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 Four [People -> Robots] standing on football court.

Input Video Edit Video

 A group of [People ->  Astronauts] practicing boxing in a fitness studio.

A team of [Men -> Spider-Men] rowing together on a river.

 Eight [Hurdlers -> Iron-Men] leap mid-race over purple hurdles.

Figure 1: Visualization results of IMAGEdit. Given any video with any number of designated subjects,
IMAGEdit performs precise category transformations while maintaining subject count and spatial layout. Es-
pecially in crowded scenes with overlapping subjects, IMAGEdit demonstrates stable consistent editing.

ABSTRACT

In this paper, we present IMAGEdit, a training-free framework for any num-
ber of video subject editing that manipulates the appearances of multiple desig-
nated subjects while preserving non-target regions, without finetuning or retrain-
ing. We achieve this by providing robust multimodal conditioning and precise
mask sequences through a prompt-guided multimodal alignment module and a
prior-based mask retargeting module. We first leverage large models’ understand-
ing and generation capabilities to produce multimodal information and mask mo-
tion sequences for multiple subjects across various types. Then, the obtained prior
mask sequences are fed into a pretrained mask-driven video generation model
to synthesize the edited video. With strong generalization capability, IMAGEdit
remedies insufficient prompt-side multimodal conditioning and overcomes mask
boundary entanglement in videos with any number of subjects, thereby signifi-
cantly expanding the applicability of video editing. More importantly, IMAGEdit
is compatible with any mask-driven video generation model, significantly improv-
ing overall performance. Extensive experiments on our newly constructed multi-
subject benchmark MSVBench verify that IMAGEdit consistently surpasses state-
of-the-art methods. Code, dataset, and weights will be released.

1 INTRODUCTION

“Any subjects can transform together.” -Many people voiced this wish as children while watching
films, animations, and live performances. Television media often have such applications (Shen et al.,

1
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2025), e.g., the coordinated team transformation in Ultraman1 and the multi subjects synchronized
transformation in Sailor Moon2. Reproducing this effect in real videos typically requires special-
ized equipment and extensive character modeling, increasing cost and limiting generalization. In this
work, to let any subject transform while preserving non-target regions, we propose a novel, training-
free framework for video editing with any number of subjects. As shown in Figure 1, even in scenes
with any number of subjects where spatial relations are complex and interactions are dense, condi-
tions that differ markedly from single or few subject settings of existing methods (Wu et al., 2023;
Ceylan et al., 2023), our framework performs the edits reliably and achieves remarkable results.

With the rapid progress of generative models, video editing (Wu et al., 2023; Ceylan et al., 2023)
has advanced substantially, driven by generative adversarial networks (Radford et al., 2015; Good-
fellow et al., 2020; Donahue et al., 2016; Odena et al., 2017) and diffusion models (Rombach
et al., 2022; Ramesh et al., 2022; Shen et al., 2025). However, most existing approaches (Geyer
et al., 2023; Wang et al., 2025; Ceylan et al., 2023; Ku et al., 2024) focus on single or at
most two subjects and typically rely on either task-specific training or precise guiding masks,
which limits their generalization ability. For instance, as seen in the first row of Figure 2, al-
though existing methods can achieve accurate editing in terms of position and quantity with pre-
cise masks, the subject categories do not faithfully reflect the editing prompt, highlighting limi-
tations in the edited conditions. In multi-subject scenarios with dense layouts and heavy occlu-
sions, these methods often become unstable, degrading perceptual quality. As shown in the sec-
ond row of Figure 2, boundary entanglement in segmentation (Ren et al., 2016; He et al., 2017)
can cause edits to spill across subjects, misplacing attributes, such as a dog head on a robot
wolf body. Due to limited compositional grounding of prompts and control conditions, atten-
tion is diluted across subjects, leading to temporal inconsistency and disrupting edit continuity.
In summary, editing videos with many subjects is more challenging than single or few subject
cases. Occlusion and boundary entanglement make segmentation, tracking, and identity preser-
vation error-prone, while instructions and control conditions must be accurately grounded to mul-
tiple subjects to avoid attention dispersion and ensure consistent edits and temporal coherence.

Existing MethodsReference Frame Mask Frame IMAGEdit

Figure 2: Visual results generated from current video editing
methods and our IMAGEdit (Dogs → Robot Wolves). Pre-
vious methods apparently retain the reference dog’s appear-
ance. In contrast, the result of IMAGEdit both aligns the robot
wolf’s features and captures the reference dog’s layout.

To address these limitations, we propose
IMAGEdit, a training-free video edit-
ing framework that transforms any num-
ber of subjects in arbitrary videos with-
out additional training. As shown in Fig-
ure 1, IMAGEdit delivers robust and pre-
cise edits across subjects of any num-
ber and is particularly effective in cases
with boundary entanglement. This is
achieved through three components: (i)
a prompt-guided multimodal alignment
module, (ii) a prior-based mask retarget-
ing module, and (iii) a mask-driven video
generation model.

In our prompt-guided multimodal alignment module, we first extract the subjects to be edited from
the prompt and input a pretrained text-to-image (T2I) model (Rombach et al., 2022; Podell et al.,
2023; Chen et al., 2023) to obtain the target appearance. We then feed both the editing prompt and
the visual prior into a vision language model (VLM) (Achiam et al., 2023; Wang et al., 2024; Chen
et al., 2024) to produce aligned multimodal conditions, namely an expanded text condition and an
expanded image condition. For the second component, we present a theoretical algorithm to capture
per-frame mask state changes and generate a temporal continuous mask motion sequence aligned
with the input video. Finally, for the third component, we input the multimodal conditions and the
continuous mask sequence into a pretrained mask-driven video generation model to transform the
video. From Figure 2, IMAGEdit achieves reliable and coherent video edits by supplying multi-
modal conditions and retarget masks. Moreover, IMAGEdit operates as a plug in and is compatible

1https://en.wikipedia.org/wiki/Ultraman_(manga)#Anime
2https://en.wikipedia.org/wiki/Sailor_Moon#Live-action_film_&_series
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with any mask-driven video generator, markedly improving multi subject editing performance, with
experimental analysis in Sec. 4.2.

In addition, to address the lack of a benchmark for editing videos with any number of subjects,
we construct MSVBench, which comprises 100 cases covering diverse subject counts and scene
complexities. Qualitative and quantitative evaluations on MSVBench show that IMAGEdit delivers
strong video editing performance and surpasses existing methods particularly in multi subject set-
tings. Ablation studies further validate the effectiveness and advantages of the framework, offering
valuable insights for the community. We also release IMAGEdit results on multi subject videos,
providing a practical solution for research and applications in video editing.

Our main contributions are summarized as follows:

• We propose IMAGEdit, a novel training free video editing framework that enables the
transformation of any number of subjects in arbitrary videos.

• IMAGEdit generates robust multimodal conditions and precise mask sequences for any
number of subjects, offering a promising solution to the community for video editing.

• IMAGEdit can be seamlessly integrated as a plug in with any mask driven video generation
model, consistently enhancing its performance in multi subject scenarios.

• We establish MSVBench, a benchmark with varying subjects for comprehensive evalua-
tion. Experiments on MSVBench show that IMAGEdit outperforms SOTA approaches.

2 RELATED WORK

Video editing. Early video editing methods mainly relied on GANs (Goodfellow et al., 2020; Mittal
et al., 2017; Pan et al., 2017; Li et al., 2018), performing subject edits through warping and rendering
pipelines. In recent years, latent diffusion models( (Rombach et al., 2022; Peebles & Xie, 2023;
Ruiz et al., 2023))have markedly improved the quality and efficiency of image generation. Building
on this progress, several works fine-tune T2I models (Wu et al., 2023; Qi et al., 2023; Liu et al.,
2024a; Zhang et al., 2025) with spatiotemporal attention on paired samples from a single video to
achieve stylization and subject replacement. However, current one-shot training tends to overfit the
given sample and fails to align with other target scenes; the issue is exacerbated in unseen, multi-
subject, high-density settings, thereby limiting the generalization ability. Meanwhile, another line
of research (Wang et al., 2025; Yang et al., 2025; Jiang et al., 2025; Bian et al., 2025) leverages
highly scalable conditions, such as instance segmentation masks, to strengthen spatial localization
and motion constraints. Yet, this approach inherently depends on masks and is restricted in multi-
subject scenarios with overlapping and intertwined instances. To overcome these limitations and
truly let any subject transform, this paper adopts a mask-driven video editing paradigm that provides
precise retargeted mask sequences, enabling high-fidelity and robust any subject video editing.

Instant Segmentation. Instance segmentation aims to produce pixel-level masks for all objects in an
image while distinguishing individual instances. Early approaches (Rother et al., 2004) constructed
masks for region proposals and refined them iteratively to match instance extents. With the rise of
deep networks, one line of work (Ren et al., 2016; He et al., 2017; Li et al., 2017) performs direct re-
gression of instance masks using coarse-to-fine cascade networks. At the same time, another (Zhang
et al., 2021; Cheng et al., 2021; 2022)predicts per-instance mask heatmaps or query embeddings for
indirect regression, improving accuracy. Recently, prompted segmentation (Kirillov et al., 2023;
Ravi et al., 2024; Ren et al., 2024) has been introduced with larger datasets and foundational mod-
els to enhance cross-domain generalization. Nevertheless, these methods (Rother et al., 2004; Ren
et al., 2016) still struggle in dense scenes due to the supervised training paradigm and annotation
constraints, particularly with many subjects. To this end, we adopt a prior-based mask retargeting
module that exploits spatial semantic correspondences in deep features and strong generalization,
providing precise and temporal consistent instance masks for any number of subjects.

Text to Video Generation. In recent years, image-to-video (I2V) generation (Singer et al., 2022;
Yang et al., 2024b) has attracted considerable attention due to its potential in image animation
and video synthesis. Prior work (Guo et al., 2023) leveraging diffusion models’ strong represen-
tation and synthesis capabilities for image inserts temporal layers into pretrained two-dimensional
U-Nets (Ronneberger et al., 2015) and fine-tunes with video data to convert static images into dy-

3
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Figure 3: The IMAGEdit framework first derives robust multimodal cues via a prompt-guided multimodal
alignment. Then, a prior-based mask retargeting module produces a time-consistent mask sequence aligned
with the input video. Finally, the multimodal cues and mask sequence are fed into a video generation model to
synthesize the edited video.

namic sequences. For example, VideoPainter (Bian et al., 2025) is a dual-branch framework that
integrates with video diffusion transformers to achieve robust arbitrary-mask video inpainting. In
parallel, specialized I2V frameworks (Singer et al., 2022; Ho et al., 2022) trained from scratch on
large-scale, high-quality datasets have demonstrated strong competitiveness. DiT-based I2V ap-
proaches (Hong et al., 2022; Yang et al., 2024b; Wan et al., 2025; Gao et al., 2025)) have recently
become increasingly popular for their improved global coherence and controllability. Guided by
these considerations, we adopt Wan2.1 (Wan et al., 2025) as the base I2V model in this work.

3 METHOD

The overall framework of IMAGEdit is shown in Figure 3. We first introduce the diffusion trans-
former basics in Sec. 3.1, followed by a description of the three core components in Sec. 3.2: prompt-
guided multimodal alignment, prior-based mask retargeting, and the video generation model.

3.1 PRELIMINARIES

In IMAGEdit, we adopt Wan2.1 (Wan et al., 2025) as the base model for mask-guided matching,
which comprises a variational autoencoder (Kingma & Welling, 2013), a umT5 text encoder (Chung
et al., 2023), and a denoising diffusion transformer (DiT) (Peebles & Xie, 2023). While DiT variants
have shown strong performance in image synthesis, DiT based pipelines for video editing remain rel-
atively underexplored compared with UNet based counterparts, particularly in multi subject, mask
conditioned settings. Unlike approaches (Geyer et al., 2023; Qi et al., 2023; Yatim et al., 2024)
that rely on UNet (Ronneberger et al., 2015), DiT uses a Transformer backbone to model the dif-
fusion process and to capture long range dependencies and global context. Let x0 ∈ RH×W×C

denote a clean image with height H , width W , and channels C. The forward diffusion process
gradually corrupts x0 into {xt}Tt=1 over T discrete steps by adding independent Gaussian noise
zt ∼ N (0, I),where I represents the identity matrix:

xt =
√
αt xt−1 +

√
1− αt zt, t = 1, . . . , T, (1)

where αt ∈ (0, 1) is the variance preserving noise schedule at step t. The reverse diffusion process
iteratively removes noise to recover xt−1 from xt. We model this step with pθ(xt−1 | xt), which
represents the conditional probability distribution of the less noisy image xt−1 given the more noisy
image xt: pθ(xt−1 | xt) = N

(
xt−1; µθ(xt, t), Σθ(xt, t)

)
, (2)

where µθ(xt, t) and Σθ(xt, t) are the mean and covariance predicted by the DiT with parameters θ.

3.2 IMAGEDIT: LET ANY SUBJECT TRANSFORM

Reviewing the results in Figure 2, we observe remarkable variance in editing performance across
different subject counts and boundary complexities. A robust mask generation mechanism that can
handle multiple interacting subjects is essential for achieving high-fidelity video editing. Prior ap-
proaches either rely on supervised segmentation models trained on annotated data, expand dataset
diversity to improve generalization, or introduce new regularization terms to enhance mask con-
sistency. However, under a supervised training paradigm, these methods still struggle to general-
ize to unseen categories and densely entangled multi-subject scenarios, often leading to boundary
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entanglement and temporal instability. To address this, we propose a prompt-guided multimodal
alignment module that combines textual and visual priors to generate robust editing conditions. In
addition, we introduce a prior-based mask retargeting module that produces temporal consistent
mask motion sequences across frames. Finally, a mask-driven video generation model is employed
to synthesize high-fidelity and robust multi-subject video edits.

Reference Frame (a) w/o Multimodal Condition (b) w/ Multimodal Condition

Figure 4: Visualization of the without (w/o) and
with (w/) multimodal condition. The first row:
Hockey Players → Astronauts; the second row:
Horse Riders → Gokus.

Prompt-Guided Multimodal Alignment. Recent
studies (Yin et al., 2023; Singer et al., 2022) show
that limited understanding ability of text encoders
in video editing models often causes inconsistencies
between editing results and the intended semantics
when using naive text prompts. In multi subject edit-
ing scenarios, this issue becomes more pronounced.
As shown in Figure 4 (a) top row, neighboring sub-
jects dilute attention, and a naive prompt fails to im-
pose a clear constraint on “astronaut,” thus not trig-
gering the intended edit. Another case is shown in
Figure 4 (a) bottom row, where insufficient textual
semantic constraints cause a semantic mismatch, making “Goku”, related attributes only partially
take effect on the target. These observations indicate that multi-subject settings require stronger
multimodal alignment and subject-level control to ensure precise binding of editing intent and tem-
poral stability. Based on these observations, we introduce a prompt-guided multimodal alignment
module to explicitly realize cross-modal alignment and produce stable multimodal conditions.

T2I Model Ref Image
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Figure 5: Illustration of prompt-guided multimodal
alignment. We generate aligned extended text conditions
and extended image conditions for each original prompt.

Specifically, as shown in Figure 5, we first
extract subject specific tokens Wref from the
original editing prompt Pedit. These tokens
query a pretrained text to image model (Podell
et al., 2023) to generate a visual prior Iref,
which bridges the abstract textual descrip-
tion and a concrete visual instance, anchor-
ing the subject’s appearance. Next, we feed
Iref and Pedit into a vision language model
(VLM) (Achiam et al., 2023; Wang et al.,
2024). Using an extended instruction template
Ptemp, the VLM aligns the two modalities by
interpreting the visual attributes in Iref and expanding the description in Pedit in a controlled manner.
This yields an enriched and visually grounded textual condition Ptarget:

Ptarget = ΦVLM
(
Pedit, Iref

∣∣Ptemp
)
, (3)

where ΦVLM denotes the VLM function that reconciles the semantic intent in Pedit with the structure
and appearance priors provided by Iref. As shown in Figure 4 (b), grounding the textual expansion
in explicit visual evidence improves the fidelity of subject attributes and mitigates attention dilution
and semantic drift, resulting in more coherent and targeted video edits.

(a) w/o Mask Retargeting

(b) w/ Mask Retargeting

Reference Frame

Depth Frame

Figure 6: Visualization of the without (w/o)
and with (w/) mask retargeting (Dogs → Robot
Wolves).

Prior-Based Mask Retargeting. The accuracy of
masks directly determines the controllability and
temporal stability of mask-driven video editing. In
dense multi subject scenes, general segmentation
models such as the SAM family often fail to produce
precise instance level masks that distinguish over-
lapping or adjacent objects, and they cannot capture
the hierarchical and occlusion order among subjects,
leading to mask leakage and blurred boundaries;
these errors further propagate and amplify over time,
as shown in Figure 6 (a). To address this, we pro-
pose a prior-driven mask retargeting module: con-
strained by depth priors, it spatially reestimates in-
stance boundaries according to near-far relationships
and temporal generates a retargeted mask motion se-

5
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quence by enforcing consistency across adjacent frames. This sequence explicitly encodes hierar-
chical boundaries and occlusion relationships between subjects, significantly reducing mask leakage
and improving cross-frame consistency, as shown in Figure 6 (b).

As shown in Figure 3, we consider an original video Vori = {v1, v2, . . . , vN} with N frames,
where vi ∈ RH×W×C . We denote the binary instance masks across frames by M =
{m1,m2, . . . ,mN} with mi ∈ {0, 1}H×W specifying the editing region for frame i. Similarly,
let D = {d1, d2, . . . , dN} with di ∈ RH×W×C denote the estimated depth maps. From these
inputs, we extract guidance features using a conditional DiT. To obtain the mask-guided features
Fmask, we first compute a masked video via element-wise multiplication with the binary mask:
Vmasked = Vori ⊙ M . Each masked frame from Vmasked is then concatenated with its corresponding
binary mask mi along the channel dimension and fed into the conditional DiT. The resulting output
sequence is defined as Fmask = {Fmask

i }ni=1. Similarly, to get the depth-guided features F depth, each
depth map di is concatenated with an all-ones mask and processed by a similar DiT architecture,
yielding F depth = {F depth

i }ni=1. Subsequently, we achieve precise redirection of the mask region by
injecting depth features F depth into the editing area. To ensure the depth information is fully inte-
grated into the target area, avoiding missing or discontinuous information during feature fusion, and
to provide a smooth transition for the fusion of depth features and mask features mask in the con-
ditional module, we apply morphological dilation to the initial editing mask to expand the editing
region. Formally, for each frame mask mi, the dilated mask is

m′
i[p, q] = max

(u,v)∈Nk

mi[p+ u, q + v], (4)

where Nk = {(u, v)|−r ≤ u, v ≤ r} is a square neighborhood of size k×k with radius r = ⌊k/2⌋.
This dilation enlarges the foreground to provide a blending margin. We then apply a Gaussian filter
to m′

i and downsample the result to obtain a soft mask m̃i. Collectively, the final softened and
resized mask sequence is M̃ = {m̃1, m̃2, . . . , m̃N}. Let the final motion guidance sequence be
Fmotion = {Fmotion

i }ni=1. At each spatial location (x, y) we compute

Fmotion
i (x, y) = m̃i(x, y)F

depth
i (x, y) + (1− m̃i(x, y))F

mask
i (x, y). (5)

This design ensures that within subject regions (where m̃i is high), editing is primarily guided by
depth to recover geometry and proper layering, while in background regions (where m̃i is low),
mask constraints dominate to preserve appearance and temporal stability.

Video Generation Model. Given the retargeted mask motion sequence Fmotion, we can condition
any mask-driven video generator by attaching a ControlNet style branch to a ViT backbone (Wan
et al., 2025; Gao et al., 2025; Zhang et al., 2023; Jiang et al., 2025). Although Fmotion can in principle
be injected at all denoising steps, continuing the fusion at late steps produces severe artifacts and
unnatural seams, because early steps shape low frequency structure while late steps refine high
frequency details (Wu et al., 2024; Qian et al., 2024). We therefore inject only in the early structural
phase and revert to mask only conditioning for refinement. Let T be the total number of steps and
τ the injection threshold. With depth guided features F depth

i,t and mask guided features Fmask
i,t , the

conditional feature is

F cond
i,t (x, y) =

{
m̃i(x, y)F

depth
i,t (x, y) +

(
1− m̃i(x, y)

)
Fmask
i,t (x, y), t ≤ τ,

Fmask
i,t (x, y), t > τ.

(6)

This scheme accurately tracks the motion encoded by the mask sequence, preserves high quality
details, and generalizes across architectures, yielding consistent gains in multi subject scenarios.

4 EXPERIMENTS

Datasets. To comprehensively evaluate the effectiveness of multi-subject video editing methods in
complex scenarios, we construct MSVBench. In this benchmark, over 60% of videos contain three
or more subjects. It consists of 100 videos collected from YouTube 3 and TikTok 4, covering diverse
subjects such as humans, animals, and vehicles, and intentionally includes multi-subject cases that

3https://www.youtube.com
4https://www.tiktok.com
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are underrepresented in existing datasets. The number of subjects per video ranges from one to
more than ten. For captions and editing prompts, we employ GPT-4o (Achiam et al., 2023) to gener-
ate scene descriptions for each video and automatically produce corresponding editing instructions
based on subject attributes. All generated descriptions and prompts are manually verified to ensure
accuracy and usability. Further details are provided in Appendix A.

Metrics. Following (Cong et al., 2023; Yang et al., 2025), we evaluate video editing fidelity using
four metrics. Specifically, Warp-Err quantifies background consistency in non-edited regions. CLIP-
T measures the alignment between the edited text and the edited regions; CLIP-F assesses perceptual
consistency between adjacent frames. Moreover, Q-Edit is a composite indicator that reflects text
alignment and temporal consistency. In addition, to assess spatial consistency before and after edit-
ing under varying numbers of subjects, we present center matching error (CM-Err), which performs
one-to-one matching of subject boxes detected by GroundingDINO (Liu et al., 2024b) before and
after editing and computes the mean center displacement. More details are provided in Appendix B.

Implementation Details. All experiments are conducted on a single NVIDIA A800 80 GB GPU.
Unless stated otherwise, the configuration is as follows: (i) the denoising DiT and the conditional
DiT are initialized from the pre-trained Wan2.1 (Jiang et al., 2025); (ii) the text to image model
is the pre trained SDXL (Podell et al., 2023), and the vision language model is Qwen2.5 VL 32B
Instruct (Bai et al., 2023); (iii) instance masks are obtained using Grounded SAM 2 (Ren et al.,
2024), and depth maps are estimated with Depth Anything V2 (Yang et al., 2024a); (iv) at inference
we use 50 denoising steps and set the injection threshold to τ = 30.

4.1 MAIN RESULTS

We compare our proposed IMAGEdit with several state-of-the-art methods, including open-source
approaches such as FateZero (Qi et al., 2023), TokenFlow (Geyer et al., 2023), VideoPainter (Bian
et al., 2025), VideoGrain (Yang et al., 2025), and DMT (Yatim et al., 2024), as well as closed-source
approaches such as Keling 5, Runway 6, and Viggle 7.

Table 1: Quantitative results on MSVBench comparing IMAGEdit
with SOTA methods. The best score is in bold; the second-best is
underlined. A superscript ∗ denotes closed-source methods.

Methods Warp-Err ↓ CLIP-T ↑ CLIP-F ↑ Q-Edit ↑ CM-Err ↓
FateZero 2.16 24.26 97.42 11.23 3.49
TokenFlow 2.10 26.57 96.93 12.65 3.78
VideoPainter 2.05 24.13 96.97 11.77 4.70
VideoGrain 1.98 24.71 97.13 12.48 3.12
DMT 1.87 24.55 96.76 13.13 3.80

Keling∗ 2.00 25.66 98.37 12.83 4.39
Runway∗ 1.87 25.82 97.73 13.81 3.36
Viggle∗ 1.86 25.04 97.53 13.46 3.43

IMAGEdit 1.85 27.23 97.93 14.72 2.83

Quantitative Results. On
MSVBench, the proposed IMAGEdit
delivers consistently superior perfor-
mance across all key metrics from
Table 1. Concretely, it achieves the
best scores with Warp-Err (1.85),
CLIP-T (27.23), CLIP-F (97.93),
Q-Edit (14.72), and CM-Err (2.83).
Compared with the strongest open-
source methods, IMAGEdit improves
Q-Edit from 13.13 (DMT) to 14.72
(+12.1%), evidencing the benefit
of robust multimodal features from the prompt-guided multimodal alignment for edit fidelity.
Meanwhile, it reduces CM-Err from 3.12 (VideoGrain) to 2.83 while slightly lowering Warp-Err
from 1.87 (DMT) to 1.85, demonstrating that the precise masks produced by the prior-based mask
retargeting improve temporal consistency and background preservation. Even against closed-source
methods, IMAGEdit remains competitive, e.g., Q-Edit 14.72 vs. 13.81 (Runway). Overall, these
results substantiate the effectiveness of our proposed IMAGEdit.

Qualitative Results. From Figure 7, most competing methods (e.g., FateZero, TokenFlow, and
VideoGrain) suffer from boundary entanglement and attention dilution, often leading to incomplete
edits, background corruption, or attribute leakage across subjects. In contrast, IMAGEdit correctly
transforms the designated subjects while preserving non-target regions, indicating that the prompt-
guided multimodal alignment supplies robust multimodal conditions that precisely drive subject
conversion. Moreover, existing approaches exhibit poor temporal stability under limb motions and
occlusions, methods such as VideoPainter and DMT frequently show missing subjects or reduced
fidelity, whereas our prior-based mask retargeting produces consistent mask sequences, enabling

5https://klingai.com/global
6https://runwayml.com
7https://viggle.ai
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Three [Pigs -> Lions] walking on a dirt ground.

Seven [Kabaddi Players -> Gokus] facing each other on a purple mat in stadium lighting.

[Volleyball Players -> Robots] compete on indoor court with net.

Reference Frame FateZero TokenFlow VideoPainter VideoGrain DMT IMAGEdit

One black sheepdog herding four [Ducks -> Robot Ducks] on green field.

[Players -> Spider-Men] on trampolines throwing dodgeballs during an intense match.

Four [Female -> Spider-Men] runners sprint on track.

Figure 7: Qualitative comparison with SOTA video editing methods on MSVBench.

IMAGEdit to maintain frame-to-frame coherence and high fidelity under complex motion. Overall,
our method yields more consistent and realistic edits, demonstrating the advantages of IMAGEdit.

0
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3

4
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6

FateZero TokenFlow VideoPainter VideoGrain DMT Ours

S
co

re
s

Different SOTA Methods

Background Preservation  Text Alignment Video Quality

Figure 8: User study results. Higher values in
these three metrics indicate better performance.

User Study. The obtained quantitative and qualitative
results underscore the substantial superiority of our
IMAGEdit in generating results. To further validate
the superiority of our method in human perception,
we randomly selected 20 cases and recruited 20 volun-
teers to assess each method across three critical dimen-
sions: Background Preservation (BP), Text Alignment
(TA), and Video Quality (VQ). The volunteers ranked
the edited videos according to these criteria to ensure
a fair and comprehensive comparison across methods.
As shown in Figure 8, IMAGEdit achieved the high-
est scores in BP, TA, and VQ, demonstrating its strong
editing capability on videos with varying numbers of subjects.

4.2 ABLATION STUDY

To assess the effectiveness of each component, we construct the following variants within the IM-
AGEdit framework, keeping all other settings fixed while altering component configurations: B0:
the base video generation model only Wan2.1. B1: only the prior-based mask retargeting module
enabled. B2: only the prompt-guided multimodal alignment module enabled.

Table 2: Quantitative ablation results.
Methods CLIP-T ↑ Q-Edit ↑ CM-Err ↓
B0 24.78 13.24 3.00
B1 25.10 13.42 2.87
B2 26.12 14.04 2.99
IMAGEdit 27.23 14.72 2.83

Prompt-Guided Multimodal Alignment. As
shown in Table 2, adding the prompt-guided
multimodal alignment module (B2) already im-
proves performance over the base model (B0),
increasing CLIP-T from 24.78 to 26.12 and Q-
Edit from 13.24 to 14.04, while reducing CM-
Err from 3.00 to 2.99. These improvements demonstrate that explicit alignment between textual
prompts and visual priors provides stronger multimodal conditioning, leading to better adherence to

8
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editing instructions and more consistent layouts. Visual comparisons are presented in Figure 9, it
confirms that this module mitigates incomplete edits and attribute leakage, producing more accurate
transformations across multiple subjects.

Reference Frame B0 B1 B2 IMAGEdit

Figure 9: Visualization of ablation results of IM-
AGEdit. (People → Super Mario)

Prior-Based Mask Retargeting. From Ta-
ble 2, incorporating the prior-based mask re-
targeting module (B1) yields clear improve-
ments over the base model (B0), raising CLIP-
T from 24.78 to 25.10 and Q-Edit from 13.24
to 13.42. Although CM-Err remains compara-
ble, the generated masks are more precise and
temporal consistent, enabling edits to better follow the target subjects across frames. Figure 9 further
shows that this module effectively reduces boundary entanglement and preserves non-target regions,
leading to more stable and faithful video edits, particularly in multi-subject scenarios with dense
interactions or occlusions.

4.3 MORE RESULTS

Attention Weight Distribution. As shown in Figure 10, we systematically evaluated the im-
pact of prompt-guided multimodal alignment on the spatial distribution of cross-attention weights.

Reference Frame w/o Multimodal Alignment Attn Weight AfterAttn Weight Before w/ Multimodal Alignment

Figure 10: Attention weight distribution for both
without (w/o) and with (w/) multimodal condi-
tion. (Players → Iron-Men)

The target prompt is “Two Iron-Men are playing
tennis on a tennis court.” We visualized the cross-
attention of “Iron-Men” to assess the weight distri-
bution. Without prompt-guided multimodal align-
ment, the attention weight for “Iron-Men” appears
only in certain areas, such as the head, leading to in-
complete editing. In contrast, IMAGEdit evenly dis-
tributes the attention weight for “Iron-Men” across
the entire body, which is correct. This is because prompt-guided multimodal alignment provides
multimodal conditional information, allowing for better capture of the regions that need editing.

Automn Forest -> Winter Forest -> Starry Sky

Remove

Glasses

Change

Business
Suit

Left  -> Ultraman  
Right -> Robot

 Left  ->  Gorilla   
Right ->  Polar Bear

Add

Glasses
Change

Face

Snowy Forest -> Office Desktop -> Lunar Surface

(a) Subject-Wise Category-Specific Editing  (c) Background Editing(b) Fine-Grained Editing

Figure 11: Results across multiple scenarios, demonstrating the extensibility of IMAGEdit.

Multi-Scenario Applications. IMAGEdit also performs strongly across diverse application scenar-
ios, including subject wise category specific editing, fine grained editing, and background editing.
Specifically, as shown in Figure 11 (a), we convert the left person into an ultraman and the right per-
son into a robot; Figure 11 (b) demonstrates fine grained edits such as adding glasses and changing
clothing; Figure 11 (c) edits the background to Autumn Forest, snowy forest, and starry sky styles.
Overall, IMAGEdit maintains stable appearance and clean boundaries, indicating good scalability
of the framework. Additional results are provided in Appendix C.

5 CONCLUSION

We presented IMAGEdit, a training free framework for video editing with any number of subjects
that changes designated categories. IMAGEdit provides robust multimodal conditioning and pre-
cise mask motion sequences through two key components, a prompt guided multimodal alignment
module and a prior based mask retargeting module. By leveraging the understanding and generation
capabilities of large pretrained models, these components produce aligned multimodal signals and
time consistent masks that effectively remedy insufficient prompt side conditioning and overcome
mask boundary entanglement in crowded scenes. The framework then conditions a pretrained mask
driven video generator to synthesize the edited video. IMAGEdit is plug and play with a wide range
of mask driven backbones and consistently improves overall performance. Extensive experiments
on the new multi subject benchmark MSVBench verify that IMAGEdit surpasses state of the art
methods. Code, dataset, and weights will be released to support further research.
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6 ETHICS STATEMENT

We are committed to conducting research in an ethical manner and ensuring that our work adheres
to the highest standards of integrity. This research adheres to the ethical guidelines set forth by
our institution and follows appropriate protocols for data collection, processing, and dissemination.
Regarding the use of generative models and video editing technologies, we ensure that the content
generated using IMAGEdit and similar tools does not infringe upon the rights of individuals or
communities. We take steps to mitigate the potential for misuse of the technology, such as the
creation of misleading or harmful content, and we emphasize the importance of responsible usage.
Additionally, we acknowledge the potential societal impacts of advanced generative technologies.
While our work aims to enhance creative and productive applications, we remain cognizant of the
broader ethical concerns, such as privacy, consent, and the potential for deepfakes. We advocate for
the responsible deployment of these technologies, with safeguards in place to protect individuals’
rights and dignity. Lastly, all datasets used in our research are either publicly available, ensuring
that data usage complies with privacy regulations and ethical standards.

7 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we will make all relevant resources publicly available,
including the code, datasets, and model weights. The code used for implementing IMAGEdit, along
with the model weights, will be released on GitHub. Additionally, we will provide access to the
datasets used in our experiments, either by directly sharing them or by linking to publicly available
sources. This will enable others to reproduce our results and build upon our work.
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SUPPLEMENTARY MATERIAL

This supplementary material provides extended details for the methodology and experiments pre-
sented in the main paper. Section A details the MSVBench dataset. Section B describes the com-
putation of the CM-Err metric. Section C reports additional results, including evaluations on extra
datasets, broader qualitative comparisons, and further examples of scalable applications. Section D
discusses potential avenues for future research. Section E documents the usage of large language
models. More video results are available on: imag2025.github.io/imagedit/ 8.

Figure 12: Display of randomly selected samples from the MSVBench dataset.

A MSVBENCH DATASET

Figure 13: Distribution of the number of
subjects in a video in MSVBench.

To fill the evaluation gap in multi subject video edit-
ing, we construct MSVBench with 100 videos, more than
sixty percent of which contain three or more subjects, as
shown in Figure 12. Videos are primarily sourced from
YouTube and TikTok. Scenes cover humans, animals, and
vehicles; the number of subjects per frame ranges from
one to more than ten, and the dataset includes challeng-
ing cases with crowded layouts, strong occlusions and in-
teractions, significant camera motion, and complex back-
grounds. Unlike prior editing datasets that focus on sin-
gle subject or face centered clips, MSVBench is explicitly
sampled and annotated around high subject count, dense
layouts, and interaction or occlusion ordering, making it
well suited to evaluate category fidelity, layout preservation, and boundary leakage. For annotation,
GPT-4o (Achiam et al., 2023) generates concise video level descriptions and corresponding edit-
ing prompts, which are then verified by human annotators for accuracy and consistency; Grounded
SAM2 (Ren et al., 2024) produces instance level masks for the target regions, followed by manual
checks to ensure temporal consistency. We will release the verified descriptions and prompts, mask
sequences, and evaluation scripts, and we report the distribution of subject counts in Figure 13 to
facilitate reproduction and comparison.

B CENTER MATCHING ERROR METRIC

We assess subject count and layout consistency before and after editing with a layout aware, align-
ment free metric, since pixel overlap measures such as mIoU cannot capture merges, splits, or relo-
cations. We introduce center matching error (CM-Err). For frame t of width W and height H , let
At = {aj} and Bt = {bk} be the sets of bounding boxes from the original and edited frames. For a
box b = (xmin, ymin, xmax, ymax), its center is c(b) =

(
(xmin + xmax)/2, (ymin + ymax)/2

)
. The

normalized center distance between aj and bk is

d
(t)
jk =

∥∥c(aj)− c(bk)
∥∥
2√

W 2 +H2
∈ [0, 1]. (7)

Using d
(t)
jk as the cost, we compute the minimal one to one matching between At and Bt; let Mt be

the number of matched pairs and Ut = |At| + |Bt| − 2Mt the number of unmatched boxes. The
frame level error is

CM-Err(t) =

∑Mt

i=1 d
(t)
i + Ut

Mt + Ut
, (8)

8This is a new, anonymous user.
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where d
(t)
i is the normalized distance of the ith matched pair and each unmatched box incurs a unit

penalty. For a video with T frames, the score is

CM-Err =
1

T

T∑
t=1

CM-Err(t). (9)

Lower values indicate better preservation of subject count and center locations, while higher values
reflect additions or removals of subjects, merges or splits, and spatial displacements.

C EXPERIMENTS

Table 3: Comparison of different video editing methods on loveu-tgve-2023.

Methods Warp-Err ↓ CLIP-T ↑ CLIP-F ↑ Q-Edit ↑ CM-Err ↓
VideoGrain (Yang et al., 2025) 2.14 25.22 96.78 11.78 3.05
TokenFlow (Geyer et al., 2023) 2.23 24.22 97.20 10.86 3.54
FateZero (Qi et al., 2023) 2.18 23.80 97.11 10.91 3.75
DMT (Yatim et al., 2024) 1.90 23.82 97.18 12.53 3.61
VideoPainter (Bian et al., 2025) 2.12 22.95 95.95 10.82 4.04
IMAGEdit 2.04 25.99 97.23 12.74 2.66

The loveu-tgve-2023 Dataset Results. As noted above, we achieved strong results on the proposed
MSVBench. To further validate our method, we also evaluate on the loveu-tgve-2023 dataset, where
more than 80% of samples contain single or few subjects. As shown in Table 3, IMAGEdit attains
the best semantic consistency and editing quality (CLIP-T 25.99, CLIP-F 97.23, Q-Edit 12.74) and
the best layout and count preservation (lowest CM-Err 2.66), indicating better retention of category
fidelity, subject centers, and counts after editing. For temporal and geometric stability, Warp-Err
reaches 2.04, second only to DMT at 1.90, placing IMAGEdit in the leading group and balancing
low distortion with high quality. Compared with VideoGrain and TokenFlow, IMAGEdit shows
more balanced gains across metrics, demonstrating strong generalization and consistency in single
or few subject scenarios.

The Influence of τ . We vary the injection threshold τ from 0 to 50 to study how long the mask
motion sequence should guide the denoising process. As shown in Figure 14, very small values of τ
provide insufficient structural guidance, leading to boundary leakage, imperfect occlusion ordering,
and occasional identity drift. In contrast, very large values inject fusion signals into late refinement
steps and introduce artifacts such as texture corruption and visible seams. Mid range settings yield
a better balance: around τ = 30 the edits preserve structure and layering while allowing the back-
bone to synthesize high frequency details, producing clean boundaries and stable appearance. We
therefore set τ=30 based on cross validation on a held out split.

�  =  0 �  = 50�  = 40�  = 30�  = 10 �  = 20

Figure 14: Ablation on τ . The parameter τ is varied between 0 and 50 to systematically examine its effects.
We show the last frame of the edit video

More Qualitative Results. Figure 15 presents additional side by side comparisons on continuous
frames, covering fast motion, crowded scenes, and multi subject counts. Compared with baseline,
IMAGEdit preserves category fidelity and identity consistency, produces cleaner boundaries, and
yields edits with better temporal consistency, with fewer leakage artifacts and less flicker.
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 Four [Ice Hockey Players -> Astronauts] battling intensely for the puck.

Four [Hungry Dogs -> Robot Wolves] surrounding a bowl of food outdoors.
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Eight [Hurdlers -> Iron-Men] leap mid-race over purple hurdles.

Figure 15: More qualitative comparisons between IMAGEdit and baseline methods on the MSVBench dataset.

More Applications Results. Figure 16 showcases the extensible applications of IMAGEdit across
diverse scenarios, including (a) background editing, (b) multi round editing, (c) specified subject
editing, (d) long video editing, (e) face swapping, (f) partial editing, (g) clothing swapping, and (h)
viewpoint change editing. These results indicate that IMAGEdit preserves non-target regions and
maintains strong temporal consistency across tasks and complex scenes without fine-tuning.

D FUTURE WORK

Although IMAGEdit has demonstrated strong performance, future work can explore a parameterized
motion and expression retargeting module built on latent diffusion representations. By driving sub-
ject level video editing with continuously controllable spatiotemporal parameters, we aim to further
improve temporal consistency and editing accuracy in long horizon and heavy occlusion scenarios.
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（a）Video background editing: Automn Forest -> Starry Sky (b) Multi-round editing: Turn1, Horse Riders -> Gokus. Turn2, Gokus -> Iron-Men

(c) Specified subject editing: Two People (arm wrestling) -> Two Supermen (d) Long video editing:  Frame 0, Frame 40, and Frame 80. Glasses -> Sunglasses 

(e) Video face swapping (f) Partial editing
 Up:Add Glasses. Down: Remove Glasses 

(g) Video clothing swapping
Plaid Shirt -> Business Suit  

(h) Perspective movement video editing
The Eiffel Tower ->  The Space Needle

Figure 16: More qualitative comparisons on multi-scenario applications.

E LLM USAGE

Large language models (LLMs), specifically GPT-5, were used solely for grammar correction, sen-
tence refinement, and to improve clarity and coherence in the Introduction and Method sections.
All scientific content, experimental design, analyses, and conclusions were conceived, verified, and
critically reviewed by the authors. The LLM did not generate factual claims, experimental results,
or mathematical derivations.
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