tailored for machine learning tasks.

To analyze more deeply, we find that MetaAgent can generate a multi-agent system comprising a
”Data Preparation and Model Selection Agent,” a ”Model Training Agent,” and a ”Report Agent.”
Following the designed state instructions, these agents can perform feature engineering, explore the
dataset’s structure, and pass the detected information to other agents. They can also train various
models and report the best one. These features enable the multi-agent system to surpass others.

Model / Task Auto-Designed Titanic House Prices SCTP ICR SVPC Average
AutoGen ✗ 0.82 0.88 0.82 0.71 0.63 0.77
Open Interpreter ✗ 0.81 0.87 0.52 0.25 0.00 0.49
TaskWeaver ✗ 0.43 0.49 0.00 0.65 0.17 0.35
Data Interpreter ✗ 0.82 0.91 0.89 0.91 0.77 0.86
SPP ✓ 0.82 0.00 0.00 0.00 0.00 0.16
AutoAgents ✓ 0.00 0.00 0.00 0.00 0.00 0.00
MetaAgent ✓ 0.83 0.91 0.86 0.88 0.68 0.83

Table 2: Normalized performance score on ML Bench

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.1.2 SOFTWARE DEVELOPMENT

Software development is a comprehensive and practical task for evaluating agent systems, often
used to assess various multi-agent frameworks. We have collected several representative software
development tasks, including game and web app development. Unlike other software benchmarks
(Zhou et al. (2024); Hong et al. (2023); Qian et al. (2024)), which primarily rely on subjective
evaluation metrics, we have designed objective criteria for each software. These criteria include
accessibility, functional completeness, and control ability (detailed in the Appendix). Each software
is evaluated on four key points, earning one point for each test it passes. The metric used is the ratio
of passed tests.

Baselines We select both human-designed and auto-designed multi-agent systems as baselines.
MetaGPT (Hong et al. (2023)) designs a fixed SOP to organize the process of software development.
We also adapt AutoAgents and SPP (Chen et al. (2024a); Wang et al. (2024d)) to the software
development task by extracting the code they generated and save them to the files.

Results and Analysis Table 3 presents the results for five different software development tasks,
demonstrating that our MetaAgent framework not only outperforms other auto-designed frameworks
but also surpasses MetaGPT, a human-designed multi-agent framework for software development.
Without tool-using capabilities, the performance of AutoAgents and SPP is significantly lower. Ad-
ditionally, MetaGPT is constrained by its linear structure, which is lengthy and lacks the ability to
trace back like a finite state machine.

The generated multi-agent system consists of a ”Requirement Designer,” a ”Code Developer,” and a
”Tester.” The tool-using and traceback features of the finite state machine contribute to its success.
It can test whether the software can start and run smoothly via a code interpreter and trace back to
the code development stage to fix bugs found in the testing state.

Task / Model MetaGPT AutoAgents SPP MetaAgent
Auto-Designed ✗ ✓ ✓ ✓
2048 game 0.25 0 0.25 0.75
Snake game 0.25 0.75 0.50 1.0
Brick breaker game 0.75 0.25 0 0.50
Excel APP 0 0 0 1.0
Weather APP 0.50 0 0 1.0
Average 0.35 0.20 0.15 0.85

Table 3: Performance on Software Development Tasks

4.2 NLP TASK

4.2.1 TRIVIAL CREATIVE WRITING

Trivial Creative Writing is a demanding task that involves 100 instances. The model must craft a
coherent narrative in this task while seamlessly integrating answers to N trivia questions. (Wang
et al. (2024d)) The metric is the ratio of the number of trivia question keywords included in the story
to the total number of trivia questions.

Baselines We select prompt engineering methods including Direct, CoT (Wei et al. (2023)), and
Self-Refine (Madaan et al. (2023)) as well as auto-design methods like SPP, AutoAgents, and EvoA-
gent. (Wang et al. (2024d); Chen et al. (2024a); Yuan et al. (2024)) Note that, the selected auto-
design methods all design multi-agent systems at the case level.

Results and Analysis The results of our experiments demonstrate three key findings. First,
MetaAgent outperforms all other methods, achieving the highest score of 0.86 (Table 4). Second,
methods incorporating tool-using capabilities show significant performance improvements, high-
lighting the importance of tool integration. Third, MetaAgent surpasses case-level multi-agent sys-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tems such as EvoAgent and AutoAgents, which score 0.84 and 0.82 respectively, demonstrating that
case-level design is not only less unnecessary but also obviously more costly.

Model / Task Auto-Designed Tool-Using Case-Level Design Score
Direct ✗ ✗ ✗ 0.75
CoT ✗ ✗ ✗ 0.74
Self-Refine ✗ ✗ ✗ 0.75
SPP ✓ ✗ ✓ 0.79
AutoAgents ✓ ✓ ✓ 0.82
EvoAgent ✓ ✓ ✓ 0.84
MetaAgent ✓ ✓ ✗ 0.86

Table 4: Trivial Creative Writing Performance

4.3 ABLATION STUDY

To demonstrate the importance of the key features of MetaAgent, we conducted ablation studies on
the key components of MetaAgent: tool-using, traceback, and iteration.

Tool-Using Tool-using is a crucial part of the finite state machine. When equipped with tools,
the task-solving agent of a state can interact with the file system or the internet to solve complex
tasks. The condition verifier will help to analyze the tool feedback as well, establishing a multi-
turn interactive environment for tool-using, which can enhance the performance of the finite state
machine. As the result in Table 5, the performance has decreased when the tool is disabled, showing
that utilizing a search engine as a tool can help the agent clarify the answers and reach a higher
score.

Traceback The state traceback feature also contributes a lot when solving complex and unpre-
dictable tasks. In the case that the current agent finds the input information needs to be refined via
the previous state, the finite state machine enables traceback to the previous one and transmits the
information to that agent. This design ensures the finite state machine is better at handling vari-
ous situations, which distinguishes it from common linear structures like SOPs. The result of the
ablation experiments also proves the assertion. In particular, we find that multi-agent systems with-
out a traceback design often fail due to unresolved bugs. For instance, when the tester discovers a
bug while executing the software code, they cannot relay this information back to the programmer
without a traceback mechanism.

Interation When designing the multi-agent system, a few iterations are required to make the sys-
tem more robust. After testing the initial version of the multi-agent system on the pertinent test
cases, the multi-agent system will be adapted in the aspect of agent and state design. The iteration
can get rid of some unnecessary agents or intermediate states to simplify the work pipeline and en-
hance robustness. Results in Table 5 show that a sharp decrease in performance is caused by the
absence of iteration. And in the bad cases, we do observe that the system struggles to complete the
task due to excessively long text caused by unnecessary steps.

Methods ML Bench Software Trivial Creative Writing
Score ∆(%) Score ∆ (%) Score ∆ (%)

MetaAgent (w/o tool-using) – – – – 0.79 ↓ 8.1
MetaAgent (w/o iteration) 0.61 ↓ 26.5 0.65 ↓ 35.3 0.65 ↓ 24.4
MetaAgent (w/o traceback) 0.72 ↓ 13.3 0.35 ↓ 58.8 0.77 ↓ 10.5
MetaAgent 0.83 0.00 0.85 0.0 0.86 0.00

Table 5: Comparison of Methods Across Different Tasks. (”–” means not applicable)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: A Case Study Conduct on the Construction Stage

4.4 CASE STUDY

We present a case study comparing the initial multi-agent system with an updated version, using
Machine Learning Bench as an example. Figure 4 illustrates the process of reducing agent redun-
dancy and merging unnecessary states. Initially, the designer created a complex multi-agent system
with five agents and five states. However, some agents had roles too trivial to justify their existence.
For example, the ”Evaluation Agent” could be merged with the ”Model Training Agent,” and the
training and evaluation states could be combined. During the iteration process, we find the initial
multi-agent system failed on generated tests due to overly long chains and trivial tasks. Due to the
excessively frequent information transitions, agents experience a heavy burden on their memory,
leading to the loss of important outputs to some degree. Additionally, because the states are too
trivial, many agents have significant overlap in their tasks, which further reduces efficiency. After
passing the trajectories to the adaptor, the system was updated and redundant agents and states were
merged. The updated multi-agent system, with more integrated agents and states, performs much
better than the initial version.

5 CONCLUSION

In this paper, we introduce MetaAgent, a framework that automatically generates multi-agent sys-
tems based on finite state machines. This approach addresses the drawbacks of both human-
designed and auto-designed multi-agent systems. The finite state machine structure endows the gen-
erated multi-agent systems with tool-using and traceback capabilities. Additionally, the auto-design
pipeline during the construction stage ensures that the multi-agent system is generally applicable to
most cases within a task domain and can conduct self-iteration without external data. Experiments
on practical tasks demonstrate the potential of MetaAgent. Automation is a growing trend in the
LLM-based agent area, and MetaAgent provides a novel method for more practical scenarios.

REFERENCES

Federico Bianchi, Patrick John Chia, Mert Yuksekgonul, Jacopo Tagliabue, Dan Jurafsky, and James
Zou. How well can llms negotiate? negotiationarena platform and analysis, 2024. URL https:
//arxiv.org/abs/2402.05863.

John Carroll and Darrell Long. Theory of Finite Automata: With an Introduction to Formal Lan-
guages. 1989.

10

https://arxiv.org/abs/2402.05863
https://arxiv.org/abs/2402.05863

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation, 2024a. URL https:
//arxiv.org/abs/2309.17288.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence, 2024b. URL https://arxiv.org/abs/2407.07061.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jin-
lin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023. URL https://arxiv.org/abs/2308.00352.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo
Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying
Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data
science, 2024. URL https://arxiv.org/abs/2402.18679.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 2nd edition. SIGACT News, 32(1):60–65, March 2001. ISSN
0163-5700. doi: 10.1145/568438.568455. URL https://doi.org/10.1145/568438.
568455.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2024. URL https:
//arxiv.org/abs/2408.08435.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars, 2024. URL https://arxiv.org/abs/2311.17227.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.org/abs/2312.13010.

Jia Liu, Jie Shuai, and Xiyao Li. State machine of thoughts: Leveraging past reasoning trajectories
for enhancing problem solving, 2024. URL https://arxiv.org/abs/2312.17445.

Lucas. Openinterpreter, 2023. Available at: https://github.com/OpenInterpreter/
open-interpreter.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey

11

https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2407.07061
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2402.18679
https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2311.17227
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.17445
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development, 2024. URL https://arxiv.org/abs/2307.
07924.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong,
Jue Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin, Xiaoting Qin, Chao Du, Yong Xu, Qingwei
Lin, Saravan Rajmohan, and Dongmei Zhang. Taskweaver: A code-first agent framework, 2024.
URL https://arxiv.org/abs/2311.17541.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2311.17541

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024a. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024b. URL https://arxiv.org/abs/2402.
01030.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback, 2024c. URL https:
//arxiv.org/abs/2309.10691.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration, 2024d. URL https://arxiv.org/abs/2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation, 2023.
URL https://arxiv.org/abs/2308.08155.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and Qingyun Wu. Stateflow: Enhancing
llm task-solving through state-driven workflows, 2024. URL https://arxiv.org/abs/
2403.11322.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf,
2024. URL https://arxiv.org/abs/2309.04658.

Yikuan Yan, Yaolun Zhang, and Keman Huang. Depending on yourself when you should: Mentoring
llm with rl agents to become the master in cybersecurity games, 2024. URL https://arxiv.
org/abs/2403.17674.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.03629.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent:
Towards automatic multi-agent generation via evolutionary algorithms, 2024. URL https:
//arxiv.org/abs/2406.14228.

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. Pybench: Evaluating llm agent on various
real-world coding tasks, 2024. URL https://arxiv.org/abs/2407.16732.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2024. URL https://arxiv.org/abs/
2303.18223.

13

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2303.11366
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2307.05300
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2403.11322
https://arxiv.org/abs/2403.11322
https://arxiv.org/abs/2309.04658
https://arxiv.org/abs/2403.17674
https://arxiv.org/abs/2403.17674
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2407.16732
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Sym-
bolic learning enables self-evolving agents, 2024. URL https://arxiv.org/abs/2406.
18532.

A GENERAL TASK DESCRIPTIONS

Software Development Task Build a multi-agent system that develops software. The multi-agent
system could also save the developed software to a local file system and write a README for the
user.

Machine Learning Task Build a Multi-Agent system that can train a machine-learning model
based on the given dataset. And report the expected metrics (like F-1 score, RMSE and etc.) on the
test dataset.

Trivial Creative Writing Task Build a Multi-Agent System that can input a list of questions and
then output a story that includes answers to all the questions in the list.

B SOFTWARE TASKS

Evaluation Criteria We design several evaluation criteria for each software development task.
Table 6 demonstrates on the criteria.

Task Name Evaluation Criteria
2048game 1. Can open an interface

2. Can operate normally
3. Can merge correctly
4. Can score correctly

Snake Game 1. Can open an interface
2. Can operate the snake normally
3. Can eat beans correctly
4. The snake can grow normally

Brick Breaker Game 1. Can open an interface
2. Can operate the paddle normally
3. Can eliminate bricks correctly
4. Can score correctly

excel app 1. Can open an interface
2. Can transfer files correctly
3. Can display correctly
4. Can close correctly

weather 1. Can open an interface
2. Has weather query function
3. Can fetch weather data correctly
4. Can display weather data aesthetically

Table 6: Evaluation Criteria for Software Development Tasks

C EXAMPLE MULTI-AGENT SYSTEMS

Here is an example Multi-Agent System for Software Development

{

14

https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

"agents": [
{

"agent_id": "0",
"name": "RequirementDesigner",
"system_prompt": "You are RequirementDesigner. Your goal is

to understand the software requirements and create a
design or architecture for the software. Your
responsibility is to gather and analyze the requirements
for the software project and ensure that the design is
robust and scalable.",

"tools": [
"search_engine"

]
},
{

"agent_id": "1",
"name": "CodeDeveloper",
"system_prompt": "You are CodeDeveloper. Your goal is to

write the actual code for the software based on the
design provided by RequirementDesigner. You are also
responsible for writing a README file for the user and
saving the developed software to a local file system.
Ensure that the code is clean, efficient, and functional
.",

"tools": [
"file_writer"

]
},
{

"agent_id": "2",
"name": "Tester",
"system_prompt": "You are Tester. Your goal is to test the

software to ensure it works as intended. Your
responsibility is to identify and report any bugs or
issues in the software. You should also report the
expected metrics on the test dataset to the user.",

"tools": [
"code_interpreter"

]
}

],
"states": {

"states": [
{

"state_id": "1",
"agent_id": "0",
"instruction": "Gather and analyze software requirements

and create a design or architecture based on the
requirements.",

"is_initial": true,
"is_final": false,
"listener": [

"1"
]

},
{

"state_id": "2",
"agent_id": "1",
"instruction": "Write the actual code based on the design

, write a README file, and save the developed
software to a local file system.",

"is_initial": false,
"is_final": false,
"listener": [

"2"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

]
},
{

"state_id": "3",
"agent_id": "2",
"instruction": "Test the software to ensure it works as

intended. Report the expected metrics (like F-1 score
, RMSE, etc.) on the test dataset to the user.",

"is_initial": false,
"is_final": false,
"listener": [

"0",
"1"

]
},
{

"state_id": "4",
"agent_id": "0",
"instruction": "<|submit|> The a response to the user,

example: <|submit|>The software is developed and the
metrics on the test dataset are reported.",

"is_initial": false,
"is_final": true,
"listener": []

}
],
"transitions": [

{
"from_state": "1",
"to_state": "2",
"condition": "If requirements are clear and complete and

design is robust and scalable"
},
{

"from_state": "2",
"to_state": "3",
"condition": "If code is clean, efficient, and functional

and README is clear, informative, and easy to
understand"

},
{

"from_state": "3",
"to_state": "4",
"condition": "If the software works as intended and

metrics are reported"
},
{

"from_state": "3",
"to_state": "2",
"condition": "If the test is not passed"

}
]

}
}

D PROMPTS

D.0.1 MULTI-AGENT SYSTEM GENERATION

You are the designer of a multi-agent system. Given a general task
description and a list of agents, you need to generate a Finite State
Machine (FSM) to manage the process of solving the task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

WARNING: You are good at controlling costs, too many agents and too
complex cooperation structure can lead to excessive costs of
information exchange

Each state in the FSM should include:
1. state_id: A unique identifier for the state
2. agent_id: The ID of the agent associated with this state
3. instruction: What the agent should do in this state
4. is_initial: Boolean indicating if this is the initial state
5. is_final: Boolean indicating if this is a final state
6. listener: The agent who will save this state output information in

their memory
Notice : Make sure the listener covers all related

agents. The agents not listed as a listener would
not received the information(which may cause the
failure of cooperation)

Hence, some important milestone like a new version of
code/answer should be broadcast all related a g e n t

The FSM should also include transition functions between states. Each
transition function should specify:

1. from_state: The ID of the state this transition is from
2. to_state: The ID of the state this transition goes to
3. condition: A description of the condition that triggers this

transition

Your answer should follow this format:
Reasoning: <Your step-by-step reasoning process>
Answer:
‘‘‘json
{{
"states": [

{{
"state_id": "1",
"agent_id": "0",
"instruction": "Perform task X",
"is_initial": true,
"is_final": false,
"listener":["1","2"]

}},
...

],
"transitions": [

{{
"from_state": "1",
"to_state": "2",
"condition": "If task X is completed successfully"

}},
{{
"from_state": "2",
"to_state": "1",
"condition": "If the previous task needs to be re-done."

}},
...

]
}}
‘‘‘

Rules:
1. Ensure there is exactly one initial state and at least one final

state.
2. Every non-final state should have at least one outgoing transition

.
3. The FSM should be able to handle loops and complex interactions

between agents.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

4. Include a transition to a final state that submits the final
answer (use <|submit|> in the instruction).

5. Make sure all agent_ids in the states correspond to the provided
agent_dict.

6. The transitions should consider as many as possible situations.
Which consisit a roadmap for Multi-Agent System in deployment
stage.

D.0.2 UPDATING THE MULTI-AGENT SYSTEM

You are a Multi-Agent System Designer. Your task is to modify the Multi-
Agent System based on the existing failed task cases.

The goal that this Multi-Agent System needs to solve is: {
task_description}

The current structure of the Multi-Agent System is as follows:

Part 1: Agent Design:

Each agent contains three features:

1. name: <The name of the agent>
2. system_prompt: <The system prompt for the agent, describing the

overall goal, its name and role, and its responsibility and
constraints.>

3. tools: <The equipped tool name, a list>
Part 2: Communication System Design:

We use a finite state machine (FSM) to manage the cooperation of agents.
Specifically:

Each state in the FSM should include:

1. state_id: A unique identifier for the state
2. agent_id: The ID of the agent associated with this state
3. instruction: What the agent should do in this state
4. is_initial: Boolean indicating if this is the initial state
5. is_final: Boolean indicating if this is a final state
6. listener: The agent who will save this state’s output information in

their memory
Notice: Make sure the listener covers all related agents. The agents not

listed as a listener would not receive the information (which may
cause the failure of cooperation). Hence, some important milestones
like a new version of code/answer should be broadcast to all related
agents!

The FSM should also include transition functions between states. Each
transition function should specify:

1. from_state: The ID of the state this transition is from
2. to_state: The ID of the state this transition goes to
3. condition: A description of the condition that triggers this

transition
Both parts are represented in JSON, forming a Multi-Agent System.

The current goal for the Multi-Agent System is: \n {task_description}

The existing Multi-Agent System is: \n {MAS}

While using this Multi-Agent System to solve the problem, it failed: \n {
bad_cases}

Please think step by step to optimize the existing Multi-Agent System.
Gradually output your thought process.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

WARNING: The number of agents and the number of states should be
minimized as much as possible. For saving the token cost!

What are the specific reasons for the failure in the above bad cases?
What aspects were not considered, and how can we improve them from
the following aspects?

Is the current role positioning of the agents reasonable? Are these
agents necessary to solve this task, or do we need to create new
agents? (DO NOT ADD AGENT UNLESS IT IS NECESSARY)

Is the current communication structure optimized to reduce the cost of
information exchange? (DO NOT ADD STATE UNLESS IT IS NECESSARY)

Are the instructions for each state specific and feasible, and how can
they be optimized?

Use add examples in the prompts to optimize the multi-agent system!
Now, output your thought process and output the new Multi-Agent System

design in JSON format.

Please consider: 1. Whether the functionalities of multiple Agents can be
integrated into a single Agent to reduce unnecessary communication

exchanges. For example, Reasoning and Action should be placed within
the same Agent. Please note that the essence of multi-Agent systems
is to provide diverse perspectives, not to split task processes and
forcibly create Agents. States should also be streamlined as much as
possible; one state can accomplish many specific actions, rather than
just one action. HOWEVER, THERE MUST BE A FINAL STATE SPECIALLY FOR

SUBMITTION , where the agent shold use <|submit|> to submit the final
answer. Beacuse when the states transfer to final state, the finite

states machine will be shut down. So the final states should contain
and only contain the ’sbumit’

2. Why the tasks failed? Can the Agent Description or Tool assemble can
be updated?

3. How to optimize the performance? Modify the FSM or the instruction of
each state? (eg. Try and compare different ML models)

‘‘‘json
<fill in your Multi-Agent System Design (Agents and FSM)>
‘‘‘

19

	Introduction
	Related Works
	Multi-Agent System
	Tool LLM

	Method
	Background
	Construction Stage
	Deployment Stage
	Features of MetaAgent

	Experiment
	Real-World Coding Tasks
	Machine Learning Bench
	Software Development

	NLP Task
	Trivial Creative Writing

	Ablation Study
	Case Study

	Conclusion
	General Task Descriptions
	Software Tasks
	Example Multi-Agent Systems
	Prompts
	Multi-Agent System Generation
	Updating the Multi-Agent System

