

# GENERALIZATION ERROR BOUND VIA EMBEDDING DIMENSION AND NETWORK LIPSCHITZ CONSTANT

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010

## ABSTRACT

011 Modern deep networks generalize well even in heavily over-parameterized  
012 regimes, where traditional parameter-based bounds become vacuous. We propose  
013 a representation-centric view of generalization, showing that the generalization  
014 error is controlled jointly by: (i) the intrinsic dimension of learned embeddings,  
015 which reflects how much the data distribution is compressed and determines how  
016 quickly the empirical distribution of embeddings converges to the population dis-  
017 tribution in Wasserstein distance, and (ii) the sensitivity of the downstream map-  
018 ping from embeddings to predictions, quantified by Lipschitz constants. Together  
019 these factors yield a new generalization error bound that explicitly links embed-  
020 ding dimension with network architecture. At the final embedding layer, architec-  
021 tural sensitivity vanishes, and the bound is driven more strongly by embedding  
022 dimension, explaining why final-layer dimensionality is often a strong empirical  
023 predictor of generalization. Experiments across datasets, architectures and con-  
024 trolled interventions validate the theoretical predictions and demonstrate the prac-  
025 tical value of embedding-based diagnostics. Overall, this work shifts the focus of  
026 generalization analysis from parameter to representation geometry, offering both  
027 theoretical insight and actionable tools for deep learning practice.  
028

## 1 INTRODUCTION

030 Deep networks can generalize effectively even in strongly overparameterized regimes, a phe-  
031 nomenon that remains difficult to explain using classical capacity measures. Traditional bounds  
032 based on VC-dimension (Vapnik et al., 1994; Sontag et al., 1998), Rademacher complexity (Truong,  
033 2022), PAC-Bayes theory (Hellström et al., 2025; Lotfi et al., 2022), and algorithmic stability (Feld-  
034 man & Vondrák, 2018; Alabdulmohsin, 2015) provide valuable insights but often become vacuous  
035 at modern scales, as they focus primarily on parameter counts or optimization dynamics rather than  
036 the structure of the learned representations.  
037

038 These limitations have motivated a shift toward studying the *geometry of hidden embeddings*, which  
039 reflects the combined influence of data, architecture, and training. Geometric properties such as con-  
040 sistency or separability of representation have been shown to correlate with generalization (Davies  
041 & Bouldin, 2009; Dyballa et al., 2024; Belcher et al., 2020), yet many existing metrics rely on labels  
042 or capture only local structure, restricting their applicability in settings like self-supervised learning.  
043

044 A particularly promising direction is the study of *intrinsic dimension*, a label-free measure of the  
045 effective degrees of freedom of embeddings. Empirical evidence suggests that lower-dimensional  
046 representations generalize better across architectures and training paradigms (Ansini et al., 2019;  
047 Pope et al., 2021), highlighting the need for a theoretical framework that explains this relationship.  
048 This motivates our work, which develops a dimension-dependent approach to characterizing repre-  
049 sentation geometry and its role in generalization.  
050

051 We address this question by deriving a generalization error bound that makes the role of embedding  
052 dimension explicit (Figure 1A). Building on sharp Wasserstein convergence results (Weed & Bach,  
053 2019), we show that for each layer  $k$  with intrinsic dimension  $d_k$ , constants  $C_k, D_k$ , sensitivity  $\bar{L}_k$ ,  
054 population risk  $R(F)$  and empirical risk  $\hat{R}_n(F)$ , the generalization error satisfies

$$055 R(F) \lesssim \hat{R}_n(F) + \bar{L}_k \left( C_k n^{-1/(d_k + \epsilon)} + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) + (\text{irreducible noise}).$$

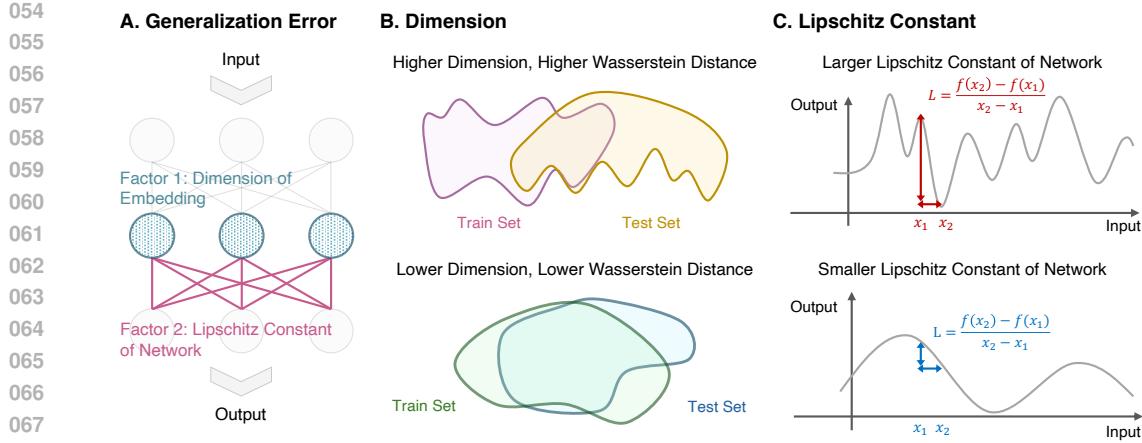


Figure 1: **Embedding Dimension and Lipschitz Constant of Network Jointly Influence Generalization Error.** (A) Generalization error depends jointly on embedding dimension and network’s Lipschitz constant. (B) Lower intrinsic dimension accelerates convergence of empirical to population distribution. (C) Smaller Lipschitz constants reduce output sensitivity to perturbations.

Here the  $n^{-1/(d_k+\epsilon)}$  term quantifies how quickly the empirical embedding distribution converges to the true population distribution. In other words, with a fixed number of samples, embeddings of lower intrinsic dimension provide a more faithful approximation of their underlying distribution, leading to smaller generalization error (Figure 1B). The factor  $\bar{L}_k$  quantifies how perturbations in embeddings propagate through the downstream mappings and ultimately affect the loss (Figure 1C). “Irreducible noise” refers to errors due to label noise or Bayes risk that cannot be reduced by learning.

At the final layer, i.e., the model output, the downstream mapping reduces to the identity, so there is no additional architectural Lipschitz amplification. The resulting bound therefore depends only on the embedding dimension together with data-related constants, such as the loss sensitivity and the Bayes smoothness  $L_L(F^*)$ :

$$R(F) \lesssim \hat{R}_n(F) + (M_F + L_L(F^*)M_{F^*}) \left( C_L n^{-1/(d_L+\epsilon)} + D_L \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) + \text{(irreducible noise)}.$$

where  $(M_F + L_L(F^*)M_{F^*})$  is a constant determined by the form of the loss function and bayes predictor. This shows that in final layer, generalization error depends primarily on intrinsic dimension and data-related factors, providing a theoretical explanation for why final-layer dimension is often a strong empirical predictor of generalization.

Our contributions are threefold:

1. We provide a high-probability generalization bound that makes the  $n^{-1/(d+\epsilon)}$  dependence on embedding dimension  $d$  explicit.
2. We demonstrate that at the final layer the bound simplifies, explaining why final-layer dimension is a strong empirical predictor of generalization.
3. Controlled experiments confirm the predicted scaling and highlight the joint role of dimension and Lipschitz constant of network at intermediate layers.

## 2 RELATED WORKS

**Classical Generalization Bounds.** Theoretical analyses of generalization in deep learning have traditionally centered on parameter-space complexity, including VC-dimension and Rademacher complexity bounds (Sain, 1996; Bartlett & Mendelson, 2002), which provide worst-case guarantees based on the number of parameters. While refinements such as margin-based and norm-based

108 bounds (Bartlett et al., 2017; Neyshabur et al., 2015; 2017) yield tighter estimates by incorporating  
 109 weight norms or spectral properties, they become vacuous in the context of modern overparameterized  
 110 networks. PAC-Bayesian approaches (Arora et al., 2018; Hellström et al., 2025; Lotfi et al.,  
 111 2022) provide some of the strongest non-vacuous estimates by controlling the complexity of poste-  
 112 rior distributions over parameters, often informed by stochastic training dynamics. Stability-based  
 113 bounds, particularly those grounded in algorithmic stability (Hardt et al., 2016; Feldman & Von-  
 114 drak, 2018; Alabdulmohsin, 2015), characterize generalization through the sensitivity of a learning  
 115 algorithm to perturbations in the training data. However, most existing theories are parameter- or  
 116 algorithm-centric, leaving the role of representation structure in generalization largely unexplored.

117  
 118 **Representation-Based Approaches.** Recent research has increasingly focused on the impact of  
 119 embedding geometry on generalization. Key approaches analyze properties such as Consistency and  
 120 Separability of Representations (Davies & Bouldin, 2009; Dyballa et al., 2024; Belcher et al., 2020).  
 121 These geometric metrics offer improved interpretability and are less reliant on model scale. However,  
 122 they require labeled data, limiting their applicability in scenarios like pretraining or self-supervised  
 123 learning, where label information is unavailable.

124  
 125 **Intrinsic Dimension of Representations.** A recent and promising direction in representation-  
 126 based analysis is the study of *intrinsic dimension*, which quantifies the complexity of embeddings.  
 127 This approach aligns with the growing understanding that models implicitly compress input data  
 128 during learning: a lower intrinsic dimension signifies stronger compression and has been empiri-  
 129 cally linked to improved generalization (Ansini et al., 2019; Pope et al., 2021). While this offers  
 130 a quantitative measure of how representations condense information, the theoretical mechanisms  
 131 connecting intrinsic dimension to generalization remain largely unexplored.

### 3 PRELIMINARIES

132 We introduce the key concepts and assumptions that connect representation geometry to generaliza-  
 133 tion. Technical variants and detailed proofs are deferred to the appendix.

#### 3.1 MEASURES AND WASSERSTEIN DISTANCE

134  
 135 **Definition 1** (Empirical measure). *Let  $\mu$  be a probability distribution on a metric space  $(X, d)$ . Given  $n$  i.i.d. samples  $\{x_i\}_{i=1}^n \sim \mu$ , the empirical distribution is*

$$136 \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}.$$

137  
 138 **Definition 2** (Wasserstein distance). *For two probability measures  $\alpha, \beta$  on  $(X, d)$ , the 1-Wasserstein  
 139 distance is*

$$140 \mathcal{W}_1(\alpha, \beta) = \inf_{\gamma \in \Gamma(\alpha, \beta)} \int d(x, y) d\gamma(x, y),$$

141  
 142 where  $\Gamma(\alpha, \beta)$  is the set of couplings of  $\alpha$  and  $\beta$ . It can be interpreted as the minimal transport cost  
 143 between  $\alpha$  and  $\beta$ .

144  
 145 In our setting,  $\mathcal{W}_1$  quantifies how well the empirical embedding distribution  $\hat{P}_{k,n}^Z$  approximates its  
 146 population counterpart  $P_k^Z$ .

#### 3.2 NETWORK DECOMPOSITION AND EMBEDDINGS

147  
 148 **Definition 3** (Network decomposition). *At an intermediate layer  $k$ , we decompose the network into  
 149 an encoder  $F_{\leq k} : \mathcal{X} \rightarrow \mathcal{Z}_k$  mapping the input  $x \in \mathcal{X}$  to an embedding  $z \in \mathcal{Z}_k$ , and a tail map  
 150  $F_k : \mathcal{Z}_k \rightarrow \mathbb{R}^{\bar{C}}$  producing the final prediction. Thus the overall predictor is*

$$151 \quad F(x) = F_k(F_{\leq k}(x)).$$

162  
163 **Definition 4** (Empirical and Population Embedding Distributions). *Given  $n$  i.i.d. samples  
 $\{x_i\}_{i=1}^n \sim P_X$ , the empirical embedding distribution at layer  $k$  is defined as*  
 164

$$165 \quad \hat{P}_{k,n}^Z = \frac{1}{n} \sum_{i=1}^n \delta_{F_{\leq k}(x_i)},$$

166 where  $F_{\leq k}(x_i)$  represents the embedding of sample  $x_i$  at layer  $k$ .  
 167

168 The population embedding distribution  $\tilde{P}_k^Z$  is the true distribution of embeddings over the entire  
 169 data distribution  $P_X$ , i.e.,  
 170

$$171 \quad \tilde{P}_k^Z = \mathbb{E}_{x \sim P_X} [\delta_{F_{\leq k}(x)}].$$

172 **Remarks.** In this work, we use the embeddings of the validation set as a proxy for the empirical  
 173 embedding distribution and the embeddings of the test set as a proxy for the population embedding  
 174 distribution. Since the model has not seen the validation or test set during training, this ensures that  
 175 the validation and test samples remain i.i.d. in the embedding space.  
 176

### 177 3.3 LIPSCHITZ CONTINUITY

178 **Definition 5** (Lipschitz map). *A function  $f : (X, d_X) \rightarrow (Y, d_Y)$  is  $L$ -Lipschitz if*  
 179

$$180 \quad d_Y(f(x), f(x')) \leq L d_X(x, x') \quad \text{for all } x, x' \in X.$$

181 The Lipschitz constant  $L$  measures how perturbations in the input  $x$  are amplified in the output  $f(x)$ .  
 182

### 183 3.4 GEOMETRIC COMPLEXITY AND WASSERSTEIN CONVERGENCE

184 To state the convergence guarantees of empirical measures in Wasserstein distance, we follow the  
 185 geometric framework of Weed & Bach (2019). The key idea is that Wasserstein convergence is  
 186 governed not by the ambient dimension of the space, but by the *intrinsic geometric dimension* of the  
 187 underlying distribution. We summarize the necessary definitions and present the sharp asymptotic  
 188 bound.  
 189

190 **Definition 6** (Covering numbers and measure covering dimension). *Let  $(X, d)$  be a metric space  
 191 and  $S \subseteq X$ . The  $\varepsilon$ covering number of  $S$  is*  
 192

$$193 \quad \mathcal{N}_\varepsilon(S) := \min \left\{ N : S \subseteq \bigcup_{i=1}^N B_i, \text{diam}(B_i) \leq \varepsilon \right\}.$$

194 For a probability measure  $\mu$  on  $X$ , the  $(\varepsilon, \tau)$ covering number is  
 195

$$196 \quad \mathcal{N}_\varepsilon(\mu, \tau) := \inf \{ \mathcal{N}_\varepsilon(S) : \mu(S) \geq 1 - \tau \},$$

197 and the associated  $(\varepsilon, \tau)$ dimension is  
 198

$$199 \quad d_\varepsilon(\mu, \tau) := \frac{\log \mathcal{N}_\varepsilon(\mu, \tau)}{-\log \varepsilon}.$$

200 **Remarks.** The quantity  $d_\varepsilon(\mu, \tau)$  measures the effective geometric complexity of the *bulk* of the  
 201 measure  $\mu$  at scale  $\varepsilon$ , while allowing a  $\tau$ -fraction of mass to be ignored.  
 202

203 **Definition 7** (Upper Wasserstein dimension). *For a probability measure  $\mu$  on  $(X, d)$  and  $p \geq 1$ , the  
 204 upper Wasserstein dimension is*  
 205

$$206 \quad d_p^*(\mu) := \inf \left\{ s > 2p : \limsup_{\varepsilon \rightarrow 0} d_\varepsilon \left( \mu, \varepsilon^{sp/(s-2p)} \right) \leq s \right\}.$$

207 **Remarks.** The tolerance parameter  $\tau = \varepsilon^{sp/(s-2p)}$  controls the amount of mass that may be  
 208 discarded at resolution  $\varepsilon$ , preventing negligible high-complexity regions from dominating the dimension  
 209 estimate. The value  $d_p^*(\mu)$  identifies the smallest exponent  $s$  for which the majority of  $\mu$  behaves  
 210 like an  $s$ -dimensional set at sufficiently fine scales. As shown in Weed & Bach (2019),  $d_p^*(\mu)$  is the  
 211 critical dimension governing the minimax convergence rates for Wasserstein estimation.  
 212

216 **Wasserstein convergence rates.** The role of  $d_p^*(\mu)$  becomes explicit in the convergence behavior  
 217 of empirical measures. Let  $\hat{\mu}_n$  be the empirical distribution of  $n$  i.i.d. samples from  $\mu$ . The following  
 218 result restates the upper bound of Weed & Bach (2019) in a form that highlights how  $d_p^*(\mu)$  controls  
 219 the rate.

220 **Theorem 3.1** (Wasserstein convergence governed by the upper Wasserstein dimension). *For any*  
 221  $p \in [1, \infty)$  *and any*  $\varepsilon > 0$ , *setting*  $s = d_p^*(\mu) + \varepsilon$  *yields the upper bound*

$$223 \quad \mathbb{E}[W_p(\mu, \hat{\mu}_n)] \leq C_{\varepsilon, p} n^{-1/s}.$$

224 *Since  $\varepsilon$  may be chosen arbitrarily small, the empirical Wasserstein convergence rate can be made*  
 225 *arbitrarily close to  $n^{-1/d_p^*(\mu)}$ . Thus  $d_p^*(\mu)$  fully determines the asymptotic speed at which empirical*  
 226 *measures converge to  $\mu$  in Wasserstein distance.*

227 **Remark 1.** *By taking  $s = d_p^*(\mu) + \varepsilon$  in Theorem 3.1, we make the dependence of the conver-*  
 228 *gence rate on the measure's intrinsic dimension explicit: a larger  $d_p^*(\mu)$  directly yields a slower*  
 229 *rate  $n^{-1/s}$ . Thus lower-dimensional distributions enjoy faster Wasserstein convergence, while*  
 230 *higher-dimensional ones converge more slowly. In representation learning, estimating an intrinsic-*  
 231 *dimension proxy from embeddings provides an empirical estimate of  $d_p^*(\mu)$  and therefore predicts*  
 232 *how efficiently finite samples recover the population representation geometry.*

233 **Definition 8** (Population Risk and Empirical Risk). *For a predictor  $F : \mathcal{X} \rightarrow \mathbb{R}^C$  and loss function*  
 234  $\ell$ , *the population risk is*

$$235 \quad R(F) := \mathbb{E}_{(x, y) \sim P_{X, Y}} [\ell(F(x), y)],$$

236 *and the empirical risk on  $n$  i.i.d. samples  $\{(x_i, y_i)\}_{i=1}^n$  is*

$$237 \quad \hat{R}_n(F) := \frac{1}{n} \sum_{i=1}^n \ell(F(x_i), y_i).$$

238 *The quantity of interest in this paper is their difference:*

$$239 \quad R(F) - \hat{R}_n(F),$$

240 *which measures how far the empirical risk deviates from the population risk.*

241 **Remark.** In practice, we compute the empirical risk using the training set, and approximate the  
 242 population risk using the test set.

243 **Definition 9** (Bayes Predictor). *The Bayes predictor is the ideal predictor that has the same model*  
 244 *architecture as  $F$  but is trained with full access to the true population distribution. Formally, it is*  
 245 *the conditional risk minimizer*

$$246 \quad F_k^*(z) := \arg \min_f \mathbb{E}[\ell(f(z), Y) \mid Z_k = z].$$

247 *Intuitively,  $F_k^*$  returns the best possible prediction given the information contained in  $Z_k$ . Moreover,*  
 248 *since  $F_k^*$  is optimized with respect to the full population distribution, we assume that its loss on any*  
 249 *sample  $(z, y)$  is uniformly bounded by some finite constant  $C_\ell < \infty$ .*

250 **Remark.** The Bayes predictor serves as an ideal reference model in our analysis, returning the  
 251 population-optimal output that minimizes the conditional risk given the embedding  $Z_k$ . Replacing  
 252 the discrete label  $Y$  with the continuous output  $F_k^*(Z_k)$  effectively *smooths the labels* and ensures  
 253 that the loss becomes differentiable with respect to the embeddings. However, since  $F_k^*(Z_k)$  does  
 254 not exactly match the true label  $Y$ , this substitution introduces an *approximation error*, whose effect  
 255 must be explicitly controlled in our theoretical bounds.

### 256 3.5 STANDING ASSUMPTIONS

257 We impose the following regularity assumptions, stated with explicit constants to clarify their roles  
 258 in later bounds.

259 **Assumption 1** (Measurability of embeddings). *For each layer  $k$ , the embedding map  $h_{\leq k} : \mathcal{X} \rightarrow$   
 260  $\mathcal{Z}_k$  is measurable, so that the pushforward distribution  $\tilde{P}_k^Z$  is well defined.*

270 **Assumption 2** (Bounded support). *Each embedding distribution  $\tilde{P}_k^Z$  has bounded  $\ell_1$ -diameter:*

$$271 \quad D_k := \sup_{z, z' \in \text{supp}(\tilde{P}_k^Z)} \|z - z'\|_1 < \infty.$$

274 *The bounded diameter  $D_k$  is used in Proposition 2 (Appendix A.4.4) to control the effect of a single-  
275 sample replacement when applying McDiarmid's inequality to the Wasserstein term  $W_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)$ .*

277 **Assumption 3** (Lipschitz continuity of tail and Bayes maps). *For each layer  $k$ , consider an open  
278 neighborhood  $U_k \supseteq \text{supp}(\tilde{P}_k^Z)$  of the embedding support. The network tail map  $F$  and the Bayes  
279 predictor  $F_k^*$  are assumed Lipschitz on  $U_k$ , with constants*

$$280 \quad L_k(F) := \sup_{z \in U_k} \|\nabla F(z)\|_{\text{op}}, \quad L_k(F^*) := \sup_{z \in U_k} \|\nabla F_k^*(z)\|_{\text{op}}.$$

282 *These Lipschitz constants are used in Lemma 2 to bound the gradient of the layerwise loss  $g_k(z) =$   
283  $\ell(F(z), F_k^*(z))$ , yielding  $L_k(g) \leq L_k(F)M_F + L_k(F^*)M_{F^*}$ .*

284 **Assumption 4** (Loss regularity). *The loss  $\ell : \mathbb{R}^C \times \mathbb{R}^C \rightarrow \mathbb{R}$  is continuously differentiable in both  
285 arguments. There exist constants  $M_F, M_{F^*} < \infty$  such that*

$$286 \quad \|\nabla_u \ell(u, v)\|_\infty \leq M_F, \quad \|\nabla_v \ell(u, v)\|_\infty \leq M_{F^*}.$$

287 *The gradient bounds  $M_F$  and  $M_{F^*}$  are used in Lemma 2 through the chain rule to obtain the  
288 Lipschitz constant of  $g_k$ , and in Lemma 3 to control the approximation error incurred when replacing  
289 labels by the Bayes predictor, i.e., the term involving  $\ell(F(x), F_k^*(x)) - \ell(F(x), y)$ .*

## 291 4 MAIN THEORETICAL RESULTS

### 294 4.1 DIMENSION-DEPENDENT GENERALIZATION BOUND

295 Our first main result shows that the generalization error can be controlled in terms of the intrinsic  
296 dimension of intermediate embeddings, together with Lipschitz sensitivity factors.

297 **Theorem 4.1** (Dimension-dependent generalization bound). *Assume Assumptions 1–4. Fix confidence  $\delta \in (0, 1)$ . Suppose that for each layer  $k$  there exist constants  $C_k > 0$ , intrinsic dimension  $d_k > 0$ , and arbitrarily small  $\epsilon > 0$  such that, for all sufficiently large  $n$ ,*

$$301 \quad \mathbb{E}[\mathcal{W}_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)] \leq C_k n^{-1/(d_k + \epsilon)}.$$

302 *Then for any fixed predictor  $F \in \mathcal{F}$ , with probability at least  $1 - \delta$ ,*

$$304 \quad \begin{aligned} R(F) &\leq \hat{R}_n(F) + \min_{0 \leq k \leq L} \left\{ \bar{L}_k \left( \mathbb{E}[\mathcal{W}_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)] + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) \right. \\ 305 &\quad \left. + M_{F^*} \left( 2 \mathbb{E} \|Y - F_k^*(Z)\|_1 + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}} \right) \right\} \\ 306 &\leq \hat{R}_n(F) + \min_{0 \leq k \leq L} \left\{ \bar{L}_k \left( C_k n^{-1/(d_k + \epsilon)} + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) \right. \\ 307 &\quad \left. + M_{F^*} \left( 2 \mathbb{E} \|Y - F_k^*(Z)\|_1 + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}} \right) \right\}. \end{aligned} \quad (1)$$

313 *where  $D_k$  is the  $\ell_1$ -diameter of the embedding support, the intrinsic dimension  $d_k$  is precisely the  
314 upper Wasserstein dimension of the embedding distribution  $\tilde{P}_k^Z$ , and*

$$316 \quad \bar{L}_k := L_k(F)M_F + L_k(F^*)M_{F^*}.$$

### 317 Remarks.

- 319 **Dimension dependence.** The term  $n^{-1/(d_k + \epsilon)}$  is the dominant statistical rate. It comes from  
320 how quickly the empirical embedding distribution converges to its population counterpart. If the  
321 embeddings at layer  $k$  concentrate on a low-dimensional set (small  $d_k$ ), the Wasserstein distance  
322 shrinks faster, so fewer samples are needed to approximate the true embedding distribution. This  
323 explains why models that compress information into lower-dimensional representations tend to  
generalize better.

- **Sensitivity.** The factor  $\bar{L}_k$  quantifies how sensitive the loss is to perturbations in the embeddings. It combines the Lipschitz constant of the model’s tail ( $L_k(F)$ ) and that of the Bayes predictor ( $L_k(F^*)$ ), scaled by the loss derivative bounds. Intuitively, even if embeddings concentrate in a low-dimensional region, the benefit may be offset if the predictor reacts too strongly to small embedding changes. Thus  $\bar{L}_k$  captures the architectural and task-dependent smoothness required for low dimension to translate into good generalization.
- **Layer minimization.** Each layer provides a different balance between dimension and sensitivity. Early layers may have higher intrinsic dimension but lower sensitivity, while later layers may be more compressed but more sensitive. The bound holds for all layers, so taking the minimum over  $k$  automatically selects the representation whose dimensionsensitivity tradeoff gives the tightest control of the generalization gap.

## 4.2 FINAL-LAYER SIMPLIFICATION

When we analyze the embeddings at the output layer, the expression simplifies further. At this layer, the downstream network mapping is the identity: the output of the network is exactly the embedding  $Z_L$ . Therefore the architectural Lipschitz constant disappears, i.e.  $L_L(F) = 1$ .

**Corollary 1** (Final-layer bound). *For the final embedding  $Z_L = F(X)$  we have  $L_L(F) = 1$ . With probability at least  $1 - \delta$ ,*

$$R(F) \leq \hat{R}_n(F) + (M_F + L_L(F^*) M_{F^*}) \left( C_L n^{-1/(d_L + \epsilon)} + D_L \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) + M_{F^*} \left( 2 \mathbb{E} \|Y - F_L^*(Z_L)\|_1 + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}} \right). \quad (2)$$

**Remark.** At the final layer, the architectural Lipschitz factors vanish, leaving a bound that depends only on: (i) the intrinsic dimension  $d_L$ , (ii) the embedding diameter  $D_L$ , (iii) the loss-derivative constants ( $M_F, M_{F^*}$ ), and (iv) the Bayes smoothness constant  $L_L(F^*)$  together with the irreducible label-noise term. This shows that final-layer embeddings provide a particularly convenient diagnostic: generalization is largely driven by dimension and data-related smoothness, without additional sensitivity to the network’s architectural Lipschitz constant.

**Summary.** The generalization error is determined by two main forces: the intrinsic dimension of embeddings (statistical efficiency) and Lipschitz sensitivity (stability to perturbations). Intermediate layers reflect both effects, requiring joint consideration of dimension and sensitivity. The final layer provides a simplified diagnostic where only dimension and distribution-dependent smoothness remain, clarifying why final-layer dimension has strong predictive power for generalization. The complete proof of Theorem 4.1 is provided in Appendix A.

## 5 EXPERIMENTS AND RESULTS

### 5.1 VALIDATION OF WASSERSTEIN CONVERGENCE SCALING

Theorem 3.1 shows that the convergence rate of empirical to population distributions in Wasserstein distance is governed by the intrinsic dimension. A key question is whether this scaling law also holds for the complex embeddings produced by neural networks. To validate this, we train a five-layer MLP autoencoder on MNIST and analyze how the Wasserstein distance between empirical and population embeddings depends on both intrinsic dimension and sample size.

We examine two perspectives. First, we fix the sample size  $n$  and evaluate how Wasserstein distance varies with intrinsic dimension. Second, we fix intrinsic dimension and study how the Wasserstein distance decreases with  $n$  according to the predicted  $n^{-1/(d+\epsilon)}$  law. In the experiments, we vary sample sizes from 100 to 1500 and compute embeddings from the trained autoencoder. For each configuration, we estimate the intrinsic dimension of embeddings by MLE (Levina & Bickel, 2004) and compute the Wasserstein distance between two embedding sets of size  $n$ : one drawn as the empirical sample set, and another drawn independently to approximate the population embedding distribution. This empirical Wasserstein distance quantifies how closely the finite sample set approximates the broader embedding distribution under the chosen metric.

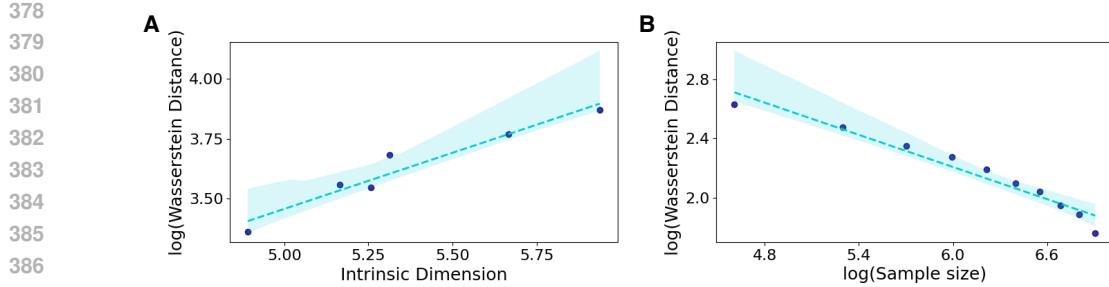


Figure 2: **Scaling of Wasserstein Convergence in Neural Network Embeddings.** (A) With fixed sample size,  $\log(\text{Wasserstein distance})$  increases approximately linearly with embedding dimension. (B) With fixed embedding dimension,  $\log(\text{Wasserstein distance})$  decreases approximately linearly with  $\log(\text{sample size})$ .

The results reveal two consistent patterns. For fixed  $n$ , the log of Wasserstein distance increases approximately linearly with intrinsic dimension, consistent with the exponential dependence on  $d$  predicted by the theory (Figure 2A). For fixed  $d$ , the log of Wasserstein distance decreases approximately linearly with  $\log n$ , as predicted by the  $n^{-1/(d+\epsilon)}$  law (Figure 2B). These findings validate that the relationship between intrinsic dimension, sample size, and Wasserstein convergence extends to real neural network embeddings. Other details are provided in Appendix B.1.

## 5.2 RELATIONSHIP BETWEEN INTRINSIC DIMENSION, WASSERSTEIN DISTANCE AND GENERALIZATION GAP

Corollary 1 shows that when analyzing the final layer’s embedding, architectural sensitivity vanishes, and the generalization gap  $R(F) - \hat{R}_n(F)$  is largely governed by the intrinsic dimension of the embedding. To test this prediction in realistic settings, we evaluate ResNet-18, 34, 50, 101 and 152 on CIFAR-10 and CIFAR-100.

For each trained model, we extract the final-layer embeddings and estimate their intrinsic dimension  $d_L$ . We also compute the empirical Wasserstein distance  $\mathcal{W}_1$  between validation and test embedding distributions. To obtain finer-grained insight, we perform the analysis at the class level rather than only at the aggregate level: each ResNet model yields 10 data points on CIFAR-10 (one per class) and 100 data points on CIFAR-100. This allows us to assess the relationship between embedding properties and the generalization gap more accurately.

Figure 3 shows that both the intrinsic dimension  $d_L$  of the final embedding and the empirical Wasserstein distance  $\mathcal{W}_1$  correlate positively with the observed generalization gap across architectures and datasets, consistent with the relationship predicted by our generalization error bound.

These experiments extend our earlier results from MNIST to more complicated datasets and architectures. Overall, the results reinforce the central theoretical insight: at the final layer, architectural factors vanish and lower intrinsic dimension is strongly associated with smaller generalization gaps. Other details are provided in Appendix B.2. We also compare different hyperparameter choices and estimation algorithms in Appendix C, all of which yield results consistent with those reported here.

## 5.3 INTERVENTIONS ON NETWORK WIDTH

Theorem 4.1 emphasizes that when analyzing intermediate-layer embeddings, the generalization error depends jointly on the embedding dimension and the Lipschitz constant of the downstream mapping from embedding to output. To empirically investigate this relationship, we conduct controlled interventions by varying the width of a middle layer in a neural network.

Analyzing the Lipschitz constant of a general neural network is challenging. To facilitate this analysis, we consider fully connected MLPs with ReLU activations, for which the product of the spectral norms of the weight matrices provides an upper bound on the network’s Lipschitz constant (Bartlett et al., 2017). We use this bound as a proxy for the network’s Lipschitz constant and systematically

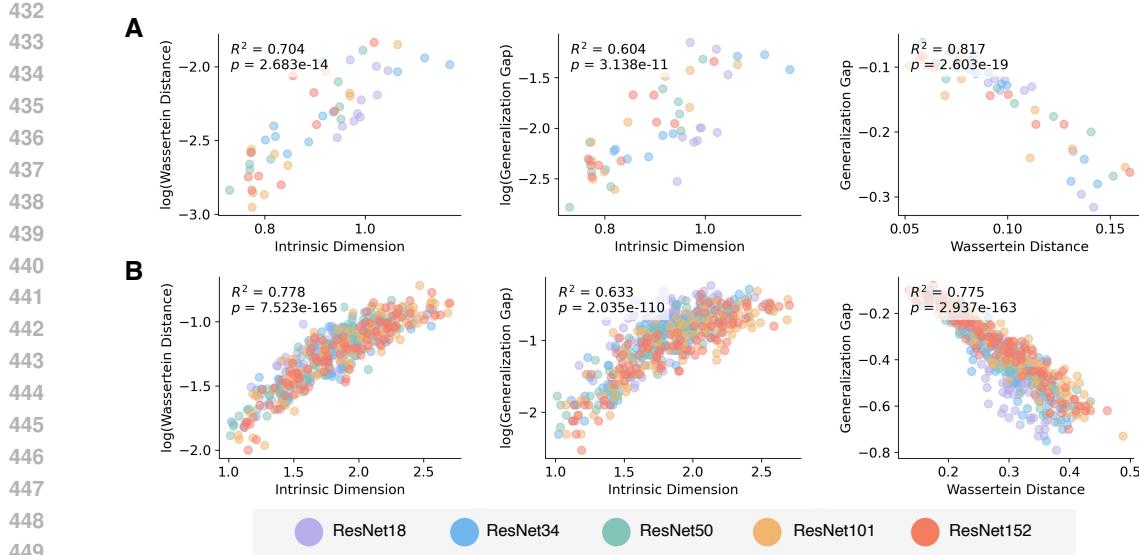


Figure 3: **Relationship Between Final-Layer Embedding Dimension, Wasserstein Distance and Generalization Error.** We evaluate CIFAR-10 (A) and CIFAR-100 (B) and observe a significant correlation between final-layer embedding dimension, Wasserstein distance and generalization error. This pattern aligns with predictions from the generalization error bound, indicating the bound is sufficiently tight and that embedding dimension, together with Wasserstein convergence, provides an effective predictor of generalization error.

study how changes in the width of a single intermediate layer affect the intrinsic dimension of the embedding, the network’s Lipschitz constant and the resulting generalization error.

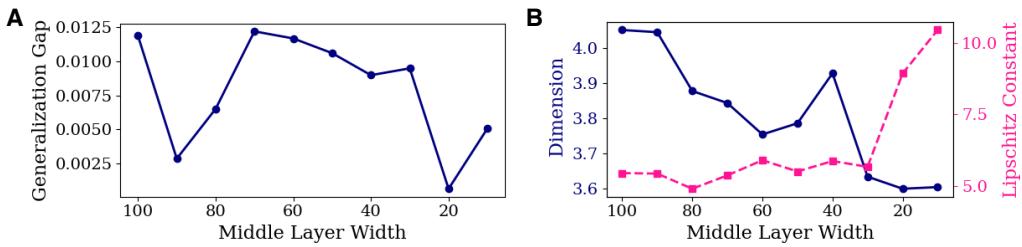


Figure 4: **Effect of Network Width on Intrinsic Dimension and Generalization Error.** (A) A six-layer MLP is used to vary the width of the third layer. Reducing width does not necessarily decrease generalization error. (B) Narrower networks reduce embedding intrinsic dimension, but the network Lipschitz constant increases, offsetting the benefit of lower dimension. Hence, both embedding dimension and Lipschitz constant of network should be jointly considered when analyzing generalization error.

Specifically, we train a six-layer MLP on CIFAR-10 and vary the width of the third layer from 100 down to 10. Figure 4 summarizes the results: Panel A shows that as the layer width decreases, the generalization error does not consistently decline. Panel B shows that the embedding’s intrinsic dimension steadily decreases with narrower layers, while the network’s Lipschitz constant increases, particularly when the width drops below 30. This increase in sensitivity likely offsets the benefit of lower intrinsic dimension, explaining why the generalization error does not significantly improve.

These results confirm that simply reducing network width does not reliably enhance generalization. Narrower layers can reduce the embedding dimension, but this effect may be counteracted by increased sensitivity of the downstream mapping. The findings provide empirical support for Theorem 4.1 and highlight the importance of jointly considering embedding geometry and Lipschitz

486 sensitivity when analyzing overparameterized networks. Other details are provided in Appendix  
 487 B.3.  
 488

489 **6 DISCUSSION AND CONCLUSION**

490 Understanding why deep networks generalize despite massive overparameterization remains a central  
 491 challenge. This work advances a *representation-centric view*, showing that generalization error  
 492 can be related to two measurable properties: the intrinsic dimension  $d_k$  of embeddings and a  
 493 sensitivity term  $\bar{L}_k$  that captures how embedding perturbations propagate through the network. These  
 494 quantities integrate model structure and data distribution, offering post-hoc diagnostics beyond clas-  
 495 sical capacity-based bounds. Experiments across architectures and datasets confirm this interplay,  
 496 showing that embedding dimension, Wasserstein distance, and generalization error track each other  
 497 consistently, with scaling close to  $n^{-1/(d+\epsilon)}$ , and that architectural sensitivity vanishes at the final  
 498 layer so dimension plays a dominant role.  
 499

500 In Appendix C.5, we further extend these analyses to large models and ImageNet, demonstrating  
 501 that the correlations among dimension, Wasserstein distance and generalization error persist even  
 502 at large-scale model and dataset. Additionally, we analyze layer-wise embeddings in ResNet-154  
 503 in Appendix C.6, finding that while dimension and Wasserstein distance remain strongly correlated  
 504 across layers, the correlations between dimension and generalization performance, as well as be-  
 505 tween Wasserstein distance and generalization performance, increase progressively with network  
 506 depth. These results reinforce the importance of embedding geometry in explaining generalization  
 507 behavior, particularly in deeper layers and larger-scale settings.  
 508

509 **Limitations.** Our bound contains constants that may be loose. However, our experiments demon-  
 510 strate a significant correlation between embedding dimension, Wasserstein distance and generaliza-  
 511 tion error, indicating that changes in generalization error can be effectively captured by variations  
 512 in dimension. This empirical alignment shows that our bound, despite potentially loose constants,  
 513 retains practical significance as a diagnostic tool for generalization. We also rely on assumptions  
 514 such as the Lipschitz continuity of the Bayes predictor, which ensures a well-defined and bounded  
 515 relationship between inputs and outputs. Without such assumptions, it is not possible to derive a  
 516 generalization bound purely from properties of a specific layer’s embedding. Relaxing these as-  
 517 sumptions is an important direction for future work. Estimating the sensitivity term  $\bar{L}_k$  remains  
 518 challenging in practice, and developing reliable estimators is necessary for broader applicability. Fi-  
 519 nally, in our current analysis we treat embedding dimension and network sensitivity as independent.  
 520 In reality, these quantities may be correlated. Understanding this interplay is an important direction  
 521 for future work.  
 522

523 **Conclusion.** By shifting focus from network parameter to embedding geometry, we identify in-  
 524 trinsic dimension and sensitivity as core drivers of generalization. This framework offers both a  
 525 theoretical foundation and practical tools for analyzing and designing deep networks.  
 526

527 **REFERENCES**

528 Ibrahim M Alabdulmohsin. Algorithmic stability and uniform generalization. *Advances in Neural*  
 529 *Information Processing Systems*, 28, 2015.

530 Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E Houle, Ken-ichi  
 531 Kawarabayashi, and Michael Nett. Extreme-value-theoretic estimation of local intrinsic dimen-  
 532 sionality. *Data Mining and Knowledge Discovery*, 32(6):1768–1805, 2018.

533 Laurent Amsaleg, Oussama Chelly, Michael E Houle, Ken-Ichi Kawarabayashi, Miloš Radovanović,  
 534 and Weeris Treeratanajaru. Intrinsic dimensionality estimation within tight localities. In *Pro-  
 535 ceedings of the 2019 SIAM international conference on data mining*, pp. 181–189. SIAM, 2019.

536 Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of  
 537 data representations in deep neural networks. *Advances in Neural Information Processing Sys-  
 538 tems*, 32, 2019.

540 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for  
 541 deep nets via a compression approach. In *International conference on machine learning*, pp.  
 542 254–263. PMLR, 2018.

543

544 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and  
 545 structural results. *Journal of machine learning research*, 3(Nov):463–482, 2002.

546 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for  
 547 neural networks. *Advances in neural information processing systems*, 30, 2017.

548

549 Dominic Belcher, Adam Prugel-Bennett, and Srinandan Dasmahapatra. Generalisation and the ge-  
 550 ometry of class separability. In *NeurIPS 2020 Workshop: Deep Learning through Information  
 551 Geometry*, 2020.

552 David L Davies and Donald W Bouldin. A cluster separation measure. *IEEE transactions on pattern  
 553 analysis and machine intelligence*, (2):224–227, 2009.

554

555 Luciano Dybulla, Evan Gerritz, and Steven W Zucker. A separability-based approach to quantifying  
 556 generalization: which layer is best? *arXiv preprint arXiv:2405.01524*, 2024.

557

558 Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. *Advances  
 559 in Neural Information Processing Systems*, 31, 2018.

560

561 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic  
 562 gradient descent. In *International conference on machine learning*, pp. 1225–1234. PMLR, 2016.

563

564 Fredrik Hellström, Giuseppe Durisi, Benjamin Guedj, Maxim Raginsky, et al. Generalization  
 565 bounds: Perspectives from information theory and pac-bayes. *Foundations and Trends® in Ma-  
 566 chine Learning*, 18(1):1–223, 2025.

567

568 Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. *Advances  
 569 in neural information processing systems*, 17, 2004.

570

571 Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew G  
 572 Wilson. Pac-bayes compression bounds so tight that they can explain generalization. *Advances in  
 573 Neural Information Processing Systems*, 35:31459–31473, 2022.

574

575 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural  
 576 networks. In *Conference on learning theory*, pp. 1376–1401. PMLR, 2015.

577

578 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to  
 579 spectrally-normalized margin bounds for neural networks. *arXiv preprint arXiv:1707.09564*,  
 580 2017.

581

582 Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic  
 583 dimension of images and its impact on learning. *arXiv preprint arXiv:2104.08894*, 2021.

584

585 Stephan R Sain. The nature of statistical learning theory, 1996.

586

587 Eduardo D Sontag et al. Vc dimension of neural networks. *NATO ASI Series F Computer and  
 588 Systems Sciences*, 168:69–96, 1998.

589

590 Lan V Truong. On rademacher complexity-based generalization bounds for deep learning. *arXiv  
 591 preprint arXiv:2208.04284*, 2022.

592

593 Vladimir Vapnik, Esther Levin, and Yann Le Cun. Measuring the vc-dimension of a learning ma-  
 594 chine. *Neural computation*, 6(5):851–876, 1994.

595

596 Cédric Villani. *Optimal Transport: Old and New*, volume 338 of *Grundlehren der mathematischen  
 597 Wissenschaften*. Springer, 2009. ISBN 9783540710493. doi: 10.1007/978-3-540-71050-9.

598

599 Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of em-  
 600 pirical measures in wasserstein distance. *Bernoulli*, 25(4A):2620–2648, 2019.

594  
595  
**A SUPPLEMENT OF THEORETICAL RESULTS**596  
597 Before presenting the detailed proofs, we first summarize the key notation used throughout this  
598 appendix and the main paper. This notation table serves as a convenient reference to improve clarity  
599 and readability.600  
601 **Notation summary.** Key symbols used throughout the paper.  
602603  
604 Table 1: Notation summary for key symbols in the paper.

| 605<br>606 <b>Symbol</b>          | 607 <b>Meaning</b>                                                  |
|-----------------------------------|---------------------------------------------------------------------|
| 608 $\tilde{P}_k^Z$               | 609 Population embedding distribution at layer $k$ .                |
| 610 $\hat{P}_{k,n}^Z$             | 611 Empirical embedding distribution from $n$ samples.              |
| 612 $\hat{\mu}_n$                 | 613 Empirical measure of $n$ i.i.d. samples.                        |
| 614 $R(F)$                        | 615 Population risk of predictor $F$ .                              |
| 616 $\hat{R}_n(F)$                | 617 Empirical risk on validation set.                               |
| 618 $\text{gen}(F)$               | 619 Generalization gap $R(F) - \hat{R}_n(F)$ .                      |
| 620 $F_{\leq k}$                  | 621 Encoder mapping input $x$ to embedding $z$ at layer $k$ .       |
| 622 $F_k$                         | 623 Tail map from layer- $k$ embedding $z$ to output.               |
| 624 $F(x)$                        | 625 Overall predictor $F_k(F_{\leq k}(x))$ .                        |
| 626 $F_k^*$                       | 627 Bayes predictor from layer- $k$ embedding $z$ to output.        |
| 628 $d_k$                         | 629 Intrinsic dimension of $\tilde{P}_k^Z$ .                        |
| 630 $D_k$                         | 631 $\ell_1$ -diameter of support of $\tilde{P}_k^Z$ .              |
| 632 $\mathcal{W}_1(\cdot, \cdot)$ | 633 1-Wasserstein distance.                                         |
| 634 $L_k(F)$                      | 635 Lipschitz constant of network tail from layer $k$ to output.    |
| 636 $L_k(F^*)$                    | 637 Lipschitz constant of Bayes predictor from layer $k$ to output. |
| 638 $M_F$                         | 639 Bound on loss gradient wrt network output.                      |
| 640 $M_{F^*}$                     | 641 Bound on loss gradient wrt Bayes predictor output.              |
| 642 $\ell$                        | 643 Loss function (e.g., squared loss, cross-entropy).              |
| 644 $B_\ell$                      | 645 Uniform bound on loss values.                                   |

631  
632 **Roadmap of the appendix.** This appendix provides a complete derivation of the dimension-  
633 dependent generalization bound stated in Theorem 4.1. The proof is organized into four self-  
634 contained steps:

- 635 **1. Preliminaries (Subsection A.1):** We collect standard technical tools used throughout the proofs,  
636 including optimal transport results and Wasserstein bounds for Lipschitz functions.
- 637 **2. Risk decomposition via Bayes surrogates (Subsection A.2):** In classification settings, labels  
638 are discrete, so the observed loss is non-differentiable with respect to embeddings. We introduce  
639 layer-wise Bayes predictors as continuous surrogates, leading to a decomposition of the general-  
640 ization error into three terms: (A) approximation gap, (B) oracle statistical gap, and (C) empirical  
641 model gap.
- 642 **3. Controlling the decomposed terms (Subsection A.4):** Each term is bounded explicitly. (A) and  
643 (C) are controlled by irreducible label noise, while (B) is controlled via the 1-Wasserstein distance  
644 between empirical and population embeddings combined with the oracle loss Lipschitz constant.  
645 Concentration inequalities yield high-probability bounds scaling with embedding dimension and  
sample size.
- 646 **4. Recovering network effects (Subsection A.5):** The oracle Lipschitz constant  $L_k(g)$  is decom-  
647 posed as

648  
649 
$$650 L_k(g) \leq L_k(F) M_F + L_k(F^*) M_{F^*},$$

648 separating controllable network-dependent and intrinsic Bayes predictor contributions. Substi-  
 649 tuting this into the previous bounds connects embedding geometry, statistical concentration, and  
 650 network design.

651 Overall, these steps provide a clear, high-probability generalization bound that disentangles statisti-  
 652 cal, architectural, and label-noise contributions.  
 653

### 654 A.1 PRELIMINARIES: USEFUL LEMMAS AND THEOREMS

656 In this subsection we collect several standard results that will be used throughout the proofs. They  
 657 are presented here to avoid interruptions in the main arguments later.  
 658

#### 659 A.1.1 EXISTENCE OF OPTIMAL TRANSPORT PLAN

661 **Theorem A.1** (Existence of Optimal Transport Plan (Villani, 2009, Theorem 4.1)). *Let  $(\mathcal{X}, \mu)$  and*  
 662  *$(\mathcal{Y}, \nu)$  be Polish probability spaces, and let*

$$663 c : \mathcal{X} \times \mathcal{Y} \longrightarrow \mathbb{R} \cup \{+\infty\}$$

664 *be a lower semicontinuous cost function. Then there exists a coupling  $\gamma^* \in \Pi(\mu, \nu)$  that minimizes*  
 665 *the expected cost:*

$$667 \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma^*(x, y) = \inf_{\gamma \in \Pi(\mu, \nu)} \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) d\gamma(x, y).$$

668 *In particular, for the 1-Wasserstein cost  $c(z, z') = \|z - z'\|_1$  on a Polish space there exists an*  
 669 *optimal coupling attaining  $\mathcal{W}_1$ .*

#### 672 A.1.2 WASSERSTEIN BOUND FOR LIPSCHITZ FUNCTIONS

674 **Lemma 1** (Expectation difference controlled by  $\mathcal{W}_1$ ). *Let  $\mu, \nu$  be probability measures on  $\mathbb{R}^d$ . If*  
 675  *$h : \mathbb{R}^d \rightarrow \mathbb{R}$  is  $L_h$ -Lipschitz with respect to  $\ell_1$  (i.e.  $|h(z) - h(z')| \leq L_h \|z - z'\|_1$  for all  $z, z'$ ), then*

$$677 \left| \int h d\mu - \int h d\nu \right| \leq L_h \mathcal{W}_1(\mu, \nu).$$

679 *Proof.* By definition of  $\mathcal{W}_1$  and for any coupling  $\pi \in \Pi(\mu, \nu)$ ,

$$681 \int h d\mu - \int h d\nu = \iint (h(z) - h(z')) d\pi(z, z') \leq \iint L_h \|z - z'\|_1 d\pi(z, z').$$

683 Taking infimum over all couplings  $\pi$  gives the claim. The absolute value follows by symmetry  
 684 (swapping  $\mu, \nu$ ).  $\square$   
 685

### 686 A.2 RISK DECOMPOSITION VIA BAYES SURROGATES

688 **Motivation.** In classification, the label  $Y$  is discrete, so the observed loss  $\ell(F(X), Y)$  is not differ-  
 689 entiable with respect to embeddings  $Z_k$ . This obstructs a direct Lipschitz-based analysis of the risk,  
 690 which is central to our approach. To address this, we introduce at each layer  $k$  the *Bayes predictor*  
 691  $F_k^*(Z_k)$ , a continuous surrogate for the discrete label. Replacing  $Y$  with  $F_k^*(Z_k)$  yields the *oracle*  
 692 *loss*, which is differentiable in  $Z_k$  and hence amenable to Lipschitz/Wasserstein analysis. The cost  
 693 of this replacement is an additional error term capturing the mismatch between observed and oracle  
 694 risks. This term corresponds to irreducible label randomness and will be explicitly controlled.

695 **Definition 10** (Observed and oracle risks). *Let  $\ell : \mathbb{R}^C \times \mathbb{R}^C \rightarrow \mathbb{R}$  be a measurable loss. At the*  
 696 *input layer, the observed risks are*

$$697 R_0^{\text{obs}} := \mathbb{E}_{(X, Y) \sim \mathcal{D}} [\ell(F(X), Y)], \quad \hat{R}_{0,n}^{\text{obs}} := \frac{1}{n} \sum_{i=1}^n \ell(F(x_i), y_i).$$

700 At layer  $k$ , the oracle loss is defined as  
 701

$$g_k(z) := \ell(F_k(z), F_k^*(z)),$$

702 with population and empirical oracle risks  
 703

704  $R_k^{\text{oracle}} := \mathbb{E}_{Z_k \sim \tilde{P}_k^Z} [g_k(Z_k)], \quad \hat{R}_{k,n}^{\text{oracle}} := \frac{1}{n} \sum_{i=1}^n g_k(z_{k,i}).$   
 705  
 706

707 **Proposition 1** (Risk decomposition). *For any predictor  $F$  and any intermediate layer  $k$ ,*

708  $R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} = (R_0^{\text{obs}} - R_k^{\text{oracle}}) + (R_k^{\text{oracle}} - \hat{R}_{k,n}^{\text{oracle}}) + (\hat{R}_{k,n}^{\text{oracle}} - \hat{R}_{0,n}^{\text{obs}}).$   
 709

710 **Interpretation.** The decomposition separates the generalization gap into three terms:  
 711

- 712 **Approximation gap:**  $R_0^{\text{obs}} - R_k^{\text{oracle}}$  measures the loss of information when replacing discrete  
 713 labels by the Bayes predictor at layer  $k$ .
- 714 **Oracle statistical gap:**  $R_k^{\text{oracle}} - \hat{R}_{k,n}^{\text{oracle}}$  is the population-to-sample deviation of the oracle loss,  
 715 the term to be controlled via Lipschitz continuity and Wasserstein concentration.
- 716 **Empirical model gap:**  $\hat{R}_{k,n}^{\text{oracle}} - \hat{R}_{0,n}^{\text{obs}}$  quantifies how network predictions differ from Bayes-  
 717 optimal predictions under the empirical distribution.

718 **Summary.** The observed generalization error is thus expressed as an oracle component (amenable  
 719 to Lipschitz/Wasserstein analysis) plus two additional error terms that capture irreducible label noise  
 720 and model approximation. This motivates analyzing the Lipschitz constant of the oracle loss  $g_k(z)$ ,  
 721 which we do next.  
 722

### 723 A.3 LIPSCHITZ CONSTANT OF THE LAYER-WISE LOSS

725 Having introduced the oracle loss  $g_k(z) = \ell(F_k(z), F_k^*(z))$ , we now analyze its Lipschitz continuity  
 726 with respect to the embedding  $z$ . This is possible because both arguments of  $g_k$  are continuous  
 727 functions of  $z$ .  
 728

#### 729 Gradient and Lipschitz bound.

730 **Lemma 2.** *Suppose Assumptions 1–4 hold. Then for all  $z \in U_k$ ,*

732 
$$\nabla g_k(z) = \nabla F_k(z)^\top \partial_F \ell(F_k(z), F_k^*(z)) + \nabla F_k^*(z)^\top \partial_{F^*} \ell(F_k(z), F_k^*(z)).$$
  
 733

734 *Hence*

735 
$$\|\nabla g_k(z)\|_\infty \leq \|\nabla F_k(z)\|_{\text{op}} \|\partial_F \ell\|_\infty + \|\nabla F_k^*(z)\|_{\text{op}} \|\partial_{F^*} \ell\|_\infty.$$

736 *If  $\|\partial_F \ell\|_\infty \leq M_F$ ,  $\|\partial_{F^*} \ell\|_\infty \leq M_{F^*}$ , and the Jacobians satisfy  $\|\nabla F_k(z)\|_{\text{op}} \leq L_k(F)$ ,  
 737  $\|\nabla F_k^*(z)\|_{\text{op}} \leq L_k(F^*)$ , then*

738 
$$L_k(g) := \sup_{z \in U_k} \|\nabla g_k(z)\|_\infty \leq L_k(F) M_F + L_k(F^*) M_{F^*}.$$
  
 739

740 *Proof.* The chain rule gives the gradient expression. Applying  $\|A^\top v\|_\infty \leq \|A\|_{\text{op}} \|v\|_\infty$  and substituting the uniform bounds yields the claim.  $\square$   
 741

743 **Remark.** The bound cleanly separates two contributions: (i) the network-dependent Lipschitz constant  $L_k(F)$ , controllable by architecture or regularization, and (ii) the distribution-dependent Lipschitz constant  $L_k(F^*)$ , reflecting the inherent complexity of the Bayes predictor. Thus the oracle loss Lipschitz constant factors into a controllable and an uncontrollable component, which will play distinct roles in the final generalization bound.  
 744

### 745 A.4 CONTROLLING THE DECOMPOSED TERMS

746 **Overview of the approach.** Proposition 1 decomposes the generalization gap into three terms:  
 747

748 
$$\underbrace{R_0^{\text{obs}} - R_k^{\text{oracle}}}_{(A) \text{ approximation gap}}, \quad \underbrace{R_k^{\text{oracle}} - \hat{R}_{k,n}^{\text{oracle}}}_{(B) \text{ oracle statistical gap}}, \quad \underbrace{\hat{R}_{k,n}^{\text{oracle}} - \hat{R}_{0,n}^{\text{obs}}}_{(C) \text{ empirical model gap}}.$$
  
 749

750 We now control these terms separately:  
 751

756     • (A) measures the error incurred by replacing labels  $Y$  with the Bayes surrogate  $F_k^*(Z_k)$ .  
 757     • (B) measures the statistical deviation between population and empirical distributions of  
 758       embeddings, for the oracle loss.  
 759     • (C) measures the discrepancy between network predictions and Bayes-optimal predictions  
 760       under the empirical distribution.

761     Each of (A), (B), (C) will be treated in turn.

763     A.4.1 BOUNDING THE APPROXIMATION GAP (A).

765     **Lemma 3** (Control of approximation gap). *Assume the loss  $\ell : \mathbb{R}^C \times \mathbb{R}^C \rightarrow \mathbb{R}$  is Lipschitz in its  
 766       second argument with constant  $M_{F^*}$  (Assumption 4). Then for any predictor  $F$  and any layer  $k$ ,*

$$767 \quad |R_0^{\text{obs}} - R_k^{\text{oracle}}| \leq M_{F^*} \mathbb{E}_{Z \sim \tilde{P}_k^Z} [\|Y - F_k^*(Z)\|_1].$$

769     *Proof.* For any sample  $(x, y)$  with embedding  $z = h_{\leq k}(x)$ ,

$$771 \quad |\ell(F(x), y) - \ell(F_k(z), F_k^*(z))| \leq M_{F^*} \|y - F_k^*(z)\|_1,$$

773     by Lipschitz continuity of  $\ell$  in the second argument. Taking expectation over  $(X, Y) \sim \mathcal{D}$  yields  
 774       the result.  $\square$

775     A.4.2 BOUNDING THE ORACLE STATISTICAL GAP (B).

777     **Lemma 4** (Oracle risk controlled by  $W_1$ ). *For any predictor  $F \in \mathcal{F}$  and any layer  $k$ ,*

$$779 \quad R_k^{\text{oracle}} - \hat{R}_{k,n}^{\text{oracle}} \leq L_k(g) W_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z),$$

780     *where  $L_k(g)$  is the Lipschitz constant of  $g_k(z) = \ell(F_k(z), F_k^*(z))$  with respect to the  $\ell_1$ -metric, as  
 781       given in Lemma 2.*

783     *Proof.* By Kantorovich-Rubinstein duality, for any  $L$ -Lipschitz function  $f$ ,

$$785 \quad \left| \int f d\mu - \int f d\nu \right| \leq L W_1(\mu, \nu).$$

787     Applying this with  $f = g_k$ ,  $\mu = \tilde{P}_k^Z$ , and  $\nu = \hat{P}_{k,n}^Z$ , and recalling that  $g_k$  has Lipschitz constant  
 788        $L_k(g)$ , gives the desired bound.  $\square$

790     A.4.3 BOUNDING THE EMPIRICAL MODEL GAP (C).

792     **Lemma 5** (Control of empirical model gap). *Under the same assumptions as Lemma 3, for any  
 793       predictor  $F$  and any layer  $k$ ,*

$$795 \quad |\hat{R}_{k,n}^{\text{oracle}} - \hat{R}_{0,n}^{\text{obs}}| \leq M_{F^*} \frac{1}{n} \sum_{i=1}^n \|y_i - F_k^*(z_{k,i})\|_1.$$

798     *Proof.* For each validation sample  $(x_i, y_i)$  with embedding  $z_{k,i} = h_{\leq k}(x_i)$ ,

$$799 \quad |\ell(F(x_i), y_i) - \ell(F_k(z_{k,i}), F_k^*(z_{k,i}))| \leq M_{F^*} \|y_i - F_k^*(z_{k,i})\|_1.$$

801     Averaging over  $i = 1, \dots, n$  yields the result.  $\square$

803     A.4.4 CONCENTRATION OF  $T_k := W_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)$  AND OF THE EMPIRICAL NOISE AVERAGE

805     **Motivation.** The deterministic decomposition in Proposition 1 reduces the generalization gap to  
 806       three terms. Among them, two depend explicitly on the randomness of the empirical sample:

807     • the Wasserstein distance  $T_k = W_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)$ , which controls the oracle statistical gap (B);  
 808     • the empirical noise average  $\bar{u}^{(k)} = \frac{1}{n} \sum_{i=1}^n \|y_i - F_k^*(z_{k,i})\|_1$ , which appears in the empirical  
 809       model gap (C).

To obtain a high-probability generalization bound, it is therefore crucial to quantify how much these quantities deviate from their expectations. We now prove two concentration inequalities: a bounded-difference bound (McDiarmid) for  $T_k$ , and a Hoeffding bound for  $\bar{u}^{(k)}$ .

**Proposition 2** (Concentration of  $T_k$  and  $\bar{u}^{(k)}$ ). *Let  $D_k := \sup_{z, z' \in \text{supp}(\tilde{P}_k^Z)} \|z - z'\|_1 < \infty$  be the  $\ell_1$ -diameter of the embedding support. Define  $T_k = \mathcal{W}_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z)$ , and  $\bar{u}^{(k)} = \frac{1}{n} \sum_{i=1}^n u_i^{(k)}$  with  $u_i^{(k)} = \|y_i - F_k^*(z_{k,i})\|_1$ . Assume  $u_i^{(k)} \in [0, 2]$  for all  $i$  (normalization as in the main text). Then for any  $\delta \in (0, 1)$ , with probability at least  $1 - \frac{\delta}{2(L+1)}$ ,*

$$T_k \leq \mathbb{E}[T_k] + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}}, \quad (3)$$

$$\bar{u}^{(k)} \leq \mathbb{E}[u^{(k)}] + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}}. \quad (4)$$

*Proof.* **Step 1: Bounded-difference inequality for  $T_k$ .** We use the Kantorovich-Rubinstein dual representation of  $\mathcal{W}_1$ :

$$\mathcal{W}_1(\mu, \nu) = \sup_{\substack{f: \mathbb{R}^d \rightarrow \mathbb{R} \\ \text{Lip}(f) \leq 1}} \left\{ \int f d\mu - \int f d\nu \right\},$$

with Lipschitz constant measured in the  $\ell_1$ -norm. Let the empirical measure be  $\hat{P}_{k,n}^Z = \frac{1}{n} \sum_{i=1}^n \delta_{z_{k,i}}$ . Consider two samples  $S = (z_{k,1}, \dots, z_{k,n})$  and  $S^{(j)}$  that differ only in the  $j$ -th element. Denote  $T_k(S) = \mathcal{W}_1(\tilde{P}_k^Z, \hat{P}_{k,n}^Z(S))$ . Then

$$|T_k(S) - T_k(S^{(j)})| \leq \frac{1}{n} \|z_{k,j} - z'_{k,j}\|_1 \leq \frac{D_k}{n}.$$

Thus  $T_k$  satisfies a bounded-difference property with sensitivity  $D_k/n$ . Applying McDiarmid's inequality gives, for any  $t > 0$ ,

$$\mathbb{P}(T_k - \mathbb{E}[T_k] \geq t) \leq \exp\left(-\frac{2nt^2}{D_k^2}\right).$$

Choosing  $t = D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}}$  yields equation 3.

**Step 2: Hoeffding bound for  $\bar{u}^{(k)}$ .** Each  $u_i^{(k)} \in [0, C_\ell]$  by Definition 9. By Hoeffding's inequality, for any  $t > 0$ ,

$$\mathbb{P}(\bar{u}^{(k)} - \mathbb{E}[\bar{u}^{(k)}] \geq t) \leq \exp\left(-\frac{nt^2}{2}\right).$$

Choosing  $t = \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}}$  yields equation 4.

This completes the proof.  $\square$

**Discussion.** This result ensures that both the statistical fluctuation of the embedding distribution (through  $T_k$ ) and the empirical noise magnitude (through  $\bar{u}^{(k)}$ ) remain close to their expectations with high probability. These concentration bounds are the key probabilistic ingredients needed to convert the deterministic decomposition of the generalization gap into a high-probability generalization bound.

#### A.4.5 COMBINED DETERMINISTIC AND HIGH-PROBABILITY BOUND

**Motivation.** We now combine the pieces developed above. Recall that the observed generalization gap

$$R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}}$$

was decomposed into three terms (Proposition 1). We provided deterministic bounds for each term (Lemmas 3–5), and then concentration inequalities for the random quantities  $T_k$  and  $\bar{u}^{(k)}$  (Proposition 2). Here we integrate these ingredients into a single high-probability generalization bound.

864  
 865 **Proposition 3** (High-probability control of the generalization gap). *Assume Assumptions 1–4. Suppose that for each layer  $k$  there exist constants  $C_k > 0$ , arbitrarily small  $\epsilon > 0$  and  $d_k > 0$  such that  $\mathbb{E}[T_k] \leq C_k n^{-1/(d_k+\epsilon)}$  for all sufficiently large  $n$ . Fix confidence  $\delta \in (0, 1)$ . Then with probability at least  $1 - \delta$ , simultaneously for all layers  $k = 0, \dots, L$  and any fixed predictors  $F \in \mathcal{F}$ ,*

$$866 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} \leq L_k(g) \left( C_k n^{-1/(d_k+\epsilon)} + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) \\ 867 \quad + M_{F^*} \left( 2\mathbb{E}\|Y - F_k^*(Z)\|_1 + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}} \right). \quad (5)$$

872 *Equivalently, the bound can be summarized as*

$$874 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} \lesssim L_k(g) n^{-1/(d_k+\epsilon)} + M_{F^*} \mathbb{E}\|Y - F_k^*(Z)\|_1 + \sqrt{\frac{\log(L/\delta)}{n}} (L_k(g) D_k + M_{F^*})$$

876 *Proof.* **Step 1: Decomposition.** By Proposition 1,

$$878 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} = (A) + (B) + (C).$$

879 **Step 2: Deterministic bounds.** From Lemmas 3–5,

$$881 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} \leq M_{F^*} \mathbb{E}\|Y - F_k^*(Z)\|_1 + L_k(g) T_k + M_{F^*} \bar{u}^{(k)}.$$

882 **Step 3: Concentration.** By Proposition 2, with probability at least  $1 - \delta$ ,

$$884 \quad T_k \leq \mathbb{E}[T_k] + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}}, \quad \bar{u}^{(k)} \leq \mathbb{E}[u^{(k)}] + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}}.$$

886 Since  $\mathbb{E}[u^{(k)}] = \mathbb{E}\|Y - F_k^*(Z)\|_1$ , substituting yields

$$887 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} \leq L_k(g) \left( \mathbb{E}[T_k] + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) \\ 888 \quad + M_{F^*} \left( 2\mathbb{E}\|Y - F_k^*(Z)\|_1 + \sqrt{\frac{2}{n} \log \frac{2(L+1)}{\delta}} \right).$$

891 Finally substitute  $\mathbb{E}[T_k] \leq C_k n^{-1/(d_k+\epsilon)}$  to obtain equation 5.  $\square$

893 **Discussion.** This bound highlights three components:

- 894 • The *statistical rate*  $L_k(g) C_k n^{-1/(d_k+\epsilon)}$  combines embedding geometry (via  $d_k$ ) and oracle 895 loss sensitivity (via  $L_k(g)$ ).
- 896 • The *noise/approximation terms*  $M_{F^*} \mathbb{E}\|Y - F_k^*(Z)\|_1$  arise from replacing discrete labels 897 by the Bayes predictor.
- 898 • The *concentration terms* scale as  $O(\sqrt{\frac{\log(L/\delta)}{n}})$ , with constants depending on both distri- 899  $butional (M_{F^*})$  and geometric ( $D_k$ ) quantities.

901 Together, these yield an explicit and interpretable high-probability upper bound on the observed 902 generalization gap.

## 904 A.5 RECOVERING NETWORK EFFECTS VIA LIPSCHITZ CONSTANTS

906 In the previous subsection, the oracle statistical gap (B) was controlled using the Lipschitz constant 907  $L_k(g)$  of the oracle loss. We now expand it to expose how the bound depends both on the network 908 architecture (controllable) and on the data distribution (intrinsic).

### 910 A.5.1 EXPANSION OF $L_k(g)$

911 From Lemma 2,

$$912 \quad L_k(g) := \sup_{z \in U_k} \|\nabla g_k(z)\|_\infty \leq L_k(F) M_F + L_k(F^*) M_{F^*},$$

914 where:

- 916 •  $L_k(F)$  is the Lipschitz constant of the tail sub-network from layer  $k$  to the output;
- 917 •  $L_k(F^*)$  is the Lipschitz constant of the Bayes predictor at layer  $k$ ;
- 918 •  $M_F, M_{F^*}$  are uniform derivative bounds of the loss with respect to its two arguments.

918 **Proof sketch.** By the chain rule,  
 919

$$920 \quad \nabla g_k(z) = \nabla F_k(z)^\top \partial_F \ell(F_k(z), F_k^*(z)) + \nabla F_k^*(z)^\top \partial_{F^*} \ell(F_k(z), F_k^*(z)).$$

921 Applying the operator norm inequality and the uniform derivative bounds yields the stated inequality.  
 922

923 **A.5.2 CONTROLLABLE VS. INTRINSIC CONTRIBUTIONS**  
 924

925 This decomposition separates the two sources of sensitivity:  
 926

- 927 **Network-dependent term:**  $L_k(F) M_F$ , which is determined by the architecture and training of  
 928 the tail network. It can be reduced by explicit design choices (e.g., normalization layers, spectral  
 929 norm constraints, Lipschitz regularization).
- 930 **Distribution-dependent term:**  $L_k(F^*) M_{F^*}$ , which reflects the smoothness of the Bayes predictor  
 931 relative to embeddings. This term is intrinsic to the data distribution and cannot be improved  
 932 by network design.

933 **A.5.3 IMPLICATION FOR THE GENERALIZATION BOUND**  
 934

935 Substituting the decomposition of  $L_k(g)$  into Proposition 3 gives  
 936

$$938 \quad R_0^{\text{obs}} - \hat{R}_{0,n}^{\text{obs}} \leq (L_k(F) M_F + L_k(F^*) M_{F^*}) \left( C_k n^{-1/(d_k + \epsilon)} + D_k \sqrt{\frac{1}{2n} \log \frac{2(L+1)}{\delta}} \right) \\ 939 \quad + \underbrace{\left[ M_{F^*} (2\mathbb{E}\|Y - F_k^*(Z)\|_1 + \sqrt{\frac{2}{n} \log \frac{L}{\delta}}) \right]}_{\text{Bayes surrogate terms}}. \quad (6)$$

944 Thus the final bound reflects two complementary mechanisms:  
 945

- 946 *Embedding geometry:* the intrinsic dimension  $s_k$  governs the statistical rate of Wasserstein con-  
 vergence;
- 947 *Network design:* the Lipschitz constant  $L_k(F)$  controls how embedding perturbations are ampli-  
 fied through the network;
- 948 *Bayes surrogate terms:* a residual contribution capturing the discrepancy between discrete labels  
 949 and their Bayes predictor surrogate, including irreducible randomness.

952 **B DETAILS OF EXPERIMENTS**  
 953

954 **B.1 DETAILS OF SECTION 5.1**  
 955

956 We conducted an experiment on MNIST to study how the Wasserstein distance between empirical  
 957 embedding distributions depends on (i) the intrinsic dimension of the embeddings and (ii) the  
 958 number of samples used to estimate the distributions.  
 959

960 **Model and training.** We trained simple fully connected autoencoders with a symmetric architec-  
 961 ture. The encoder flattened each  $28 \times 28$  image and mapped it to 256 hidden units with ReLU  
 962 activation, followed by a linear layer to a  $d$ -dimensional bottleneck. The decoder mirrored this with  
 963 a linear layer back to 256 units, ReLU, and a final linear layer to 784 units. Training used mean  
 964 squared error loss, the Adam optimizer with learning rate  $10^{-3}$ , batch size 128, and 30 epochs.  
 965 Global randomness was controlled by setting a fixed seed (2025) for both PyTorch and NumPy.  
 966

967 **Data and embeddings.** All data were drawn from the MNIST dataset. For the analysis of intrinsic  
 968 dimension, we trained autoencoders with bottleneck sizes  $d \in \{16, 32, 64, 128, 256, 512\}$ . For the  
 969 analysis of sample size, we trained a single autoencoder with bottleneck dimension 64 and repeatedly  
 970 drew two independent subsets of size  $n \in \{100, 200, \dots, 1000\}$  to evaluate how the Wasserstein  
 971 distance scales with  $n$ . In all cases, embeddings from the training split were used as the empirical  
 distribution, and embeddings from the test split were used as the population distribution.

972     **Intrinsic dimension estimation.** We estimated the intrinsic dimension using the maximum likelihood estimator of Levina and Bickel (Levina & Bickel, 2004), implemented in `skdim`.  
 973  
 974

975     **Wasserstein distance.** We measured discrepancies between embedding sets using an entropically  
 976     regularized optimal transport cost (Sinkhorn distance). Uniform weights were assigned to all points,  
 977     the ground cost was the Euclidean distance, and the regularization parameter was  $\varepsilon = 10^{-2}$ . Itera-  
 978     tions terminated either after 200 steps or once the update magnitude fell below  $10^{-6}$ . The resulting  
 979     cost was computed as the expectation of the ground cost under the transport plan.  
 980

## 981     B.2 DETAILS OF SECTION 5.2

982  
 983     We conducted experiments on CIFAR-10 and CIFAR-100 to analyze how the final-layer embeddings  
 984     relate to class-wise generalization gaps modified across ResNet architectures.  
 985

986     **Model and training.** We considered five ResNet architectures: ResNet-18, 34, 50, 101, and 152.  
 987     Each model was initialized with ImageNet-pretrained weights from `torchvision.models` and  
 988     evaluated on CIFAR datasets. The architecture of these ResNet models was modified by adjusting  
 989     the final linear output layer. Specifically, the output of the model’s convolutional layers is initially  
 990     projected to a 128-dimensional space via a linear layer. This is then followed by a Sigmoid activation  
 991     function, and finally, another projection layer yields the ultimate output. These nets are finetuning  
 992     on Cifar-10 and Cifar-100 used the Adam optimizer with weight decay 0.001, base learning rate  
 993      $10^{-4}$ , and a cosine annealing schedule over 50 epochs. Batch size was 256, with random horizontal  
 994     flip for augmentation. Multi-GPU training was enabled via `accelerate`. Models were saved after  
 995     training and evaluated on the full test set.  
 996

996     **Embedding extraction.** For each trained model, we extracted the *last layer embeddings* for all  
 997     samples in both training and test splits. Embeddings were stored separately for each class to allow  
 998     class-wise analysis. For the CIFAR-10 dataset, each class of embeddings in both the training and  
 999     test sets comprises 500 samples. In the case of the CIFAR-100 dataset, each class of embeddings in  
 1000     both the training and test sets consists of 100 samples.  
 1001

1001     **Intrinsic dimension estimation.** We estimated the intrinsic dimension of these embeddings using  
 1002     the maximum likelihood estimator of Levina and Bickel (Levina & Bickel, 2004), as implemented  
 1003     in `skdim`. Estimates were computed independently for each class and averaged across samples,  
 1004     yielding 10 estimates per model on CIFAR-10 and 100 per model on CIFAR-100.  
 1005

1006     **Wasserstein distance.** For each class, we computed the empirical 1-Wasserstein distance between  
 1007     training and test embeddings. This used entropic-regularized optimal transport (Sinkhorn distance)  
 1008     with Euclidean ground cost, uniform weights, and regularization parameter  $\epsilon = 10^{-2}$ . These dis-  
 1009     tances quantify how far apart the validation and test embedding distributions are.  
 1010

1011     **Generalization gap.** For each class and model, validation and test losses were recorded to com-  
 1012     pute the class-wise generalization gap.  
 1013

## 1014     B.3 DETAILS OF SECTION 5.3

1016     We designed a experiment on MNIST to analyze how the width of a hidden layer influences in-  
 1017     trinsic dimension of intermediate embeddings, Lipschitz properties of the network and generaliza-  
 1018     tion performance. The experiment uses a six-layer multilayer perceptron (MLP) with configurable  
 1019     hidden-layer widths and records both statistical and geometric properties of representations through-  
 1020     out training.  
 1021

1022     **Model and training.** The model is a fully connected network with architecture

$$784 \rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4 \rightarrow h_5 \rightarrow 10,$$

1023     where each hidden layer is followed by a ReLU activation. The default hidden width is 100 units for  
 1024     all layers. To study the effect of representation bottlenecks, we varied the width of the third hidden  
 1025

layer ( $h_3$ ) over the list  $\{100, 90, 80, 70, 60, 50, 40, 30, 20, 10\}$ , while keeping all other layers fixed at 100. Training was performed with cross-entropy loss, the Adam optimizer (learning rate  $10^{-3}$ , weight decay 0), batch size 128, and for 10 epochs. We used both training and test splits of MNIST, with additional evaluation on a fixed random subset of 2048 training samples. All randomness was controlled by fixed seeds and deterministic settings in PyTorch to ensure reproducibility.

**Activation collection and intrinsic dimension.** To measure representation complexity across layers we registered forward hooks after each ReLU activation. During evaluation, the hooks collected activations for all inputs in the 2048-sample subset. For each layer’s activation matrix  $X$ , we applied the maximum likelihood estimator (as implemented in `skdim`).

**Lipschitz estimation.** To characterize stability of the mapping from each hidden layer to the output, we computed the product of spectral norms of all subsequent linear layers. For a given suffix starting at layer  $i$ , the Lipschitz constant was approximated by

$$L_{i \rightarrow \text{end}} = \prod_{j=i+1}^L \sigma_{\max}(W_j),$$

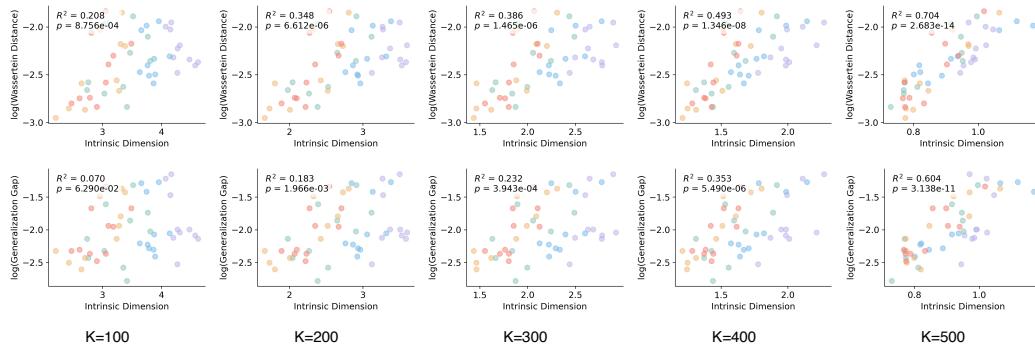
where  $W_j$  denotes the weight matrix of linear layer  $j$  and  $\sigma_{\max}$  is its top singular value. Singular values were computed using `torch.linalg.svdvals` in double precision. These suffix-wise Lipschitz estimates were recorded at initialization and after each epoch.

## C DIMENSIONALITY ESTIMATION AND HYPERPARAMETER ANALYSIS

In this appendix, we investigate the effects of hyperparameter choices and the specific algorithm used on the estimation of embedding dimensionality. All experiments are conducted using subsets of the CIFAR datasets: 500 samples per class for CIFAR-10 and 100 samples per class for CIFAR-100.

### C.1 HYPERPARAMETER ANALYSIS

We first examine how the choice of the hyperparameter  $K$  affects dimensionality estimates. Here,  $K$  corresponds to the number of nearest neighbors used in the estimation procedure: larger  $K$  values capture dimensionality over a broader range of the data, whereas smaller  $K$  values reflect more local structure.



**Figure 5: Effect of hyperparameter  $K$  on dimensionality estimation for CIFAR-10 embeddings.** Larger  $K$  values capture broader data structure and lead to higher correlation with generalization error.

For CIFAR-10, we test  $K = 100, 200, 300, 400, 500$ , and for CIFAR-100, we test  $K = 20, 40, 60, 80, 100$ . Figures 5 and 6 show the results. We observe that as  $K$  increases, the estimated dimensionality better correlates with the generalization error. This indicates that the global dimensionality of a class is more predictive of generalization performance than local dimensionality.

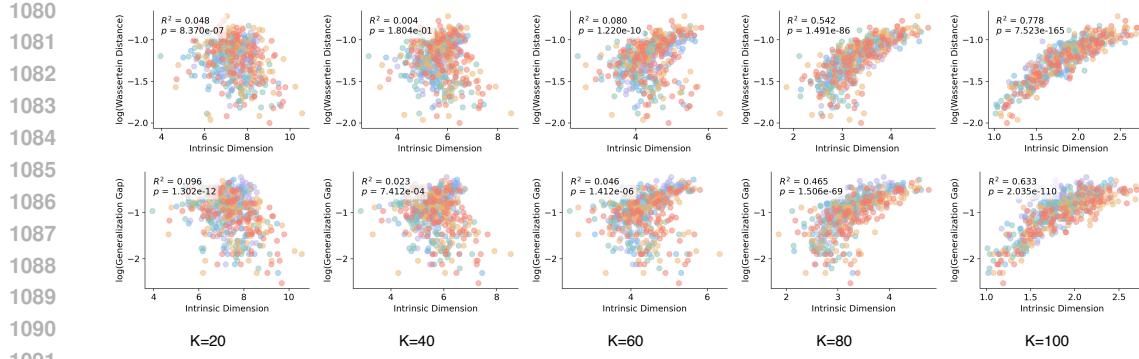


Figure 6: **Effect of hyperparameter  $K$  on dimensionality estimation for CIFAR-100 embeddings.** Increasing  $K$  improves the alignment between estimated dimensionality and generalization error, indicating that global structure is more informative.

## C.2 ALGORITHM COMPARISON

Next, we compare different dimensionality estimation algorithms (TLE (Amsaleg et al., 2019) and MOM (Amsaleg et al., 2018)) while keeping the hyperparameter fixed ( $K = 400$  for CIFAR-10,  $K = 80$  for CIFAR-100).



Figure 7: **Comparison of dimensionality estimation algorithms on CIFAR-10 embeddings.** Despite using different algorithms, estimated dimensionalities consistently correlate with generalization error, demonstrating robustness to method choice.

Figures 7 and 8 present the results. Across both datasets, all algorithms yield estimated dimensionalities that remain significantly correlated with generalization error, suggesting that the observed relationship is robust to the choice of estimation method.

## C.3 ANALYSIS USING ALL SAMPLES

Section 5.2 of the main paper analyzes each class independently. Here we complement that analysis by examining all validation samples pooled together, in order to assess whether the cross-model trends observed at the class level also manifest at the level of the entire dataset.

We first compute the intrinsic dimension using all samples jointly. As shown in Figure 9, the dimension estimated from the full dataset remains strongly correlated with the generalization error. This trend is consistent across both CIFAR-10 and CIFAR-100, demonstrating that the representation geometry at the dataset level preserves the same predictive relationship observed at the class level.

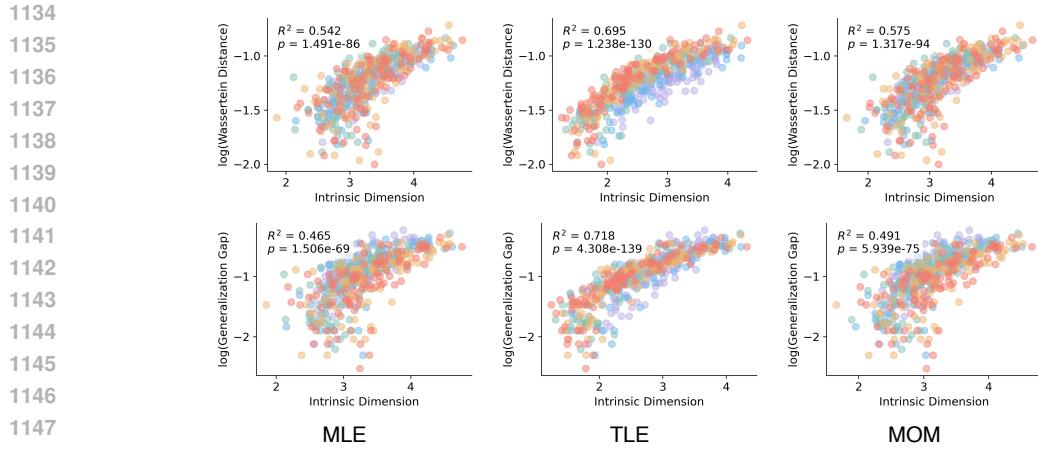


Figure 8: **Comparison of dimensionality estimation algorithms on CIFAR-100 embeddings.** Dimensionality estimates remain significantly associated with generalization error across different algorithms.

We also examined an alternative procedure in which the per-class intrinsic dimensions are first computed and then averaged. This averaging substantially weakens the correlation, especially for CIFAR-100. The primary reason is that the intrinsic dimensions of different classes vary considerably, so simple averaging fails to capture the true geometric complexity of the overall data distribution. These results suggest that the more principled approach is to estimate intrinsic dimension directly from all samples, rather than aggregating per-class estimates.

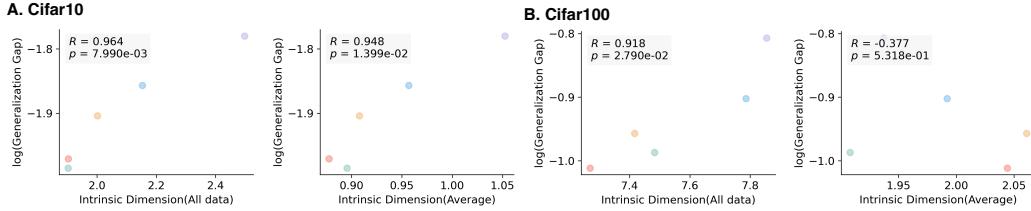


Figure 9: **Intrinsic dimension computed across all samples predicts generalization.** (A) CIFAR-10 and (B) CIFAR-100 show that the intrinsic dimension estimated from the pooled validation set exhibits a strong correlation with generalization error. In contrast, the mean of per-class dimensions leads to weaker correlations, particularly on CIFAR-100, where class-wise variability is large.

#### C.4 SINGLE-MODEL ANALYSIS

The results in Section 5.2 pool together all architectures and all classes. To confirm that the observed relationships do not arise solely from cross-model variability, we additionally analyze each architecture in isolation.

Figures 10 and 11 show the results for CIFAR-10 and CIFAR-100, respectively. For every architecture, the intrinsic dimension and the Wasserstein distance computed at the final layer both remain strongly correlated with the generalization error. These results indicate that the geometricstatistical relationship predicted by our theory holds not only across different architectures, but also within each individual model.

#### C.5 ANALYSIS OF LARGE-SCALE PRETRAINED MODELS

We further extend our analysis to a set of large-scale ConvNeXt models with diverse pretraining regimes, including ImageNet-1K, ImageNet-22K, and LAION-based CLIP-style pretraining. The specific models evaluated are:

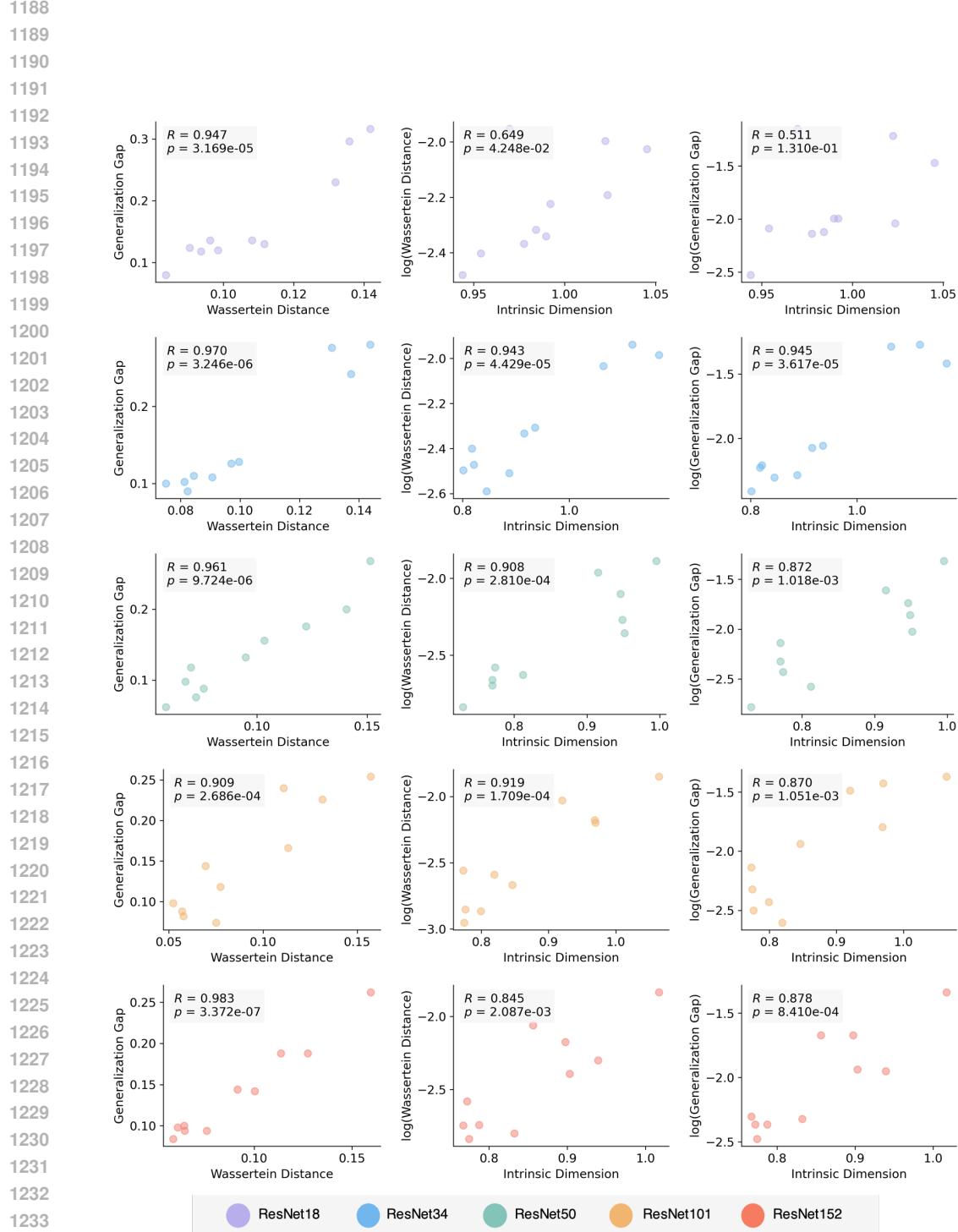


Figure 10: **Within-model relationships on CIFAR-10.** For each architecture analyzed independently, both intrinsic dimension and Wasserstein distance computed from the final-layer embeddings correlate strongly with generalization error, confirming that the relationship holds at the single-model level.

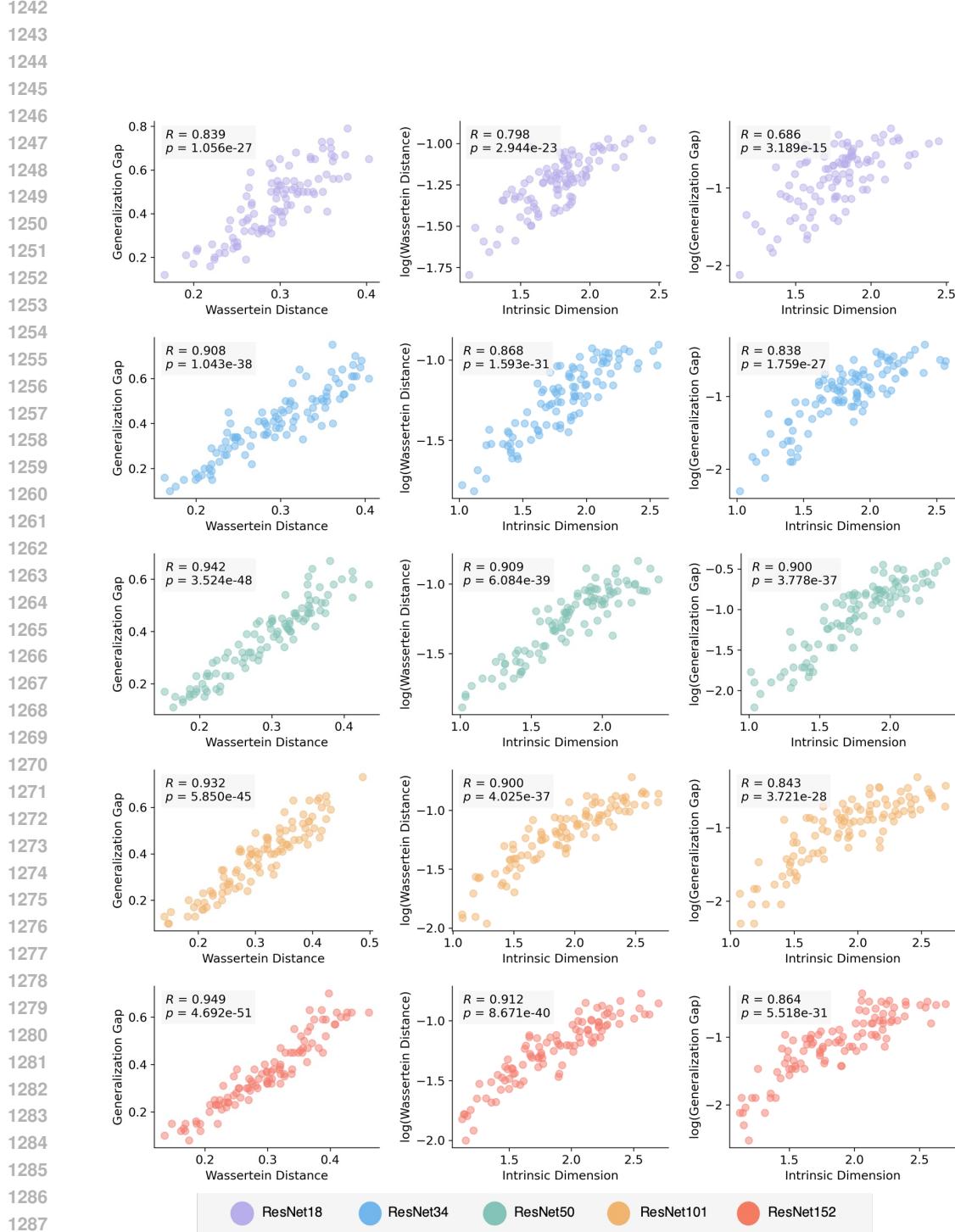
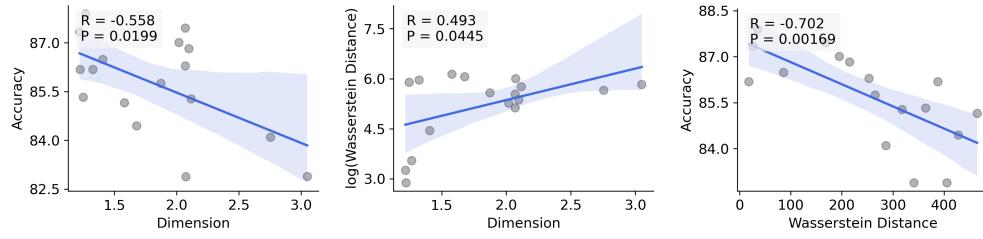


Figure 11: **Within-model relationships on CIFAR-100.** The correlation patterns between intrinsic dimension, Wasserstein distance, and generalization error remain consistent when evaluating each architecture individually. This demonstrates that the geometric predictors identified by our analysis apply robustly across datasets and model scales.

1296            convnext\_base.clip\_laion2b\_augreg\_ft\_in1k,  
 1297            convnext\_base.clip\_laion2b\_augreg\_ft\_in1k\_384,  
 1298            convnext\_base.fb\_in22k\_ft\_in1k, convnext\_base.fb\_in22k\_ft\_in1k\_384,  
 1299            convnext\_large.fb\_in22k\_ft\_in1k, convnext\_large.fb\_in22k\_ft\_in1k\_384,  
 1300            convnext\_large\_mlp.clip\_laion2b\_augreg\_ft\_in1k,  
 1301            convnext\_large\_mlp.clip\_laion2b\_augreg\_ft\_in1k\_384,  
 1302            convnext\_nano.in12k\_ft\_in1k, convnext\_small.fb\_in22k\_ft\_in1k,  
 1303            convnext\_small.fb\_in22k\_ft\_in1k\_384, convnext\_small.in12k\_ft\_in1k,  
 1304            convnext\_small.in12k\_ft\_in1k\_384, convnext\_tiny.fb\_in22k\_ft\_in1k,  
 1305            convnext\_tiny.fb\_in22k\_ft\_in1k\_384, convnext\_tiny.in12k\_ft\_in1k,  
 1306            convnext\_tiny.in12k\_ft\_in1k\_384

1307        Despite the substantial scale of these models and the heterogeneity of their pretraining datasets,  
 1308        the relationship between intrinsic dimension, Wasserstein distance, and generalization performance  
 1309        remains consistent. Figure 12 summarizes the results. These findings demonstrate that the predictive  
 1310        power of embedding geometry extends to modern large-scale models and high-capacity pretraining  
 1311        regimes.



1322        **Figure 12: Large-scale pretrained ConvNeXt models exhibit strong correlations among intrinsic**  
 1323        **dimension, Wasserstein distance and generalization performance.** Across a wide range of  
 1324        ConvNeXt variants, both the intrinsic dimension and the Wasserstein distance remain strongly cor-  
 1325        related with generalization performance on ImageNet classification. These results indicate that this  
 1326        geometric-generalization relationship persists in large models and large-scale datasets.

## C.6 LAYER-WISE CORRELATIONS AMONG DIMENSION, WASSERSTEIN DISTANCE AND GENERALIZATION PERFORMANCE

1332        We analyzed embeddings from ResNet-152 at layers 4, 18, 30, 43, 55, 67, 79, 91, 103, 115, 127, 139,  
 1333        and 152, and computed the correlation between embedding dimensionality, Wasserstein distances  
 1334        on the validation and test sets, and generalization error.

1336        Correlations are relatively weak in early layers but increase in deeper layers, with a pronounced rise  
 1337        after layer 140. This suggests that deeper embeddings more faithfully capture features relevant to  
 1338        generalization.

## C.7 DYNAMICS OF EMBEDDING DIMENSIONALITY DURING TRAINING

1342        We trained a simple convolutional network on CIFAR-10 and tracked the dimensionality of the final  
 1343        layer embeddings throughout training.

1345        Dimensionality initially decreases and then rises, rather than continuously declining. This behavior  
 1346        is expected, if dimensionality were to decrease monotonically, the observed correlation between  
 1347        dimensionality and generalization error would fail to account for overfitting phenomenon.

1348        Moreover, embedding dimensionality is nearly identical across training, validation and test sets, indi-  
 1349        cating that either training or validation embeddings can reliably reflect the overall data distributions  
 1350        representational structure.

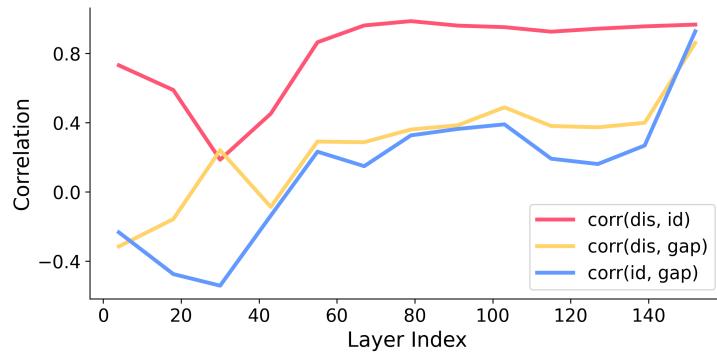


Figure 13: **Layer-wise correlations between embedding dimensionality, Wasserstein distance, and generalization error in ResNet-152.** Deeper layers exhibit stronger correlations, indicating the increasing alignment between representation properties and generalization.

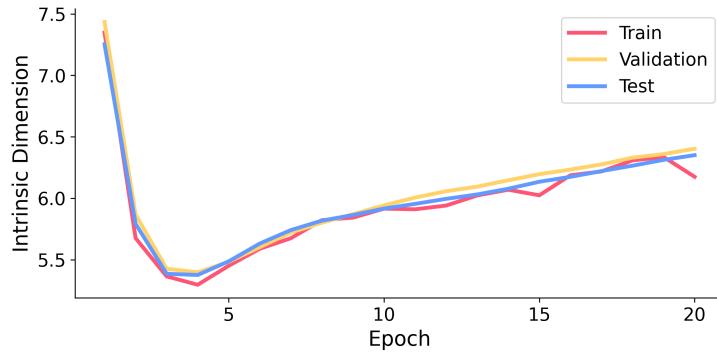


Figure 14: **Training dynamics of embedding dimensionality.** Dimensionality decreases in early training and rises later, reflecting its relationship with overfitting and generalization.

1404  
1405 **D LLM USAGE STATEMENT**1406 In accordance with the ICLR 2026 policy on responsible usage of Large Language Models (LLMs),  
1407 we disclose that LLMs were employed to aid in the preparation of this manuscript. Specifically,  
1408 LLMs were used to polish writing, improve clarity and refine grammar. All ideas, analyses and  
1409 conclusions presented in this work are solely those of the authors.1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457