Under review as a conference paper at ICLR 2025

METAAGENT: AUTOMATICALLY BUILDING MULTI-
AGENT SYSTEM BASED ON FINITE STATE MACHINE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) can solve various practical tasks via a multi-
agent system. However, existing human-designed multi-agent systems can only
adapt to a limited number of pre-defined scenarios. Current auto-designed meth-
ods also have several drawbacks, including no tool support, reliance on external
data, and inflexible communication structure. Therefore, we propose MetaAgent,
a novel framework to automatically generate a multi-agent system based on a fi-
nite state machine. Given a task description, MetaAgent will design a multi-agent
system and polish it through self-generated test queries. When the multi-agent
system is deployed, the finite state machine, which supports the traceback and
is more suitable for tool-using, will control the process of problem-solving. To
evaluate our framework, we conduct experiments on both practical tasks and ba-
sic NLP tasks, the results indicate that the generated multi-agent system surpasses
other auto-designed methods and can achieve a comparable performance with the
human-designed multi-agent system which is polished for those specific tasks.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAl et al.| (2024); [Zhao et al.| (2024)) show a spring-up of
intelligence, containing strong ability of coding, reasoning, and numerous compressed knowledge.
Utilizing LLM as the brain to build agents can complement various complex tasks, which requires
the agent to plan, utilize tools, and make reflections. (Yao et al.|(2023); |Shinn et al.| (2023)); Wang
et al.| (2024a)); |Qin et al.| (2023)). To further improve the performance, the multi-agent system
has proposed, which improves and enlarges the abilities of the agent by assigning different roles
and skills to LLMs and designing effective cooperation mechanisms to organize them (Hong et al.
(2023); Qian et al.| (2024); [Yan et al.| (2024); Huang et al.| (2024))). Despite the success, most of the
existing multi-agent are still manually designed, introducing human efforts to implement the com-
plex codebase and needing several iterations of human polishing. Moreover, these frameworks are
built only to solve tasks in some specific scenarios, further enhancing the design cost.

To address it, a few works try to build multi-agent systems automaticallyChen et al.|(2024a); Wang
et al.[(2024d); Yuan et al.| (2024). However, current works have failed to construct a complete
and practical multi-agent system due to several reasons. SPP, AutoAgents, and EvoAgent (Chen
et al.| (2024a); Wang et al.| (2024d); |Yuan et al.|(2024)) design multi-agent systems for each specific
case. In other words, the produced multi-agent system can only handle the specific case and lacks
generalization to other cases in the same task domain. Some of them do not support tool-using as
well. ADAS and Symbolic-Learning (Hu et al.| (2024); Zhou et al.| (2024)) build multi-agent systems
automatically based on self-iteration algorithms. However, tons of iterations and external data are
needed for optimization. Moreover, following the communication structure of human-designed
multi-agent systems (Hong et al.[(2023); |Qian et al.| (2024); Du et al.| (2023)), current works use
a linear cooperation structure to organize agents, simulating Standardized Operating Procedures
(SOPs) in human society, which can not trace back to previous steps when encountering errors or
misunderstanding.

To address the limitations of human-designed multi-agent systems and drawbacks of existing auto-
design methods, we introduce MetaAgent: A framework that can automatically design finite state
machine based multi-agent system for various types of tasks.

Under review as a conference paper at ICLR 2025

Framework MetaGPT AutoAgents SPP EvoAgent ADAS Symbolic MetaAgent
Auto-Designed X v v / v v v
Generalization v X X X v v v
Tool Enabled X v X v X v/ v
Traceback Ability X X X X X X v
Non-External Data Depend v/ v v /7 X X v

Table 1: Comparison of existing and proposed Multi-Agent Frameworks

Finite State Machine based Multi-Agent System

State 2
o . State 1 .
g Search relative information % Product Manager Design the
o according to user query g product
User ‘
- TN ~ g
/. N)
Information Collector [Pre-defined Conditions: \ [E| LLM Reasoning:
Condition1: When the information is ©) | Todesign the product, | need thorough
collected successfully, transit to state 2. g information of each game NPC, which is not
Using Search Tool Condition2: Otherwise, let the Information ; ‘\;vaidcd by Information Collector Y,
: ~ Collector refine the action
Tool Result:) LLM Reasoning: % Condition Verifier
The objective of the game is to eat all of the . i
dots placed in the maze while avoiding four Casel: The Tool Result matches
{_ colored ghosts.) Condition1. /7 On going
Pre-defined Conditions: If any condition
Case2: The Agent failed to use the tool is matched
[correctly, and the bug is ... Condition2: When more information is
Condition Verifier ‘ ') needed, transit to state 1.
AN
. e
_ []
= Case2: Match Condition2)
State Traceback L
Other Multi-Agent Systems
, ~N Ve ~, On going
,Q\ M o iormaion | 2| Tool Resu Prod LLM R
y ® Information ool Result: ® Product easoning: -
50 Pac-Man B Collector ‘ lg Manager #
Game = (-)
N J N J

User

Figure 1: The above part shows an example of what is a state, and how our finite state machine
structure works. The blow part shows how other linear-structured Multi-Agent Systems work.

Specifically, given a general description of a type of task, the MetaAgent will first design several
agents needed to solve the task. Then, to organize these agents, several states are summarized based
on the possible steps involved in solving the task. Each state includes the corresponding task-solving
agent, the instructions for the task-solving agent, the condition verifier who checks whether the
output meets certain state transition conditions, and the listener agents who will receive the output
of the state. This design leverages the LLM’s decision-making ability to dynamically manage the
problem-solving process when encountering different cases within the given type of task.

The definition of state is inherently suitable for tool usage because it supports a multi-turn and
dynamic environment. The condition verifier checks whether the previous action needs refinement
or is complete to proceed to the next state. If errors occur during the tool-using process, the task-
solving agent can refine its actions over several turns, enhancing robustness. Similarly, the condition
verifier can trace the state back to the previous one if it detects errors or misunderstandings, ensuring
a flexible workflow within the finite state machine. This machine acts as a guideline for problem-
solving. In specific cases, the agent follows state instructions to generate state-by-state outcomes
until reaching the final stage, where it submits the solutions to the user.

Before deploying the finite state machine based multi-agent system to solve practical tasks, we
design a self-iteration mechanism to refine the system. A test generator is tasked with writing
both primary and edge cases based on the tasks and initial design. The failure trajectories of these
generated tests are analyzed by an adaptor, and the finite state machine is revised. Unlike relative
works (Hu et al. (2024); Zhou et al.| (2024)), the iteration method does not need external data as

Under review as a conference paper at ICLR 2025

well as numerous training steps. That’s because the self-generated test which mainly helps optimize
the FSM structure to avoid trivial states and long chains, is enough to ensure robust performance
without needing carefully designed tests from external data or benchmarks.

When deployed, the multi-agent system can efficiently handle most cases within the task domain
due to the finite state machine mechanism and prior testing on primary and edge cases. The user
query, combined with the current state’s instructions, serves as the input for the task-solving agent.
The agent’s output is sent to the state’s condition verifier, which has several pre-defined state tran-
sition conditions in its system prompt. If a condition is met, the current state transitions to the
corresponding state, which can also be a previous state, enabling the finite state machine’s state
traceback capability. Before the transition, the task-solving agent’s output is sent to listeners as
memory. Figure [1]illustrates the working mechanism of the finite state machine and compares it
with other multi-agent systems with linear structures.

To verify that our MetaAgent is a general and robust framework capable of automatically pro-
ducing customized multi-agent systems for various scenarios, we conduct experiments on realistic
tasks. These include Machine Learning Bench (Hong et al.| (2024)), software development tasks
(Zhou et al.[(2024)), and NLP tasks like Trivial Creative Writing (Wang et al.[(2024d)), which
are widely used to evaluate other auto-design multi-agent systems. The experiments indicate that
the multi-agent system produced by the MetaAgent framework surpasses other automatic systems
and achieves performance levels comparable to manually designed systems tailored for the tasks.In
the Machine Learning tasks, the multi-agent system generated by MetaAgent achieved 97% of the
average performance of the best human-designed multi-agent system, surpassing all other human-
designed and multi-designed frameworks. In the software development task, MetaAgent passed 50%
more checkpoints than the human-designed system. Our ablation study on tool usage, iteration, and
traceback shows a 10% to 50% decrease in performance on the aforementioned tasks, highlighting
the critical importance of these features.

2 RELATED WORKS

2.1 MULTI-AGENT SYSTEM

Previous works have discussed multi-agent systems in various scenarios. One category of Multi-
Agent System is designed to simulate real-world scenarios (Park et al.|(2023)); Xu et al.| (2024)); |Hua
et al.[(2024)). Researchers can find some rules or conduct social experiments in these systems.

In this research, we focus on the multi-agent system which builds for problem-solving. Early works
use merely the reasoning ability of LLM to build systems like debating, voting, and negotiating.
(Wu et al.| (2023); Du et al.|(2023)); [Yan et al.|(2024); |Bianchi et al.|(2024))) Later works implement
tool-using and more complex communication structures for the system. MetaGPT and ChatDev
(Q1an et al.[(2024); Hong et al.| (2023)) build a Multi-Agent System for software development and
introduce a message pool to manage communication. Datalnterpreter and AgentCoder (Hong et al.
(2024); |Huang et al.| (2024)) focus on data science or Python code problems but are also limited
to pre-defined scenarios. There are a few works that apply the finite state machine to control the
agentic system. (Wu et al.| (2024); Liu et al.| (2024); |Chen et al.| (2024b)) But they are limited to
certain scenarios as well as using a fixed method to detect certain output strings as the transition
function, which is hard to adapt to complex real-world scenarios.

As the growing trend of automatic design, SPP (Wang et al| (2024d)) introduces a prompt-based
method to build a linear multi-agent system for each case of task, invoking the compressed knowl-
edge by assigning the roles. AutoAgents (Chen et al.|(20244)) is built on the codebase of MetaGPT
and further improves the Multi-Agent System by adapting planning and multi-turn cooperation be-
tween agents. ADAS and Symbolic Learning (Hu et al.| (2024); Zhou et al.| (2024)) try to optimize
a multi-agent system from a given simple system, but they need many iterations and focus more
on the inner structure of each single agent. However, there is a lack of a method to efficiently and
automatically build a tool-enabled multi-agent system that can handle a specific domain.

Under review as a conference paper at ICLR 2025

2.2 TooLLLM

Utilizing tools is a significant feature of LLM Agent as well as our MetaAgent Framework, for it
enables the Agents to interact with external worlds, enlarging their ability scope. Previous works
on tool LLM can be divided into two categories. The first category (Patil et al.| (2023); Qin et al.
(2023))) teaches LLMs to utilize a wide range of real-world APIs via function-calling, with a focus
on the breadth of tools. The second category focuses on the usage of some specific tools like search
engines and code interpreters that can complete multiple tasks. CodeAct (Wang et al.| (2024b)) first
assigned code as actions and integrated various functions into the Python code snippet. PyBench and
MINT (Zhang et al.| (2024)); Wang et al.|(2024c)) evaluate LLM equipped with code interpreter on
multiple tasks. |Gao et al.|(2024)) shows LLM Agent equipped with a search engine has a significant
ability growth in numerous information-seeking tasks. Our MetaAgent, mainly equipped the agents
with code interpreter and search engine, promoting the tool-using ability to the area of automatic
multi-agent system.

3 METHOD

3.1 BACKGROUND

We first introduce the finite state machine to describe a multi-agent system. A finite state machine
(FSM) is a computational model consisting of a finite number of states, and transition functions
between those states (Hopcroft et al.| (2001); |Carroll & Long|(1989)). In our setting, a state means
one possible step when solving a problem, containing the task-solving agent, the condition verifier,
the state instruction, and the listeners who receive the output when the state is complete. The state
transition conditions are described by strings, which will be the basis for decision-making for the
condition verifier. Hence, an FSM can be defined by a tetrad: {X, S, so, con}. The key concepts of
a finite state machine consist of the following:

» X: The input string of the finite state machine.
* S: The set of states.

¢ 3o: The initial state, an element of S.

e con: State transition conditions.

The FSM will start at the initial state and transition between states under the control of state transition
conditions until it either reaches the final state, indicating task completion or hits the maximum
number of transitions, indicating task failure.

3.2 CONSTRUCTION STAGE

Agents Design Given the general descriptions of the task, the designer will first design several
required agents that may be needed to solve the task. Each agent has the name, system prompt, and
equipped tools selected from a pre-defined pool.

Finite State Machine Design The designer generates a finite state machine based on the agents
and task description. This finite state machine includes descriptions of each state and the conditions
for state transitions. The design process involves several steps. Firstly, the designer should consider
the various scenarios that may arise while solving different cases within the task domain. Based on
these potential situations, several states that reflect these scenarios are created. For each state, the
corresponding agent capable of addressing the situation is assigned, along with specific instructions
for the agent. Next, the designer ensures that each state’s output is received by the relevant agents by
setting up listeners for each state. Finally, the states are connected by defining the conditions under
which one state should transition to another.

Test Case Generation After the first version of the multi-agent system is generated, the test gen-
erator designs several test queries based on the task description and the multi-agent system. To
identify the drawbacks of the current system, the generator writes two types of queries. The first
type covers the primary cases in the task domain, aiming to test the robustness of the current system.
The second type consists of edge cases, which help the system become more complete.

Under review as a conference paper at ICLR 2025

Construction Stage

Initial

FSM

When match
condition_i, the
state i need to
transit to
state_j

General Task

Q Primary Situation
Description

Q Edge Situation

Test on

Eg. Build a Multi-Agent System for Final SlalG/

software development 3)
% | Updated FSM FSM
States
Bad Cases
®© 00 - @ L

is_initial: True is_final: True Q Redundant Agents?
Agent Agent
Instruction Instruction

Listeners / Q Uncovered Cases?

Q Unnecessary States?

s @ 0@

Define Name, System prompt, and Tools

Figure 2: The construction stage of MetaAgent

Self-Iteration By testing the multi-agent system on generated queries, we obtain the trajectories of
bad cases. The adaptor is then prompted to update the multi-agent system from several aspects. First,
identify any overlap in the agents’ roles and determine if the agents can be combined. Next, detect
any unnecessary states causing redundant information flow and simplify the states. Additionally,
update the instructions or system prompts to handle edge cases. After these updates, the new multi-
agent system is sent back to the test generator for targeted test queries. The multi-agent system can
be fine-tuned after one or two iterations.

3.3 DEPLOYMENT STAGE

After the construction stage, the multi-agent system is fixed and ready for deployment in practical
scenarios. In a specific task domain, the finite state machine operates according to Algorithm [I]
Initially, the state is set to sg, and the agent in this state acts based on the given instructions and
query. The output, which is a combination of LLM text and tool responses (if used), is evaluated by
the condition verifier using the system prompt containing the transition conditions. Given the output
and conditions, the verifier assesses whether a condition is met and identifies the target state for
transition. If a condition is met, the state transitions to the detected target state and the output of the
current state is inserted into the memory of the listener agent, ensuring the flow of information. If
the transition function indicates that the state is not complete for no condition is met, the finite state
machine will continue to call the current agent until a transition condition is met or the maximum
number of interactions M is exceeded. Figure [T] shows an example of how a finite state machine
works.

3.4 FEATURES OF METAAGENT

We discuss key features of MetaAgent that distinguish it from other human-design or auto-design
multi-agent systems in this section.

Suitable for Tool-Using In the area of utilizing LLM to solve complex and practical tasks, it is
crucial to have the opportunity to refine or debug as well as call the tool for multi-turns to solve com-
plex tasks that can not be solved in one turn. The structure of the finite state machine is naturally
suitable for the above features because the condition verifier can continually urge the task-solving
agent to debug or go a step further whenever the output does not match any state transition condi-
tions.

Enable State Traceback In the general problem-solving process, it is inevitable to encounter er-
rors or misunderstandings from previous steps. Existing multi-agent systems with linear structures,
such as SOPs, do not account for this, as they only support a predefined linear pipeline. To address

Under review as a conference paper at ICLR 2025

Algorithm 1 Deployment Stage

Require: specific case), max iterations M, Finite State Machine {X, S, s, con}. A
state s contains the corresponding agent s. Agent, the instruction to the agent s.Ins,
the listener agent who will receive the state output s.Lis and the condition verifier for
the state s.Ver

l: s+ s
2: ¢+ 0
3: while c < M do
4: output < s.Agent(s.Ins, Q)
5: Starget < $.Ver(output)
6: if s¢qrget = None then
7: output < s.Agent(s.Ins, output)
8: c—c+1
9: else
10: S < Starget
11: c—c+1
12: for Lis in s.Lis do
13: memory_insert(Lis, output)
14: end for
15: end if

16: end while

this weakness, our finite state machine enables state traceback. When the condition verifier identi-
fies dilemmas caused by misunderstandings or failures in previous states, it transitions back to the
previous state for refinement. For example, in a software development task, if the QA Test Agent
finds that a file has not been written, it can trace back to the stage where the programmer writes the
software to the file and provides debug information to the programmer.

Interation by itself Compared to other works that depend on external and even in-bag data for
training or optimization, MetaAgent can generate test queries on itself. We the initial version of
FSM always failed because the designed agent and state are too trivial, which leads to an extremely
long chain from the initial state to the final state. This also caused a large overlap in the work of
many agents, which affected the efficiency of cooperation and task completion. Thus, the main
purpose of iteration is to optimize the structure of FSM, ensuring it can work robustly. In other
words, the self-generated test is enough for the iteration, and there is no need to carefully design
tests from the external data or benchmarks.

Handle Every Case in the Domain Figure [3]illustrates the various configurations of our MetaA-
gent compared to other Auto-Design Frameworks, including SPP, EvoAgent, and AutoAgents.
Given a task domain, such as ”A multi-agent system for software development” or A multi-agent
system for machine learning tasks,” our MetaAgent designs a unified Multi-Agent System capable
of addressing every case within the domain and generating corresponding solutions. In contrast, the
other frameworks mentioned design distinct multi-agent systems for each specific case, which is less
practical and more costly.

4 EXPERIMENT

We conduct a series of experiments on different tasks to show the versatility and robustness of our
framework. We first compare MetaAgent on practical tasks including machine learning and soft-
ware development tasks to show that the generated FSM-based multi-agent system surpasses other
auto-design methods significantly and has comparable performance with a human-designed multi-
agent system. After that, we also conducted experiments on Trivial Creative Writing, an NLP task
requiring the Agent to gather knowledge in various domains, aiming to compare MetaAgent with
other auto-design multi-agent systems. Ablation studies on tool-using, traceback, and iteration are

Under review as a conference paper at ICLR 2025

Task Domain mm) Task Domain

Solution 1

Solution 2

Solution 1

Solution 2

Figure 3: The difference between Task-Level Design (Left) and Case-Level Design (Right)

also conducted to reveal their impacts. We selected GPT-40 as the foundation model in experiments.
The code interpreter and search engine are listed in the tool pool for selection.

4.1 REAL-WORLD CODING TASKS

4.1.1 MACHINE LEARNING BENCH

Machine Learning Bench(ml_bench) (Hong et al.| (2024)) is a benchmark that requires agents to
train a machine-learning model for regression or classification. We use the normalized performance
score (NPS) as the metric to evaluate the quality of the trained machine learning model on the given
evaluation datasets.

Baselines We select both human-designed and auto-designed Frameworks as baselines. AutoGen

Wu et al] (2023)), Openlterpreter (2023)), TaskWeaver (2024)), and Dataln-
terpreter (Hong et al.| (2024))) are typical human-designed multi-agent frameworks. We then adapt

SPP (Wang et al.| (2024d)) and AutoAgents (Chen et al.| (2024a))) to the ml_bench by extracting the
generated code and getting the execution result.

Results and Analysis Table 2] presents the results on ml_bench. The multi-agent system generated
by MetaAgent outperforms all other auto-designed frameworks, which lack the mechanism to utilize
tool feedback and thus process the dataset with hallucinations. MetaAgent also surpasses most
human-designed multi-agent systems, demonstrating the robustness of its finite state machine. It
achieves state-of-the-art (SOTA) performance on the Titanic and House Prices datasets and secures
the second-highest scores on other datasets, showing comparable performance to Datalnterpreter, a
multi-agent system specifically tailored for machine learning tasks.

To analyze more deeply, we find that MetaAgent can generate a multi-agent system comprising a
“Data Preparation and Model Selection Agent,” a "Model Training Agent,” and a “Report Agent.”
Following the designed state instructions, these agents can perform feature engineering, explore the
dataset’s structure, and pass the detected information to other agents. They can also train various
models and report the best one. These features enable the multi-agent system to surpass others.

Model / Task Auto-Designed Titanic House Prices SCTP ICR SVPC Average

AutoGen X 0.82 0.88 0.82 0.71 0.63 0.77
Open Interpreter X 0.81 0.87 0.52 0.25 0.00 0.49
TaskWeaver X 0.43 0.49 0.00 0.65 0.17 0.35
Data Interpreter X 0.82 0.91 0.89 091 0.77 0.86
SPP v 0.82 0.00 0.00 0.00 0.00 0.16
AutoAgents v 0.00 0.00 0.00 0.00 0.00 0.00
MetaAgent v 0.83 0.91 0.86 0.88 0.68 0.83

Table 2: Normalized performance score on ML Bench

Under review as a conference paper at ICLR 2025

4.1.2 SOFTWARE DEVELOPMENT

Software development is a comprehensive and practical task for evaluating agent systems, often
used to assess various multi-agent frameworks. We have collected several representative software
development tasks, including game and web app development. Unlike other software benchmarks
(Zhou et al. (2024)); Hong et al. (2023)); |Qian et al.| (2024))), which primarily rely on subjective
evaluation metrics, we have designed objective criteria for each software. These criteria include
accessibility, functional completeness, and control ability (detailed in the Appendix). Each software
is evaluated on four key points, earning one point for each test it passes. The metric used is the ratio
of passed tests.

Baselines We select both human-designed and auto-designed multi-agent systems as baselines.
MetaGPT (Hong et al.|(2023)) designs a fixed SOP to organize the process of software development.
We also adapt AutoAgents and SPP (Chen et al.| (2024a); [Wang et al.| (2024d)) to the software
development task by extracting the code they generated and save them to the files.

Results and Analysis Table [3| presents the results for five different software development tasks,
demonstrating that our MetaAgent framework not only outperforms other auto-designed frameworks
but also surpasses MetaGPT, a human-designed multi-agent framework for software development.
Without tool-using capabilities, the performance of AutoAgents and SPP is significantly lower. Ad-
ditionally, MetaGPT is constrained by its linear structure, which is lengthy and lacks the ability to
trace back like a finite state machine.

The generated multi-agent system consists of a "Requirement Designer,” a ”Code Developer,” and a
“Tester.” The tool-using and traceback features of the finite state machine contribute to its success.
It can test whether the software can start and run smoothly via a code interpreter and trace back to
the code development stage to fix bugs found in the testing state.

Task / Model MetaGPT AutoAgents SPP MetaAgent
Auto-Designed X v v v
2048 game 0.25 0 0.25 0.75
Snake game 0.25 0.75 0.50 1.0
Brick breaker game 0.75 0.25 0 0.50
Excel APP 0 0 0 1.0
Weather APP 0.50 0 0 1.0
Average 0.35 0.20 0.15 0.85

Table 3: Performance on Software Development Tasks

4.2 NLP TASK
4.2.1 TRIVIAL CREATIVE WRITING

Trivial Creative Writing is a demanding task that involves 100 instances. The model must craft a
coherent narrative in this task while seamlessly integrating answers to N trivia questions. (Wang
et al. (2024d)) The metric is the ratio of the number of trivia question keywords included in the story
to the total number of trivia questions.

Baselines We select prompt engineering methods including Direct, CoT (Wei et al.| (2023)), and
Self-Refine (Madaan et al.|(2023))) as well as auto-design methods like SPP, AutoAgents, and EvoA-
gent. (Wang et al.| (2024d); (Chen et al.[| (2024a); |Yuan et al.| (2024)) Note that, the selected auto-
design methods all design multi-agent systems at the case level.

Results and Analysis The results of our experiments demonstrate three key findings. First,
MetaAgent outperforms all other methods, achieving the highest score of 0.86 (Table f). Second,
methods incorporating tool-using capabilities show significant performance improvements, high-
lighting the importance of tool integration. Third, MetaAgent surpasses case-level multi-agent sys-

Under review as a conference paper at ICLR 2025

tems such as EvoAgent and AutoAgents, which score 0.84 and 0.82 respectively, demonstrating that
case-level design is not only less unnecessary but also obviously more costly.

Model / Task Auto-Designed Tool-Using Case-Level Design Score

Direct X X X 0.75
CoT X X X 0.74
Self-Refine X X X 0.75
SPP v X v 0.79
AutoAgents v v v 0.82
EvoAgent v v v 0.84
MetaAgent v v X 0.86

Table 4: Trivial Creative Writing Performance

4.3 ABLATION STUDY

To demonstrate the importance of the key features of MetaAgent, we conducted ablation studies on
the key components of MetaAgent: tool-using, traceback, and iteration.

Tool-Using Tool-using is a crucial part of the finite state machine. When equipped with tools,
the task-solving agent of a state can interact with the file system or the internet to solve complex
tasks. The condition verifier will help to analyze the tool feedback as well, establishing a multi-
turn interactive environment for tool-using, which can enhance the performance of the finite state
machine. As the result in Table[5] the performance has decreased when the tool is disabled, showing
that utilizing a search engine as a tool can help the agent clarify the answers and reach a higher
score.

Traceback The state traceback feature also contributes a lot when solving complex and unpre-
dictable tasks. In the case that the current agent finds the input information needs to be refined via
the previous state, the finite state machine enables traceback to the previous one and transmits the
information to that agent. This design ensures the finite state machine is better at handling vari-
ous situations, which distinguishes it from common linear structures like SOPs. The result of the
ablation experiments also proves the assertion. In particular, we find that multi-agent systems with-
out a traceback design often fail due to unresolved bugs. For instance, when the tester discovers a
bug while executing the software code, they cannot relay this information back to the programmer
without a traceback mechanism.

Interation When designing the multi-agent system, a few iterations are required to make the sys-
tem more robust. After testing the initial version of the multi-agent system on the pertinent test
cases, the multi-agent system will be adapted in the aspect of agent and state design. The iteration
can get rid of some unnecessary agents or intermediate states to simplify the work pipeline and en-
hance robustness. Results in Table [5] show that a sharp decrease in performance is caused by the
absence of iteration. And in the bad cases, we do observe that the system struggles to complete the
task due to excessively long text caused by unnecessary steps.

Methods ML _Bench Software Trivial Creative Writing
Score A(%) Score A (%) Score A (%)
MetaAgent (w/o tool-using) - - - - 0.79 $ 8.1
MetaAgent (w/o iteration) 0.61 265 065 |353 0.65 1244
MetaAgent (w/o traceback) 072 J13.3 035 |588 0.77 4 10.5
MetaAgent 0.83 0.00 0.85 0.0 0.86 0.00

Table 5: Comparison of Methods Across Different Tasks. (" means not applicable)

Under review as a conference paper at ICLR 2025

General Task Description:

Build a Multi-Agent system which can train machine leaming model based on given
dataset.

And report the expected metrics (like F-1 score, RMSE and etc.) on test dataset to

user.

Merge unnecessary state

Reduce Agent Redundancy

‘ Initial Design \

Agents: |Agents:

CEm g P A (OB R (@ e @ Data Preparation And Model Selection Agent (0); Model Training and Evaluation Agent (1);
Evaluation Agent(3); Reporting Agent (4) ..

States: [Reporting Agent (2)

State 1: [States:

Task-solving Agent id: "0”; Instruction: Clean and prepare the dataset; Listeners: [“1”, “2"] State 1:

. Iteration [Task-solving Agent id: "0”; Instruction: Clean and prepare the dataset and select

State 3: [prospective models; Listeners: [“1”, "2”]

Task solving Agent id: "17; Instruction: Train the machine leaning model; Listeners: [“0°, ‘ State 2:

"3") [Task solving Agent id: "1"; Instruction: Train the machine leaming model and evaluate the
. Imodels on eval dataset; Listeners: [“0", "2"]

State 5: State 3:

Task-solving Agent id: "4”; Instruction: Generate a comprehensive report; Listeners: None [Task-solving Agent id: “2”; Instruction: Generate a comprehensive report; Listeners: None
Transitions: 1 2: If the dataset prepared and prospective models is selected.

1= 3:If datasct prepared. 2= 1:If the dataset is not processed successfully,
3 = 5:1f model trained. 2= 3:If the model is trained and evaluated

Initial Multi-Agent System The updated Multi-Agent System

Figure 4: A Case Study Conduct on the Construction Stage

4.4 CASE STUDY

We present a case study comparing the initial multi-agent system with an updated version, using
Machine Learning Bench as an example. Figure []illustrates the process of reducing agent redun-
dancy and merging unnecessary states. Initially, the designer created a complex multi-agent system
with five agents and five states. However, some agents had roles too trivial to justify their existence.
For example, the “Evaluation Agent” could be merged with the "Model Training Agent,” and the
training and evaluation states could be combined. During the iteration process, we find the initial
multi-agent system failed on generated tests due to overly long chains and trivial tasks. Due to the
excessively frequent information transitions, agents experience a heavy burden on their memory,
leading to the loss of important outputs to some degree. Additionally, because the states are too
trivial, many agents have significant overlap in their tasks, which further reduces efficiency. After
passing the trajectories to the adaptor, the system was updated and redundant agents and states were
merged. The updated multi-agent system, with more integrated agents and states, performs much
better than the initial version.

5 CONCLUSION

In this paper, we introduce MetaAgent, a framework that automatically generates multi-agent sys-
tems based on finite state machines. This approach addresses the drawbacks of both human-
designed and auto-designed multi-agent systems. The finite state machine structure endows the gen-
erated multi-agent systems with tool-using and traceback capabilities. Additionally, the auto-design
pipeline during the construction stage ensures that the multi-agent system is generally applicable to
most cases within a task domain and can conduct self-iteration without external data. Experiments
on practical tasks demonstrate the potential of MetaAgent. Automation is a growing trend in the
LLM-based agent area, and MetaAgent provides a novel method for more practical scenarios.

REFERENCES

Federico Bianchi, Patrick John Chia, Mert Yuksekgonul, Jacopo Tagliabue, Dan Jurafsky, and James
Zou. How well can llms negotiate? negotiationarena platform and analysis, 2024. URL https:
//arxiv.orqg/abs/2402.05863.

John Carroll and Darrell Long. Theory of Finite Automata: With an Introduction to Formal Lan-
guages. 1989.

10

https://arxiv.org/abs/2402.05863
https://arxiv.org/abs/2402.05863

Under review as a conference paper at ICLR 2025

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Borje F. Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation, 2024a. URL https:
//arxiv.org/abs/2309.17288.

Weize Chen, Ziming You, Ran Li, Yitong Guan, Chen Qian, Chenyang Zhao, Cheng Yang, Ruobing
Xie, Zhiyuan Liu, and Maosong Sun. Internet of agents: Weaving a web of heterogeneous agents
for collaborative intelligence, 2024b. URL https://arxiv.org/abs/2407.07061.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey,
2024. URL https://arxiv.org/abs/2312.10997.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jin-
lin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jiirgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023. URL https://arxiv.org/abs/2308.00352.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi
Zhang, Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo
Zhou, Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying
Fei, Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data
science, 2024. URL https://arxiv.org/abs/2402.18679.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 2nd edition. SIGACT News, 32(1):60-65, March 2001. ISSN
0163-5700. doi: 10.1145/568438.568455. URL https://doi.org/10.1145/568438.
568455,

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems, 2024. URL https:
//arxiv.orqg/abs/2408.08435.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yinggiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars, 2024. URL https://arxiv.org/abs/2311.17227.

Dong Huang, Jie M. Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui. Agentcoder:
Multi-agent-based code generation with iterative testing and optimisation, 2024. URL https:
//arxiv.orqg/abs/2312.13010.

Jia Liu, Jie Shuai, and Xiyao Li. State machine of thoughts: Leveraging past reasoning trajectories
for enhancing problem solving, 2024. URL https://arxiv.org/abs/2312.17445.

Lucas. Openinterpreter, 2023. Available at: https://github.com/OpenInterpreter/
open—interpreter!

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-
refine: Iterative refinement with self-feedback, 2023. URL https://arxiv.org/abs/
2303.17651.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey

11

https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2407.07061
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2402.18679
https://doi.org/10.1145/568438.568455
https://doi.org/10.1145/568438.568455
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2408.08435
https://arxiv.org/abs/2311.17227
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.13010
https://arxiv.org/abs/2312.17445
https://github.com/OpenInterpreter/open-interpreter
https://github.com/OpenInterpreter/open-interpreter
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651

Under review as a conference paper at ICLR 2025

Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,
Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny,
Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders,
Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel Sel-
sam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor,
Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, lan Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer6n Uribe, Andrea Vallone, Arun Vi-
jayvergiya, Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2024. URL
https://arxiv.org/abs/2303.08774.

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language model
connected with massive apis, 2023. URL https://arxiv.org/abs/2305.15334}

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, Juyuan Xu, Dahai Li, Zhiyuan Liu, and Maosong Sun. Chatdev: Commu-
nicative agents for software development, 2024. URL https://arxiv.org/abs/2307.
07924.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang, Chaoyun Zhang, Fangkai Yang, Hang Dong,
Jue Zhang, Lu Wang, Minghua Ma, Pu Zhao, Si Qin, Xiaoting Qin, Chao Du, Yong Xu, Qingwei
Lin, Saravan Rajmohan, and Dongmei Zhang. Taskweaver: A code-first agent framework, 2024.
URLhttps://arxiv.org/abs/2311.17541.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark Gerstein,

12

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2307.07924
https://arxiv.org/abs/2311.17541

Under review as a conference paper at ICLR 2025

Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models to master
16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and
Shunyu Yao. Reflexion: Language agents with verbal reinforcement learning, 2023. URL
https://arxiv.org/abs/2303.11366.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey on
large language model based autonomous agents. Frontiers of Computer Science, 18(6), March
2024a. ISSN 2095-2236. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/
10.1007/s11704-024-40231-1!

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
cutable code actions elicit better llm agents, 2024b. URL https://arxiv.org/abs/2402.
01030.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback, 2024c. URL https:
//arxiv.org/abs/2309.10691.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration, 2024d. URL https://arxiv.org/abs/2307.05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, Ryen W White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen Ilm applications via multi-agent conversation, 2023.
URLhttps://arxiv.org/abs/2308.08155.

Yiran Wu, Tianwei Yue, Shaokun Zhang, Chi Wang, and Qingyun Wu. Stateflow: Enhancing
llm task-solving through state-driven workflows, 2024. URL https://arxiv.org/abs/
2403.11322.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf,
2024. URL https://arxiv.org/abs/2309.04658.

Yikuan Yan, Yaolun Zhang, and Keman Huang. Depending on yourself when you should: Mentoring
Ilm with rl agents to become the master in cybersecurity games, 2024. URL https://arxiv.
org/abs/2403.17674.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023. URL https://arxiv.
org/abs/2210.036209.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent:
Towards automatic multi-agent generation via evolutionary algorithms, 2024. URL https:
//arxiv.org/abs/2406.14228\

Yaolun Zhang, Yinxu Pan, Yudong Wang, and Jie Cai. Pybench: Evaluating llm agent on various
real-world coding tasks, 2024. URL https://arxiv.org/abs/2407.16732.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2024. URL https://arxiv.org/abs/
2303.18223.

13

https://arxiv.org/abs/2307.16789
https://arxiv.org/abs/2303.11366
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2309.10691
https://arxiv.org/abs/2307.05300
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2403.11322
https://arxiv.org/abs/2403.11322
https://arxiv.org/abs/2309.04658
https://arxiv.org/abs/2403.17674
https://arxiv.org/abs/2403.17674
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2406.14228
https://arxiv.org/abs/2407.16732
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

Under review as a conference paper at ICLR 2025

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Sym-
bolic learning enables self-evolving agents, 2024. URL https://arxiv.org/abs/2406.
18532

A GENERAL TASK DESCRIPTIONS

Software Development Task Build a multi-agent system that develops software. The multi-agent
system could also save the developed software to a local file system and write a README for the
user.

Machine Learning Task Build a Multi-Agent system that can train a machine-learning model
based on the given dataset. And report the expected metrics (like F-1 score, RMSE and etc.) on the
test dataset.

Trivial Creative Writing Task Build a Multi-Agent System that can input a list of questions and
then output a story that includes answers to all the questions in the list.

B SOFTWARE TASKS

Evaluation Criteria We design several evaluation criteria for each software development task.
Table [l demonstrates on the criteria.

Task Name Evaluation Criteria

2048game . Can open an interface

. Can operate normally

. Can merge correctly

. Can score correctly

. Can open an interface

. Can operate the snake normally
. Can eat beans correctly

. The snake can grow normally

. Can open an interface

. Can operate the paddle normally
. Can eliminate bricks correctly

. Can score correctly

. Can open an interface

. Can transfer files correctly

. Can display correctly

. Can close correctly

. Can open an interface

. Has weather query function

. Can fetch weather data correctly
. Can display weather data aesthetically

Snake Game

Brick Breaker Game

excel app

weather

LR RNORREWND=REOWND =R WD —

Table 6: Evaluation Criteria for Software Development Tasks

C EXAMPLE MULTI-AGENT SYSTEMS

Here is an example Multi-Agent System for Software Development

K

14

https://arxiv.org/abs/2406.18532
https://arxiv.org/abs/2406.18532

Under review as a conference paper at ICLR 2025

"agents": [

{

i

i

}
P

"agent_id" : "O"’
"name": "RequirementDesigner",
"system_prompt": "You are RequirementDesigner. Your goal is

to understand the software requirements and create a
design or architecture for the software. Your
responsibility is to gather and analyze the requirements
for the software project and ensure that the design is
robust and scalable.",

"tools": |
"search_engine"

"agent_id": "1",
"name": "CodeDeveloper",
"system_prompt": "You are CodeDeveloper. Your goal is to

write the actual code for the software based on the
design provided by RequirementDesigner. You are also
responsible for writing a README file for the user and
saving the developed software to a local file system.
Ensure that the code is clean, efficient, and functional

n
14

"tools": [
"file_writer"

"agent_id": "2",
"name": "Tester",
"system_prompt": "You are Tester. Your goal is to test the

software to ensure it works as intended. Your

responsibility is to identify and report any bugs or

issues in the software. You should also report the

expected metrics on the test dataset to the user.",
"tools": [

"code_interpreter"

"states": {
"states": [

{ "state_id": "1",
"agent_id" . "O",
"instruction": "Gather and analyze software requirements

and create a design or architecture based on the
requirements.",

"is_initial": true,
"is_final": false,
"listener": [
'llll
]
}I
{
"state_id": "2",
"agent_id": "1",
"instruction": "Write the actual code based on the design

, write a README file, and save the developed
software to a local file system.",

"is_initial": false,
"is_final": false,
"listener": [

"2 "

15

Under review as a conference paper at ICLR 2025

A~

"state_id": "3",
"agent_id" : "2",
"instruction": "Test the software to ensure it works as
intended. Report the expected metrics (like F-1 score
, RMSE, etc.) on the test dataset to the user.",
"is_initial": false,
"is_final": false,
"listener": |
" O " ,
"1"
]
}r
{ "state_id": "4",
"agent_id": "O",
"instruction": "<|submit|> The a response to the user,
example: <|submit|>The software is developed and the

metrics on the test dataset are reported.",

"is_initial"
"is_final":
"listener":

}
1,

"transitions": |
"from_state"
"to_state":
"condition":

: false,
true,

[]

. lllll,
"2"’
"If requirements are clear and complete and

design is robust and scalable"

"from_state"
"to_state":
"condition":

and README is clear,

. "2",
"3"
14
"If code is clean,
informative,

efficient, and functional
and easy to

understand"

.

"from_state":

"to_state":
"condition":

ll3",
ll4ll’
"If the software works as intended and

metrics are reported"

—~——

"from_state"
"to_state":
"condition":

. "3",
"2"’
"If the test is not passed"

D PROMPTS

D.0.1

MULTI-AGENT SYSTEM GENERATION

You are the designer of a multi-agent system. Given a general task

you need to generate a Finite State

description and a list of agents,
Machine (FSM) to manage the process of solving the task.

16

Under review as a conference paper at ICLR 2025

WARNING: You are good at controlling costs, too many agents and too
complex cooperation structure can lead to excessive costs of
information exchange

Each state in the FSM should include:

state_id: A unique identifier for the state

agent_id: The ID of the agent associated with this state

instruction: What the agent should do in this state

is_initial: Boolean indicating if this is the initial state

is_final: Boolean indicating if this is a final state

listener: The agent who will save this state output information in

their memory
Notice : Make sure the listener covers all related
agents. The agents not listed as a listener would
not received the information (which may cause the
failure of cooperation)
Hence, some important milestone like a new version of
code/answer should be broadcast all related agent

oY U1 b W N -

The FSM should also include transition functions between states. Each
transition function should specify:

1. from_state: The ID of the state this transition is from

2. to_state: The ID of the state this transition goes to

3. condition: A description of the condition that triggers this
transition

Your answer should follow this format:
Reasoning: <Your step-by-step reasoning process>
Answer:

*YYjson

"states": [

"state_id": "1™",
Hagent_id" . HO" ,
"instruction": "Perform task X",
"is_initial": true,
"is_final": false,
Hlistener" . [Hl", "2"}
:|I
"transitions": |
"from_state": "1",
"to_state": "2",
"condition": "If task X is completed successfully"
"from_state": "2",
"to_state": "1",
"condition": "If the previous task needs to be re-done."
i3y
]
Rules:
1. Ensure there is exactly one initial state and at least one final
state.

2. Every non-final state should have at least one outgoing transition

3. The FSM should be able to handle loops and complex interactions
between agents.

17

Under review as a conference paper at ICLR 2025

4. Include a transition to a final state that submits the final
answer (use <|submit|> in the instruction).

5. Make sure all agent_ids in the states correspond to the provided
agent_dict.

6. The transitions should consider as many as possible situations.
Which consisit a roadmap for Multi-Agent System in deployment
stage.

D.0.2 UPDATING THE MULTI-AGENT SYSTEM

You are a Multi-Agent System Designer. Your task is to modify the Multi-
Agent System based on the existing failed task cases.

The goal that this Multi-Agent System needs to solve is: {
task_description}

The current structure of the Multi-Agent System is as follows:
Part 1: Agent Design:
Each agent contains three features:

1. name: <The name of the agent>

2. system_prompt: <The system prompt for the agent, describing the
overall goal, its name and role, and its responsibility and
constraints.>

3. tools: <The equipped tool name, a list>

Part 2: Communication System Design:

We use a finite state machine (FSM) to manage the cooperation of agents.
Specifically:

Each state in the FSM should include:

state_id: A unique identifier for the state

agent_id: The ID of the agent associated with this state

instruction: What the agent should do in this state

is_initial: Boolean indicating if this is the initial state

is_final: Boolean indicating if this is a final state

listener: The agent who will save this state’s output information in

their memory

Notice: Make sure the listener covers all related agents. The agents not
listed as a listener would not receive the information (which may
cause the failure of cooperation). Hence, some important milestones
like a new version of code/answer should be broadcast to all related
agents!

The FSM should also include transition functions between states. Each

transition function should specify:

oY U1 W N

1. from_state: The ID of the state this transition is from

2. to_state: The ID of the state this transition goes to

3. condition: A description of the condition that triggers this
transition

Both parts are represented in JSON, forming a Multi-Agent System.

The current goal for the Multi-Agent System is: \n {task_description}
The existing Multi-Agent System is: \n {MAS}

While using this Multi-Agent System to solve the problem, it failed: \n {
bad_cases}

Please think step by step to optimize the existing Multi-Agent System.
Gradually output your thought process.

18

Under review as a conference paper at ICLR 2025

WARNING: The number of agents and the number of states should be
minimized as much as possible. For saving the token cost!

What are the specific reasons for the failure in the above bad cases?
What aspects were not considered, and how can we improve them from
the following aspects?

Is the current role positioning of the agents reasonable? Are these
agents necessary to solve this task, or do we need to create new
agents? (DO NOT ADD AGENT UNLESS IT IS NECESSARY)

Is the current communication structure optimized to reduce the cost of
information exchange? (DO NOT ADD STATE UNLESS IT IS NECESSARY)
Are the instructions for each state specific and feasible, and how can

they be optimized?

Use add examples in the prompts to optimize the multi-agent system!

Now, output your thought process and output the new Multi-Agent System
design in JSON format.

Please consider: 1. Whether the functionalities of multiple Agents can be
integrated into a single Agent to reduce unnecessary communication
exchanges. For example, Reasoning and Action should be placed within
the same Agent. Please note that the essence of multi-Agent systems
is to provide diverse perspectives, not to split task processes and
forcibly create Agents. States should also be streamlined as much as
possible; one state can accomplish many specific actions, rather than
just one action. HOWEVER, THERE MUST BE A FINAL STATE SPECIALLY FOR
SUBMITTION , where the agent shold use <|submit|> to submit the final
answer. Beacuse when the states transfer to final state, the finite
states machine will be shut down. So the final states should contain
and only contain the ’sbumit’
2. Why the tasks failed? Can the Agent Description or Tool assemble can
be updated?
3. How to optimize the performance? Modify the FSM or the instruction of
each state? (eg. Try and compare different ML models)
json
<fill in your Multi-Agent System Design (Agents and FSM)>

AW

AURWRY

19

	Introduction
	Related Works
	Multi-Agent System
	Tool LLM

	Method
	Background
	Construction Stage
	Deployment Stage
	Features of MetaAgent

	Experiment
	Real-World Coding Tasks
	Machine Learning Bench
	Software Development

	NLP Task
	Trivial Creative Writing

	Ablation Study
	Case Study

	Conclusion
	General Task Descriptions
	Software Tasks
	Example Multi-Agent Systems
	Prompts
	Multi-Agent System Generation
	Updating the Multi-Agent System

