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Abstract

Contrastive learning has emerged as an efficient framework to learn multimodal representa-
tions. CLIP, a seminal work in this area, achieved impressive results by training on paired
image-text data using the contrastive loss. Recent work claims improvements over CLIP
using additional non-contrastive losses inspired from self-supervised learning. However, it is
sometimes hard to disentangle the contribution of these additional losses from other imple-
mentation details, e.g., data augmentation or regularization techniques, used to train the
model. To shed light on this matter, in this paper, we first propose, implement and eval-
uate several baselines obtained by combining contrastive learning with recent advances in
self-supervised learning. In particular, we use the loss functions that were proven successful
for visual self-supervised learning to align image and text modalities. We find that these
baselines outperform a basic implementation of CLIP. However, when a stronger training
recipe is employed, the advantage disappears. Indeed, we find that a simple CLIP base-
line can also be improved substantially, up to a 25% relative improvement on downstream
zero-shot tasks, by using well-known training techniques that are popular in other subfields.
Moreover, we discover that it is enough to apply image and text augmentations to make up
for most of the improvement attained by prior works. With our improved training recipe for
CLIP, we obtain state-of-the-art performance on four standard datasets, and consistently
outperform prior work (up to +4% on the largest dataset), while being substantially simpler.
The code is available at https://github.com/facebookresearch/clip-rocket

1 Introduction

Vision-language pre-training (VLP) is a recent learning paradigm that enables neural networks to learn multi-
modal representations from images and text. The learned representations are inherently semantic and can be
easily transferred to several tasks, such as zero-shot image classification and multimodal retrieval. Arguably,
the most prominent approach to VLP is CLIP (Radford et al., 2021), which leverages a contrastive loss to
learn aligned image and text representations from large-scale image-text datasets scraped from the internet.

Notwithstanding its success, CLIP is not without its limitations. These include a high computational
cost and a strong sensitivity to the size and composition of data batches used during training due to the
contrastive approach, as well as other limitations such as a lack of fine-grained alignment between image
regions and words in a sentence, and the absence of cross-modality feature fusion. Moreover, the standard
implementation of CLIP adopts a rather basic training recipe, which does not incorporate commonly
used training techniques such as image and text augmentations (Shorten & Khoshgoftaar, 2019), label
smoothing (Müller et al., 2019), and architectural improvements like projector networks (Chen et al., 2020;
Grill et al., 2020), which have been shown to enhance generalization and robustness in supervised and
self-supervised representation learning (SSL).
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Motivated by these limitations, recent VLP research has sought to improve upon CLIP by modifying the
contrastive objective and integrating advanced training techniques. In particular, to improve the contrastive
objective, some works (Yao et al., 2021; Gao et al., 2022; Fürst et al., 2022; You et al., 2022) have tried to
tackle the fine-grained image-text alignment or cross-modal feature fusion. Others, e.g., SLIP (Mu et al.,
2022) and DeCLIP (Li et al., 2021), have regularized the objective with auxiliary self-supervised image-to-
image losses. However, the contrastive approach remains a limiting factor. For this reason, some researchers
have suggested using vision-language non-contrastive losses (Chen et al., 2022; Zhou et al., 2022; Singh et al.,
2022). These losses are reminiscent of SSL, where they have been theoretically well-studied (Tian et al.,
2021; Balestriero & LeCun, 2022), and their translation to VLP has the potential to solve the challenge of
the batch size sensitivity and heavily reduce the computational cost. However, such existing methods do
not provide faithful VLP translations of SSL losses and have not explored many well-known non-contrastive
losses successful in visual SSL, e.g., SwAV (Caron et al., 2020), BYOL (Grill et al., 2020), SimSiam (Chen &
He, 2021), Barlow Twins (Zbontar et al., 2021). Furthermore, as in many CLIP extensions, the dual adoption
of modified objectives and advanced training techniques, which despite re-implementations (Ilharco et al.,
2021; Li et al., 2021) are not employed by baseline CLIP, makes it hard to evaluate the impact of such
methods. It emerges that the VLP literature is far from standardizing the training recipe and would benefit
from the analysis of advanced training recipes to clarify the landscape of the state-of-the-art.

In this paper, we aim to elucidate the state of the art for VLP by systematically investigating non-contrastive
extensions of CLIP, and tuning an improved training recipe for CLIP that can reveal the actual impact of
ours as well as existing CLIP extensions. In particular, we present four new VLP baselines: SiamLIP,
BYOLIP, BarLIP, and SwALIP, by translating the non-constrastive losses of the SSL methods, SimSiam,
BYOL, Barlow Twins, and SwAV to the multimodal case. We test these methods in the zero-shot image
classification task and we find that they cannot learn strong aligned multimodal features on their own (as
also found by concurrent work (Zhou et al., 2022)), but can be used in composition with the CLIP loss to
boost the performance compared to a standard CLIP baseline. However, we also find that this improvement
is much smaller than the increase in performance brought about by advanced training techniques. Indeed, we
carefully explore training recipes for VLP, by combining and evaluating the training techniques that are best
practices in the supervised (Dosovitskiy et al., 2020; Wightman et al., 2021) and self-supervised (Chen et al.,
2020) literature. This results in the proposal of an improved training recipe, dubbed🚀, that comprises image
and text augmentations (Shorten & Khoshgoftaar, 2019; Shorten et al., 2021), dropout (Srivastava et al.,
2014), and label smoothing (Müller et al., 2019), combined with architectural design choices (i.e. design of the
projection layers). By pre-training on four public datasets of various sizes, we discover that when employed
for CLIP (CLIP 🚀), this recipe substantially improves its zero-shot ImageNet performance (up to 11%),
so much that it surpasses of up to 4% all previously published results obtained with more complex CLIP
extensions, including our non-contrastive baselines also trained with the same improved recipe. We conclude
that, although methodologically interesting, these more complicated models do not provide enhanced results.
In practice it is better to stick to a well-tuned implementation of CLIP than rely on existing additional losses.

Our contributions can be summarized as follows:

• We systematically analyze non-contrastive losses for vision-language pre-training by proposing four
baselines that outperform a standard implementation of CLIP by a few points (1-2%) on ImageNet;

• We collect and study advanced training recipes for CLIP, and propose a well-tuned improved recipe,
CLIP 🚀, that dramatically boosts its performance up to 11% on ImageNet (relative boost ∼25%);

• We reset the state of the art for VLP by showing that CLIP 🚀 is better than methods employing
additional or modified contrastive and non-contrastive losses when pre-trained on four datasets,
ranging from 3M to 29M image-text pairs. In particular, using the largest dataset we outperform
by 4% the best related method.

2 Background

Let us consider a dataset D = {(xi, yi)}M
i=1 of M paired data points xi and yi representing the same

underlying concept. In our manuscript, xi represents an image and yi represents either a data augmentation
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or textual description of xi. Moreover, let us define two encoding functions A and B that project input data
into representations: zA

i = A(xi) and zB
i = B(yi). Note that if xi and yi are from the same modality (e.g.,

images), A and B may represent the same encoding. The objective of representation learning is to learn
robust encoding function that produces representations that generalize well to diverse downstream tasks.

2.1 Contrastive learning

In contrastive learning, the main idea is to minimize the distance between different representations zA
i and

zB
i of the same data pair (xi, yi) – positive pairs – and maximize the distance between representations

zA
i and zB

j from different data pairs (xi, yi) and (xj , yj) – negative pairs. Formally, this is achieved by
optimizing the following objective:

LA→B
C = −

N∑
i=1

log
exp

(
sim

(
zA

i , zB
i

)
/τ

)∑N
j=1 exp

(
sim

(
zA

i , zB
j

)
/τ

) , (1)

where the summation is over N elements in the batch, τ is the temperature hyper-parameter and sim(·, ·) is
the cosine similarity between two vectors. Note that if A and B are different, the loss is not symmetric; we
use the superscript A → B, to denote the direction of similarity computation. Nevertheless, the contrastive
loss can be made symmetric by considering both similarity computation directions:

LC = LA→B
C + LB→A

C . (2)

The contrastive objective in Eq. 1 is used both in SSL – where yi represents an augmented version of xi –
and VLP – where yi represents the text description associated with xi. CLIP (Radford et al., 2021) is a de
facto standard for VLP which leverages cross-modal contrastive learning. In practice, the model leverages
a vision encoder and a text encoder to obtain image and text representations, respectively. In the typical
implementations, the vision encoder is either a ResNet (He et al., 2016) or a vision transformer (Dosovitskiy
et al., 2020) while the text encoder is a text transformer that processes the input text to produce a
fixed-length vector representation.

Limitations of contrastive learning. One disadvantage of the contrastive learning in CLIP is that
the quality and diversity of the learned features can be affected by the choice of negative samples (Chen
et al., 2020; He et al., 2020). If the negative samples are not diverse enough, the model may learn to
distinguish between only a small subset of dissimilar samples, leading to poor performance. For this reason,
the contrastive loss is usually optimized using large batch sizes, which are more likely to carry larger sample
diversity (Pham et al., 2021; Zhai et al., 2023). However, increasing the batch size also increases the memory
footprint of the model. This issue is exacerbated by the fact that the size of the similarity matrix scales
quadratically with the batch size. Another disadvantage of the contrastive loss is that it may not be tolerant
to semantically similar samples (Zhong et al., 2021). For instance, if the batch contains many instances of
the same concept it may map them far apart in the feature space, breaking the underlying semantic structure
and harming the emergence of features that are useful for downstream tasks. These limitations apply to
both contrastive SSL and VLP approaches, including CLIP. However, in practice, the second limitation may
be mitigated when training on very broad data distributions, as typical for CLIP, because it is less likely to
simultaneously sample redundant concepts. However, CLIP is not exempt from this issue when trained on
small datasets, and it is worth mentioning that in a recent study, Abbas et al. (2023) observe a high degree
of redundancy also in well-known large-scale datasets such as LAION (Schuhmann et al., 2022).

2.2 Non-contrastive learning

To overcome the limitations of contrastive learning discussed in Sec. 2.1, non-contrastive learning approaches
have been introduced in the literature. In particular, non-contrastive techniques have emerged and been
widely explored in self-supervised visual representation learning, where they have repeatedly shown to be
effective. These approaches do not rely on the use of negative samples during training, but instead impose
consistency among positive pairs (Chen & He, 2021; Grill et al., 2020), replace negatives with a redundancy
reduction terms (Zbontar et al., 2021; Bardes et al., 2021) or cluster prototypes (Caron et al., 2018; 2021).
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Consistency-based methods. Consistency-based methods, such as BYOL (Grill et al., 2020) and Sim-
Siam (Chen & He, 2021), optimize consistency objectives like mean squared error (MSE) or negative cosine
similarity loss only between positive samples, therefore avoiding the use of negative samples in the loss. This
not only reduces the memory requirements during training – as the similarity between all pairs of samples in
a batch no longer needs to be computed –, but also results in better performance when training with small
batch sizes. The loss function of these methods can be written as follows:

LA→B
MSE = −

N∑
i=1

‖qA
i − zB

i ‖2
2, (3)

where qA
i is the output of a predictor network that takes as an input zA

i . The encoder B is either a
momentum encoder in the case of BYOL or the same encoder as A in the case of SimSiam. In principle,
this loss function is commutative, however, since these methods exhibit an asymmetric architecture – due
to the presence of the predictor – the loss can be made symmetric by swapping the encoders A and B and
attaching the predictor network to the output of the encoder B, similar to Eq. 2.

Redundancy reduction methods. Redundancy reduction methods represent another example of meth-
ods using a non-contrastive loss in visual SSL. We identify three methods that belong to this category:
Barlow Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2021) and W-MSE (Ermolov et al., 2021). For
simplicity, here we describe the mechanism and the loss function in Barlow Twins, the most influential of
these three methods, but similar arguments can be made for all of them.
Barlow Twins (Zbontar et al., 2021) uses a cross-correlation loss that decorrelates feature components and
maximizes variability of learned representations. More precisely, the loss measures the cross-correlation
matrix between the outputs of two identical networks fed with distorted versions of a sample and tries to
make it as close to the identity matrix as possible. This causes the representations of distorted versions of
a sample to be similar while minimizing redundancy between the components of these representations. The
loss function reads as:

LXC =
∑

u

(1 − Cuu)2 + λ
∑

u

∑
v 6=u

C2
uv, (4)

where λ is a weight and

Cuv ,

∑N
i=1 zA

i,uzB
i,v√∑N

i=1
(
zA

i,u

)2
√∑N

i=1
(
zB

i,v

)2

is the cross-correlation matrix between zA
i and zB

i along the batch dimension.1 In the case of Barlow Twins,
A and B represent the same encoding function.

Clustering-based methods. The third and last family of visual SSL methods is based on clustering. We
identify three methods that belong to this category: SwAV (Caron et al., 2020), DINO (Caron et al., 2021),
and DeepClusterV2 (Caron et al., 2018). By means of clustering, these methods discretize the feature space
to learn representations, which enable them to use the cross-entropy loss to compare cluster assignments of
different views of the same sample, as follows:

LA→B
XE = −

N∑
i=1

K∑
k=1

aB
i,k log

exp
(
sim

(
zA

i , pk

)
/τ

)∑K
k′=1 exp

(
sim

(
zA

i , pk′

)
/τ

) , (5)

where pk is the k-th learnable cluster prototype, aB
i is the vector of cluster assignments of zB

i , and K is
the number of clusters. In the case of SwAV, A and B represent the same encoding function, while in
DINO B is a momentum encoder. Similarly to consistency-based methods, this cross-entropy-based loss
is asymmetric, but can be made symmetric by swapping A and B. In the remainder of the manuscript
we focus on SwAV. In SwAV, assignments are obtained by using the Sinkhorn-Knopp algorithm (Cuturi,
2013), which approximates optimal transport by iteratively normalizing the rows and the column of the
matrix containing the similarities of samples in the batch, zB

i,∀i∈{1,..,N}
and the prototypes pk,∀k∈{1,..,K}

. This
equates to imposing that the clusters are roughly equally represented in the batch.

1We use the double subscript notation zi,j to indicate j-th element of the vector zi.
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Figure 1: Overall architecture of our CLIP 🚀 model.

3 Improved training recipe

Our improved training recipe, which we denote with 🚀, is based on the original CLIP training recipe but
incorporates the following important modifications: we incorporate stronger data augmentations, introduce
new projector, add label smoothing and additional regularization for the text encoder.

Image augmentations. In CLIP, the only augmentation, i.e. weak augmentation, is obtained by ran-
domly cropping a large portion of the input image. Instead, in our improved recipe we generate additional
views of the same input image by applying multiple image transformations that produce strong augmen-
tations. Specifically, inspired by the best practices in supervised (see, e.g., Wightman et al. (2021)) and
self-supervised learning (see, e.g., Chen et al. (2020)), we first crop the image by randomly sampling the
crop scale from a wider range than the one used in the weak augmentation; then, we sequentially apply
a random combination of color distortions such as contrast, brightness and saturation jittering and color
dropping (greyscaling), Gaussian blurring, and horizontal flipping.

Text augmentations. We borrow text augmentations from the NLP literature, where a variety of trans-
formations that do not alter semantic have been presented, see, e.g., Shorten et al. (2021). We generate
the weak augmentation by simply removing stop-words with an arbitrary probability. Note that this trans-
formation has been already shown to be useful for vision-language pre-training by Tejankar et al. (2021).
Moreover, to generate stronger augmentations, if multiple captions are available for the same image, we
independently and uniformly sample one caption among them for each augmentation, otherwise, we use the
same caption for all the augmentations. Then, we combine stop-word removal with a one randomly sampled
transformation among synonym replacement, word insertion/deletion, and sentence shuffling, as suggested
by Wei & Zou (2019). Note that the original CLIP training recipe does not exploit any text augmentations.

Projector design. CLIP employs linear projectors to embed text and image representations into the same
space. However, in the vision literature multi-layer projectors have emerged as an indispensable element when
employed in combination with strong data augmentation. This fact has been empirically proved in multiple
learning scenario, e.g. supervised (Khosla et al., 2020; Sariyildiz et al., 2023), semi-supervised (Fini et al.,
2021; 2023; Assran et al., 2021), and self-supervised (Caron et al., 2021), and an intuition of the explanation
is provided by Bordes et al. (2021). Grounded by this, we adopt multi-layer perceptrons (MLP), consisting
of two linear layers separated by a BatchNorm and a ReLu layer as strong projectors for both image and
text, while we keep linear projectors as in original CLIP to embed weak image and text augmentations.

Label smoothing. Label smoothing (Szegedy et al., 2016) discourages the model from being overconfident
in its predictions. This is especially helpful when the dataset is noisy or the data augmentation recipe is
so strong that it can change the semantics of the input, or the model overfits the training distribution. In
CLIP 🚀, since we have both strong augmentations and deep projectors, we propose to soften the identity
matrix otherwise used as target in the contrastive loss (see Sec. 2.1). With the same logic, we do not apply
label smoothing when computing the contrastive loss between weak image and text augmentations embedded
with linear projectors.
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Pseudo-code 1 CLIP 🚀 training procedure

# This code describes the case of 1 weak and 1 strong aug
# x, y: image and its corresponding text
# tau_weak, tau_strong: learnable temperatures
# label_smooth: label smoothing parameter
# image_enc, text_enc: encoders A & B (possibly w/ dropout)
def training_step(x, y):

# weak augmentations
x_weak = image_augment(x, mode="weak")
y_weak = text_augment(y, mode="weak")

# strong augmentations
x_strong = image_augment(x, mode="strong")
y_strong = text_augment(y, mode="strong")

# forward weak
z_image_weak = image_proj_weak(image_enc(x_weak))
z_text_weak = text_proj_weak(text_enc(y_weak))

# forward strong
z_image_strong = image_proj_strong(image_enc(x_strong))
z_text_strong = text_proj_strong(text_enc(y_strong))

# compute loss
loss_weak = contrastive_loss(

z_image_weak,
z_text_weak,
temperature=tau_weak

)
loss_strong = contrastive_loss(

z_image_strong,
z_text_strong,
temperature=tau_strong,
label_smooth=label_smooth

)
return loss_weak + loss_strong

Overview of our recipe An overview of
CLIP 🚀 approach is depicted in Fig. 1 and in
the pseudo-code of Pseudo-code 1 (see appendix
for the exact implementation). At each training
step, we load a batch of text-image pairs. Each
pair is augmented creating one weak and one or
more strong augmentations of a pair 2. The aug-
mented images and texts are then fed to the im-
age and text encoders, respectively. Importantly,
we apply dropout to the text encoder (trans-
former) to regularize it. Then, the embedded
weak and strong augmentations are projected
into the shared cross-modal space using two sepa-
rate projectors (weak and strong projector). The
model is trained with the standard CLIP loss
(see Eq. 2) applied to the corresponding views
of image and text, i.e. projected weak image
augmentations are contrasted to projected weak
text augmentation, and vice-versa for projected
strong image and text augmentations. When
computing the loss between strong augmenta-
tions we apply label smoothing. At inference
time, we average the similarities predicted by the
two projectors (weak and strong) to obtain the
final similarity score between image and text.

4 Non-contrastive baselines for vision-language pre-training

In Sec. 2 we reviewed the use of non-contrastive losses in SSL. Here, we propose to incorporate such losses
into the vision-language pre-training of CLIP, with the idea of mitigating the issues of the CLIP contrastive
training objective. In our non-contrastive baselines, we consider the following training objective:

L = αLC + βLNC, (6)

where LC is the contrastive loss of CLIP, LNC is a non-contrastive auxiliary loss and α, β ∈ [0, 1] are weights.
Note that both LC and LNC are intended as cross-modals between image and text. Note that, setting α = 1
and β = 0 is equivalent to using only CLIP loss only, while α = 0 and β = 1 results in non-contrastive
multi-modal learning. In our experiments, we found that setting α = β = 1 worked best. See supplementary
for the full ablation.

In this section, we consider four types of non-contrastive losses and combine them with CLIP to build
four models: SiamLIP, BYOLIP, BarLIP, and SwaVLIP. Unless otherwise specified, all the baselines use a
multi-layer projector to refine the features.

SiamLIP & BYOLIP. SiamLIP & BYOLIP (see Fig. 2a) are two VLP models that complement the
contrastive training objective of CLIP with a consistency-based objective. In the case of SiamLIP & BYOLIP,
the complementary training objective is inspired by SimSiam (Chen & He, 2021) and BYOL (Grill et al.,
2020). For these models, we define LNC to be the cross-modal version of LMSE (see Eq. 3), computed in
both directions A → B and B → A, where A is the image encoder and B is the text encoder. The use of an
asymmetric training objective requires the architecture to have two projectors followed by two predictors,
mapping from A → B and B → A, respectively. Moreover, following BYOL, in BYOLIP we use momentum
encoders for both image and text modalities.

2Throughout the manuscript, we refer to original CLIP augmentations as weak augmentations.
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Figure 2: Overview of the proposed improved baselines: SiamLIP, BYOLIP, BarLIP and SwALIP. For the
sake of visualization, we do not show the CLIP loss used in combination to the non-contrastive loss and the
projector networks in all the models. For BYOLIP we do not show the additional momentum encoder.

BarLIP. BarLIP (see Fig. 2b) is a VLP model that combines CLIP objective with a redundancy reduction
criteria. In particular, we take the inspiration from Barlow Twins (Zbontar et al., 2021) and adapt Eq. 4 to
the VLP scenario and use it as the non-contrastive loss (LNC). Contrary to Barlow Twins, in BarLIP we
use two encoders – A for vision and B for text inputs. The multimodal version of Eq. 4 aligns the feature
space of both data modalities while also decorrelating its components, which should help when pre-training
on noisy and duplicate-rich datasets typical of vision-language pre-training.

SwALIP. SwALIP (see Fig. 2c) is a VLP model that combines CLIP objective with clustering-based
criteria. In particular, we get inspiration from SwAV (Caron et al., 2020) and introduce the cross-modal
adaptation of the cross-entropy loss, LXE (see Eq. 5), to compare the cluster assignments of different rep-
resentations of the same concept. In this case, the encoder A takes as an input images and the encoder B
works on texts. The learned set of prototypes are shared across the two modalities, and basically partitions
concepts in both modalities in the aligned feature space. The cross-entropy loss is computed in both direc-
tions enforcing that paired image and text samples belong to the same cluster. However, in practice, this
formulation for SwALIP turns out to be quite unstable, and for most our experiments we adopt a slightly
modified version of SwALIP that does not exhibit learned prototypes, rather, it uses representations from
the text modality as prototypes. Note that this modified formulation computes the swapped assignments
using correlated views of each image-text pair; hence, it requires multiple views as in our improved training
recipe, and cannot be used otherwise. We refer to the appendix for additional details and the formalization
of modified SwALIP.

5 Experiments

5.1 Datasets and evaluation

We pre-train the presented CLIP variants on the datasets described below, ranging in size from 3M to
29M. We test the models in the zero-shot image classification task, which is performed by computing the
cosine similarity between the image representation and the representation of all the classes encoded as text
and choosing the most similar class. The performance is measured in terms of accuracy on the ImageNet-
1000 (Deng et al., 2009) validation set. Moreover, following Radford et al. (2021), we investigate the models’
generalization using an extended set of 22 vision benchmarks of different kinds – most of them belong to the
widely adopted Visual Task Adaption Benchmark (VTAB) (Zhai et al., 2019).
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The Conceptual Captions dataset is composed of image-caption pairs that have been filtered based on:
(i) image properties and content; (ii) caption language, information richness, and content; (iii) alignment
between image and caption; and (iv) hypernymization and text refinement. Given this pipeline, two datasets
have been published in the literature: CC3M (Sharma et al., 2018) composed of 3.3M image-text pairs
obtained by applying the full filtering pipeline, and CC12M (Changpinyo et al., 2021) comprising 12.4M
pairs obtained from a relaxed version of the pipeline (relaxed uni-modal filters (i), (ii), and (iv)).
The Yahoo Flickr Creative Commons dataset is composed of 100M of image-text pairs (Thomee et al.,
2016). Noisy text-image pairs have been filtered by Radford et al. (2021) to obtain a cleaner version of 15M
pairs. This dataset is referred to as YFCC15M.
To experiment with larger scale datasets we follow Li et al. (2021) and create a dataset as the union of CC3M,
CC12M, and YFCC15M, obtaining 29M image-text pairs. We refer to this dataset as Open29M. Moreover,
we further scale the dataset size by adopting PMD46M a 46M subset3 of the PMD70M dataset (Singh
et al., 2022) containing image-text pairs gathered from different data sources including the whole Open29M.

5.2 Implementation details

We train models using both the base recipe used by CLIP and our improved training recipe. We provide
further implementation details below.

Architecture. We focus our main analysis on CLIP variants using ResNet-50 (He et al., 2016) as the
vision backbone. However, we also investigate vision transformers (Dosovitskiy et al., 2020) like ViT-S/16
and ViT-B/16. The text encoder is kept as in the original CLIP, except that we change its number of layers
based on the dataset size, e.g., for smaller scale dataset like CC3M we use a 6-layer transformer, while for
larger datasets we use 12 layers. Moreover, the strong text and vision projectors are two separate MLPs
with BatchNorm and ReLU, each having a hidden and output dimension of 4096 and 256, respectively.

Optimization. In most experiments, we pre-train the model for 32 epochs following Li et al. (2021), using
the AdamW optimizer (Loshchilov & Hutter, 2017) (betas 0.9 and 0.98), with learning rate 0.003 (or 0.002 for
experiments on the 29M dataset) regulated by linear warmup (1 epoch) plus cosine scheduler (final learning
rate 10−5). Mini-batches are composed of 4096 image-text pairs. To provide regularization to the training,
weight decay is applied with magnitude 0.1 on all parameters except for biases and normalization layers.
For the smaller CC3M dataset, we use weight decay 0.5. The dropout probability in text encoder varies
depending on the dataset size, e.g., no dropout on YFCC15M and probability 0.2 on CC3M, while label
smoothing is applied with a smoothing factor of 0.1 regardless of the dataset.

Data augmentation. Both images and text are augmented to produce one weak and two strong augmen-
tations. For the sake of clarity, we report the exact configuration adopted in Pseudo-code 2.

Pseudo-code 2 Config for image and text augmentations

# x: image
# c, b, s, h: constrast, brightness, saturation, hue
def image_augment(x, mode="weak"):

if mode == "weak":
transform =

RandomResizedCrop(size=224, scale=(0.5, 1))

elif mode == "strong":
transform = Compose([

RandomResizedCrop(size=224, scale=(0.08, 1)),
RandomColorJitter(

c=0.4, b=0.4, s=0.4, h=0.1, prob=0.8),
RandomGrayscale(prob=0.2),
RandomGaussianBlur(sigma=(0.1, 2), prob=0.5),
RandomHorizontalFlip(prob=0.5),

])
return transform(x)

# y: list of captions
def text_augment(y, mode="weak"):

# random multi-caption choice
y = choice(y)

# remove stop-words with probability
y = rm_stopwords(y, prob=0.8)

if mode == "weak": return y

# draw one EDA augmentation
transform = choice([

synonym_replacement ,
random_swap,
random_deletion

], prob=[0.4, 0.4, 0.2])
return transform(y)

Note that strong image augmentations are SimCLR-like (Chen et al., 2020). Stopword removal is set to 0.9
for YFCC15M experiments, and EDA refers to “easy data augmentation” (Wei & Zou, 2019).

3We use a smaller subset of PMD70M as we were not able to reproduce part of the dataset.
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Table 1: Imagenet zero-shot classification accuracy obtained using CLIP in combinations with other non-
contrastive losses. Note that all these runs do not use multi-caption and results for CLIP are obtained using
our implementation. ∗: This score differs from the one in Tab. 2, because here multi-caption is not used.

(a) Base vs. improved recipe on YFCC15M

Method Base Improved 🚀
ViT-S/16 ResNet-50 ViT-S/16 ResNet-50

CLIP 32.4 32.6 43.1 43.2∗

BarLIP 34.4 32.8 42.5 42.6
SiamLIP 33.4 32.4 42.7 42.8
BYOLIP 33.8 32.7 42.9 42.8
SwALIP 32.9 32.2 41.8 42.6

(b) Scaling pre-training data with ResNet-50

Method Improved 🚀
CC3M CC12M YFCC15M

CLIP 27.4 44.4 43.2∗

BarLIP 28.0 44.4 42.6
SiamLIP 27.9 43.4 42.8
BYOLIP 28.2 43.9 42.8
SwALIP 27.8 43.7 42.6

5.3 Experimental results

In this section, we report on our experiments to disentangle the use of advanced data-augmentation techniques
from the introduction of alternative losses for vision-language pre-training. In Sec. 5.3.1, we report on our
main experiments that compare CLIP with variants that include additional non-contrastive SSL-inspired
losses (BarLIP, SiamLIP, BYOLIP, SwALIP), and consider them using the original training recipe and our
improved recipe. We then compare CLIP with our improved training recipe with state-of-art results from
the literature in Sec. 5.3.2. Finally, we ablate the different components of the improved recipe in Sec. 5.3.3.

5.3.1 Comparison with baselines

We start by evaluating the impact of non-contrastive losses on cross-modal learning. In Tab. 1a we report
the results obtained with the base training recipe and our improved training recipe (marked with 🚀) using
ViT-S/16 and ResNet-50 as vision backbones. From the base recipe columns, it can be observed that when
employing the ViT backbone, BarLIP, SiamLIP, BYOLIP, and SwALIP all outperform the original CLIP
with a gap ranging between 0.5% and 2.4%. However, they perform on par or slightly worse (up to -0.5%)
when employing the ResNet backbone, presumably due to the stronger inductive bias of convolutions. Then,
looking at the improved recipe columns, our recipe provides a great boost to all methods, and especially to
original CLIP (+10.7% and 10.5% with ViT-S and ResNet-50, respectively); +8.1—9.3% and +9.8—10.4%
for the improved non-contrastive CLIP variants with ViT and ResNet-50, respectively. Note that, the results
for SwALIP with our improved recipe utilize the modified version of SwALIP described in the appendix,
which requires multiple views to optimize its additional clustering-based loss. Moreover, using the improved
training recipe, BarLIP, SiamLIP, BYOLIP, and SwALIP all perform similarly (the accuracy is in the ranges
41.8—42.9% and 42.6—42.8% with ViT and ResNet-50, respectively), and worse than CLIP 🚀 (43.1%
and 43.2%) – additional zero-shot evaluations are reported in the appendix. To validate this result we ran
experiments on CC3M and CC12M, which contains different amount of data and are known to be less noisy
than YFCC15M, see Tab. 1b. To limit the use of computational resources, we ran this investigation only
using ResNet-50. From the results, we can notice comparable performance across all the methods, with
CLIP 🚀 obtaining slightly worse results with CC3M pre-training (-0.8%), the best results (on-par with
BarLIP) with CC12M, and the best results on YFCC15M.

Taken together, these results clearly demonstrate the importance of a strong training recipe relative to com-
bining contrastive and non-contrastive loss functions. This finding is in line with concurrent work investigat-
ing a combination of CLIP with MAE (Weers et al., 2023). In the following, we focus on the best performing
CLIP 🚀, compare it to the state-of-the-art, and ablate the components of our improved training recipe.

5.3.2 Comparison with the state-of-the-art

Given the conspicuous boost of CLIP 🚀 compared to the original CLIP by simply changing the training
recipe, we compare it against other state-of-the-art methods built on CLIP. We compare it to the approaches
based on the ResNet-50 architecture, as well as to the approaches based on vision transformers.
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Table 2: Comparison of CLIP 🚀 with state-of-the-art zero-
shot ImageNet classification accuracy. ResNet-50 backbone,
unless otherwise specified. Best results in first block in bold.
∗: Uses larger YFCC100M subset; †: 50 epochs pre-training.

Method Pretraining
CC3M CC12M YFCC15M 29M

CLIP (Radford et al., 2021) 20.6 36.5 32.7 44.2
ProtoCLIP (Chen et al., 2022) 21.5 32.0
CyCLIP (Goel et al., 2022) 22.1
CLOOB (Fürst et al., 2022) 24.0 35.7
DeCLIP (Li et al., 2021) 27.2 41.0 41.9 49.3
CLIP 🚀 (ours) 27.4 44.4 43.4 53.3

Using pre-trained models or additional supervision
BoW (Tejankar et al., 2021) 30.3
UniCL (Yang et al., 2022) 40.5
PyramidCLIP (Gao et al., 2022) 43.7
SoftCLIP (Gao et al., 2023) 24.2 43.2

Using ViT-B/32
FILIP (Yao et al., 2021) 37.8∗

MS-CLIP-S (You et al., 2022) 36.7∗

UniCLIP (Lee et al., 2022) 42.8† 54.2

Figure 3: ImageNet performance trend
when scaling the dataset size when pre-
training on CC3M, CC12M, YFCC15M and
Open29M respectively.

Our main comparison is presented in Tab. 2, where we compare the methods based on ResNet-50 or ViT
with similar FLOPs e.g. ViT-B /32. Analyzing the results in the first block of rows in Tab. 2, CLIP 🚀 not
only boosts original CLIP when pre-trained on all datasets, but it also obtains consistently higher accuracy
than all the prior works having the same architecture. Broadening the comparison to methods employing
pre-trained networks, we observe slightly worse performance, -2.1% and -0.3% on CC3M and YFCC15M.
Although negative, this small gap can be considered encouraging as our model could also benefit from
initialization and potentially overturn the gap. In a second broader comparison with methods that use
ViT-B/32, we find the best results for CLIP 🚀 on YFCC15M (+0.6%), despite the longer pre-training of
UniCLIP (50 vs. 32 epochs), and slightly worse results on Open29M (-0.9%). This is explainable as vision
transformers have less inductive bias and thus benefit more from a larger dataset size.

In Fig. 3 where we consider the scaling ability of CLIP🚀 compared to the best competitor DeCLIP (Li et al.,
2021) and baseline CLIP, we notice the biggest gap with DeCLIP when pre-training on the largest dataset
(+4.0% on Open29M vs. +0.6%, +3.2%, +1.5%, for CC3M, CC12M, and YFCC15M, respectively). This
result highlights the scalability of our training recipe, which is a fundamental feature given the prominent
research direction toward large-scale training. For this reason, we further solidify this scaling investigation
by reporting in Tab. 3 the results when pre-training on PMD46M. Here, we compare CLIP 🚀 with various
baselines of CLIP and FLAVA (Singh et al., 2022). For a fair comparison, we use the ViT B/16 vision
backbone as in Singh et al. (2022) and train by seeing a comparable number of image-text pairs. The analysis
of the results showcases a significant gap between CLIP🚀, CLIP baseline (-5.8%) and FLAVA (-3.3—5.3%).
Moreover, CLIP🚀 matches the performance of the open-clip implementation trained by Cherti et al. (2023)
on LAION (400M image-text pairs) for 13B samples seen. This is a remarkable achievement considering
that our model is trained on ∼10x less data with ∼10x less samples seen. Together with the trend shown
in Fig. 3 these results validate a consistent boost provided by our recipe when scaling data.

Orthogonally, we also perform scaling on the model size. Results are reported in Tab. 4 and Fig. 4. We make
comparisons with prior work using image encoders based on the ViT-{S,B,L}/16 architectures. As it can be
observed from the ImageNet zero-shot accuracy (first column), our improved recipe is again very beneficial
compared the original recipe for CLIP: boosting accuracy by 8.8%, 7.4%, and 9.5% when using ViT-{S,B,L}
backbones, respectively. Moreover, it outperforms SLIP (Mu et al., 2022), by 3.2%, 2.2%, and 2.4% on
ViT-{S,B,L} respectively, when pre-trained for the same amount of epochs (25), and when pre-trained for a
significantly less epochs, i.e., 32 vs 100, improving by 2.0%, 3.6%, 2.1% on ViT-{S,B,L} respectively. These
results further highlight the benefit of our improved training recipe that includes multiple views with separate
projectors, which allow the model to be both better performing and more efficient in the number of epochs.
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Table 3: Linear evaluation on ImageNet after pre-training
on the PMD dataset (unless otherwise specified). Scores
of CLIP and FLAVA are taken from Singh et al. (2022),
open-clip (Cherti et al., 2023) and the original CLIP pa-
per (Radford et al., 2021). Note that, ∗ indicates training
on PMD augmented with ImageNet, CCNews and Book-
Corpus, while † marks initialization with pre-trained text
and vision encoders. “I-T” stands for image-text pairs.

Method Dataset Batch I-T seen Lin eval
CLIP 70M 8K 1.3B 73.0
FLAVA >70M 8K 1.3B 73.5∗

70M 8K >1.3B 74.3†

>70M 8K >1.3B 75.5∗†

CLIP 🚀 46M 4K 1.5B 78.8
CLIP 400M (CLIP-WIT) 32K 13B 80.2
CLIP 400M (LAION) 86-88K 13B 78.7 Figure 4: ImageNet zero-shot with ViT-

{S,B,L}/16 scaling, trained on YFCC15M.

Table 4: Zero-shot on 23 vision datasets after YFCC15M pre-training for 25 epochs, unless noted otherwise.
CLIP and SLIP scores are from the SLIP paper. The average considers also ImageNet, as in Mu et al. (2022).
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CLIP 32.7 9.8 43.4 61.0 29.9 31.1 3.1 4.7 17.9 25.0 53.3 47.8 86.8 22.3 16.1 9.5 34.1 8.7 64.8 26.0 14.7 56.1 49.5 32.5
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CLIP 🚀 41.5 7.2 53.8 61.3 30.5 37.6 5.8 8.7 26.1 29.5 68.8 57.6 94.2 14.2 28.3 6.5 41.4 13.0 51.7 37.4 13.1 51.5 50.4 36.1
SLIP (100ep) 39.5 2.7 53.0 68.4 39.3 36.5 4.6 5.1 26.6 33.6 68.3 55.8 91.9 18.2 22.2 13.8 38.4 8.5 62.8 33.3 19.2 51.4 49.4 36.6
CLIP 🚀 (32ep) 43.1 9.4 57.6 62.9 34.0 40.3 5.2 10.5 28.4 34.4 68.2 59.7 93.3 19.9 22.7 8.3 36.6 11.8 50.8 37.2 14.1 53.2 51.9 37.1
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6 CLIP 37.6 8.4 50.6 66.0 34.5 38.8 4.0 5.4 21.2 28.5 60.9 53.3 90.5 30.2 21.5 6.1 35.1 10.5 53.5 28.5 10.8 52.4 50.7 33.5
SLIP 42.8 9.8 59.5 78.6 45.2 38.7 5.4 5.7 26.1 31.1 71.0 56.6 94.4 20.3 28.9 14.5 34.0 11.6 55.4 37.7 17.5 52.8 51.1 38.6
CLIP 🚀 45.0 9.4 61.5 71.3 38.9 42.7 6.7 9.9 28.0 30.7 72.8 58.4 95.5 12.6 37.2 10.0 44.2 14.6 51.1 41.1 12.4 52.9 50.4 39.0
SLIP (100ep) 45.0 17.1 63.3 79.2 50.4 44.7 8.1 8.4 26.2 34.7 74.0 61.3 95.4 20.8 27.8 11.7 35.2 11.5 52.1 37.1 13.0 55.1 49.9 39.0
CLIP 🚀 (32ep) 47.0 9.8 63.0 67.1 37.8 45.7 8.2 11.2 30.3 35.4 75.4 62.8 95.1 23.2 36.0 8.1 35.6 15.6 51.6 42.7 13.5 54.3 50.1 40.0

V
iT

-L
/1

6

CLIP 40.4 10.3 59.5 72.9 41.5 40.3 6.9 6.4 20.6 27.9 65.4 55 94.2 22.7 28.8 5.8 41.4 12.6 54.9 34.3 12.9 54.3 50.1 37.4
SLIP 46.2 13.2 64.4 87.8 56.4 39.8 8.6 7.8 26.8 32 76.6 59.4 96.6 27.7 36.5 7.2 28.8 15.6 54.4 42.6 14.1 53.4 50.1 41.1
CLIP 🚀 48.6 16.3 69.1 83.5 49.9 46.2 9.0 11.8 30.4 32.9 78.5 63.6 96.7 20.7 41.3 8.4 36.0 18.2 51.5 43.2 13.8 52.0 50.1 42.2
SLIP (100ep) 47.9 14.9 69.2 87.5 54.2 39.8 9.0 9.5 29.9 41.6 80.9 60.2 96.2 34.5 46.0 8.6 30.7 14.2 50.6 44.1 17.4 55.0 49.8 43.1
CLIP 🚀 (32ep) 50.0 12.5 70.3 84.7 52.0 46.9 11.8 11.2 32.1 41.7 77.5 68.3 97.0 28.7 44.4 10.2 27.9 17.9 56.2 44.0 13.8 52.0 50.2 43.5

Next, we consider the generalization of CLIP 🚀 to different types of vision benchmarks. To do so, we follow
the setting proposed by Radford et al. (2021), testing the zero-shot transfer of CLIP 🚀 representations on
22 vision benchmarks (plus ImageNet) as reported in Tab. 4. We observe an improvement of the average
performance (see last column), in all the settings considered, i.e., ViT-{S,B,L} with 25 or more pre-training
epochs. In particular, focusing on the 25 epochs pre-training, CLIP 🚀 provides a boost in most of the
benchmarks; it improves over baseline CLIP in 18/23, 20/23, and 18/23 benchmarks with ViT-{S,B,L},
respectively. Moreover, compared with SLIP, regardless of the pre-training duration, CLIP 🚀 obtains the
best performance in 13 to 16 of the 23 benchmarks. As a final note, we notice that the types of benchmarks
positively affected by our recipe remain almost the same across different ViT sizes and number of epochs.
This might be explained by the induced invariances of the strong data augmentations used in our recipe.

5.3.3 Ablations

We quantify the impact of the different components of our improved training recipe by isolating and ablating
them. We first ablate the regularization techniques, and then the projector design. Finally, we analyze the
computational cost of our recipe. For all the ablations, we use CLIP 🚀 pre-trained on YFCC15M with
ResNet-50 as the vision backbone. For these experiments, we use the zero-shot ImageNet top-1 classification
accuracy as a metric. Also, note that not all the ablations were run on the final recipe: some of them have been
performed earlier in our exploration, and thus provide results different from the one reported in Sec. 5.3.2.
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(a) Text augmentation
EDA RMSW Multi-cap Top-1

42.8
X 43.0
X X 43.1
X X X 43.4

(b) Vision augmentation
SimCLR aug. Multi-view BYOL aug. Top-1

32.7
X 35.2
X X 43.4
X X X 43.2

(c) Projectors design
Text-proj Vision-proj Top-1

LinT-shared LinV-shared 40.9
MLPT-shared MLPV-shared 39.6

LinT LinV 41.0
MLPT LinV 41.0
LinT MLPV 42.6
MLPT MLPV 43.1
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Figure 5: Ablations. (b) EDA: Easy Data Augmentation (Wei & Zou, 2019); RMSW: remove stop-words (Te-
jankar et al., 2021); Multi-cap: random multi-caption sampling; (e) the accuracy is relative to having dropout
set to 0; (f) the reported values were computed using eight Nvidia V100-SMX2 32GB GPUs and our recipe
with ResNet-50 backbone (see Sec. 5.2). The annotation of each point indicates (# of views, view resolution).

Regularization. In Fig. 5a and 5b we break down the data augmentation recipe into its main components.
For the text augmentation recipe (see Fig. 5a), we evaluate the impact of EDA (Wei & Zou, 2019), removing
stop-words (RMSW) (Tejankar et al., 2021), and random multi-caption sampling (see Sec. 5.2). We notice
that each of the three techniques provides a small boost, summing up in total to +0.6% to CLIP 🚀. In
particular, while RMSW only provides +0.1% it is helpful to reduce noisy/uninformative image-text captions
from the training. In general, we may explain the relatively small boost given by text augmentations as our
recipe is more focused on the vision part due to the introduction of multiple views. Indeed, in Fig. 5b we
showcase the improvement of using multiple views combined with SimCLR-style (Chen et al., 2020) image
transformations that results in +10.7% w.r.t. the original CLIP. On the contrary, the use of stronger and
asymmetric BYOL-like (Grill et al., 2020) image transformations are not beneficial in the multi-modal CLIP
pre-training. We conjecture that the implicit regularization provided by these augmentations is too strong
in the presence of the noisy supervisory signal provided by image-text pairs.

In addition to implicit data augmentation regularization, we also study the effect of the explicit regularization
techniques present in our improved recipe in Fig. 5d and 5e. Specifically, Fig. 5d depicts the trend of
the accuracy (blue line) when increasing label smoothing in the contrastive computation between strong
augmentations. From the plot, it is easy to observe that higher smoothing factors generate better results,
+2.8% by increasing the smoothing from 0.0 to 0.1. To explain this significant boost, we report in the same
plot the trend of the logit scale (orange curve), which corresponds to the inverse of the learned temperature,
1/τ . The logit scale is negatively correlated with the label smoothing factor, suggesting that label smoothing
improves accuracy by mitigating overfitting as indicated by reduced logit scales. This is also corroborated
by concurrent work (Gao et al., 2023). In Fig. 5e, we analyze the effect of the dropout probability in the
text encoder when pre-training on three different datasets. We find that on YFCC15M, the larger and more
noisy dataset among the three, applying dropout is detrimental. On the contrary, as the datasets become
smaller and less noisy, dropout provides slight accuracy boosts.
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Projector design. A crucial modification that we propose in our improved recipe is the use of two sepa-
rated non-linear projectors to project strong/local augmentations/views into the CLIP cross-modal embed-
ding. We ablate the possible architectural choices for the projector in Fig. 5c. In the first two rows, the same
projectors are used for the weakly and strongly augmented text, and similarly for the image projectors. We
observe that with such shared projectors having a linear projection (Lin) is beneficial compared to non-linear
(MLP). However, in the following rows, we show that if we employ separate projectors for the weakly- and the
strongly-augmented text and images, using non-linear projections (last row, MLPT and MLPV) produces a boost
of +2.2% from the baseline case (first row, shared linear projection). This finding is perhaps not surprising
as strongly augmented text-image pairs are more challenging to align, providing enough regularization such
that the MLPs can be trained without overfitting.

Efficiency. Our improved training recipe increases the computational costs due to the simultaneous use of
multiple image and text views/augmentations, combined with more complex projectors. In Fig. 5f, we show
how the accuracy and the training time are impacted by the resolution of the multiple image views. As can
be noted, we can reduce the training time by using lower resolution image views. However, we observe that
decreasing the resolution of the image views impacts negatively the performance. In particular, substantial
downsampling i.e., < 128, causes a drastic drop in the performance, while less aggressive downsampling,
i.e., 1922 and 1602, still provides results competitive with the state of the art, but at a training cost reduced
by 10% to 20%.

6 Related work

Contrastive vision-language pre-training. Seminal works like CLIP (Radford et al., 2021) and
ALIGN (Jia et al., 2021) have proven how contrastive VLP at scale provides rich and general representa-
tions for a multitude of downstream tasks. However, these methods apply the contrastive loss only between
the entire image and its caption, ignoring possible local alignments, and do not use distorted views of the
input data limiting the robustness of the learned representations. To this end, FILIP (Yao et al., 2021) and
PyramidCLIP (Gao et al., 2022), have tried to refine the contrastive loss to consider image and text parts
(patch-tokens/tags pairs), and SoftCLIP (Gao et al., 2023) use image-text parts alignment combined with
a softening loss computed over the negatives pairs. Instead, other works tackled a better robustness of the
learned representations: CLOOB (Fürst et al., 2022) using Hopfield networks to regulate the covariance of the
learned representations, MS-CLIP (You et al., 2022) and FIBER (Dou et al., 2022), tried to overcome the use
of dual modality encoders in CLIP to obtain better fused multimodal features, while FLIP (Li et al., 2022b)
and MaskCLIP (Dong et al., 2022) used image masking. More related to CLIP 🚀, some works improved
representation robustness using multiple views: SLIP (Mu et al., 2022) used multiple views of images, but
unlike us, they were used to optimize an auxiliary unimodal SSL contrastive loss; UniCLIP (Lee et al., 2022)
and ViewCo (Ren et al., 2023) instead, used multiple image views for both the unimodal and multimodal
contrastive losses. However, this is different from CLIP🚀 since we do not use unimodal losses while we also
use multiple views of the text to generate aligned weakly and strongly augmented image-text pairs. Finally,
since image-text pairs are often noisy in web-crawled datasets, UniCL (Yang et al., 2022) proposed a solution
that integrates image-label pairs from supervised datasets, while CoCa (Yu et al., 2022), OTTER (Wu et al.,
2021), BLIP (Li et al., 2022a), and BoW-CLIP (Tejankar et al., 2021) proposed to denoise text captions by
generating them or substituting them with bag of words (BoW). Inspired by BoW-CLIP, in CLIP 🚀, we
also remove stop-words from the image captions.

SSL-inspired non-contrastive losses in VLP. All the aforementioned contrastive VLP approaches
are highly sensitive to the quality and diversity of negative samples present in the batch. To overcome this
issue, several recent works have explored the use non-contrastive losses inspired by recent SSL advancements.
However, as shown by the non-contrastive baselines in our experiments, none of the methods in the literature
obtained better results without keeping the standard CLIP contrastive loss. Differently to our baselines, some
existing methods only adopt non-contrastive losses for the unimodal encoders: DeCLIP (Li et al., 2021) use
a consistency loss for the image encoder, while VoLTA (Pramanick et al., 2022) adopt the Barlow Twins
loss (Zbontar et al., 2021) separately on both the vision and text encoders. More similar to our baselines
some works integrates the CLIP contrastive loss with a multimodal non-contrastive loss: ProtoCLIP (Chen
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et al., 2022) and xCLIP (Zhou et al., 2022) adopt a clustering-based loss, while CyCLIP (Goel et al., 2022)
combines both unimodal and multimodal consistency losses for vision and text. However, these methods
employ custom non-constrastive losses that do not reflect any existing SSL approaches such as our baselines.
Finally, FLAVA (Singh et al., 2022) and ViCHA (Shukor et al., 2022) use image and text masking combined
with multimodal masking and/or image-text matching, but the masking approach is out of the scope of this
work as it usually requires fine-tuning, as shown by He et al. (2022), while we focus on zero-shot transfer.

7 Conclusion

In conclusion, this paper investigated the effectiveness of combining contrastive learning with recent ad-
vances in self-supervised and supervised learning. Our study includes several baselines using successful
non-contrastive loss functions from visual self-supervised learning, and compares their performance with
CLIP, a seminal work in this area. Our findings indicate that the SSL-inspired baselines outperform a ba-
sic implementation of CLIP, but the advantage disappears when an improved training recipe is employed.
Noticeably, we show that a simple CLIP baseline can be substantially improved by applying this improved
training recipe, composed of image and text augmentations, label smoothing, dropout, and deeper projector
networks. Our improved training recipe for CLIP achieves state-of-the-art performance on four datasets and
outperforms related methods by significant margins.
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A Modified SwALIP

To mitigate the instability issues of SwALIP (see Sec. 4), we develop a slightly modified version that does
not exhibit learned prototypes, rather, it uses representations from the other modality as prototypes, and
clusters samples in the current modality around those. In practice, in order to implement this, we need
multiple views of each image-text pair as in our improved recipe, where we have two strongly-augmented
views. Considering a batch of samples containing such two sets of correlated views projected into latent
space, Z = {(zA

i , zB
i )}N

i=1 and Z̄ = {(z̄A
i , z̄B

i )}N
i=1, the new formulation reads as follows:

LA→B
NC = LA→B

XE (ZA, ĀA, PB), ĀA = λ sk(sim(Z̄A, PB)) + (1 − λ)I, PB = ZB (7)

LA→B
NC = −

N∑
i=1

N∑
k=1

āA
i,k log

exp
(
sim

(
zA

i , pB
k

)
/τ

)∑N
k′=1 exp

(
sim

(
zA

i , pB
k′

)
/τ

) , (8)

where āA
i ∈ ĀA is the vector of cluster assignments for the correlated view, z̄A

i , of zA
i in one modality,

e.g., image, and each prototype pB
k ∈ PB corresponds to one view of the samples, zB

k , in the other modality,
e.g., text. Assignment vectors are obtained by applying Sinkhorn-Knopp (sk) on the multimodal similarity
matrix computed against the prototypes PB . The loss is first computed using the swapped assignments
typical of SwAV, i.e., LA→B

XE (ZA, ĀA, PB) and LA→B
XE (Z̄A, AA, PB), and then in both directions A → B and

B → A, so that it becomes symmetric. Also, since the view of the samples in the “other” modality used
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as prototypes is arbitrary, i.e., PB = ZB and P̄B = Z̄B are both valid, in our implementation we average
the loss considering both cases. Finally, to stabilize training and avoid collapsed solutions we also average
the output of the Sinkhorn-Knopp algorithm with the identity matrix, I, to strengthen relationships on the
diagonal (ground truth image-text pairs).

B Additional results

Table 5: Zero-shot transfer on ImageNet and several vision datasets taken from Radford et al. (2021). Pre-
training on YFCC15M for 32 epochs with ResNet-50 as vision backbone.
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CLIP 🚀 43.1 9.8 53.3 47.0 21.5 37.8 6.2 8.9 25.7 34.1 66.6 59.6 89.7 18.3 24.0 8.3 37.0 11.8 51.0 37.6 12.9 52.7 50.1 35.1
SwaLIP 🚀 42.5 10.8 52.6 52.5 21.8 37.8 6.5 9.6 27.9 34.6 67.1 58.3 89.0 14.6 19.4 11.3 41.1 11.0 50.2 37.0 13.3 52.9 50.1 35.3
BarLIP 🚀 42.6 10.7 53.5 51.0 19.4 38.3 6.1 10.4 28.9 32.2 65.7 56.1 90.7 13.2 26.9 8.4 39.8 11.4 50.9 33.7 12.8 57.0 50.7 35.2
SiamLIP 🚀 42.8 10.7 52.7 46.4 22.3 39.1 5.1 7.6 29.8 33.5 66.4 58.6 91.9 12.5 25.9 9.1 39.2 11.6 51.4 36.0 12.4 53.9 49.9 35.2
BYOLIP 🚀 42.8 10.6 50.8 54.1 22.3 39.1 6.9 7.9 27.2 32.4 68.2 59.3 90.8 19.7 23.1 7.8 38.6 11.2 52.5 36.6 12.9 53.2 50.1 35.6

Generalization of non-contrastive baselines In the main paper we compared our improved baselines
(see Sec. 4) with CLIP 🚀 in terms of zero-shot image classification accuracy on ImageNet. However, one
might ask whether the use of those non-contrastive losses is beneficial in terms of generalization. In Tab. 5,
we provide an answer to this question, expanding the evaluation to a larger set of 22 vision datasets. We
observe that the best results on the downstream datasets are rather spread among the different improved
baselines. It is hard to find a model overcoming others consistently, despite BYOLIP presents a slightly
better overall average. In general, this result confirm our finding that it is not worth to complicate the
model by using multiple objectives, but it is enough to use our well-tuned recipe, CLIP 🚀.

Table 6: Sensitivity to loss weights.
ImageNet zero-shot results ob-
tained with BarLIP 🚀.

α β YFCC15M
1 0 43.2
1 0.25 42.8
1 0.50 42.9
1 0.75 42.4
0 1 0.1

0.25 1 38.9
0.50 1 41.6
0.75 1 42.5

1 1 42.6

Sensitivity analysis wrt. α and β Here, we report an ablation of
the α and β hyper-parameters regulating the weights of the contrastive
and non-contrastive terms, respectively (see Eq. 6). To reduce the com-
putational burden, we carry out the analysis only for BarLIP 🚀, pre-
trained with ResNet-50 on YFCC15M for 32 epochs. We ablate values
of β while keeping α fixed at 1 and vice versa. Results are reported in
Table 6, where we observe that increasing the value of β with α fixed
at 1 slightly harms the performance of up to 0.8%, while doing the op-
posite, i.e., increasing α with β fixed at 1, leads to a substantial drop
of accuracy, up to 3.7%. Notably, using only the non-contrastive loss
(α = 0, β = 1) is problematic for zero-shot evaluation because the CLIP
projector is not optimized and it is hard to perform zero-shot classifi-
cation on the non-contrastive projector. These results further confirm
the ineffectiveness of adopting non-contrastive losses together with our
improved recipe.

C Pseudo-code for multi-view

In Pseudo-Code 3, we show the actual implementation adopted in CLIP🚀, when multiple (num_augs) strong
augmentations are adopted. It is important to note that when we compute the contrastive among strongly-
augmented image-text pairs, each strong augmentation is contrasted with all the strong augmentations of the
other modality. For instance, given two strong augmentations (num_augs = 2), each image augmentation is
contrasted with both the strong text augmentations, and vice versa.
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Pseudo-code 3 Detailed implementation of CLIP 🚀.

# a, b: image and its corresponding text
# f_t, f_v: vision and text encoders with (in_dim, embed_dim)
# lin, mlp: Linear and MLP(hidden_dim) with (embed_dim, proj_dim)
# tau_w, tau_s: learnable temperature for weak and strong augmentations
# sim_target: identity matrix

proj_v_w, proj_t_w = lin(f_v(x), bias=None), lin(f_t(x), bias=None)
proj_v_s, proj_t_s = normalize(mlp(f_v(x))), normalize(mlp(f_t(x)))
def training_step(a, b):

# weak augmentations
a_w, b_w = aug_v(a, 'weak'), aug_t(b, 'weak')

# strong augmentations
a_s, b_s = [], []
for _ to range(num_augs):

a_s += aug_v(a, 'strong')
b_s += aug_t(b, 'strong')

# projecting into a shared space
z_a_w, z_b_w = proj_v_w(a_w), proj_t_w(b_w)
z_a_s, z_b_s = proj_v_s(*a_s), proj_t_s(*b_s)

# CLIP loss weak augmentation
sim_a_to_b_w = tau_w * z_a_w @ z_b_w.t()
sim_b_to_a_w = tau_w * z_b_w @ z_a_w.t()
loss_a_w = cross_entropy(sim_a_to_b_w, sim_target)
loss_b_w = cross_entropy(sim_b_to_a_w, sim_target)

# CLIP loss strong augmentation
sim_a_to_b_s = []
sim_b_to_a_s = []
for i in range(num_augs):

sim_a_to_b_s += [tau_s * x @ z_b_s[i].t() for x in z_a_s]
sim_b_to_a_s += [tau_s * x @ z_a_s[i].t() for x in z_b_s]

loss_a_s = sum([cross_entropy(x, sim_target, label_smoothing) for x in sim_a_to_b_s]) / len(sim_a_to_b_s)
loss_b_s = sum([cross_entropy(x, sim_target, label_smoothing) for x in sim_b_to_a_s]) / len(sim_b_to_a_s)

loss_a = (loss_a_w + loss_a_s * num_augs) / (1 + num_augs)
loss_b = (loss_b_w + loss_b_s * num_augs) / (1 + num_augs)
loss = (loss_a + loss_b) / 2

return loss
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