
REFOCUS: Visual Editing as a Chain of Thought for Structured Image
Understanding

Xingyu Fu * 1 Minqian Liu 2 Zhengyuan Yang 3 John Corring 3 Yijuan Lu 3 Jianwei Yang 3

Dan Roth 1 Dinei Florencio 3 Cha Zhang 3

https://zeyofu.github.io/ReFocus/

Abstract
Structured image understanding, such as interpret-
ing tables and charts, requires strategically refo-
cusing across various structures and texts within
an image, forming a reasoning sequence to arrive
at the final answer. However, current multimodal
large language models (LLMs) lack this multihop
selective attention capability. In this work, we
introduce REFOCUS, a simple yet effective frame-
work that equips multimodal LLMs with the abil-
ity to generate “visual thoughts” by performing
visual editing on the input image through code,
shifting and refining their visual focuses. Specif-
ically, REFOCUS enables multimodal LLMs to
generate Python codes to call tools and modify
the input image, sequentially drawing boxes, high-
lighting sections, and masking out areas, thereby
enhancing the visual reasoning process. We ex-
periment upon a wide range of structured image
understanding tasks involving tables and charts.
REFOCUS largely improves performance on all
tasks over GPT-4o without visual editing, yield-
ing an average gain of 11.0% on table tasks and
6.8% on chart tasks. We present an in-depth anal-
ysis of the effects of different visual edits, and
reasons why REFOCUS can improve the perfor-
mance without introducing additional information.
Further, we collect a 14k training set using REFO-
CUS, and prove that such visual chain-of-thought
with intermediate information offers a better su-
pervision than standard VQA data, reaching a
8.0% average gain over the same model trained
with QA pairs and 2.6% over CoT.

*Work done during internship at Microsoft. 1University of Penn-
sylvania 2Virginia Tech 3Microsoft. Correspondence to: Xingyu
Fu <xingyuf2@seas.upenn.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Structured images, such as tables and charts (Kafle et al.,
2018; Chen et al., 2020; Zhu et al., 2021; Masry et al.,
2022; Kim et al., 2024; Wang et al., 2024), are essential
for the efficient communication of information in our daily
lives (Chang et al., 2008; Groom et al., 2016). Understand-
ing these structured images requires multiple reasoning steps
– each paying selective attention (Duncan, 1984; Johnston
& Dark, 1986; Rizzolatti et al., 1994) to focus on particular
pieces of related information while ignoring less pertinent
details and distractions, to facilitate multi-hop visual rea-
soning and arrive at the final answer. For instance, What’s
total wins by Belgian riders in Figure 1? To answer
this, we might 1) identify the teams with Country being
Belgium, 2) find the wins of each team, 3) locate the wins
of the teams from Belgium, and 4) sum the wins together.

One major limitation of current multimodal models is their
lack of selective attention and multi-hop visual reasoning
ability – they limit intermediate reasoning to textual for-
mats only. Most methods often extract the information from
the image to text first, and then rely on language model’s
chain-of-thought (CoT) (Wei et al., 2022) reasoning to solve
the real problems (Masry et al., 2023; Han et al., 2023; Liu
et al., 2023c; Zhang et al., 2023; Chen et al., 2024; Surís
et al., 2023; Gupta & Kembhavi, 2023), never looking back
at the image again. Recent work Visual Sketchpad (Hu et al.,
2024) for the first time attempts to create visual artifacts as
thoughts using vision tools. However, it only works on natu-
ral images and mainly benefits from additional information
brought by tools instead of from visual reasoning.

In this work, we explore an improved representation of in-
termediate thoughts, to boost the visual reasoning ability of
multimodal large language models (LLMs) on structured
image understanding. We demonstrate that simple visual
editing actions generated as Python code from multimodal
LLMs–such as drawing boxes, highlighting areas, or mask-
ing regions–can significantly improve model performance
by directing selective attention.

To this end, we introduce REFOCUS: a framework that en-

1

https://zeyofu.github.io/ReFocus/

REFOCUS

What’s total wins by Belgian riders❓

ACTION: Focus with Mask using Python Code

THOUGHT: Focus on columns Country and Wins

Find coordinates of the columns to mask out
focus_columns = [‘Country’, ‘Wins’]
mask_out_columns = all_columns - focus_columns
mask_bbox = all_bbox[mask_out_columns]

Mask out irrelavent columns
draw.rectangle(mask_bbox, fill=“white”)

ACTION: Focus with Draw using Python Code

THOUGHT: Focus on rows with Country=Belgium

Focus on columns with drawing
focus_rows_headers = [‘2’, ‘4’, ‘5’, ‘8’]
focus_bbox = all_bbox[focus_rows_headers]

Draw a red box over relavent rows
draw.rectangle(focus_bbox, outline=“red")

ANSWER: 7

Image
Question Focus Areas Bounding Box Prediction

Correct Answer ReFocus Training Set

Incorrect Answer Supervised Finetuning

Figure 1. Overview of REFOCUS. REFOCUS performs visual chain of thought via input-image editing on an example data from
TableVQA (Kim et al., 2024). Given an image and question pair, REFOCUS equips GPT-4 with editing tools (details in §3), and GPT-4
generates pseudo code if an edit action is needed. REFOCUS then executes the editing actions, and feeds GPT-4 with the new image until
an answer is reached. In the above example, mask_column and draw_row are performed.

hances multimodal LLMs by integrating visual reasoning
as an intermediate step. REFOCUS provides an interface
that allows models to generate visual artifacts with a set of
image editing tools implemented in Python code. Specifi-
cally, REFOCUS prompts the underlying multimodal LLM
to program, executes the code, and produces visual artifacts
that incorporate selective attention as the new input for the
model. For instance, for long and complicated tabular im-
age as in Figure 1, REFOCUS masks irrelevant columns and
highlights important rows by drawing boxes around them.
Similarly, to find “the average of last four countries
data" in Figure 2, REFOCUS modifies the figure by remov-
ing the data of other countries. The new image therefore
eliminate distractions, avoiding possible hallucinations, and
become easier to solve for multimodal LLMs by refocusing.

We demonstrate the effectiveness of REFOCUS across a
wide range of structured image tasks, focusing on table and
chart visual question answering (VQA) sets. For tabular
problems, REFOCUS enables models to selectively edit the
columns and rows in the input image. REFOCUS consis-
tently improves the baseline GPT-4o performance, yielding
an average gain of 11.0%. For chart problems, we tackle
diverse types of charts including (1) horizontal bar charts,
(2) vertical bar charts, and (3) complex scientific charts from
arXiv papers. REFOCUS empowers multimodal LLMs to
modify bars and subplots to pay selective attention, resulting
in consistent improvements across different types of chart
images, with the average gain over gpt-4o reaching 6.8%.
We present an in-depth analysis on REFOCUS. We first
study why REFOCUS could achieve large gains, especially
since it does not bring in external information as other meth-
ods (Hu et al., 2024) do, and examine how different editing
techniques could affect multimodal LLMs differently.

Further, we investigate whether we can distill such refocus
abilities to smaller models through supervised-finetuning
(SFT), and if such visual chain-of-thought (VCoT) data
could benefit models more than the standard visual ques-
tion answering (VQA) data. We collect a 14k training set
data including the focus area bounding boxes and reasoning
processes using REFOCUS + GPT4o. Surprisingly, com-
prehensive experiments on Phi-3.5-vision show that our
collected REFOCUS data serves a better supervision signal
than standard VQA data for SFT, achieving an average gain
of 8.0% over the same model trained with the same QA
data, and 2.6% over CoT data.

To summarize, we introduce (1) REFOCUS, a simple yet
effective visual reasoning framework that enhances struc-
tured image understanding through input-image editing; (2)
we demonstrate that REFOCUS consistently achieves per-
formance improvements and analyze underlying reasons
behind these gains; (3) we curate a 14k training set using
REFOCUS and GPT-4o, and show that model finetuned with
REFOCUS data consistently outperforms the same model
trained with the same set of QA or CoT data, suggesting
potential pathways for more intelligent reasoning in vision
language models.

2. Related Works
Structured Image Understanding Scientific chart and
table figures have long been a challenging task for mod-
ern multimodal models. Previous methods mainly utilize
Optical Character Recognition (OCR) (Liu et al., 2024b),
by turning the image into text format and then performing
textual reasoning (Liu et al., 2022; 2023a). Other methods
(Masry et al., 2023; Han et al., 2023) focus on enhancing

2

REFOCUS

What’s total wins by belgian riders❓

ACTION: Focus with Mask using Python Code

THOUGHT: Focus on columns Country and Wins

Find coordinates of the columns to mask out
focus_columns = [‘Country’, ‘Wins’]
mask_out_columns = all_columns - focus_columns
mask_bbox = all_bbox[mask_out_columns]

Mask out irrelavent columns
draw.rectangle(mask_bbox, fill=“white”)

ACTION: Focus with Draw using Python Code

THOUGHT: Focus on rows with Country=Belgium

Focus on columns with drawing
focus_rows_headers = [‘2’, ‘4’, ‘5’, ‘8’]
focus_bbox = all_bbox[focus_rows_headers]

Draw a red box over relavent rows
draw.rectangle(focus_bbox, outline=“red")

ANSWER: 7

GPT-4o: Last four countries: Greece 62%, Poland 62%,
France 54%, and Spain 48%. So average is 56.5.

GPT-4o: The last four countries: Poland: 62, France: 54,
Spain: 48, UK: 37. So the average is 50.25.

What is the average of last four countries data❓

GPT-4o: Looking at the chart, 2011: 8.8%, 2014: 5.3%,
2018: 2.4%, 2019: -6.8%. So there are 4 years.

GPT-4o: The years with values less than 10% are 2011,
2014, 2017, 2018, and 2019. So 5 years in total.

How many years have value less than 10%❓

Figure 2. Example of how REFOCUS + GPT-4o solves previously unsolvable problem in ChartQA dataset (Masry et al., 2022) through
improved visual grounding. Given the original horizontal bar image (left), GPT-4o grounds to the wrong bars and thus gets the wrong
answer. REFOCUS eliminates such possibility through editing, guiding the model to the correct answer (right).

end-to-end VQA capabilities by training on augmented data.

Visual Reasoning through Programming A significant
recent trend in multimodal LLMs is using Python programs
to facilitate chain-of-thought reasoning (Gupta & Kembhavi,
2023; Surís et al., 2023). However, these methods typically
conduct reasoning at the text level (Fu et al., 2023; 2022;
2024a). While some methods may utilize image crops, the
images themselves remain unchanged, which limits their
visual reasoning capabilities. More recent work, such as Vi-
sual Sketchpad (Hu et al., 2024), advances visual reasoning
by providing various computer vision tools like Segment
Anything, DINO, and Depth Anything (Yang et al., 2024;
Li et al., 2023; Liu et al., 2023d) to create visual artifacts.
However, Visual Sketchpad mainly achieves performance
gains by incorporating external expert knowledge through
these tools, whereas we explore the possibility of enhancing
visual understanding without additional information. Also,
Visual Sketchpad cannot solve text-rich images in struc-
tured image problems, as its tools are vision-based and only
address object-centric issues. With REFOCUS, LLMs can
write code to call different functions for editing the input im-
age, sequentially simplifying the original problem to make it
easier for multimodal LLMs to solve. This approach enables
better visual understanding and reasoning without relying
on external data or expert knowledge.

Visual Reasoning through Visualization It has become
evident that certain types of visual prompts on the input
images, such as adding a red circle around a target object,
can significantly impact the performance of multimodal lan-
guage models (Shtedritski et al., 2023), on certain abilities
such as visual grounding (Shao et al., 2024a). The Set-of-
Mark study (Yang et al., 2023) extends this investigation by

demonstrating that segmenting the original image can signif-
icantly enhance the visual grounding capabilities of GPT-4v
models. Meanwhile, it has been highlighted in BLINK (Fu
et al., 2024b) that most open-source multimodal language
models may struggle to comprehend visual prompts. Recent
works, such as VIP-LLaVA and List Items One by One (Cai
et al., 2024; Yan et al., 2024), have further refined these
models to improve their understanding and processing of
visual prompts. Most of these visual prompts are visual
objects centered and do not apply to structured images. One
recent work Visual Cot (Shao et al., 2024a) extracts the
subarea in images where the answer corresponds to, e.g. ob-
taining the coordinates of answer text using OCR on chart
VQA problems, or find the answer object’s coordinates in
the images using object detection methods. However, Visual
Cot do not involve multistep reasoning and refocusing pro-
cesses and only focuses on image region–answer text direct
mapping. We compare our results with Visual Cot on Chart
QA datasets in Section 5 and show absolute improvement.

3. REFOCUS

REFOCUS conducts visual editing on input images as a
chain-of-thought, providing an intermediate interface for
multimodal LLMs to facilitate visual reasoning and enforce
the correct answer with a valid reasoning process. The
entire pipeline is iterative, as illustrated in Figure 1: the mul-
timodal LLM sees the image and question, proceeds with
one step of thought, conducts visual editing using Python
code, and continues with the next step of thought and editing
until it arrives at the final answer. We specifically target two
sets of structured image problems in this work: (1) tabular
figures, and (2) chart figures. This section unfolds by intro-
ducing the details of our tasks (§3.1), the implementation of

3

REFOCUS

GPT-4o: From the top-left subplot, the blue dashed
line (Cash transfer) is significantly higher than the black
solid line (Control) in "Jul 21" period. So Jul 21.

GPT-4o: In Mar-May 20, difference is 0.01. In Nov 20-
Jan 21, the difference is 0.02. In Jul 21, the difference
is 0.01. So the answer is Nov 20-Jan 21 period.

At what period does the Cash transfer curve have the largest "share contracting COVID-19" value difference with Control curve❓

Figure 3. REFOCUS equips GPT-4 with selective attention. Above is an example of how REFOCUS + GPT-4o solves previously
unsolvable problem in ChartXiv dataset (Wang et al., 2024). Specifically, REFOCUS edits upon the original image by masking out all
irrelevant information – the other three subplots that could be distracting. As a result, GPT-4o is able to conduct better reasoning with the
edited image, and reach the correct answer.

visual editing tools for tables (§3.2) and for charts, and how
to equip multimodal LLMs with these editing tools (§3.3).

3.1. Structured Image Problems

Tabular Problems. Tabular understanding has long been
a challenging task for multimodal LLMs (Liu et al., 2022;
2023a). In this paper, we use TableVQA (Kim et al., 2024)
as our test-bed. We experiment on three types of table data:

VWTQ. VWTQ is derived from WikiTableQuestion
(WTQ) (Pasupat & Liang, 2015), which provides original
HTML data on Wikipedia tables along with corresponding
Question Answering (QA) pairs and maintain its accuracy-
based evaluation metric. (Kim et al., 2024) reproduces the
original table images from WTQ by applying the stylesheet
of Wikipedia to the HTML and capturing screenshots of
the table images. There are a total of 750 Visual Question
Answering (VQA) pairs.

VWTQ_syn. Considering that the table figures in VWTQ
come from Wikipedia and can easily be web-crawled to
gather pre-training data for multimodal LLMs, (Kim et al.,
2024) generates synthetic table images using a table ren-
dering system based on the WTQ data. This system takes
HTML as input and generates tables with various styles, fea-
turing random attributes such as background colors, border
margins, and font families. There are a total of 250 Visual
Question Answering (VQA) pairs in this synthetic dataset.

VTabFact. TabFact (Chen et al., 2019) represents a verifi-
cation task that determines whether a statement is entailed
or refuted given table data in text format. (Kim et al., 2024)
proposes a rendering system that generates visual tables

using pseudo-HTML converted from the textual table data.
There are a total of 250 Visual Question Answering (VQA)
pairs in this dataset.

Coordinate Acquisition for Tables.To support visual edit-
ing, we need to acquire coordinates for each column and
row. We accomplish this using the opencv-python1 package
with functions such as findContours() and getStructuringEle-
ment(). The heuristic behind this process is that we detect
lines and boxes around text in the figure. The longest verti-
cal line should correspond to the row length, and the longest
horizontal line should correspond to the column length. By
combining the longest contours in the figure, the coordi-
nates of text boxes, and the row and column lengths, we can
determine the coordinates of each column and row.

Chart Problems. Chart understanding is another fundamen-
tal task (Liu et al., 2022; 2023a), serving a pivotal role in
real-world applications such as analyzing scientific papers
or financial reports. We use the datasets CharXiv (Wang
et al., 2024) and ChartQA (Masry et al., 2022) for our ex-
periments:

CharXiv Multi-subplot. CharXiv is a high-quality, expert-
annotated, challenging VQA benchmark that involves natu-
ral and diverse charts from arXiv papers. CharXiv includes
two types of questions: descriptive questions that examine
basic chart elements and reasoning questions that require
synthesizing information across complex visual elements in
the chart. In this paper, we specifically focus on the chal-
lenging reasoning questions that involve multiple subplots.
Due to computation cost concerns, we randomly select 200

1https://pypi.org/project/opencv-python/

4

https://pypi.org/project/opencv-python/

REFOCUS

What’s total wins by belgian riders❓

ACTION: Focus with Mask using Python Code

THOUGHT: Focus on columns Country and Wins

Find coordinates of the columns to mask out
focus_columns = [‘Country’, ‘Wins’]
mask_out_columns = all_columns - focus_columns
mask_bbox = all_bbox[mask_out_columns]

Mask out irrelavent columns
draw.rectangle(mask_bbox, fill=“white”)

ACTION: Focus with Draw using Python Code

THOUGHT: Focus on rows with Country=Belgium

Focus on columns with drawing
focus_rows_headers = [‘2’, ‘4’, ‘5’, ‘8’]
focus_bbox = all_bbox[focus_rows_headers]

Draw a red box over relavent rows
draw.rectangle(focus_bbox, outline=“red")

ANSWER: 7

GPT-4o: Last four countries: Greece 62%, Poland 62%,
France 54%, and Spain 48%. So average is 56.5.

GPT-4o: The last four countries: Poland: 62, France: 54,
Spain: 48, UK: 37. So the average is 50.25.

What is the average of last four countries data❓

GPT-4o: Looking at the chart, 2011: 8.8%, 2014: 5.3%,
2018: 2.4%, 2019: -6.8%. So there are 4 years.

GPT-4o: The years with values less than 10% are 2011,
2014, 2017, 2018, and 2019. So 5 years in total.

How many years have value less than 10%❓

Figure 4. REFOCUS unleashes better visual grounding and counting abilities for GPT-4 as in ChartQA (Masry et al., 2022) Vertical
Bar problems.

VQA pairs out of the 1000 test data and use GPT-4 to select
the ones with multiple subplots for experimental purposes,
yielding a total of 143 VQA pairs.

Horizontal Bar. ChartQA (Masry et al., 2022) is one of
the most popular chart-based VQA benchmarks, consisting
of human-written questions focusing on logical and visual
reasoning based on web-crawled diverse chart figures. For
our experiments, we take the horizontal bar figures and their
corresponding VQA data from the test split. This subset
includes a total of 444 VQA pairs.

Vertical Bar. Similar to the horizontal bar figures, we also
take the vertical bar figures along with their corresponding
VQA data from the test split of the ChartQA (Masry et al.,
2022) dataset. This subset includes a total of 382 VQA
pairs.

Coordinate Acquisition for Charts. For CharXiv multi-
subplot figures, we acquire the coordinates of each subplot
using the opencv-python1 package with functions such as
findContours() and getStructuringElement(). The heuristic
behind this process is that we take the top k longest contours,
provide them in a prompt to LLMs, and allow the LLMs to
determine which coordinates correspond to which subplot
(k = 10 in our experiments). Regarding ChartQA horizontal
bar figures and vertical bar figures, we utilize the provided
coordinates of x-axis values and y-axis values in the original
dataset. Additionally, we combine this information with co-
ordinate details about the chart area (excluding the caption)
obtained using the opencv-python1 package.

3.2. Visual Editing Tools

We adopt three types of visual editing method in REFO-
CUS: mask out, draw box, and highlight color using Python
code. In our experiments for tabular problems, we utilize
a variety of tools as follows:

Highlight Column, which overlays a light red color on the
columns that need to be focused on.

Highlight Row, which overlays a light red color on the rows
that need to be focused on.

Mask Column, which places a white mask over the columns
that do not need attention.

Mask Row, which places a white mask over the rows that do
not need attention.

Draw Column, which overlays a solid red bounding box on
the columns that need to be focused on.

Draw Row, which overlays a solid red bounding box on the
rows that need to be focused on.

A pseudo code for example tool: Highlight Column is illus-
trated in Listing 1. Visual output examples can be found in
Figures 1 and 7.

1 from PIL import Image, ImageDraw
2
3 def focus_on_columns_with_highlight(image, columns_to_focus_on,

all_columns_bounding_boxes):
4 """ This function is used to focus on some specific columns of the image. """
5
6 # Draw a highlight color on the columns to focus on
7 mask = image.convert (' RGBA').copy()
8 mask_draw = ImageDraw.Draw(mask)
9

10 # Iterate over the columns to highlight
11 for column_name in columns_to_focus_on:
12
13 # Get the bounding box of the column
14 column_bbox = all_columns_bounding_boxes[column_name]
15 (x1, y1, x2, y2) = column_bbox
16 mask_draw.rectangle (((x1, y1) , (x2, y2)) , fill =(255, 0, 0, 50))
17
18 # Composite the overlay with the mask over the original image
19 edited_image = Image.alpha_composite(image.convert (' RGBA'), mask)
20 return edited_image

Listing 1. Python code example for highlighting a column.

Similarly, for chart problems, we apply the same edit-
ing methods, but focus on different aspects: (1) subplots,
particularly for CharXiv figures; (2) bars by x values, specif-
ically for ChartQA vertical bar figures; (3) bars by y values,

5

REFOCUS

Table Chart

Model VWTQ VWTQ_syn VTabFact CharXiv Horizontal Bar Vertical Bar
Prior Multimodal LMs

LLaVA-NeXT-34B (Liu et al., 2024a) 36.4 38.0 71.2 18.9 23.4 12.6
Phi 3 vision (Abdin et al., 2024) 44.7 53.2 74.4 16.2 60.8 66.5
Gemini-Pro 1.5 (Team et al., 2023) 38.5 43.2 75.6 38.3 57.2 66.0
VisProg (Gupta & Kembhavi, 2023) 53.2 62.0 76.4 46.8 69.8 68.6

Latest multimodal LLMs + REFOCUS

gpt-4o-2024-05-13 (OpenAI, 2023) 66.5 73.2 89.6 49.0 78.2 76.2
+ REFOCUS 76.9 79.6 89.6 57.3 85.4 81.0

+10.4 +3.4 +0.0 +8.3 +7.2 +4.8
gpt-4o-2024-08-06 (OpenAI, 2023) 66.4 70.4 90.0 48.9 75.2 74.9
+ REFOCUS 77.2 82.8 90.8 46.2 82.0 81.2

+9.8 +12.4 +0.8 -2.7 +5.0 +4.2

Table 1. REFOCUS yields consistent performance gains across all tasks and outperforms all baselines. Notice that the GPT baselines here
are also in a conversational format but without editing abilities. For fair comparison, we modify the original Visprog (Gupta & Kembhavi,
2023) framework by replacing the LM and VQA components with the latest GPT-4o model.

specifically for ChartQA horizontal bar figures. Each of
these aspects is combined with the three editing methods:
masking, drawing, and highlighting. Detailed visual output
examples can be found in Figures 2 to 4, and a complete list
of tools is available in Appendix B.

3.3. Equip LLMs with Visual Editing Tools

We provide the function names of each visual editing tool in
the multimodal LLM’s prompts and ask it to generate pseu-
docode using these provided function names. The actual
editing functions will then be executed when the multimodal
LLM decides to perform a visual editing, and the modified
images are returned to the model as the new input. More
prompting details can be found in Appendix C.

4. Experiments and Analyses
We demonstrate that REFOCUS significantly improves mul-
timodal LLMs’ performance on structured images, while
making the visual reasoning processes interpretable. In this
section, we introduce the baseline models and experiment
settings (§4.1), present comprehensive experiment results
(§4.2), and show an in-depth analyses investing why REFO-
CUS is so effective despite its simplicity(§4.3).

4.1. Baselines and Setups

We apply REFOCUS on the state-of-the-art multimodal
LLM: GPT-4o (OpenAI, 2023), especially the gpt-4o-2024-
05-13 and gpt-4o-2024-08-06 checkpoints to show its effi-
cacy. We compare with the default GPT-4o for both check-
points using chain-of-thought prompting for fair comparison.
We also include several other powerful multimodal LLMs

to compare with: LLaVA-NeXT (Liu et al., 2024a), Phi
3 Vision2(Abdin et al., 2024), and Gemini Pro 1.5 (Team
et al., 2023). In addition, we also compare our approach
with the visual programming method VisProg (Gupta &
Kembhavi, 2023), which uses Python code to generate in-
termediate reasoning with integrated vision modules. We
modify the original VisProg framework by replacing the
LLM and VQA components with the latest gpt-4o-2024-08-
06 model for fair comparison. We do not include Visual
Sketchpad (Hu et al., 2024) since none of its tools can apply
to structured image problems, leaving it the same as vanilla
GPT-4o. More implementation details are in Appendix B.

4.2. Results

As shown in Table 1, the mean accuracy of REFOCUS com-
bined with GPT-4o consistently surpasses all baseline mod-
els, including the vanilla conversational GPT-4o model with-
out editing abilities. REFOCUS is particularly effective on
VWTQ, VWTQ_syn, Horizontal Bar, and Vertical Bar tasks,
achieving a consistent 5-10% accuracy improvement over
GPT-4o. To examine the quality of visual editings, as illus-
trated in Table 2, we further test LLaVA-NeXT (7B, 13B,
34) and Phi-3-vision models using the REFOCUS + GPT-4o
edited images. Interestingly, while none of the tested mod-
els are fine-tuned on images with visual prompts, we still
observe a consistent improvement on VWTQ, VWTQ_syn,
CharXiv, and Vertical Bar tasks. In Table 5, we compare
the performance of REFOCUS versus vanilla GPT-4o with
different inputs (i.e., gold table / chart text, figure, or gold
text + figure). Surprisingly, GPT-4o with REFOCUS often
outperforms GPT-4o with gold text and figure inputs by a

2We used the checkpoint at https://huggingface.co/
microsoft/Phi-3-vision-128k-instruct.

6

https://huggingface.co/microsoft/Phi-3-vision-128k-instruct
https://huggingface.co/microsoft/Phi-3-vision-128k-instruct

REFOCUS

Table Chart

Model VWTQ VWTQ_syn VTabFact CharXiv Horizontal Bar Vertical Bar
Multimodal LLMs with original visual inputs

LLaVA-NeXT-7B (Liu et al., 2024a) 21.7 24.0 56.8 16.1 8.1 7.3
LLaVA-NeXT-13B (Liu et al., 2024a) 25.6 30.4 62.4 18.9 13.5 13.1
LLaVA-NeXT-34B (Liu et al., 2024a) 36.4 38.0 71.2 18.9 23.4 12.6
Phi 3 vision (Abdin et al., 2024) 44.7 53.2 74.4 16.2 60.8 66.5

Multimodal LLMs with REFOCUS edited visual inputs
LLaVA-NeXT-7B + Oracle REFOCUS 25.7 26.8 55.2 15.4 6.8 8.4
LLaVA-NeXT-13B + Oracle REFOCUS 30.3 31.6 61.2 17.5 15.5 13.1
LLaVA-NeXT-34B + Oracle REFOCUS 39.1 41.2 68.0 21.0 26.1 15.2
Phi 3 vision + Oracle REFOCUS 48.3 56.4 72.8 17.6 60.4 66.5

Table 2. Open-source models’ performance upon the original visual input versus GPT-4o + REFOCUS edited images as visual input
(referred by + oracle REFOCUS). Notice that + oracle REFOCUS uses the visual artifact generated in the last action of GPT-4o + REFOCUS

as inputs.

significant margin on most tasks. This demonstrates that
REFOCUS can effectively enhance GPT-4o’s structured im-
age understanding capability, making it perform as if it had
access to the gold text input.

4.3. Analyses

Why can REFOCUS improve the performance? This
question is interesting because REFOCUS does not intro-
duce any additional information as other methods (Yang
et al., 2023; Hu et al., 2024) do. Still, it achieves an impres-
sive performance gain upon the already powerful GPT-4o
models, using a simple strategy. Our observations on the in-
termediate outputs suggest that this might be because REFO-
CUS improves GPT-4o’s visual grounding and OCR abilities
through selective attention and eliminates hallucinations. As
shown in Figure 2, for the original image on the left, GPT-4o
mistakenly grounds to Greece and misses the UK, resulting
in the wrong answer of 56.5. REFOCUS decomposes the
steps of visual grounding and optical character recognition
(OCR). In the edited image on the right, only the last four
countries are shown, and GPT-4o successfully provides the
correct answer with proper reasoning. Similarily, as shown
in Figure 7, when GPT-4o tries to recognize characters in
the original image, it makes a spelling mistake, identify-
ing "Partenavia" incorrectly. However, with the highlighted
columns, GPT-4o can correctly recognize the characters as
"Partenvia."

Which editing method works the best? Since we pro-
vide three types of editing methods: draw box, highlight
color, and mask out, it raises a natural question about which
method works best for the models. We conducted experi-
ments on VWTQ and VWTQ_syn sets and show the perfor-
mance differences in Table 3. In short, all tools are similar.

Dataset Original Mask out Draw Box Highlight
VWTQ 66.4 77.2 77.6 74.8
VWTQ_syn 70.4 82.4 78.8 80.8

Table 3. Analysis on how different editing tool can affect model
performance. We control the tool type provided by REFOCUS and
experiment on the VWTQ and VWTQ_syn datasets.

640

137
107

139

78
127

750

250 250

143
191

222

0

200

400

600

800

VWTQ VWTQ_syn VTabFact CharXiv Horizontal Bar Vertical Bar

edited image all image

Figure 5. Statistics of how often visual editing are performed.

How frequent is visual editing performed? Since the
visual editing steps are conducted through LLM generated
python code, it is possible that REFOCUS does not conduct
any editing for some instances. To answer how often the
underlying multimodal LLM, GPT-4o in our case, decides
to proceed with a visual edit, we calculated the number of
images that GPT-4o decides to edit and report the numbers
in Figure 5. GPT-4o clearly shows a preference to edit
> 85% VWTQ and CharXiv images, while the portion of
edited images on the other datasets remains around 40-55%.

5. Finetune with REFOCUS data
While REFOCUS shows its efficacy, it is still limited to
a visual prompting method. Could the visual reasoning
processes of REFOCUS be distilled into smaller Multimodal
LLMs and provide additional or even better supervision for

7

REFOCUS

Image
Question Code to Focus on Areas Prediction

Correct Answer ReFocus Training Set

Incorrect Answer Supervised Finetuning

Edited
Image

Focus Area BBox
CoT Reasoning

Figure 6. Training set collection using REFOCUS on ChartQA dataset.

models to learn? What would be the difference between
a model fine-tuned on the de facto image question answer
pairs, versus one fine-tuned on CoT data, or on REFOCUS
visual reasoning data?

Finetune Data Collection To answer this question, we
further collect a 14k training set using REFOCUS and GPT-
4o upon the ChartQA (Masry et al., 2022) training data.
As shown in Figure 6, we apply the pipeline on 15,059
ChartQA training data. If the prediction is correct, we keep
the whole process and add the generated textual chain-of-
thought (CoT) reasoning, python code for editing, and the
area to focus on (in bounding box format) to our data. If
the prediction is incorrect, we give it one more try and hint
it with the gold answer. If it still gets to a wrong answer,
we discard this example since it’s most likely a data noise
from our observation. We end up with 14,344 training data,
among which 12,819 has editing processes. More dataset
details are in Appendix D.

Finetune Setups To test the effectiveness of visual chain-
of-thought for multimodal LLMs, we adopt the standard
supervised-Finetuning (SFT) strategies. We use Phi-3.5-
vision3 (Abdin et al., 2024) as our base model, and compare
its performance when finetuned with REFOCUS data, ver-
sus with same set of data but only with QA pairs. For
both finetuning, we keep all settings the same and search
through the same set of hyper-parameters for learning
rate and epoch number, and report the best performance.
During training time, the input is given in the format of
‘<image> <question> <thought1> <ReFocus bounding
box> <thought2> <answer>’, where <Thought1> is trans-
formed through GPT-4o returned thought on what areas to
refocus on, and <Thought2> is GPT-4o output when predict-
ing based on the edited images. In comparison, the standard
QA training input is ‘<image> <question> <answer>’.
During inference time, we examine two types of prompt set-
tings: ‘<image> <question> Answer:’ as the QA prompt-
ing, and ‘<image> <question> Thought:’ as the Visual
CoT prompting. More details can be found in Appendix D.

Supervised-Finetuning Results We report our results as in

3https://github.com/microsoft/Phi-3CookBook/blob/
main/md/04.Fine-tuning/FineTuning_Vision.md

Horizontal Bar Vertical Bar Avg.
QA Prompting

Phi-3.5-vision 60.1 63.1 61.5
SFT w/ QA Data 60.1 65.5 62.6

Visual CoT Prompting
Visual CoT 7b-336 27.1 14.5 20.8
Phi-3.5-vision 69.4 66.8 68.2
SFT w/ QA Data 60.6 66.8 63.4
SFT w/ REFOCUS CoT 67.1 70.7 68.8
SFT w/ REFOCUS VCoT 71.0 72.2 71.4

Table 4. SFT accuracy results. The difference between REFO-
CUS VCoT data and CoT data is that VCoT contains refocus area
bounding box coordinates whereas CoT does not. All trainings
select the best performing hyper-parameters on the same set of
training data.

Table 4 with multiple setups – the REFOCUS data is Visual
CoT (VCoT) data, and we compare with the standard QA
data. Another setup is finetuning with CoT data, which is
VCoT data without refocus area bounding box information.
The Phi-3.5-Vision model finetuned with REFOCUS VCoT
data outperforms the base model by 3.2% in accuracy; over
the same model finetuned with same set of QA data by
8.0%; and over the model finetuned with CoT data by 2.6%.
Notably, our results largely exceed Visual Cot (Shao et al.,
2024b) which trains upon LLaVa-1.5 (Liu et al., 2023b) with
answer coordinate data by 50.6%. These results suggest that
implicit visual reasoning data such as REFOCUS VCoT can
consistently provide better supervision signals than standard
QA pairs and CoT data for structured image understanding
tasks. Our approach has the potential to provide rich and
meaningful supervision data to enhance multimodal LLMs
in general. More SFT details, result analyses, and image
editing outputs can be found in Appendices D and E.

6. Conclusion
This work introduces REFOCUS, a simple yet effective
framework that boosts multimodal large language models
(LLMs) to understand structured images better, by incor-
porating visual editing on the input image through Python
code. Our approach significantly boosts performance on
table and chart tasks. Further, we present a 14k visual
chain-of-thought training data built using REFOCUS, which
demonstrates superior supervision over standard VQA data.

8

https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md
https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md

REFOCUS

Acknowledgements
We would like to thank Weijian Xu, Guoxin Wang, Yushi Hu
and Weijia Shi for their helpful and insightful discussions.
Xingyu Fu and Dan Roth were funded by ONR Contract
N00014-23-1-2364, ONR Contract N00014-23-1-2417, and
NSF grant IIS-2212433.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abdin, M., Jacobs, S. A., Awan, A. A., Aneja, J., Awadallah,

A., Awadalla, H., Bach, N., Bahree, A., Bakhtiari, A.,
Behl, H., et al. Phi-3 technical report: A highly capable
language model locally on your phone. arXiv preprint
arXiv:2404.14219, 2024. 6, 7, 8

Cai, M., Liu, H., Mustikovela, S. K., Meyer, G. P., Chai,
Y., Park, D., and Lee, Y. J. Vip-llava: Making large mul-
timodal models understand arbitrary visual prompts. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 12914–12923, 2024.
3

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber,
R. E. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS),
26(2):1–26, 2008. 1

Chen, W., Wang, H., Chen, J., Zhang, Y., Wang, H., Li,
S., Zhou, X., and Wang, W. Y. Tabfact: A large-scale
dataset for table-based fact verification. arXiv preprint
arXiv:1909.02164, 2019. 4

Chen, W., Zha, H., Chen, Z., Xiong, W., Wang, H., and
Wang, W. Hybridqa: A dataset of multi-hop question
answering over tabular and textual data. arXiv preprint
arXiv:2004.07347, 2020. 1

Chen, Z., Zhou, Q., Shen, Y., Hong, Y., Sun, Z., Gutfreund,
D., and Gan, C. Visual chain-of-thought prompting for
knowledge-based visual reasoning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38,
pp. 1254–1262, 2024. 1

Duncan, J. Selective attention and the organization of vi-
sual information. Journal of experimental psychology:
General, 113(4):501, 1984. 1

Fu, X., Zhou, B., Chandratreya, I., Vondrick, C., and Roth,
D. There’s a time and place for reasoning beyond the
image. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), Dublin, Ireland, May 2022. Association
for Computational Linguistics. 3

Fu, X., Zhang, S., Kwon, G., Perera, P., Zhu, H., Zhang,
Y., Li, A. H., Wang, W. Y., Wang, Z., Castelli, V., et al.
Generate then select: Open-ended visual question an-
swering guided by world knowledge. arXiv preprint
arXiv:2305.18842, 2023. 3

Fu, X., He, M., Lu, Y., Wang, W. Y., and Roth, D.
Commonsense-t2i challenge: Can text-to-image genera-
tion models understand commonsense? arXiv preprint
arXiv:2406.07546, 2024a. 3

Fu, X., Hu, Y., Li, B., Feng, Y., Wang, H., Lin, X., Roth, D.,
Smith, N. A., Ma, W.-C., and Krishna, R. Blink: Mul-
timodal large language models can see but not perceive.
arXiv preprint arXiv:2404.12390, 2024b. 3

Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C.
The cambridge structural database. Structural Science,
72(2):171–179, 2016. 1

Gupta, T. and Kembhavi, A. Visual programming: Compo-
sitional visual reasoning without training. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14953–14962, 2023. 1, 3, 6

Han, Y., Zhang, C., Chen, X., Yang, X., Wang, Z., Yu, G.,
Fu, B., and Zhang, H. Chartllama: A multimodal llm
for chart understanding and generation. arXiv preprint
arXiv:2311.16483, 2023. 1, 2

Hu, Y., Shi, W., Fu, X., Roth, D., Ostendorf, M., Zettle-
moyer, L., Smith, N. A., and Krishna, R. Visual
sketchpad: Sketching as a visual chain of thought
for multimodal language models. arXiv preprint
arXiv:2406.09403, 2024. 1, 2, 3, 6, 7

Johnston, W. A. and Dark, V. J. Selective attention. Annual
review of psychology, 1986. 1

Kafle, K., Price, B., Cohen, S., and Kanan, C. Dvqa: Under-
standing data visualizations via question answering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 5648–5656, 2018. 1

Kim, Y., Yim, M., and Song, K. Y. Tablevqa-bench: A
visual question answering benchmark on multiple table
domains. arXiv preprint arXiv:2404.19205, 2024. 1, 2,
4, 12

Li, F., Zhang, H., Sun, P., Zou, X., Liu, S., Yang, J., Li,
C., Zhang, L., and Gao, J. Semantic-sam: Segment and

9

REFOCUS

recognize anything at any granularity. arXiv preprint
arXiv:2307.04767, 2023. 3

Liu, F., Piccinno, F., Krichene, S., Pang, C., Lee, K.,
Joshi, M., Altun, Y., Collier, N., and Eisenschlos, J. M.
Matcha: Enhancing visual language pretraining with
math reasoning and chart derendering. arXiv preprint
arXiv:2212.09662, 2022. 2, 4

Liu, F., Eisenschlos, J. M., Piccinno, F., Krichene, S., Pang,
C., Lee, K., Joshi, M., Chen, W., Collier, N., and Altun,
Y. Deplot: One-shot visual language reasoning by plot-to-
table translation. In Findings of the 61st Annual Meeting
of the Association for Computational Linguistics, 2023a.
URL https://arxiv.org/abs/2212.10505. 2, 4

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction
tuning, 2023b. 8

Liu, H., Li, C., Li, Y., Li, B., Zhang, Y., Shen, S., and Lee,
Y. J. Llava-next: Improved reasoning, ocr, and world
knowledge, January 2024a. URL https://llava-vl.
github.io/blog/2024-01-30-llava-next/. 6, 7

Liu, S., Cheng, H., Liu, H., Zhang, H., Li, F., Ren, T., Zou,
X., Yang, J., Su, H., Zhu, J., et al. Llava-plus: Learning to
use tools for creating multimodal agents. arXiv preprint
arXiv:2311.05437, 2023c. 1

Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., Li, C.,
Yang, J., Su, H., Zhu, J., et al. Grounding dino: Marry-
ing dino with grounded pre-training for open-set object
detection. arXiv preprint arXiv:2303.05499, 2023d. 3

Liu, Y., Li, Z., Huang, M., Yang, B., Yu, W., Li, C., Yin, X.,
lin Liu, C., Jin, L., and Bai, X. Ocrbench: On the hidden
mystery of ocr in large multimodal models, 2024b. URL
https://arxiv.org/abs/2305.07895. 2

Masry, A., Long, D. X., Tan, J. Q., Joty, S., and Hoque,
E. Chartqa: A benchmark for question answering about
charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022. 1, 3, 4, 5, 8, 21

Masry, A., Kavehzadeh, P., Do, X. L., Hoque, E., and Joty, S.
Unichart: A universal vision-language pretrained model
for chart comprehension and reasoning. arXiv preprint
arXiv:2305.14761, 2023. 1, 2

OpenAI. Gpt-4 technical report, 2023. 6

Pasupat, P. and Liang, P. Compositional semantic parsing on
semi-structured tables. arXiv preprint arXiv:1508.00305,
2015. 4

Rizzolatti, G., Riggio, L., Sheliga, B. M., et al. Space and
selective attention. Attention and performance XV, 15:
231–265, 1994. 1

Shao, H., Qian, S., Xiao, H., Song, G., Zong, Z., Wang, L.,
Liu, Y., and Li, H. Visual cot: Advancing multi-modal
language models with a comprehensive dataset and bench-
mark for chain-of-thought reasoning. In The Thirty-eight
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024a. 3

Shao, H., Qian, S., Xiao, H., Song, G., Zong, Z., Wang,
L., Liu, Y., and Li, H. Visual cot: Unleashing chain-
of-thought reasoning in multi-modal language models,
2024b. 8

Shtedritski, A., Rupprecht, C., and Vedaldi, A. What does
clip know about a red circle? visual prompt engineering
for vlms. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 11987–11997, 2023.
3

Surís, D., Menon, S., and Vondrick, C. Vipergpt: Visual in-
ference via python execution for reasoning. Proceedings
of IEEE International Conference on Computer Vision
(ICCV), 2023. 1, 3

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu,
J., Soricut, R., Schalkwyk, J., Dai, A. M., Hauth, A., et al.
Gemini: a family of highly capable multimodal models.
arXiv preprint arXiv:2312.11805, 2023. 6

Wang, Z., Xia, M., He, L., Chen, H., Liu, Y., Zhu, R., Liang,
K., Wu, X., Liu, H., Malladi, S., et al. Charxiv: Charting
gaps in realistic chart understanding in multimodal llms.
arXiv preprint arXiv:2406.18521, 2024. 1, 4

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022. 1

Yan, A., Yang, Z., Wu, J., Zhu, W., Yang, J., Li, L., Lin,
K., Wang, J., McAuley, J., Gao, J., et al. List items one
by one: A new data source and learning paradigm for
multimodal llms. arXiv preprint arXiv:2404.16375, 2024.
3

Yang, J., Zhang, H., Li, F., Zou, X., Li, C., and Gao, J.
Set-of-mark prompting unleashes extraordinary visual
grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023. 3, 7

Yang, L., Kang, B., Huang, Z., Xu, X., Feng, J., and Zhao,
H. Depth anything: Unleashing the power of large-scale
unlabeled data. In CVPR, 2024. 3

Zhang, Z., Zhang, A., Li, M., Zhao, H., Karypis, G., and
Smola, A. Multimodal chain-of-thought reasoning in
language models. arXiv preprint arXiv:2302.00923, 2023.
1

10

https://arxiv.org/abs/2212.10505
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2305.07895

REFOCUS

Zhu, F., Lei, W., Huang, Y., Wang, C., Zhang, S., Lv, J.,
Feng, F., and Chua, T.-S. Tat-qa: A question answering
benchmark on a hybrid of tabular and textual content in
finance. arXiv preprint arXiv:2105.07624, 2021. 1

11

REFOCUS

A. Overview
In the supplemental materials, Appendix B contains additional details for REFOCUS, including editing tools(§B.3), and
experiment configurations such as baseline model setups (§B.4). Appendix D discusses supervised fine-tuning details
including experiment setups(§D.2), dataset statistics(§D.1), and result analyses(§D.3). Appendix C demonstrates prompts in
REFOCUS. Appendix E shows qualitative SFT output examples.

B. REFOCUS Prompting Details
B.1. Additional Example

What’s total wins by belgian riders❓

ACTION: Focus with Mask using Python Code

THOUGHT: Focus on columns Country and Wins

Find coordinates of the columns to mask out
focus_columns = [‘Country’, ‘Wins’]
mask_out_columns = all_columns - focus_columns
mask_bbox = all_bbox[mask_out_columns]

Mask out irrelavent columns
draw.rectangle(mask_bbox, fill=“white”)

ACTION: Focus with Draw using Python Code

THOUGHT: Focus on rows with Country in Belgium

Focus on columns with drawing
focus_rows_headers = [‘2’, ‘4’, ‘5’, ‘8’]
focus_bbox = all_bbox[focus_rows_headers]

Draw a red box over relavent rows
draw.rectangle(focus_bbox, outline=“red")

Mix
which aircraft did not originate in the usa
Answer: Partenvia P.68 Observer
Original: Partenavia P.68 Observer

Nu-4232
Tablevqa

GPT-4o: Partenavia P.68 Observer GPT-4o: Partenvia P.68 Observer

ANSWER: 7

GPT-4o: Last four countries are Greece
(62%), Poland (62%), France (54%), and
Spain (48%). So the average is 56.5.

GPT-4o: The last four countries are:
Poland: 62, France: 54, Spain: 48, UK:
37. So the average is 50.25.

Which aircraft did not originate in the USA❓

What is the average of last four countries data❓
Figure 7. REFOCUS unleashes better OCR for GPT-4. In this example from TableVQA (Kim et al., 2024), REFOCUS + GPT-4 conducts
the edit action highlight_column. With this simple action, GPT-4 can focus more on the important subarea, and recognize the characters
better.

B.2. Additional Analysis

Table Chart

Model VWTQ VWTQ_syn VTabFact CharXiv Horizontal Bar Vertical Bar
GPT-4o Model

Text input 68.1 69.6 80.0 \ 66.2 74.9
Figure Input 61.0 68.4 88.4 47.9 75.2 74.9
Text + Figure Input 67.5 72.8 91.6 \ 75.7 81.7

GPT-4o + REFOCUS

Figure Input 77.2 82.8 90.8 57.3 85.4 81.2
+16.2 +14.4 +2.4 +10.6 +9.7 +0.5

Table 5. REFOCUS empowers GPT-4o to achieve the performance as if given gold text input. The text input are mainly csv tables,
as detailed in Section 3.1. Notice that Table 1 reports the conversational performance without visual editing, whereas the performance
discussed here is based on direct question answering, leading to minor differences.

B.3. Visual Editing Tools for Charts

As introducted in Section 3.2, we adopt three types of visual editing method in REFOCUS: mask out, draw box, and highlight
color using Python code. In our experiments for chart problems, we deploy a list of tools as follows:

Highlight Bar at X, which overlays a light red color over a bar in a vertical bar figure that needs to be focused. It operates
based on the x-value of the chosen bar, as in Figure 4.

Highlight Bar at Y, which overlays a light red color over a bar in a horizontal bar figure that needs to be focused. It operates
based on the y-value of the chosen bar, as in Figure 2.

Mask Bar at X, which places a white mask over bars in a vertical bar figure that do not need attention.

12

REFOCUS

Mask Bar at Y, which places a white mask over bars in a horizontal bar figure that do not need attention.

Draw Bar at X, which overlays a solid red bounding box over bars in a vertical bar figure that need to be focused on.

Draw Bar at Y, which overlays a solid red bounding box over bars in a horizontal bar figure that need to be focused on.

B.4. Experiment Details

For all the experiments, the temperature is set to 0. All evaluations are done using GPT-4, where it’s given a prediction and the
gold answer, and decides whether the prediction is correct or not. For the Section 4 experiments, we use 4 NVIDIA Quadro
RTX 8000 GPUs for the inference of open-source multimodal LLMs, including LLaVA-NeXT-7B, LLaVA-NeXT-13B,
LLaVA-NeXT-34B, and Phi 3 vision (4B). These experiments cost around 40 GPU hours.

13

REFOCUS

C. Prompts
We show REFOCUS prompting details for table problems and chart problems with running examples randomly selected
from VWTQ and Horizontal Bar datasets as follows.
Prompts for Table Problems:

SYSTEM PROMPT
You are a helpful multimodal AI assistant. [MORE INSTRUCTIONS ...]
For each turn, you should first do a "THOUGHT", based on the images and text you see. If you think you get the answer to
the intial user request, you can reply with "ANSWER: <your answer>" and ends with "TERMINATE".

Initial Prompt + Request

1 Here are some tools that can help you. All are python codes. They are in tools .py and will be imported for you.
2 You will be given a table figure : image_1 and a question .
3 Notice that you, as an AI assistant , are not good at answering questions when there are too many unnecessary and irrelevant information . You should determine which are the relevant

columns to the question , and specify them in a python list . You should use the given column headers .
4 You should also determine which are the relevant rows to the question , and specify them in a python list . You should use the given row headers .
5 You could select the tools to focus on some columns / rows, or mask out some columns / rows. Use whichever tool you think is more appropriate . Below are the tools in tools .py:
6 ```python
7 def focus_on_columns_with_highlight(image, columns_to_focus_on, all_columns_bounding_boxes):
8 """
9 This function is useful when you want to focus on some specific columns of the image.

10 It does this by adding light transparent red highlight to the columns that need to be focused on.
11 For example, you can focus on the columns in a table that are relevant to your analysis .
12 Return the drawed image.
13
14 Args:
15 image (PIL.Image.Image): the input image
16 columns_to_mask (List[str]) : a list of column names to focus on.
17 all_columns_bounding_boxes (Dict[Dict]]) : a dictionary of bounding boxes for all columns in the image. key is column name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
18
19 Returns :
20 image_with_focused_columns (PIL.Image.Image): the image with specified columns focused on
21
22 Example:
23 image = Image.open("sample_img.jpg")
24 image_with_focused_columns = focus_on_columns_with_highlight(image, ["Year", "Name"], {"Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "Team": {'x1 ': 0.4, ' y1 ': 0.1,

' x2 ': 0.6, ' y2 ': 0.9}, "Name": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
25 display (image_with_focused_columns)
26 """
27
28 def focus_on_rows_with_highlight (image, rows_to_focus_on, all_rows_bounding_boxes):
29 """
30 This function is useful when you want to focus on some specific rows of the image.
31 It does this by adding light transparent red highlight to the rows that need to be focused on.
32 For example, you can focus on the rows in a table that are relevant to your analysis .
33 Return the drawed image.
34
35 Args:
36 image (PIL.Image.Image): the input image
37 rows_to_focus_on (List [str]) : a list of row headers to focus on.
38 all_rows_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all rows in the image. key is row header and value is the bounding box of that row. Each bounding

box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
39
40 Returns :
41 image_with_focused_rows (PIL.Image.Image): the image with specified rows focused on
42
43 Example:
44 image = Image.open("sample_img.jpg")
45 image_with_focused_rows = focus_on_rows_with_highlight(image, ["1972"], ["Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "1969": {'x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9, '

y2 ': 0.5}, "1972": {'x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}])
46 display (image_with_focused_rows)
47 """
48
49 def focus_on_columns_with_mask(image, columns_to_focus_on, all_columns_bounding_boxes):
50 """
51 This function is useful when you want to focus on some specific columns of the image.
52 It does this by masking out the columns that are not needed.
53 For example, you can focus on the columns in a table that are relevant to your analysis and ignore the rest .
54 Return the masked image.
55
56 Args:
57 image (PIL.Image.Image): the input image
58 columns_to_mask (List[str]) : a list of column names to focus on.
59 all_columns_bounding_boxes (Dict[Dict]]) : a dictionary of bounding boxes for all columns in the image. key is column name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
60
61 Returns :
62 image_with_focused_columns (PIL.Image.Image): the image with specified columns focused on
63
64 Example:
65 image = Image.open("sample_img.jpg")
66 image_with_focused_columns = focus_on_columns(image, ["Year", "Name"], {"Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "Team": {'x1 ': 0.4, ' y1 ': 0.1, ' x2 ': 0.6, ' y2

': 0.9}, "Name": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
67 display (image_with_focused_columns)
68 """

14

REFOCUS

1
2 def focus_on_rows_with_mask(image, rows_to_focus_on, all_rows_bounding_boxes):
3 """
4 This function is useful when you want to focus on some specific rows of the image.
5 It does this by masking out the rows that are not needed.
6 For example, you can focus on the rows in a table that are relevant to your analysis and ignore the rest .
7 Return the masked image.
8
9 Args:

10 image (PIL.Image.Image): the input image
11 rows_to_focus_on (List [str]) : a list of row headers to focus on.
12 all_rows_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all rows in the image. key is row header and value is the bounding box of that row. Each bounding

box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
13
14 Returns :
15 image_with_focused_rows (PIL.Image.Image): the image with specified rows focused on
16
17 Example:
18 image = Image.open("sample_img.jpg")
19 image_with_focused_rows = focus_on_rows(image, ["1972"], ["Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "1969": {'x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9, ' y2 ': 0.5},

"1972": {'x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}])
20 display (image_with_focused_rows)
21 """
22
23 def focus_on_columns_with_draw(image, columns_to_focus_on, all_columns_bounding_boxes):
24 """
25 This function is useful when you want to focus on some specific columns of the image.
26 It does this by drawing a red box around the columns that need to be focused on.
27 For example, you can focus on the columns in a table that are relevant to your analysis .
28 Return the drawed image.
29
30 Args:
31 image (PIL.Image.Image): the input image
32 columns_to_mask (List[str]) : a list of column names to focus on.
33 all_columns_bounding_boxes (Dict[Dict]]) : a dictionary of bounding boxes for all columns in the image. key is column name and value is the bounding box of that column. Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
34
35 Returns :
36 image_with_focused_columns (PIL.Image.Image): the image with specified columns focused on
37
38 Example:
39 image = Image.open("sample_img.jpg")
40 image_with_focused_columns = focus_on_columns(image, ["Year", "Name"], {"Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "Team": {'x1 ': 0.4, ' y1 ': 0.1, ' x2 ': 0.6, ' y2

': 0.9}, "Name": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
41 display (image_with_focused_columns)
42 """
43
44 def focus_on_rows_with_draw(image, rows_to_focus_on, all_rows_bounding_boxes):
45 """
46 This function is useful when you want to focus on some specific rows of the image.
47 It does this by drawing a red box around the rows that need to be focused on.
48 For example, you can focus on the rows in a table that are relevant to your analysis .
49 Return the drawed image.
50
51 Args:
52 image (PIL.Image.Image): the input image
53 rows_to_focus_on (List [str]) : a list of row headers to focus on.
54 all_rows_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all rows in the image. key is row header and value is the bounding box of that row. Each bounding

box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
55
56 Returns :
57 image_with_focused_rows (PIL.Image.Image): the image with specified rows focused on
58
59 Example:
60 image = Image.open("sample_img.jpg")
61 image_with_focused_rows = focus_on_columns_with_highlight(image, ["1972"], ["Year": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "1969": {'x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9,

' y2 ': 0.5}, "1972": {'x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}])
62 display (image_with_focused_rows)
63 """
64 ```
65 # GOAL #: Based on the above tools , I want you to reason about how to solve the # USER REQUEST # and generate the actions step by step (each action is a python jupyter notebook

code block) to solve the request .
66 You may need to use the tools above to process the images and make decisions based on the visual outputs of the previous code blocks .
67 Your visual ability is not perfect , so you should use these tools to assist you in reasoning about the images.
68 The jupyter notebook has already executed the following code to import the necessary packages:
69 ```python
70 from PIL import Image
71 from IPython. display import display
72 from tools import *
73 ```
74
75 # REQUIREMENTS #:
76 1. The generated actions can resolve the given user request # USER REQUEST # perfectly. The user request is reasonable and can be solved . Try your best to solve the request .
77 2. The arguments of a tool must be the same format specified in # TOOL LIST #;
78 3. If you think you got the answer, use ANSWER: <your answer> Please extract the final answer in FINAL ANSWER: <final answer> and ends with TERMINATE.
79 4. All images in the initial user request are stored in PIL Image objects named image_1, image_2, ..., image_n. You can use these images in your code blocks . Use display () function

to show the image in the notebook for you too see .
80 5. Use as few tools as possible . Only use the tools for the use cases written in the tool description . You can use multiple tools in a single action .
81 6. If you have multiple answers, please separate them with || marks. For example, if the answer is ' Alice ' and ' Bob', you should write ' Alice || Bob'.
82 7. When you focus on columns in the image, most like you need to look at multiple columns instead of a single one.
83 8. If you do not think you have enough information to answer the question on the images returned by the tools , you should directly answer the question based on the original image.
84 Below are some examples of how to use the tools to solve the user requests . You can refer to them for help . You can also refer to the tool descriptions for more information .

15

REFOCUS

1 # [four in−context examples here]
2
3 # USER REQUEST #:

1 Tell me the number of wins els had.
2
3 # USER Bounding Box Info: columns_bbox, where keys are column headers and values are column bounding boxes. rows_bbox, where keys row headers and values are row bounding boxes. The

columns in the image are : [' Golfer ', ' Country ', ' Wins ', ' Match Play ', ' Championship', ' Invitational ', ' Champions']. The rows in the image start with: [' Golfer ', ' Woods, TigerTiger
Woods', ' Ogilvy, GeoffGeoff Ogilvy ', ' Clarke , DarrenDarren Clarke ', ' Els , ErnieErnie Els ', ' Mahan, HunterHunter Mahan', ' Mickelson, PhilPhil Mickelson ', ' Poulter , IanIan Poulter '].

4
5 # USER IMAGE stored in image_1, as PIL image.
6 Now please generate only THOUGHT 0 and ACTION 0 in RESULT. If no action needed, also reply with ANSWER: <your answer> Please extract the final answer in FINAL ANSWER: <final

answer> and ends with TERMINATE:
7
8 # RESULT #:

Thought + Action 0

1 THOUGHT 0: To find the number of wins Els had, I need to focus on the ' Wins' column and the row for ' Els , ErnieErnie Els ' .
2
3 ACTION 0:
4 ```python
5 image_with_focused_columns = focus_on_columns_with_draw(image_1, ["Wins"], columns_bbox)
6 image_with_focused_rows = focus_on_rows_with_draw(image_with_focused_columns, ["Els, ErnieErnie Els"], rows_bbox)
7 display (image_with_focused_rows)
8 ```

Observation 0

Execution success. The output is as follows.

Answer the question tell me the number of wins els had. You can turn the table image into text and answer with step of
thinking.
Reply with ANSWER: <your answer>
Please extract the final answer in FINAL ANSWER: <final answer> and ends with TERMINATE.

Thought + Action 1

ANSWER: The number of wins Els had is 2. FINAL ANSWER: 2. TERMINATE

16

REFOCUS

Prompts for Chart Problems:
SYSTEM PROMPT – CHARTS
You are a helpful multimodal AI assistant. [MORE INSTRUCTIONS ...]
For each turn, you should first do a "THOUGHT", based on the images and text you see. If you think you get the answer to
the intial user request, you can reply with "ANSWER: <your answer>" and ends with "TERMINATE".

Initial Prompt + Request

1 Here are some tools that can help you. All are python codes. They are in tools .py and will be imported for you. You will be given a chart figure : image_1 and a question .
2 Notice that you, as an AI assistant , are not good at answering questions when there are too many unnecessary and irrelevant information .
3 If you are dealing with a vertical bar chart figure , you should determine which are the relevant x values to the question , and specify them in a python list . You should use the

given x value names.
4 If you are dealing with a horizontal bar chart figure , you should also determine which are the relevant y values to the question , and specify them in a python list . You should use

the given y value names.
5 Below are the tools in tools .py:
6 ```python
7 def focus_on_x_values_with_mask(image, x_values_to_focus_on, all_x_values_bounding_boxes) :
8 """
9 This function is useful when you want to focus on some specific x values in the image.

10 It does this by masking out the x values that are not needed.
11 This function is especially useful for vertical bar charts .
12 For example, you can focus on the x values in a chart that are relevant to your analysis and ignore the rest .
13 Return the masked image.
14
15 Args:
16 image (PIL.Image.Image): the input image
17 x_values_to_focus_on (List [str]) : a list of x values to focus on.
18 all_x_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all x values in the image. key is x value and value is the bounding box of that x value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
19
20 Returns :
21 image_with_focused_x_values (PIL.Image.Image): the image with specified x values focused on
22
23 Example:
24 image = Image.open("sample_img.jpg")
25 image_with_focused_x_values = focus_on_x_values(image, ["2005", "2006"], {"2005": {'x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "2006": {'x1 ': 0.4, ' y1 ': 0.1, ' x2 ': 0.6, '

y2 ': 0.9}, "2007": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
26 display (image_with_focused_x_values)
27 """
28
29 def focus_on_y_values_with_mask(image, y_values_to_focus_on, all_y_values_bounding_boxes) :
30 """
31 This function is useful when you want to focus on some specific y values in the image.
32 It does this by masking out the y values that are not needed.
33 This function is especially useful for horizontal bar charts .
34 For example, you can focus on the y values in a chart that are relevant to your analysis and ignore the rest .
35 Return the masked image.
36
37 Args:
38 image (PIL.Image.Image): the input image
39 y_values_to_focus_on (List [str]) : a list of y values to focus on.
40 all_y_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all y values in the image. key is y value and value is the bounding box of that y value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
41
42 Returns :
43 image_with_focused_y_values (PIL.Image.Image): the image with specified y values focused on
44
45 Example:
46 image = Image.open("sample_img.jpg")
47 image_with_focused_y_values = focus_on_y_values(image, ["0", "10"], {"0": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "10": {' x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9, ' y2 ': 0.5},

"20": {' x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}})
48 """
49
50 def focus_on_x_values_with_draw(image, x_values_to_focus_on , all_x_values_bounding_boxes) :
51 """
52 This function is useful when you want to focus on some specific x values in the image.
53 It does this by drawing a red box around the x values that need to be focused on.
54 This function is especially useful for vertical bar charts .
55 For example, you can focus on the x values in a chart that are relevant to your analysis .
56 Return the masked image.
57
58 Args:
59 image (PIL.Image.Image): the input image
60 x_values_to_focus_on (List [str]) : a list of x values to focus on.
61 all_x_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all x values in the image. key is x value and value is the bounding box of that x value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
62
63 Returns :
64 image_with_focused_x_values (PIL.Image.Image): the image with specified x values focused on
65
66 Example:
67 image = Image.open("sample_img.jpg")
68 image_with_focused_x_values = focus_on_x_values(image, ["2005", "2006"], {"2005": {'x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "2006": {'x1 ': 0.4, ' y1 ': 0.1, ' x2 ': 0.6, '

y2 ': 0.9}, "2007": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
69 display (image_with_focused_x_values)
70 """

17

REFOCUS

1 def focus_on_y_values_with_draw(image, y_values_to_focus_on , all_y_values_bounding_boxes) :
2 """
3 This function is useful when you want to focus on some specific y values in the image.
4 It does this by drawing a red box around the y values that need to be focused on.
5 This function is especially useful for horizontal bar charts .
6 For example, you can focus on the y values in a chart that are relevant to your analysis .
7 Return the masked image.
8
9 Args:

10 image (PIL.Image.Image): the input image
11 y_values_to_focus_on (List [str]) : a list of y values to focus on.
12 all_y_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all y values in the image. key is y value and value is the bounding box of that y value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
13
14 Returns :
15 image_with_focused_y_values (PIL.Image.Image): the image with specified y values focused on
16
17 Example:
18 image = Image.open("sample_img.jpg")
19 image_with_focused_y_values = focus_on_y_values(image, ["0", "10"], {"0": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "10": {' x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9, ' y2 ': 0.5},

"20": {' x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}})
20 """
21
22 def focus_on_x_values_with_highlight (image, x_values_to_focus_on , all_x_values_bounding_boxes) :
23 """
24 This function is useful when you want to focus on some specific x values in the image.
25 It does this by adding light transparent red highlight to the x values that need to be focused on.
26 This function is especially useful for vertical bar charts .
27 For example, you can focus on the x values in a chart that are relevant to your analysis .
28 Return the masked image.
29
30 Args:
31 image (PIL.Image.Image): the input image
32 x_values_to_focus_on (List [str]) : a list of x values to focus on.
33 all_x_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all x values in the image. key is x value and value is the bounding box of that x value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
34
35 Returns :
36 image_with_focused_x_values (PIL.Image.Image): the image with specified x values focused on
37
38 Example:
39 image = Image.open("sample_img.jpg")
40 image_with_focused_x_values = focus_on_x_values(image, ["2005", "2006"], {"2005": {'x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.3, ' y2 ': 0.9}, "2006": {'x1 ': 0.4, ' y1 ': 0.1, ' x2 ': 0.6, '

y2 ': 0.9}, "2007": {'x1 ': 0.7, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.9}})
41 display (image_with_focused_x_values)
42 """
43
44 def focus_on_y_values_with_highlight (image, y_values_to_focus_on , all_y_values_bounding_boxes) :
45 """
46 This function is useful when you want to focus on some specific y values in the image.
47 It does this by adding light transparent red highlight to the y values that need to be focused on.
48 This function is especially useful for horizontal bar charts .
49 For example, you can focus on the y values in a chart that are relevant to your analysis .
50 Return the masked image.
51
52 Args:
53 image (PIL.Image.Image): the input image
54 y_values_to_focus_on (List [str]) : a list of y values to focus on.
55 all_y_values_bounding_boxes (Dict[Dict]) : a dictionary of bounding boxes for all y values in the image. key is y value and value is the bounding box of that y value . Each

bounding box is in the format {'x1 ': x1, ' y1 ': y1, ' x2 ': x2, ' y2 ': y2}.
56
57 Returns :
58 image_with_focused_y_values (PIL.Image.Image): the image with specified y values focused on
59
60 Example:
61 image = Image.open("sample_img.jpg")
62 image_with_focused_y_values = focus_on_y_values(image, ["0", "10"], {"0": {' x1 ': 0.1, ' y1 ': 0.1, ' x2 ': 0.9, ' y2 ': 0.15}, "10": {' x1 ': 0.1, ' y1 ': 0.2, ' x2 ': 0.9, ' y2 ': 0.5},

"20": {' x1 ': 0.1, ' y1 ': 0.6, ' x2 ': 0.9, ' y2 ': 0.9}})
63 """
64 ```
65 # GOAL #: Based on the above tools , I want you to reason about how to solve the # USER REQUEST # and generate the actions step by step (each action is a python jupyter notebook

code block) to solve the request .
66 You may need to use the tools above to process the images and make decisions based on the visual outputs of the previous code blocks .
67 Your visual ability is not perfect , so you should use these tools to assist you in reasoning about the images.
68 The jupyter notebook has already executed the following code to import the necessary packages:
69 ```python
70 from PIL import Image
71 from IPython. display import display
72 from tools import *
73 ```
74
75 # REQUIREMENTS #:
76 1. The generated actions can resolve the given user request # USER REQUEST # perfectly. The user request is reasonable and can be solved . Try your best to solve the request .
77 2. The arguments of a tool must be the same format specified in # TOOL LIST #;
78 3. If you think you got the answer, use ANSWER: <your answer> Please extract the final answer in FINAL ANSWER: <final answer> and ends with TERMINATE.
79 4. All images in the initial user request are stored in PIL Image objects named image_1, image_2, ..., image_n. You can use these images in your code blocks . Use display () function

to show the image in the notebook for you too see .
80 5. Use as few tools as possible . Only use the tools for the use cases written in the tool description . You can use multiple tools in a single action .
81 6. If you do not think you have enough information to answer the question on the images returned by the tools , you should directly answer the question based on the original image.
82 7. If all the x values are relevant to the question for a vertical bar chart , you do not need to focus on any specific x values . You should directly answer the question based on

the original image.
83 8. If all the y values are relevant to the question for a horizontal bar chart , you do not need to focus on any specific y values . You should directly answer the question based on

the original image.
84 Below are some examples of how to use the tools to solve the user requests . You can refer to them for help . You can also refer to the tool descriptions for more information .

18

REFOCUS

1 # [four in−context examples here]
2
3 # USER REQUEST #:

1 What is the average of blue bar above 20 value?
2
3 # USER Bounding Box Info: x_values_bbox, storing x values and coordinates . y_values_bbox, storing x values and coordinates . x_intervals_bbox , storing x intervals and coordinates .

y_intervals_bbox , storing y intervals and coordinates . The x values in the image are : []. The y values in the image are : [' Lending/Investment standards ', ' Keeping information and
money safe ', ' Know−how of own industry workings', ' Moral standards ', ' Cost of capital ', ' Generating social returns on investment ', ' Generating financial returns on ', ' Accessibility
', ' Speed ', ' Flexibility ', ' Willingness to take risks ']. The x intervals in the image are : []. The y intervals in the image are : [].

4
5 # USER IMAGE stored in image_1, as PIL image.
6
7 Now please generate only THOUGHT 0 and ACTION 0 in RESULT. If no action needed, also reply with ANSWER: <your answer> Please extract the final answer in FINAL ANSWER: <final

answer> and ends with TERMINATE:
8
9 # RESULT #:

Thought + Action 0

1 THOUGHT 0: This is a horizontal bar chart image. I need to focus on the y values where the blue bar is above 20 and calculate the average of those values .
2
3 ACTION 0:
4 ```python
5 image_with_focused_y_values = focus_on_y_values_with_draw(image_1, [" Accessibility " , "Speed", " Flexibility " , " Willingness to take risks "], y_values_bbox)
6 display (image_with_focused_y_values)
7 ```

Observation 0
Execution success. The output is as follows.

19

REFOCUS

Answer the question What is the average of blue bar above 20 value? You can turn the table image into text and answer
with step of thinking.
Reply with ANSWER: <your answer>
Please extract the final answer in FINAL ANSWER: <final answer> and ends with TERMINATE.

Thought + Action 1

ANSWER: The blue bars above 20 are for "Accessibility" (21%), "Speed" (23%), "Flexibility" (26%), and "Willingness to
take risks" (29%). To find the average:

Average =
21 + 23 + 26 + 29

4
=

99

4
= 24.75

FINAL ANSWER: 24.75. TERMINATE

20

REFOCUS

D. Finetune Details
D.1. REFOCUS Dataset Statistics

The detailed dataset statistics are demonstrated in Table 6. One example input data can be viewed in Listing 1.

Horizontal Bar Vertical Bar Total
QA Data (Masry et al., 2022) 4,990 10,069 15,059
REFOCUS Data 4,722 9,622 14,344
w/ Editing 4,220 8,599 12,819

Table 6. Detailed statistics about REFOCUS Data. We count the total number of our training cases, and the ones with visual editing.

D.2. Finetune Experiment Details

For the fine-tuning experiments in Section 5, we use 8 NVIDIA RTX A6000 GPUs (48GB RAM per GPU), following
the Phi-3.5-vision github instructions4. We adopt full training, and iterate through the hyperparameter searching space to
find the best performing set to report as our result score. The hyperparameter search focuses specifically on (1)learning
rate, (2) epoch number, (3) whether to include edited image in training input, with learning rate ranging in (5e-5 5e-6 5e-4
1e-4 1e-5 1e-6 5e-7), epoch ranging in (1 2), and all other parameters set to default values. In Table 7, we present detailed
hyper-parameter configurations for results in Table 4.

w/ default QA Data w/ REFOCUS VCoT w/ REFOCUS CoT

data type bf16 bf16 bf16
batch size 64 64 64
learning rate 5× 10−7 1× 10−6 5× 10−6

epoch number 2 2 2
include edited image in input No No Yes

Table 7. Hyper-parameter settings for our best fine-tuned models.

D.3. SFT Result Analyses

Looking at the SFT results in Table 4, we see a consistent improvement on the chart problems using REFOCUS data. If we
use the de facto QA data to finetune, the chain of thought ability will be impaired, comparing to the original model. Also,
the improvement on Vertical Bar problems reaches 5.4%, which is quite large for 14k training data.

E. SFT Qualitative Examples
In this section, we show some example output from the Phi-3.5-vision model finetuned on REFOCUS visual CoT data in
Figure 8. Notice that the model output are in text formats with bounding box coordinates for the areas to focus on. We draw
these areas in red boxes for illustration purposes. The examples are selected from the Horizontal Bar set and Vertical Bar set.

4https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md

21

https://github.com/microsoft/Phi-3CookBook/blob/main/md/04.Fine-tuning/FineTuning_Vision.md

REFOCUS

Listing 1 Example REFOCUS data input for SFT experiment. The “response0” and “response1” are GPT-4o outputs that
generate codes and answer based on the edited image respectively. We use “vcot_input” as the target answer.

1 {
2 "id": "train-two_col_103562",
3 "query": "As of 2021, how many championship titles had Ferrari won?",
4 "answer": "16",
5 "source": "h_bar",
6 "images": ["two_col_103562.png"],
7 "response0": "This is a horizontal bar chart image. I need to focus on the part where
8 the y-axis value is "Ferrari" to find out how many championship titles they have won.",
9 "edited_images": ["two_col_103562/f19f2fd043444680a02764d66fd6b22d.png"],

10 "response1": "As of 2021, Ferrari had won 16 championship titles.",
11 "focus_areas": [
12 {
13 "x1": 5,
14 "y1": 38,
15 "x2": 795,
16 "y2": 72
17 }],
18 "vcot_input": "This is a horizontal bar chart image. I need to focus on the part where
19 the y-axis value is "Ferrari" to find out how many championship titles they have won.
20 The areas to focus on in the image have bounding box coordinates: [{"x1": 5, "y1":
21 38, "x2": 795, "y2": 72}]. Looking at these areas, As of 2021, Ferrari had won
22 16 championship titles."
23 }

22

REFOCUS

Phi-3.5-vision finetuned with ReFocus Result

Image
Question Code to Focus on Areas Prediction

Correct Answer ReFocus Training Set

Incorrect Answer Supervised Finetuning

Edited
Image

Focus Area BBox
CoT Reasoning

6310-2 h bar
"prompt": "What's the percentage value of \"A great deal\"

opinion in Indonesia?",
 "answer": "27",

ReFocus + GPT-4o Prompting Result

Q: What’s the percentage value of "A great deal" opinion in Indonesia❓ A: 27

"figure_id": "24427049001318",
 "query": "What is the value of Cattle bar?",

"answer": "40.7",

Phi-3.5-vision finetuned with ReFocus ResultReFocus + GPT-4o Prompting Result

Q: What is the value of Cattle bar❓ A: 40.7

 "figure_id": "multi_col_41",
 "prompt": "What's the highest value among the blue bars?",

 "answer": "41",

Phi-3.5-vision finetuned with ReFocus ResultReFocus + GPT-4o Prompting Result

Q: What's the highest value among the blue bar❓ A: 41

: No Editing Needed

 "figure_id": "multi_col_852",
 "prompt": "In which year M&S had highest gross

profit margin?",
 "answer": "2017",

Phi-3.5-vision finetuned with ReFocus ResultReFocus + GPT-4o Prompting Result

Q: In which year M&S had highest gross profit margin❓ A: 2017

Figure 8. Phi-3.5-vision finetuned with REFOCUS visual chain of thought data outputs the areas to focus on. For illustration purposes,
we draw these areas in red boxes, and compare with the REFOCUS + GPT-4o prompting output.

23

