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ABSTRACT

Modern deep networks generalize well even in heavily over-parameterized
regimes, where traditional parameter-based bounds become vacuous. We propose
a representation-centric view of generalization, showing that the generalization
error is controlled jointly by: (i) the intrinsic dimension of learned embeddings,
which reflects how much the data distribution is compressed and determines how
quickly the empirical distribution of embeddings converges to the population dis-
tribution in Wasserstein distance, and (ii) the sensitivity of the downstream map-
ping from embeddings to predictions, quantified by Lipschitz constants. Together
these factors yield a new generalization error bound that explicitly links embed-
ding dimension with network architecture. At the final embedding layer, architec-
tural sensitivity vanishes, and the bound is driven more strongly by embedding
dimension, explaining why final-layer dimensionality is often a strong empirical
predictor of generalization. Experiments across datasets, architectures and con-
trolled interventions validate the theoretical predictions and demonstrate the prac-
tical value of embedding-based diagnostics. Overall, this work shifts the focus of
generalization analysis from parameter to representation geometry, offering both
theoretical insight and actionable tools for deep learning practice.

1 INTRODUCTION

Deep networks can generalize effectively even in strongly overparameterized regimes, a phe-
nomenon that remains difficult to explain using classical capacity measures. Traditional bounds
based on VC-dimension ([Vapnik et all, T994; Sontag et al], T998), Rademacher complexity ([Truong,
P077), PAC-Bayes theory (Hellsfrom ef all, PUO7S; Coffiefall, P027), and algorithmic stability (Eeldd
man"& VondraK, POTY; ATahdulmohsin, POTS) provide valuable insights but often become vacuous
at modern scales, as they focus primarily on parameter counts or optimization dynamics rather than
the structure of the learned representations.

These limitations have motivated a shift toward studying the geometry of hidden embeddings, which
reflects the combined influence of data, architecture, and training. Geometric properties such as con-
sistency or separability of representation have been shown to correlate with generalization (IDavies
& Bouldid, 2009; Dyballa et all, Z074; Belcher efall, P020), yet many existing metrics rely on labels
or capture only local structure, restricting their applicability in settings like self-supervised learning.

A particularly promising direction is the study of intrinsic dimension, a label-free measure of the
effective degrees of freedom of embeddings. Empirical evidence suggests that lower-dimensional
representations generalize better across architectures and training paradigms (Ansuinief all, DOTY;
Pope et al], POZT), highlighting the need for a theoretical framework that explains this relationship.
This motivates our work, which develops a dimension-dependent approach to characterizing repre-
sentation geometry and its role in generalization.

We address this question by deriving a generalization error bound that makes the role of embedding
dimension explicit (Figure MA). Building on sharp Wasserstein convergence results (Weed & Bach,
P019), we show that for each layer & with intrinsic dimension dj, constants C, Dy, sensitivity L,

population risk R(F') and empirical risk R,,(F'), the generalization error satisfies

R(F) < Rn(F)+ Ly (C’k n~ Y+ 4 D/ L log @) + (irreducible noise).

~ 2n
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Figure 1: Embedding Dimension and Lipschitz Constant of Network Jointly Influence Gener-
alization Error. (A)Generalization error depends jointly on embedding dimension and network’s
Lipschitz constant. (B) Lower intrinsic dimension accelerates convergence of empirical to popula-
tion distribution. (C) Smaller Lipschitz constants reduce output sensitivity to perturbations.

Here the n~1/(4+€) term quantifies how quickly the empirical embedding distribution converges
to the true population distribution. In other words, with a fixed number of samples, embeddings
of lower intrinsic dimension provide a more faithful approximation of their underlying distribution,
leading to smaller generalization error (Figure MB). The factor L; quantifies how perturbations in
embeddings propagate through the downstream mappings and ultimately affect the loss (Figure DC).
"Irreducible noise" refers to errors due to label noise or Bayes risk that cannot be reduced by learn-
ing.

At the final layer, i.e., the model output, the downstream mapping reduces to the identity, so there is
no additional architectural Lipschitz amplification. The resulting bound therefore depends only on
the embedding dimension together with data-related constants, such as the loss sensitivity and the
Bayes smoothness Ly, (F*):

R(F) S Ru(F)+ (Mp + Li(F*)Mp-) (Cpn™ /@9 1 Dpy /L 10g 2550 )
+ (irreducible noise).

where (Mg + L1, (F*)Mpg~) is a constant determined by the form of the loss function and bayes pre-
dictor. This shows that in final layer, generalization error depends primarily on intrinsic dimension
and data-related factors, providing a theoretical explanation for why final-layer dimension is often a
strong empirical predictor of generalization.

Our contributions are threefold:

1. We provide a high-probability generalization bound that makes the 7~ '/(?+€) dependence on
embedding dimension d explicit.

2. We demonstrate that at the final layer the bound simplifies, explaining why final-layer dimension
is a strong empirical predictor of generalization.

3. Controlled experiments confirm the predicted scaling and highlight the joint role of dimension
and Lipschitz constant of network at intermediate layers.

2 RELATED WORKS

Classical Generalization Bounds. Theoretical analyses of generalization in deep learning have
traditionally centered on parameter-space complexity, including VC-dimension and Rademacher
complexity bounds (Sain, T996; Barfleff & Mendelson, P007), which provide worst-case guaran-
tees based on the number of parameters. While refinements such as margin-based and norm-based
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bounds (Barfleffef all, POT7; Neyshabur et all, POTS; ZOT7) yield tighter estimates by incorporating
weight norms or spectral properties, they become vacuous in the context of modern overparameter-
ized networks. PAC-Bayesian approaches (Arora_ef all, POTR; Hellsfrom efall, PO7S; Coffiefall,
P022) provide some of the strongest non-vacuous estimates by controlling the complexity of poste-
rior distributions over parameters, often informed by stochastic training dynamics. Stability-based
bounds, particularly those grounded in algorithmic stability (Hardief—all, PUT6; Feldman & Vond
frak, POTR; ATabhdulmohsid, POTY), characterize generalization through the sensitivity of a learning
algorithm to perturbations in the training data. However, most existing theories are parameter- or
algorithm-centric, leaving the role of representation structure in generalization largely unexplored.

Representation-Based Approaches. Recent research has increasingly focused on the impact of
embedding geometry on generalization. Key approaches analyze properties such as Consistency and
Separability of Representations (Davies & Bonldin, P00Y9; Dyballa et all, P074; Belcher ef all, PO7).
These geometric metrics offer improved interpretability and are less reliant on model scale. However,
they require labeled data, limiting their applicability in scenarios like pretraining or self-supervised
learning, where label information is unavailable.

Intrinsic Dimension of Representations. A recent and promising direction in representation-
based analysis is the study of intrinsic dimension, which quantifies the complexity of embeddings.
This approach aligns with the growing understanding that models implicitly compress input data
during learning: a lower intrinsic dimension signifies stronger compression and has been empiri-
cally linked to improved generalization (Ansnini ef all, DOTY; Pope et all, ZOXT). While this offers
a quantitative measure of how representations condense information, the theoretical mechanisms
connecting intrinsic dimension to generalization remain largely unexplored.

3 PRELIMINARIES

We introduce the key concepts and assumptions that connect representation geometry to generaliza-
tion. Technical variants and detailed proofs are deferred to the appendix.

3.1 MEASURES AND WASSERSTEIN DISTANCE

Definition 1 (Empirical measure). Let p be a probability distribution on a metric space (X, d).
Given n i.i.d. samples {x;}1_, ~ p, the empirical distribution is

Definition 2 (Wasserstein distance). For two probability measures «, 3 on (X, d), the 1-Wasserstein
distance is

Wi(a,8) = in / d(z,y) dy(z,y).

el ()
where I'(«v, B) is the set of couplings of a and f3. It can be interpreted as the minimal transport cost
between o and f.

In our setting, YW, quantifies how well the empirical embedding distribution szn approximates its
population counterpart PZ.

3.2 NETWORK DECOMPOSITION AND EMBEDDINGS

Definition 3 (Network decomposition). Az an intermediate layer k, we decompose the network into
an encoder F<y, : X — Zy mapping the input x € X to an embedding z € Zy, and a tail map
Fy : 23, — RY producing the final prediction. Thus the overall predictor is

F(l‘) = Fk(ng(ﬂU))-
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Definition 4 (Empirical and Population Embedding Distributions). Given n i.i.d. samples
{x;}"_, ~ Px, the empirical embedding distribution at layer k is defined as

2 1 n
Z
Pk,n = n E 6F§k(93i)’
i=1

where F<y(x;) represents the embedding of sample x; at layer k.

The population embedding distribution Pk,Z is the true distribution of embeddings over the entire
data distribution Px, i.e.,

P? =Eonpy [0, @)-

Remarks. In this work, we use the embeddings of the validation set as a proxy for the empirical
embedding distribution and the embeddings of the test set as a proxy for the population embedding
distribution. Since the model has not seen the validation or test set during training, this ensures that
the validation and test samples remain i.i.d. in the embedding space.

3.3 LIPSCHITZ CONTINUITY

Definition 5 (Lipschitz map). A function [ : (X,dx) — (Y, dy) is L-Lipschitz if
dy (f(z), f(z")) < Ldx(x,2') forallz,2' € X.

The Lipschitz constant L measures how perturbations in the input 2 are amplified in the output f(x).

3.4 GEOMETRIC COMPLEXITY AND WASSERSTEIN CONVERGENCE

To state the convergence guarantees of empirical measures in Wasserstein distance, we follow the
geometric framework of Weed & BacH (Z0TY). The key idea is that Wasserstein convergence is
governed not by the ambient dimension of the space, but by the intrinsic geometric dimension of the
underlying distribution. We summarize the necessary definitions and present the sharp asymptotic
bound.

Definition 6 (Covering numbers and measure covering dimension). Let (X, d) be a metric space
and S C X. The ecovering number of S is

N
N-(S) := min {N 1S C U B;, diam(B;) < 5} .
i=1

For a probability measure i on X, the (¢, T)covering number is
Ne(p, 7)== 1inf{N-(S) : u(S) > 1 — 7},
and the associated (e, T)dimension is

log Nz, 7)
de(p, 7) = lo(gs'

Remarks. The quantity d.(u,7) measures the effective geometric complexity of the bulk of the
measure /. at scale €, while allowing a 7-fraction of mass to be ignored.

Definition 7 (Upper Wasserstein dimension). For a probability measure i on (X, d) and p > 1, the
upper Wasserstein dimension is

dy(p) := inf {s > 2p : limsup d. (,u, 551)/(5721”)) < 5} .
e—0

Remarks. The tolerance parameter 7 = £°?/(*=2P) controls the amount of mass that may be dis-

carded at resolution e, preventing negligible high-complexity regions from dominating the dimen-

sion estimate. The value d;( () identifies the smallest exponent s for which the majority of . behaves

like an s-dimensional set at sufficiently fine scales. As shown in Weed & BacH (2019), d; () is the

critical dimension governing the minimax convergence rates for Wasserstein estimation.
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Wasserstein convergence rates. The role of d; (1) becomes explicit in the convergence behavior
of empirical measures. Let /i, be the empirical distribution of n i.i.d. samples from . The following
result restates the upper bound of Weed & BacH (PTITY) in a form that highlights how d;;(u) controls
the rate.

Theorem 3.1 (Wasserstein convergence governed by the upper Wasserstein dimension). For any
p € [1,00) and any ¢ > 0, setting s = dy (1) + € yields the upper bound

E[W, (1, fin)] < Cepn™ /2.

Since € may be chosen arbitrarily small, the empirical Wasserstein convergence rate can be made
arbitrarily close to n~t flp(“). Thus d;(,u) fully determines the asymptotic speed at which empirical
measures converge to | in Wasserstein distance.

Remark 1. By raking s = d;(u) + ¢ in Theorem B, we make the dependence of the conver-
gence rate on the measure’s intrinsic dimension explicit: a larger d;(u) directly yields a slower

rate 05, Thus lower-dimensional distributions enjoy faster Wasserstein convergence, while
higher-dimensional ones converge more slowly. In representation learning, estimating an intrinsic-
dimensisz proxy from embeddings provides an empirical estimqte of d;;(u) and therefore predicts
how efficiently finite samples recover the population representation geometry.

Definition 8 (Population Risk and Empirical Risk). For a predictor F' : X — R and loss function

¢, the population risk is
R(F) = E(wfy)'\fpx,y M(F(:L)vy)}v

and the empirical risk on n i.i.d. samples {(x;,y;)}, is

R, (F) := %Ze(nxi),gﬁ).
i=1

The quantity of interest in this paper is their difference:
which measures how far the empirical risk deviates from the population risk.

Remark. In practice, we compute the empirical risk using the training set, and approximate the
population risk using the test set.

Definition 9 (Bayes Predictor). The Bayes predictor is the ideal predictor that has the same model
architecture as I but is trained with full access to the true population distribution. Formally, it is
the conditional risk minimizer

Fi(z) := argmfin E[t(f(2),Y) | Zk = 2]

Intuitively, Iy} returns the best possible prediction given the information contained in Zj,. Moreover,
since Fy; is optimized with respect to the full population distribution, we assume that its loss on any
sample (z,y) is uniformly bounded by some finite constant Cy < oc.

Remark. The Bayes predictor serves as an ideal reference model in our analysis, returning the
population-optimal output that minimizes the conditional risk given the embedding Z;. Replacing
the discrete label Y with the continuous output F}(Zy,) effectively smooths the labels and ensures
that the loss becomes differentiable with respect to the embeddings. However, since F}'(Z),) does
not exactly match the true label Y, this substitution introduces an approximation error, whose effect
must be explicitly controlled in our theoretical bounds.

3.5 STANDING ASSUMPTIONS
We impose the following regularity assumptions, stated with explicit constants to clarify their roles
in later bounds.

Assumption 1 (Measurability of embeddings). For each layer k, the embedding map h<j : X —
Zy, is measurable, so that the pushforward distribution PkZ is well defined.
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Assumption 2 (Bounded support). Each embedding distribution sz has bounded (1 -diameter:
Dy = sup [lz = 2'[ly < oo,
z,z’Esupp(PkZ)
The bounded diameter Dy, is used in Proposition B (Appendix BZ3) to control the effect of a sipgle-
sample replacement when applying McDiarmid’s inequality to the Wasserstein term W1 (PZ, PkZ,n).

Assumption 3 (Lipschitz continuity of tail and Bayes maps). For each layer k, consider an open
neighborhood Uy, 2O supp(PkZ ) of the embedding support. The network tail map F and the Bayes
predictor Fy; are assumed Lipschitz on Uy, with constants

Li(F) := sup [VF(2)[lop,  Li(F7):= sup [[VF(2)]op-
zeUy 2€Ug

These Lipschitz constants are used in Lemma B to bound the gradient of the layerwise loss gi(z) =
UF(z), Fji(2)), yielding L (g) < Lp(F)Mp + Li,(F*)Mp-.
Assumption 4 (Loss regularity). The loss ¢ : R® x R¢ — R is continuously differentiable in both
arguments. There exist constants My, Mp« < oo such that

IVul(u,v)]|oo < Mp, IV ol(u,v)|loo < Mps.
The gradient bounds Mpr and Mg~ are used in Lemma B through the chain rule to obtain the

Lipschitz constant of gi, and in Lemma B to control the approximation error incurred when replacing
labels by the Bayes predictor, i.e., the term involving {(F(x), F} (x)) — {(F(z),y).

4 MAIN THEORETICAL RESULTS

4.1 DIMENSION-DEPENDENT GENERALIZATION BOUND

Our first main result shows that the generalization error can be controlled in terms of the intrinsic
dimension of intermediate embeddings, together with Lipschitz sensitivity factors.

Theorem 4.1 (Dimension-dependent generalization bound). Assume Assumptions I-8. Fix confi-
dence § € (0,1). Suppose that for each layer k there exist constants C), > 0, intrinsic dimension
dy, > 0, and arbitrarily small € > 0 such that, for all sufficiently large n,

E[Wi(PZ, PZ,)] < Cin/(ste),
Then for any fixed predictor F' € F, with probability at least 1 — 9,

3 . 7 BZ 2(L+1
R(F) < Ry(F) + min { Li(EDVI(PZ . BL,)| + Dy 3 log 2570

+ Mp- (21E||Y—F,:(Z)II1 + \/@)}

» : T —1/(dg+e 1 2(L+1)
< R,(F) +OI§1}3§L{ Lk<C’kn /(ite) 4 Dy /oL log T)

+ Mp- (2]E||Y7F,j(Z)II1+\/%log@)}. (1

where Dy, is the (1-diameter of the embedding support, the intrinsic dimension dy, is precisely the
upper Wasserstein dimension of the embedding distribution PZ, and

Ek = Lk(F)MF—I—Lk(F*)MF*.

Remarks.

« Dimension dependence. The term n~!/(#+¢) is the dominant statistical rate. It comes from
how quickly the empirical embedding distribution converges to its population counterpart. If the
embeddings at layer k concentrate on a low-dimensional set (small d), the Wasserstein distance
shrinks faster, so fewer samples are needed to approximate the true embedding distribution. This
explains why models that compress information into lower-dimensional representations tend to
generalize better.
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» Sensitivity. The factor L;, quantifies how sensitive the loss is to perturbations in the embeddings.
It combines the Lipschitz constant of the model’s tail (L (F')) and that of the Bayes predictor
(L (F™)), scaled by the loss derivative bounds. Intuitively, even if embeddings concentrate in
a low-dimensional region, the benefit may be offset if the predictor reacts too strongly to small
embedding changes. Thus L, captures the architectural and task-dependent smoothness required
for low dimension to translate into good generalization.

* Layer minimization. Each layer provides a different balance between dimension and sensitivity.
Early layers may have higher intrinsic dimension but lower sensitivity, while later layers may be
more compressed but more sensitive. The bound holds for all layers, so taking the minimum over
k automatically selects the representation whose dimensionsensitivity tradeoff gives the tightest
control of the generalization gap.

4.2 FINAL-LAYER SIMPLIFICATION

When we analyze the embeddings at the output layer, the expression simplifies further. At this layer,
the downstream network mapping is the identity: the output of the network is exactly the embedding
Z1,. Therefore the architectural Lipschitz constant disappears, i.e. L1, (F) = 1.

Corollary 1 (Final-layer bound). For the final embedding Z;, = F(X) we have L1,(F) = 1. With
probability at least 1 — 6,

R(F) < Ru(F)+ (Mp + Ly(F*) My-) (Cpn™ /@49 4 Dy L log 2550) - )

+ Mp. (2]E||Y = FL(ZD)|l1 + ) 2 1og %)

Remark. At the final layer, the architectural Lipschitz factors vanish, leaving a bound that depends
only on: (i) the intrinsic dimension dy, (ii) the embedding diameter Dy, (iii) the loss-derivative con-
stants (Mg, Mp-), and (iv) the Bayes smoothness constant Ly, (F*) together with the irreducible
label-noise term. This shows that final-layer embeddings provide a particularly convenient diagnos-
tic: generalization is largely driven by dimension and data-related smoothness, without additional
sensitivity to the network’s architectural Lipschitz constant.

Summary. The generalization error is determined by two main forces: the intrinsic dimension of
embeddings (statistical efficiency) and Lipschitz sensitivity (stability to perturbations). Intermedi-
ate layers reflect both effects, requiring joint consideration of dimension and sensitivity. The final
layer provides a simplified diagnostic where only dimension and distribution-dependent smoothness
remain, clarifying why final-layer dimension has strong predictive power for generalization. The
complete proof of Theorem Bl is provided in Appendix [Al.

5 EXPERIMENTS AND RESULTS

5.1 VALIDATION OF WASSERSTEIN CONVERGENCE SCALING

Theorem B shows that the convergence rate of empirical to population distributions in Wasserstein
distance is governed by the intrinsic dimension. A key question is whether this scaling law also
holds for the complex embeddings produced by neural networks. To validate this, we train a five-
layer MLP autoencoder on MNIST and analyze how the Wasserstein distance between empirical
and population embeddings depends on both intrinsic dimension and sample size.

We examine two perspectives. First, we fix the sample size n and evaluate how Wasserstein distance
varies with intrinsic dimension. Second, we fix intrinsic dimension and study how the Wasserstein
distance decreases with n according to the predicted n~'/(4+¢) Jaw. In the experiments, we vary
sample sizes from 100 to 1500 and compute embeddings from the trained autoencoder. For each
configuration, we estimate the intrinsic dimension of embeddings by MLE (Levina & Rickel, P004)
and compute the Wasserstein distance between two embedding sets of size n: one drawn as the
empirical sample set, and another drawn independently to approximate the population embedding
distribution. This empirical Wasserstein distance quantifies how closely the finite sample set approx-
imates the broader embedding distribution under the chosen metric.
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Figure 2: Scaling of Wasserstein Convergence in Neural Network Embeddings. (A) With fixed
sample size, log(Wasserstein distance) increases approximately linearly with embedding dimension.
(B) With fixed embedding dimension, log(Wasserstein distance) decreases approximately linearly
with log(sample size).

The results reveal two consistent patterns. For fixed n, the log of Wasserstein distance increases
approximately linearly with intrinsic dimension, consistent with the exponential dependence on d
predicted by the theory (Figure DA). For fixed d, the log of Wasserstein distance decreases approx-
imately linearly with log 7, as predicted by the n~'/(¢+¢) law (Figure PB). These findings validate
that the relationship between intrinsic dimension, sample size, and Wasserstein convergence extends
to real neural network embeddings. Other details are provided in Appendix Bl

5.2 RELATIONSHIP BETWEEN INTRINSIC DIMENSION, WASSERSTEIN DISTANCE AND
GENERALIZATION GAP

Corollary [ shows that when analyzing the final layer’s embedding, architectural sensitivity vanishes,
and the generalization gap R(F) — R,,(F) is largely governed by the intrinsic dimension of the
embedding. To test this prediction in realistic settings, we evaluate ResNet-18, 34, 50, 101 and 152
on CIFAR-10 and CIFAR-100.

For each trained model, we extract the final-layer embeddings and estimate their intrinsic dimension
dr,. We also compute the empirical Wasserstein distance J/; between validation and test embedding
distributions. To obtain finer-grained insight, we perform the analysis at the class level rather than
only at the aggregate level: each ResNet model yields 10 data points on CIFAR-10 (one per class)
and 100 data points on CIFAR-100. This allows us to assess the relationship between embedding
properties and the generalization gap more accurately.

Figure @ shows that both the intrinsic dimension dj, of the final embedding and the empirical Wasser-
stein distance VV; correlate positively with the observed generalization gap across architectures and
datasets, consistent with the relationship predicted by our generalization error bound.

These experiments extend our earlier results from MNIST to more complicated datasets and archi-
tectures. Overall, the results reinforce the central theoretical insight: at the final layer, architectural
factors vanish and lower intrinsic dimension is strongly associated with smaller generalization gaps.
Other details are provided in Appendix BZ2. We also compare different hyperparameter choices and
estimation algorithms in Appendix O, all of which yield results consistent with those reported here.

5.3 INTERVENTIONS ON NETWORK WIDTH

Theorem Bl emphasizes that when analyzing intermediate-layer embeddings, the generalization
error depends jointly on the embedding dimension and the Lipschitz constant of the downstream
mapping from embedding to output. To empirically investigate this relationship, we conduct con-
trolled interventions by varying the width of a middle layer in a neural network.

Analyzing the Lipschitz constant of a general neural network is challenging. To facilitate this analy-
sis, we consider fully connected MLPs with ReLLU activations, for which the product of the spectral
norms of the weight matrices provides an upper bound on the network’s Lipschitz constant (Barflef
ef-all, 20OT7). We use this bound as a proxy for the network’s Lipschitz constant and systematically
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Figure 3: Relationship Between Final-Layer Embedding Dimension, Wasserstein Distance and
Generalization Error. We evaluate CIFAR-10 (A) and CIFAR-100 (B) and observe a significant
correlation between final-layer embedding dimension, Wasserstein distance and generalization error.
This pattern aligns with predictions from the generalization error bound, indicating the bound is
sufficiently tight and that embedding dimension, together with Wasserstein convergence, provides
an effective predictor of generalization error.

study how changes in the width of a single intermediate layer affect the intrinsic dimension of the
embedding, the network’s Lipschitz constant and the resulting generalization error.
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Figure 4: Effect of Network Width on Intrinsic Dimension and Generalization Error. (A) A
six-layer MLP is used to vary the width of the third layer. Reducing width does not necessarily
decrease generalization error. (B) Narrower networks reduce embedding intrinsic dimension, but
the network Lipschitz constant increases, offsetting the benefit of lower dimension. Hence, both em-
bedding dimension and Lipschitz constant of network should be jointly considered when analyzing
generalization error.

Specifically, we train a six-layer MLP on CIFAR-10 and vary the width of the third layer from 100
down to 10. Figure B summarizes the results: Panel A shows that as the layer width decreases,
the generalization error does not consistently decline. Panel B shows that the embedding’s intrinsic
dimension steadily decreases with narrower layers, while the network’s Lipschitz constant increases,
particularly when the width drops below 30. This increase in sensitivity likely offsets the benefit of
lower intrinsic dimension, explaining why the generalization error does not significantly improve.

These results confirm that simply reducing network width does not reliably enhance generaliza-
tion. Narrower layers can reduce the embedding dimension, but this effect may be counteracted
by increased sensitivity of the downstream mapping. The findings provide empirical support for
Theorem BTl and highlight the importance of jointly considering embedding geometry and Lipschitz
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sensitivity when analyzing overparameterized networks. Other details are provided in Appendix
E3.

6 DISCUSSION AND CONCLUSION

Understanding why deep networks generalize despite massive overparameterization remains a cen-
tral challenge. This work advances a representation-centric view, showing that generalization error
can be related to two measurable properties: the intrinsic dimension dj, of embeddings and a sen-
sitivity term Ly, that captures how embedding perturbations propagate through the network. These
quantities integrate model structure and data distribution, offering post-hoc diagnostics beyond clas-
sical capacity-based bounds. Experiments across architectures and datasets confirm this interplay,
showing that embedding dimension, Wasserstein distance, and generalization error track each other
consistently, with scaling close to n~/(4+€) and that architectural sensitivity vanishes at the final
layer so dimension plays a dominant role.

In Appendix 3, we further extend these analyses to large models and ImageNet, demonstrating
that the correlations among dimension, Wasserstein distance and generalization error persist even
at large-scale model and dataset. Additionally, we analyze layer-wise embeddings in ResNet-154
in Appendix 8, finding that while dimension and Wasserstein distance remain strongly correlated
across layers, the correlations between dimension and generalization performance, as well as be-
tween Wasserstein distance and generalization performance, increase progressively with network
depth. These results reinforce the importance of embedding geometry in explaining generalization
behavior, particularly in deeper layers and larger-scale settings.

Limitations. Our bound contains constants that may be loose. However, our experiments demon-
strate a significant correlation between embedding dimension, Wasserstein distance and generaliza-
tion error, indicating that changes in generalization error can be effectively captured by variations
in dimension. This empirical alignment shows that our bound, despite potentially loose constants,
retains practical significance as a diagnostic tool for generalization. We also rely on assumptions
such as the Lipschitz continuity of the Bayes predictor, which ensures a well-defined and bounded
relationship between inputs and outputs. Without such assumptions, it is not possible to derive a
generalization bound purely from properties of a specific layer’s embedding. Relaxing these as-
sumptions is an important direction for future work. Estimating the sensitivity term Lj remains
challenging in practice, and developing reliable estimators is necessary for broader applicability. Fi-
nally, in our current analysis we treat embedding dimension and network sensitivity as independent.
In reality, these quantities may be correlated. Understanding this interplay is an important direction
for future work.

Conclusion. By shifting focus from network parameter to embedding geometry, we identify in-
trinsic dimension and sensitivity as core drivers of generalization. This framework offers both a
theoretical foundation and practical tools for analyzing and designing deep networks.

REFERENCES

Ibrahim M Alabdulmohsin. Algorithmic stability and uniform generalization. Advances in Neural
Information Processing Systems, 28, 2015.

Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E Houle, Ken-ichi
Kawarabayashi, and Michael Nett. Extreme-value-theoretic estimation of local intrinsic dimen-
sionality. Data Mining and Knowledge Discovery, 32(6):1768-1805, 2018.

Laurent Amsaleg, Oussama Chelly, Michael E Houle, Ken-Ichi Kawarabayashi, Milo§ Radovanovié,
and Weeris Treeratanajaru. Intrinsic dimensionality estimation within tight localities. In Proceed-
ings of the 2019 SIAM international conference on data mining, pp. 181-189. SIAM, 2019.

Alessio Ansuini, Alessandro Laio, Jakob H Macke, and Davide Zoccolan. Intrinsic dimension of

data representations in deep neural networks. Advances in Neural Information Processing Sys-
tems, 32, 2019.

10



Under review as a conference paper at ICLR 2026

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International conference on machine learning, pp.
254-263. PMLR, 2018.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
structural results. Journal of machine learning research, 3(Nov):463-482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. Advances in neural information processing systems, 30, 2017.

Dominic Belcher, Adam Prugel-Bennett, and Srinandan Dasmahapatra. Generalisation and the ge-
ometry of class separability. In NeurlPS 2020 Workshop: Deep Learning through Information
Geometry, 2020.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224-227, 2009.

Luciano Dyballa, Evan Gerritz, and Steven W Zucker. A separability-based approach to quantifying
generalization: which layer is best? arXiv preprint arXiv:2405.01524, 2024.

Vitaly Feldman and Jan Vondrak. Generalization bounds for uniformly stable algorithms. Advances
in Neural Information Processing Systems, 31, 2018.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International conference on machine learning, pp. 1225-1234. PMLR, 2016.

Fredrik Hellstrom, Giuseppe Durisi, Benjamin Guedj, Maxim Raginsky, et al. Generalization
bounds: Perspectives from information theory and pac-bayes. Foundations and Trends® in Ma-
chine Learning, 18(1):1-223, 2025.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic dimension. Advances
in neural information processing systems, 17, 2004.

Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew G
Wilson. Pac-bayes compression bounds so tight that they can explain generalization. Advances in
Neural Information Processing Systems, 35:31459-31473, 2022.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on learning theory, pp. 1376-1401. PMLR, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,
2017.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

Stephan R Sain. The nature of statistical learning theory, 1996.

Eduardo D Sontag et al. Vc dimension of neural networks. NATO ASI Series F Computer and
Systems Sciences, 168:69-96, 1998.

Lan V Truong. On rademacher complexity-based generalization bounds for deep learning. arXiv
preprint arXiv:2208.04284, 2022.

Vladimir Vapnik, Esther Levin, and Yann Le Cun. Measuring the vc-dimension of a learning ma-
chine. Neural computation, 6(5):851-876, 1994.

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009. ISBN 9783540710493. doi: 10.1007/978-3-540-71050-9.

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of em-
pirical measures in wasserstein distance. Bernoulli, 25(4A):2620-2648, 2019.

11



Under review as a conference paper at ICLR 2026

A SUPPLEMENT OF THEORETICAL RESULTS

Before presenting the detailed proofs, we first summarize the key notation used throughout this
appendix and the main paper. This notation table serves as a convenient reference to improve clarity
and readability.

Notation summary. Key symbols used throughout the paper.

Table 1: Notation summary for key symbols in the paper.

Symbol Meaning

IBkZ Population embedding distribution at layer k.

P,fn Empirical embedding distribution from n samples.

fin Empirical measure of n i.i.d. samples.

R(F) Population risk of predictor F.

R, (F) Empirical risk on validation set.

gen(F) Generalization gap R(F) — R, (F).

Fey, Encoder mapping input x to embedding z at layer k.

Ey, Tail map from layer-k embedding z to output.

F(x) Overall predictor Fj (F<y(x)).

Iy Bayes predictor from layer-k embedding z to output.

dy, Intrinsic dimension of PkZ .

Dy, ¢1-diameter of support of PZ.

Wi (-, ) 1-Wasserstein distance.

Li(F) Lipschitz constant of network tail from layer k to output.
Li(F*) Lipschitz constant of Bayes predictor from layer k to output.
Mg Bound on loss gradient wrt network output.

Mg~ Bound on loss gradient wrt Bayes predictor output.

/ Loss function (e.g., squared loss, cross-entropy).

By Uniform bound on loss values.

Roadmap of the appendix. This appendix provides a complete derivation of the dimension-
dependent generalization bound stated in Theorem ETl. The proof is organized into four self-
contained steps:

1. Preliminaries (Subsection A-T): We collect standard technical tools used throughout the proofs,
including optimal transport results and Wasserstein bounds for Lipschitz functions.

2. Risk decomposition via Bayes surrogates (Subsection A.2): In classification settings, labels
are discrete, so the observed loss is non-differentiable with respect to embeddings. We introduce
layer-wise Bayes predictors as continuous surrogates, leading to a decomposition of the general-
ization error into three terms: (A) approximation gap, (B) oracle statistical gap, and (C) empirical
model gap.

3. Controlling the decomposed terms (Subsection B-d): Each term is bounded explicitly. (A) and
(C) are controlled by irreducible label noise, while (B) is controlled via the 1-Wasserstein distance
between empirical and population embeddings combined with the oracle loss Lipschitz constant.
Concentration inequalities yield high-probability bounds scaling with embedding dimension and
sample size.

4. Recovering network effects (Subsection A3): The oracle Lipschitz constant Ly (g) is decom-
posed as

Lk.(g) < Lk(F) Mpgp + Lk(F*)MF*,
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separating controllable network-dependent and intrinsic Bayes predictor contributions. Substi-
tuting this into the previous bounds connects embedding geometry, statistical concentration, and
network design.

Overall, these steps provide a clear, high-probability generalization bound that disentangles statisti-
cal, architectural, and label-noise contributions.

A.1 PRELIMINARIES: USEFUL LEMMAS AND THEOREMS

In this subsection we collect several standard results that will be used throughout the proofs. They
are presented here to avoid interruptions in the main arguments later.

A.1.1 EXISTENCE OF OPTIMAL TRANSPORT PLAN

Theorem A.1 (Existence of Optimal Transport Plan (Villani, 2009, Theorem 4.1)). Let (X, 1) and
(Y, v) be Polish probability spaces, and let

c: X x)Y — RU{4o0}

be a lower semicontinuous cost function. Then there exists a coupling v* € 1I(u, v) that minimizes
the expected cost:

/ c(w,y)dr*(z,y) = inf / o(z,y) dv(z, y).
XXy YEM(v) Jx xy

In particular, for the 1-Wasserstein cost ¢(z,z') = ||z — 2|1 on a Polish space there exists an
optimal coupling attaining W, .

A.1.2 WASSERSTEIN BOUND FOR LIPSCHITZ FUNCTIONS

Lemma 1 (Expectation difference controlled by W;). Let u,v be probability measures on R, If
h:RY — R is Ly,-Lipschitz with respect to {1 (i.e. |h(z) — h(2')| < Ly||z — 2'||1 for all 2, 2'), then

’/hdp—/hdy‘ < Ly Wi, v).

Proof. By definition of W and for any coupling 7 € II(u, v),

/hd,u—/hduz// (h(2) — h(2")) dr(z,2") < //Lth—z’Hldﬂ(z,z’).

Taking infimum over all couplings 7 gives the claim. The absolute value follows by symmetry
(swapping p, V). O

A.2 RISK DECOMPOSITION VIA BAYES SURROGATES

Motivation. In classification, the label Y is discrete, so the observed loss £(F(X),Y) is not differ-
entiable with respect to embeddings Zj. This obstructs a direct Lipschitz-based analysis of the risk,
which is central to our approach. To address this, we introduce at each layer k the Bayes predictor
F}(Zy), a continuous surrogate for the discrete label. Replacing Y with F}(Zy,) yields the oracle
loss, which is differentiable in Z} and hence amenable to Lipschitz/Wasserstein analysis. The cost
of this replacement is an additional error term capturing the mismatch between observed and oracle
risks. This term corresponds to irreducible label randomness and will be explicitly controlled.
Definition 10 (Observed and oracle risks). Let ¢ : R® x R® — R be a measurable loss. At the
input layer, the observed risks are

obs pobs 1 &
R3™ :=Exy)~pll(F(X),Y)], R := - D UF (), yi)-
=1

At layer k, the oracle loss is defined as
gr(2) = L(F)(2), Fy (2)),

13
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with population and empirical oracle risks
Rgracle . — EZkfvf’,f l9x(Zk)], Rgracle . Z 9k (Z1.i)

Proposition 1 (Risk decomposition). For any predictor F' and any intermediate layer k,

obs [Hobs __ obs oracle oracle poracle poracle pHobs
R™ — Ry, = (Rg™® — Ry™°°) + (Ry — RY57°) + (RS — Ro )

Interpretation. The decomposition separates the generalization gap into three terms:

* Approximation gap: R3™ — Rz‘"a"le measures the loss of information when replacing discrete
labels by the Bayes predictor at layer k.

« Oracle statistical gap: Ro"2¢l° — Rorade is the population-to-sample deviation of the oracle loss,
the term to be controlled via LlpSChltZ continuity and Wasserstein concentration.

* Empirical model gap: szffle RObL quantifies how network predictions differ from Bayes-
optimal predictions under the emplrlcal distribution.

Summary. The observed generalization error is thus expressed as an oracle component (amenable
to Lipschitz/Wasserstein analysis) plus two additional error terms that capture irreducible label noise
and model approximation. This motivates analyzing the Lipschitz constant of the oracle loss g (z),
which we do next.

A.3 LIPSCHITZ CONSTANT OF THE LAYER-WISE LOSS

Having introduced the oracle loss gx(z) = £(Fy(z), F} (%)), we now analyze its Lipschitz continuity
with respect to the embedding z. This is possible because both arguments of g; are continuous
functions of z.

Gradient and Lipschitz bound.
Lemma 2. Suppose Assumptions -8 hold. Then for all z € Uy,

Vor(2) = VFi(2) " Opl(Fi(2), Fy(2)) + VE; ()" Op-L(Fi(2), Fi (2)).

Hence

IVge(2)lloo < IVER(2)[lop 10FLlloc + [IVER (2)llop |07+ €] oo
If |0l < Mp, ||0pl|lcc < Mp+, and the Jacobians satisfy ||VFy(2)|lop < Li(F),
IVE; (2)llop < Li(F”), then

Li(g) := sup [Vor(2)lloe < Li(F) Mp + Li(F7) Mp-.
zeUg

Proof. The chain rule gives the gradient expression. Applying || A" v||co < [|Allop|/v]|oo and substi-
tuting the uniform bounds yields the claim. O

Remark. The bound cleanly separates two contributions: (i) the network-dependent Lipschitz con-
stant L (F'), controllable by architecture or regularization, and (ii) the distribution-dependent Lip-
schitz constant Ly (F™), reflecting the inherent complexity of the Bayes predictor. Thus the oracle
loss Lipschitz constant factors into a controllable and an uncontrollable component, which will play
distinct roles in the final generalization bound.

A.4 CONTROLLING THE DECOMPOSED TERMS

Overview of the approach. Proposition [l decomposes the generalization gap into three terms:

obs oracle oracle poracle poracle pHobs
RO - Rk ) Rk - Rk,n ’ Rk,n - ROq,n

(A) approximation gap (B) oracle statistical gap (C) empirical model gap

We now control these terms separately:

14
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* (A) measures the error incurred by replacing labels Y with the Bayes surrogate F}'(Z},).

* (B) measures the statistical deviation between population and empirical distributions of
embeddings, for the oracle loss.

* (C) measures the discrepancy between network predictions and Bayes-optimal predictions
under the empirical distribution.

Each of (A), (B), (C) will be treated in turn.

A.4.1 BOUNDING THE APPROXIMATION GAP (A).

Lemma 3 (Control of approximation gap). Assume the loss £ : R x R — R is Lipschitz in its
second argument with constant Mg« (Assumption B). Then for any predictor F and any layer k,

|R8bs - Rzr“le] < Mp-Ey pz Y — F:(2)|1h]-

Proof. For any sample (z,y) with embedding z = h<y(x),
[0(F (@), y) = £(Fr(2), i (2))] < M-

y = F (2],

by Lipschitz continuity of £ in the second argument. Taking expectation over (X,Y) ~ D yields
the result. [

A.4.2 BOUNDING THE ORACLE STATISTICAL GAP (B).
Lemma 4 (Oracle risk controlled by W1). For any predictor F' € F and any layer k,
Rzracle _ sz;icle < Lk (g) Wl (ka’ p]gn),

where Ly, (g) is the Lipschitz constant of gi(z) = €(Fy(z), Fy(z)) with respect to the {1-metric, as
given in Lemma B.

Proof. By Kantorovich-Rubinstein duality, for any L-Lipschitz function f,
(/fdu - /deI < LWi(p,v).

Applying this with f = g, p = Iskz ,and v = F:’,fn, and recalling that g; has Lipschitz constant
Li(g), gives the desired bound. O

A.4.3 BOUNDING THE EMPIRICAL MODEL GAP (C).

Lemma 5 (Control of empirical model gap). Under the same assumptions as Lemma B, for any
predictor F' and any layer k,

L . 1 &
Rpracle — RG™S| < M- - Z lyi — Fy (2r.i)|1-
=1

Proof. For each validation sample (z;, y;) with embedding zj, ; = h<x(z;),

[0(F(25), yi) — 0(F(2r), Fit (z10)) | < Mpe |lyi — Fi (zi) |11

Averaging over ¢ = 1, ..., n yields the result. O

A.4.4 CONCENTRATION OF Ty := Wl(PkZ, szn) AND OF THE EMPIRICAL NOISE AVERAGE

Motivation. The deterministic decomposition in Proposition 0 reduces the generalization gap to
three terms. Among them, two depend explicitly on the randomness of the empirical sample:

¢ the Wasserstein distance 1), = W, (JBkZ , IE’an), which controls the oracle statistical gap (B);

* the empirical noise average a*) = L 37 | [|y; — F} (21.:)|1, which appears in the empir-
ical model gap (C).
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To obtain a high-probability generalization bound, it is therefore crucial to quantify how much these
quantities deviate from their expectations. We now prove two concentration inequalities: a bounded-
difference bound (McDiarmid) for T}, and a Hoeffding bound for @(¥).

Proposition 2 (Concentration of T}, and a*)). Let Dy, := SUP. requpp(p?) |12 = #lln < 00 be the
{1-diameter of the embedding support. Define Ty, = W, (PZ, ]5an> and u(F) = Iy uz(-k) with

ugk) = |lyi — Fy (2k,:)|]1. Assume u(k) € [0, 2] for all i (normalization as in the main text). Then
Sforany ¢ € (0, 1), with probability at least 1 — ﬁ,

T}, < E[T}] + Dyy/ o log 25, 3)

a® < E[u®] + /2 log 2. )

Proof. Step 1: Bounded-difference inequality for 7},. We use the Kantorovich-Rubinstein dual
representation of Wi:

Wil v) = sup /fdu /fdv
FRISR
Lip(f)<1

with Lipschitz constant measured in the £; -norm. Let the empirical measure be 15an = % oy Oz

Consider two samples S = (z1,...,2kn) and S () that differ only in the j-th element. Denote
T (S) = Wi(PZ,PZ,(S)). Then

I T(S) = Tu (SO < Rlleng — 2 ll < Bx.

Thus T}, satisfies a bounded-difference property with sensitivity Dy /n. Applying McDiarmid’s
inequality gives, for any ¢ > 0,

P(T}, — E[T}] > t) < eXp( - 2‘;;—%)

2(L+1)

Choosing t = Dy, log yields equation B.

Step 2: Hoeffding bound for @(*). Each ugk) € [0, Cy] by Definition B. By Hoeffding’s inequality,
for any ¢ > 0,
P(ﬂ(k) — E[ﬂ(k)] > t) < exp( — "th)

Q(LH) yields equation @.

Choosing t = 1/ 2 log
This completes the proof. O

Discussion. This result ensures that both the statistical fluctuation of the embedding distribution
(through T},) and the empirical noise magnitude (through @(*)) remain close to their expectations
with high probability. These concentration bounds are the key probabilistic ingredients needed to
convert the deterministic decomposition of the generalization gap into a high-probability generaliza-
tion bound.

A.4.5 COMBINED DETERMINISTIC AND HIGH-PROBABILITY BOUND

Motivation. We now combine the pieces developed above. Recall that the observed generalization
gap
Rgbs . Rgbs
N
was decomposed into three terms (Proposition ). We provided deterministic bounds for each term

(Lemmas B-8), and then concentration inequalities for the random quantities T}, and %*) (Proposi-
tion M). Here we integrate these ingredients into a single high-probability generalization bound.
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Proposition 3 (High-probability control of the generalization gap). Assume Assumptions I-4. Sup-
pose that for each layer k there exist constants Cy, > 0, arbitrarily small ¢ > 0 and dj, > 0 such that
E[T] < Cpn=/(%+) for all sufficiently large n. Fix confidence § € (0,1). Then with probability
at least 1 — 0, simultaneously for all layers k = 0, ..., L and any fixed predictors F € F,

Rgbs Robb < Lk( )(Cknfl/(kore) +Dk log 2(L+1))

+ Mp- (2JE||Y—F,;‘(Z)II1+ 2 Jog @) (5)

Equivalently, the bound can be summarized as

RE™ — Ry S Li(g)n V) + Mp E|Y = Fi(Z)[l + /22 (Ly(9) Dy + M- )

Proof. Step 1: Decomposition. By Proposition [,
R™ — R = (4) + (B) + ().
Step 2: Deterministic bounds. From Lemmas B3 — B,
R§™ — Rghy < Mp-E|Y — F(Z)|h + Li(g) Te + Mp-a®.
Step 3: Concentration. By Proposition [, with probability at least 1 — J,
T, < E[T}] + Dyy/ 5 log Q(L'H) a® <Eu®]4+4/2 = log (L'H).
Since E[u®)] = E||Y — F}(Z)||1, substituting yields
R — R < Li(g) (BITH] + Diy/ 3 log 252

+ M- (2E|[Y = F{(Z) 1 + /2 log 2572,

Finally substitute E[T},] < Cjn~'/(4%+<) o obtain equation B. O

Discussion. This bound highlights three components:

* The statistical rate Lj,(g) Cyn~"/(%+¢) combines embedding geometry (via dj,) and oracle
loss sensitivity (via Lg(g)).

* The noise/approximation terms Mp+ E||Y — F(Z)||1 arise from replacing discrete labels
by the Bayes predictor.

log(L/9) )

butional (M g~) and geometric (Dy,) quantities.

* The concentration terms scale as O( , with constants depending on both distri-

Together, these yield an explicit and interpretable high-probability upper bound on the observed
generalization gap.

A.5 RECOVERING NETWORK EFFECTS VIA LIPSCHITZ CONSTANTS

In the previous subsection, the oracle statistical gap (B) was controlled using the Lipschitz constant
Li(g) of the oracle loss. We now expand it to expose how the bound depends both on the network
architecture (controllable) and on the data distribution (intrinsic).

A.5.1 EXPANSION OF Li(g)

From Lemma D,
Li(g) == sup [Vgr(2)llo < Li(F) Mp + L (F™) Mp-,
zeUyg
where:

» L;(F) is the Lipschitz constant of the tail sub-network from layer & to the output;
* L;(F™*) is the Lipschitz constant of the Bayes predictor at layer k;
* Mg, Mg~ are uniform derivative bounds of the loss with respect to its two arguments.
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Proof sketch. By the chain rule,
Vgi(z) = VFi(2) " 0pl(Fi(2), Fji (2)) + VE(2) T 0p-L(Fy.(2), F}(2)).

Applying the operator norm inequality and the uniform derivative bounds yields the stated inequality.

A.5.2 CONTROLLABLE VS. INTRINSIC CONTRIBUTIONS

This decomposition separates the two sources of sensitivity:

* Network-dependent term: L (F') M, which is determined by the architecture and training of
the tail network. It can be reduced by explicit design choices (e.g., normalization layers, spectral
norm constraints, Lipschitz regularization).

* Distribution-dependent term: L (F*) M-, which reflects the smoothness of the Bayes predic-
tor relative to embeddings. This term is intrinsic to the data distribution and cannot be improved
by network design.

A.5.3 IMPLICATION FOR THE GENERALIZATION BOUND

Substituting the decomposition of L (g) into Proposition B gives

1 2(L+1
RS — B < (Lu(F) My + Li(F) Mp-) (G059 4 Dy [ L 1o 221

+ [Me- (EIY ~ B2+ /2 10g B)] . ©)

Bayes surrogate terms

Thus the final bound reflects two complementary mechanisms:

1. Embedding geometry: the intrinsic dimension sy, governs the statistical rate of Wasserstein con-
vergence;

2. Network design: the Lipschitz constant Ly (F') controls how embedding perturbations are ampli-
fied through the network;

3. Bayes surrogate terms: a residual contribution capturing the discrepancy between discrete labels
and their Bayes predictor surrogate, including irreducible randomness.

B DETAILS OF EXPERIMENTS

B.1 DETAILS OF SECTION B

We conducted an experiment on MNIST to study how the Wasserstein distance between empiri-
cal embedding distributions depends on (i) the intrinsic dimension of the embeddings and (ii) the
number of samples used to estimate the distributions.

Model and training. We trained simple fully connected autoencoders with a symmetric architec-
ture. The encoder flattened each 28 x 28 image and mapped it to 256 hidden units with ReLU
activation, followed by a linear layer to a d-dimensional bottleneck. The decoder mirrored this with
a linear layer back to 256 units, ReLU, and a final linear layer to 784 units. Training used mean
squared error loss, the Adam optimizer with learning rate 10~3, batch size 128, and 30 epochs.
Global randomness was controlled by setting a fixed seed (2025) for both PyTorch and NumPy.

Data and embeddings. All data were drawn from the MNIST dataset. For the analysis of intrinsic
dimension, we trained autoencoders with bottleneck sizes d € {16, 32, 64,128,256, 512}. For the
analysis of sample size, we trained a single autoencoder with bottleneck dimension 64 and repeatedly
drew two independent subsets of size n € {100,200, ...,1000} to evaluate how the Wasserstein
distance scales with n. In all cases, embeddings from the training split were used as the empirical
distribution, and embeddings from the test split were used as the population distribution.
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Intrinsic dimension estimation. We estimated the intrinsic dimension using the maximum likeli-
hood estimator of Levina and Bickel (Cevina & Rickel, P2004)), implemented in skdim.

Wasserstein distance. We measured discrepancies between embedding sets using an entropically
regularized optimal transport cost (Sinkhorn distance). Uniform weights were assigned to all points,
the ground cost was the Euclidean distance, and the regularization parameter was ¢ = 102, Itera-
tions terminated either after 200 steps or once the update magnitude fell below 106, The resulting
cost was computed as the expectation of the ground cost under the transport plan.

B.2 DETAILS OF SECTION B2

We conducted experiments on CIFAR-10 and CIFAR-100 to analyze how the final-layer embeddings
relate to class-wise generalization gaps modified across ResNet architectures.

Model and training. We considered five ResNet architectures: ResNet-18, 34, 50, 101, and 152.
Each model was initialized with ImageNet-pretrained weights from torchvision.models and
evaluated on CIFAR datasets. The architecture of these ResNet models was modified by adjusting
the final linear output layer. Specifically, the output of the model’s convolutional layers is initially
projected to a 128-dimensional space via a linear layer. This is then followed by a Sigmoid activation
function, and finally, another projection layer yields the ultimate output. These nets are finetuning
on Cifar-10 and Cifar-100 used the Adam optimizer with weight decay 0.001, base learning rate
104, and a cosine annealing schedule over 50 epochs. Batch size was 256, with random horizontal
flip for augmentation. Multi-GPU training was enabled via accelerate. Models were saved after
training and evaluated on the full test set.

Embedding extraction. For each trained model, we extracted the last layer embeddings for all
samples in both training and test splits. Embeddings were stored separately for each class to allow
class-wise analysis. For the CIFAR-10 dataset, each class of embeddings in both the training and
test sets comprises 500 samples. In the case of the CIFAR-100 dataset, each class of embeddings in
both the training and test sets consists of 100 samples.

Intrinsic dimension estimation. We estimated the intrinsic dimension of these embeddings using
the maximum likelihood estimator of Levina and Bickel (Cevina & Rickel, P20004)), as implemented
in skdim. Estimates were computed independently for each class and averaged across samples,
yielding 10 estimates per model on CIFAR-10 and 100 per model on CIFAR-100.

Wasserstein distance. For each class, we computed the empirical 1-Wasserstein distance between
training and test embeddings. This used entropic-regularized optimal transport (Sinkhorn distance)
with Buclidean ground cost, uniform weights, and regularization parameter ¢ = 10~2. These dis-
tances quantify how far apart the validation and test embedding distributions are.

Generalization gap. For each class and model, validation and test losses were recorded to com-
pute the class-wise generalization gap.

B.3 DETAILS OF SECTION B3

We designed a experiment on MNIST to analyze how the width of a hidden layer influences in-
trinsic dimension of intermediate embeddings, Lipschitz properties of the network and generaliza-
tion performance. The experiment uses a six-layer multilayer perceptron (MLP) with configurable
hidden-layer widths and records both statistical and geometric properties of representations through-
out training.

Model and training. The model is a fully connected network with architecture
784 — hy — ho — hg — hy — hs — 10,

where each hidden layer is followed by a ReLU activation. The default hidden width is 100 units for
all layers. To study the effect of representation bottlenecks, we varied the width of the third hidden
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layer (h3) over the list {100, 90, 80, 70, 60, 50, 40, 30, 20, 10}, while keeping all other layers fixed
at 100. Training was performed with cross-entropy loss, the Adam optimizer (learning rate 10~3,
weight decay 0), batch size 128, and for 10 epochs. We used both training and test splits of MNIST,
with additional evaluation on a fixed random subset of 2048 training samples. All randomness was
controlled by fixed seeds and deterministic settings in PyTorch to ensure reproducibility.

Activation collection and intrinsic dimension. To measure representation complexity across lay-
ers we registered forward hooks after each ReLU activation. During evaluation, the hooks collected
activations for all inputs in the 2048-sample subset. For each layer’s activation matrix X, we applied
the maximum likelihood estimator (as implemented in skdim).

Lipschitz estimation. To characterize stability of the mapping from each hidden layer to the out-
put, we computed the product of spectral norms of all subsequent linear layers. For a given suffix
starting at layer ¢, the Lipschitz constant was approximated by

L
Lisend = H Jmax(Wj)a
j=it1

where W; denotes the weight matrix of linear layer j and oax is its top singular value. Singular
values were computed using torch.linalg.svdvals in double precision. These suffix-wise
Lipschitz estimates were recorded at initialization and after each epoch.

C DIMENSIONALITY ESTIMATION AND HYPERPARAMETER ANALYSIS

In this appendix, we investigate the effects of hyperparameter choices and the specific algorithm
used on the estimation of embedding dimensionality. All experiments are conducted using subsets
of the CIFAR datasets: 500 samples per class for CIFAR-10 and 100 samples per class for CIFAR-
100.

C.1 HYPERPARAMETER ANALYSIS

We first examine how the choice of the hyperparameter K affects dimensionality estimates. Here, K
corresponds to the number of nearest neighbors used in the estimation procedure: larger K values
capture dimensionality over a broader range of the data, whereas smaller K values reflect more local
structure.
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Figure 5: Effect of hyperparameter K on dimensionality estimation for CIFAR-10 embeddings.
Larger K values capture broader data structure and lead to higher correlation with generalization
error.

For CIFAR-10, we test K = 100,200, 300,400,500, and for CIFAR-100, we test K =
20, 40, 60, 80, 100. Figures B and B show the results. We observe that as K increases, the esti-
mated dimensionality better correlates with the generalization error. This indicates that the global
dimensionality of a class is more predictive of generalization performance than local dimensionality.
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Figure 6: Effect of hyperparameter K on dimensionality estimation for CIFAR-100 embed-
dings. Increasing K improves the alignment between estimated dimensionality and generalization
error, indicating that global structure is more informative.

C.2 ALGORITHM COMPARISON

Next, we compare different dimensionality estimation algorithms (TLE (Amsaleg et al], P00T9) and
MOM (Amsaleg et all, P0TX)) while keeping the hyperparameter fixed (X = 400 for CIFAR-10,

K = 80 for CIFAR-100).
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Figure 7: Comparison of dimensionality estimation algorithms on CIFAR-10 embeddings. De-
spite using different algorithms, estimated dimensionalities consistently correlate with generaliza-
tion error, demonstrating robustness to method choice.

Figures [ and B present the results. Across both datasets, all algorithms yield estimated dimension-
alities that remain significantly correlated with generalization error, suggesting that the observed
relationship is robust to the choice of estimation method.

C.3 ANALYSIS USING ALL SAMPLES

Section B2 of the main paper analyzes each class independently. Here we complement that analysis
by examining all validation samples pooled together, in order to assess whether the cross-model
trends observed at the class level also manifest at the level of the entire dataset.

We first compute the intrinsic dimension using all samples jointly. As shown in Figure B, the dimen-
sion estimated from the full dataset remains strongly correlated with the generalization error. This
trend is consistent across both CIFAR-10 and CIFAR-100, demonstrating that the representation
geometry at the dataset level preserves the same predictive relationship observed at the class level.
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Figure 8: Comparison of dimensionality estimation algorithms on CIFAR-100 embeddings.
Dimensionality estimates remain significantly associated with generalization error across different
algorithms.

We also examined an alternative procedure in which the per-class intrinsic dimensions are first
computed and then averaged. This averaging substantially weakens the correlation, especially for
CIFAR-100. The primary reason is that the intrinsic dimensions of different classes vary consider-
ably, so simple averaging fails to capture the true geometric complexity of the overall data distri-
bution. These results suggest that the more principled approach is to estimate intrinsic dimension
directly from all samples, rather than aggregating per-class estimates.
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Figure 9: Intrinsic dimension computed across all samples predicts generalization. (A) CIFAR-
10 and (B) CIFAR-100 show that the intrinsic dimension estimated from the pooled validation set
exhibits a strong correlation with generalization error. In contrast, the mean of per-class dimensions
leads to weaker correlations, particularly on CIFAR-100, where class-wise variability is large.

C.4 SINGLE-MODEL ANALYSIS

The results in Section B2 pool together all architectures and all classes. To confirm that the ob-
served relationships do not arise solely from cross-model variability, we additionally analyze each
architecture in isolation.

Figures [ and [T show the results for CIFAR-10 and CIFAR-100, respectively. For every architec-
ture, the intrinsic dimension and the Wasserstein distance computed at the final layer both remain
strongly correlated with the generalization error. These results indicate that the geometricstatistical
relationship predicted by our theory holds not only across different architectures, but also within
each individual model.

C.5 ANALYSIS OF LARGE-SCALE PRETRAINED MODELS
We further extend our analysis to a set of large-scale ConvNeXt models with diverse pretraining

regimes, including ImageNet-1K, ImageNet-22K, and LAION-based CLIP-style pretraining. The
specific models evaluated are:
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Figure 10: Within-model relationships on CIFAR-10. For each architecture analyzed indepen-
dently, both intrinsic dimension and Wasserstein distance computed from the final-layer embed-
dings correlate strongly with generalization error, confirming that the relationship holds at the single-
model level.
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Figure 11: Within-model relationships on CIFAR-100. The correlation patterns between intrinsic
dimension, Wasserstein distance, and generalization error remain consistent when evaluating each
architecture individually. This demonstrates that the geometric predictors identified by our analysis
apply robustly across datasets and model scales.

24



Under review as a conference paper at ICLR 2026

convnext_base.clip_laion2b_augreg_ft_inlk,
convnext_base.clip_laiona_augreg_ft_inlk_384,
convnext_base.fb_in22k_ft_inlk, convnext_base.fb_in22k_ft_inlk_384,
convnext_large.fb_in22k_ft_inlk, convnext_large.fb_in22k_ft_inlk_384,
convnext_large_mlp.clip_laion2b_augreg_ft_inlk,
convnext_large_mlp.clip_laion2b_augreg_ft_inlk_384,
convnext_nano.inl2k_ft_inlk, convnext_small.fb_in22k_ft_inlk,
convnext_small.fb_in22k_ft_inlk_384, convnext_small.inl2k_ft_inlk,
convnext_small.inl2k_ft_inlk_384, convnext_tiny.fb_in22k_ft_inlk,
convnext_tiny.fb_in22k_ft_inlk_384, convnext_tiny.inl2k_ft_inlk,
convnext_tiny.inl2k_ft_inlk_384

Despite the substantial scale of these models and the heterogeneity of their pretraining datasets,
the relationship between intrinsic dimension, Wasserstein distance, and generalization performance
remains consistent. Figure [ summarizes the results. These findings demonstrate that the predictive
power of embedding geometry extends to modern large-scale models and high-capacity pretraining
regimes.
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Figure 12: Large-scale pretrained ConvNeXt models exhibit strong correlations among intrin-
sic dimension, Wasserstein distance and generalization performance. Across a wide range of
ConvNeXt variants, both the intrinsic dimension and the Wasserstein distance remain strongly cor-
related with generalization performance on ImageNet classification. These results indicate that this
geometric—generalization relationship persists in large models and large-scale datasets.

C.6 LAYER-WISE CORRELATIONS AMONG DIMENSION, WASSERSTEIN DISTANCE AND
GENERALIZATION PERFORMANCE

We analyzed embeddings from ResNet-152 at layers 4, 18, 30, 43, 55, 67,79, 91, 103, 115, 127, 139,
and 152, and computed the correlation between embedding dimensionality, Wasserstein distances
on the validation and test sets, and generalization error.

Correlations are relatively weak in early layers but increase in deeper layers, with a pronounced rise
after layer 140. This suggests that deeper embeddings more faithfully capture features relevant to
generalization.

C.7 DYNAMICS OF EMBEDDING DIMENSIONALITY DURING TRAINING

We trained a simple convolutional network on CIFAR-10 and tracked the dimensionality of the final-
layer embeddings throughout training.

Dimensionality initially decreases and then rises, rather than continuously declining. This behavior
is expected, if dimensionality were to decrease monotonically, the observed correlation between
dimensionality and generalization error would fail to account for overfitting phenomenon.

Moreover, embedding dimensionality is nearly identical across training, validation and test sets, indi-
cating that either training or validation embeddings can reliably reflect the overall data distributions
representational structure.
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Figure 13: Layer-wise correlations between embedding dimensionality, Wasserstein distance,
and generalization error in ResNet-152. Deeper layers exhibit stronger correlations, indicating
the increasing alignment between representation properties and generalization.
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Figure 14: Training dynamics of embedding dimensionality. Dimensionality decreases in early
training and rises later, reflecting its relationship with overfitting and generalization.
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