
Generating Diverse Cooperative Agents by Learning Incompatible Policies

Rujikorn Charakorn 1 Poraramte Manoonpong 1 2 Nat Dilokthanakul 3

Abstract
Effectively training a robust agent that can coop-
erate with unseen agents requires diverse training
partner agents. Nonetheless, obtaining coopera-
tive agents with diverse behaviors is a challeng-
ing task. Previous work proposes learning a di-
verse set of agents by diversifying the state-action
distribution of the agents. However, without in-
formation about the task’s goal, the diversified
behaviors are not motivated to find other impor-
tant, albeit non-optimal, solutions, resulting in
only local variations of a solution. In this work,
we propose to learn diverse behaviors by looking
at policy compatibility while using state-action
information to induce local variations of behav-
iors. Conceptually, policy compatibility measures
whether policies of interest can collectively solve
a task. We posit that incompatible policies can be
behaviorally different. Based on this idea, we pro-
pose a novel objective to learn diverse behaviors.
We theoretically show that our novel objective
can generate a dissimilar policy, which we incor-
porate into a population-based training scheme.
Empirically, the proposed method outperforms
the baselines in terms of the number of discov-
ered solutions given the same number of agents.

1. Introduction
Understanding the interaction between artificial intelligence
(AI) and humans is crucial for the development of better
AI systems (Lavin et al., 2021). However, developing and
evaluating in the real world is difficult and expensive. Con-
sequently, AI researchers resort to agent-based modeling
(ABM) simulations that treat both parties as agents (Helbing,
2012). ABM maintains the essence of human-AI interac-

1Vidyasirimedhi Institute of Science and Technology (VIS-
TEC) 2University of Southern Denmark (SDU) 3King Mongkut’s
Institute of Technology Ladkrabang (KMITL). Correspondence
to: Rujikorn Charakorn <rujikorn.c_s19vistec.ac.th>, Nat Dilok-
thanakul <nat.di@kmitl.ac.th>.

AI for Agent-Based Modelling (AI4ABM) Workshop at the 39 th

International Conference on Machine Learning, Baltimore, Mary-
land, USA, 2022. Copyright 2022 by the author(s).

tion (HAI) while being computationally cheaper than its
real-world counterpart, allowing efficient investigation of
HAI without the inconvenience of real-world experiments
(Macal & North, 2005).

One of the most important topics in HAI is the cooperation
between AI and humans. For an AI agent to be considered
good at collaboration, it must be able to react and adapt
to various (human) partner’s behaviors while completing
the task at hand (Carroll et al., 2019). Still, cooperating
with unseen agents (e.g., humans) in multi-agent systems
is a challenging problem. Current state-of-the-art multi-
agent reinforcement learning techniques can produce highly
competent agents in cooperative settings (Lowe et al., 2017;
Sunehag et al., 2017; Mahajan et al., 2019; Peng et al.,
2021). Nonetheless, those agents are often overfitted to their
training partners and cannot coordinate with unseen agents
effectively (Lanctot et al., 2017; Carroll et al., 2019; Bard
et al., 2020; Hu et al., 2020).

The problem of working with unseen partners (i.e., ad-hoc
teamwork problem (Stone et al., 2010)) has been tackled in
many different ways (Albrecht & Stone, 2018; Grover et al.,
2018; Carroll et al., 2019; Shih et al., 2020; Rahman et al.,
2021; Strouse et al., 2021; Xie et al., 2021; Mirsky et al.,
2022; Parekh et al., 2022; Wang et al., 2022). These methods
allow the agents to learn how to coordinate with unseen
agents and, sometimes, humans. However, the success of
these methods relies heavily on the quality of the pool of
training partner agents. It has been shown that the diversity
of the training partners is crucial to the generalization of
cooperative agents (Charakorn et al., 2020; 2021; McKee
et al., 2021). In spite of its importance, obtaining a diverse
set of partners is still an open problem.

The simplest way to generate training partners is to use hand-
crafted policies (Leibo et al., 2021; Papoudakis et al., 2021;
Xie et al., 2021; Wang et al., 2022) or agents produced from
multiple runs of self-play training process (Grover et al.,
2018; Charakorn et al., 2020; Strouse et al., 2021). These
methods, however, are not scalable nor guaranteed to pro-
duce diverse behaviors. Many prior works recognize the
importance of diverse training partner agents in the coop-
erative domain and propose techniques aiming to generate
diverse agents by changing the state visitation and action
distributions (Lucas & Allen, 2022), or joint trajectory dis-

Generating Diverse Cooperative Agents by Learning Incompatible Policies

tribution of the agents (Mahajan et al., 2019; Lupu et al.,
2021). However, Lupu et al. (2021) discuss a potential draw-
back of using such information from trajectories to diversify
the behaviors. Specifically, agents that make locally differ-
ent decisions do not necessarily exhibit different high-level
behavior.

To avoid this potential pitfall, we propose an alternative way
to diversify behaviors using information about the task’s
objective. In contrast to previous work that uses joint tra-
jectory distribution as a representation of behavior, we use
policy compatibility instead. In multi-agent systems, pol-
icy compatibility evaluates whether policies of interest can
collaboratively complete a task. Since cooperative environ-
ments commonly require all agents to coordinate on the
same solution, if the policies have learned different solu-
tions, then they cannot coordinate effectively. Consequently,
if an agent discovers a solution that is incompatible with
all other agents in a population, then the solution must be
unique relative to the population. Motivated by this intu-
ition, we introduce a novel training objective that regularizes
agents in a population to find solutions that are compatible
with their partner agents while not compatible with any other
agents in the population. We call this method “Learning
Incompatible Policies” (LIPO).

We theoretically show that optimizing the proposed objec-
tive will yield a dissimilar policy, which we extend further
for a population-based training scheme. Furthermore, we
utilize a mutual information objective to diversify the local
behaviors of each joint policy. Empirically, LIPO can dis-
cover more solutions than previous methods, given the same
population size.

2. Preliminaries
Our main focus lies in fully cooperative environments which
are modeled as decentralized partially observable Markov
decision processes (Dec-POMDP) (Bernstein et al., 2002).
In this work, we start our investigation in the two-player
variant. A two-player Dec-POMDP is defined by a tu-
ple (S,A1,A2,Ω1,Ω2, T,O, r, γ,H) where S is the state
space, A ≡ A1 ×A2 and Ω ≡ Ω1 ×Ω2 are the joint-action
the joint-observation space of player 1 and player 2. The
transition probability from state s to s′ after taking a joint
action (a1, a2) is given by T (s′|s, a1, a2). O(o1, o2|s) is
the conditional probability of observing a joint observation
(o1, o2) under state s. All players share a common reward
function r(s, a1, a2), γ is the reward discount factor and H
is the horizon length.

Player 1 and 2, with potentially different observation and
action spaces, are controlled by policy π1 and π2. At
each timestep t, the players observe ot = (o1t , o

2
t) ∼

O(o1t , o
2
t |st) under state st ∈ S and produces a joint ac-

tion at = (a1t , a
2
t) ∈ A sampled from the joint policy

π(at|τt) = π1(a1t |τ1t)π2(a2t |τ2t) where τ1t and τ2t con-
tain a trajectory history until timestep t from the per-
spective of each agent. All players receive a shared re-
ward rt = r(st, a

1
t , a

2
t). The return of a joint trajectory

τ = (o0, a0, r0, ..., rH−1, oH) ∈ T ≡ (Ω ×A× R)H can
be written as G(τ) =

∑H
t=0 γ

trt. The expected return of a
joint policy (π1, π2) is J(π1, π2) = Eτ∼ρ(π1,π2)G(τ) =∫
τ
P (τ |π1, π2)G(τ) where ρ(π1, π2) is the distribution

over trajectories of the joint policy (π1, π2) and P (τ |π1, π2)
is the probability of τ being sampled from a joint policy
(π1, π2). Since we will be working with multiple joint
policies, we use subscript to denote different joint poli-
cies e.g., πA = (π1

A, π
2
A) is a different joint policy from

πB = (π1
B , π

2
B). Furthermore, we will use i, j ∈ {1, 2}

where i ̸= j as superscripts to refer to different player roles.
Finally, policies (π1

A, π
2
A) from a joint policy πA aim to

maximize J(π1
A, π

2
A).

Since we are interested in creating dissimilar policies for any
Dec-POMDP, it is useful to have an environment-agnostic
measure that captures the similarity of policies. First, we
consider a measure that can compute the similarity between
policies of the same role i, e.g., πi

A and πi
B . We can measure

this with the probability of a joint trajectory τ produced
by either πi

A or πi
B . However, in the two-player setting,

we need to pair these policies with a reference policy πj
ref.

Specifically, πi
A and πi

B are considered similar if they are
likely to produce the same trajectories when paired with a
reference policy πj

ref. We define similar policies as follows:

Definition 2.1 (Similar policies). Considering two policies
of the same role i, πi

A and πi
B , and a reference policy πj

ref
of a different role j, πi

A is similar to πi
B up to ϵ if and only

if |1− P (τ |πi
A,πj

ref)

P (τ |πi
B ,πj

ref)
| ≤ ϵ;∀τ ∈ T , where 0 ≤ ϵ ≤ 1.

Next, we consider an alternate view on measuring similarity
between policies using policy compatibility (Section 3).
Policy compatibility measures the change in performance of
a joint policy πB before and after one of its policies πi

B is
substituted by another policy πi

A. We define compatibility
between a policy πi

A and a joint policy πB as follows:

Definition 2.2 (Compatible policies). Given a policy πi
A and

a joint policy πB , we define the compatibility ratio between

πi
A and πB as: C(πi

A, πB) :=
J(πi

A,πj
B)

J(π1
B ,π2

B)
. We say that πi

A is

compatible with πB if and only if C(πi
A, πB) ≥ 1− ϵ.

Note that LIPO can be applied to environment with more
than two players with a slight modification. Specifically,
a policy πj would represent the joint policy of all players
except player i, πj(ajt |τ

j
t) = Πk ̸=iπ

k(akt |τkt).

Generating Diverse Cooperative Agents by Learning Incompatible Policies

3. Learning Incompatible Policies (LIPO)
The goal of LIPO is to learn several joint policies that are
dissimilar to each other and, therefore, create a pool of
diverse partner agents. We theoretically show that policy
compatibility can be used to identify whether two policies
are different. Based on this observation, we propose a novel
training objective that produces behaviorally diverse poli-
cies. Finally, we incorporate a mutual information objective
that encourages each policy to learn local variations.

3.1. Identifying Distinct Policies with Policy
Compatibility

In this section, we motivate our objective by looking at two
joint policies: πA = (π1

A, π
2
A) and πB = (π1

B , π
2
B). The

goal is for πA to learn a different solution from πB via the
compatibility criterion. Importantly, the compatibility crite-
rion can be computed without direct access to the trajectory
distribution, which can be difficult to estimate.

Under the following assumptions, we can simplify the set-
ting such that a simple relationship between similarity mea-
sure and compatibility criterion emerges.

Assumption 3.1. A common ϵ is used for Def. 2.1 and 2.2

Assumption 3.2. P (τ |πi
B , π

j
B) > 0;∀τ ∈ T

Assumption 3.3. G(τ) > 0;∀τ ∈ T

By reasoning about the expected return under different pairs
of policies, we derive our main result. (The proof can be
found in Appendix A.)

Theorem 3.4. If πi
A is similar to πi

B with πj
B as a a refer-

ence, then πi
A is compatible with πB .

Corollary 3.5 (Contrapositive of Theorem 3.4). If πi
A is not

compatible with πB , then πi
A is not similar to πi

B .

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
SimilarHigh return

(a)

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
DissimilarLow return

(b)

Low return

(𝜋𝜋𝐴𝐴1 , 𝜋𝜋𝐴𝐴2)

(𝜋𝜋𝐵𝐵1 , 𝜋𝜋𝐵𝐵2)
Fixed

High return

(c)

Figure 1: Conceptual illustration of Theorem 3.4 (a) and
Corollary 3.5 (b). Solid lines represent given relationships
and dotted lines represent implied relationships. The objec-
tive of πA (Eq. 1) in relation to πB is shown by (c).

The result from Corollary 3.5 shows that we can find a
policy πi

A that is not similar to πi
B by decreasing its com-

patibility ratio with πB until they are incompatible, i.e.,
C(πi

A, πB) < 1 − ϵ. As a result, we can create πA that is
not similar to πB by minimizing C(π1

A, πB) and C(π2
A, πB).

Additionally, we can ensure that πA learns a meaningful so-
lution by maximizing J(π1

A, π
2
A). Assuming that πB has

learned a solution and is fixed, the optimization objective of
πA can be written as

max
π1
A,π2

A

J(π1
A, π

2
A)− λXP(C(π1

A, πB) + C(π2
A, πB)),

where λXP > 0 is a hyper-parameter controlling importance
of the compatibility term. Since the denominators of the
compatibility ratios do not depend on πA, therefore, the
objective becomes

max
π1
A,π2

A

J(π1
A, π

2
A)− λXP(J(π

1
A, π

2
B) + J(π1

B , π
2
A)) (1)

In practice, we use the parameter sharing technique for
better sample efficiency and faster convergence (Tan, 1993;
Foerster et al., 2018; Rashid et al., 2018). Assuming that
a policy πi

A is a neural network parameterized by θiA, this
means that for a joint policy (π1

A, π
2
A), we have θ1A = θ2A.

Still, π1
A and π2

A can behave differently as they observe
different parts of the environment and have a different player
indicator concatenated with their local observations. We
denote the expected joint return of self-play (SP) trajectories
– where a policy would interact with a clone of itself – as
JSP(πA) := J(π1

A, π
2
A) and expected joint return of cross-

play (XP) trajectories – where policy for each agent will be
chosen from a different joint policy – as JXP(πA, πB) :=
J(π1

A, π
2
B) + J(π1

B , π
2
A). By incorporating the parameter

sharing technique, we can rewrite Eq. (1) as

max
πA

JSP(πA)− λXPJXP(πA, πB) (2)

3.2. Learning a Population of Diverse Policies

Figure 2: Hypothetical expected return of πA trained with
JLIPO when paired with different partner policies. The red
dashed line shows the expected return when the partner
policy is πA, i.e., πB = πA.

We propose to use a population of agents P = {πA|1 ≤
A ≤ N} where each policy is represented by a neural
network with a set of parameters θA and N is the population

Generating Diverse Cooperative Agents by Learning Incompatible Policies

High return Dissimilar Low return

... ...

MI-based

...

Self-play TrajeDi LIPO

.........

Figure 3: An overview of LIPO compared to previous methods.

size. Ultimately, we want each member of the population to
have a different behavior relative to the rest of the population.
We can write such an objective by expanding the cross-play
term in Eq. (2) to cover the entire population. For a policy
πA in a population P , its objective becomes

max
πA

JLIPO(πA,P) = JSP(πA)− λXPJ̃XP(πA,P), (3)

where J̃XP(πA,P) = max
πB∈P−A

JXP(πA, πB), (4)

P−A = P\{πA}

Intuitively, πA should behave differently from every policy
in the population. So, we use the max operation as an
aggregation function in Eq. 4. We refer to JLIPO as the
compatibility gap between a policy πA and a population P .
Fig. 2 shows graphical interpretation of this objective.

We can see that the compatibility gap objective only uses the
expected return (JSP and JXP), and therefore it is insensitive
to the state and action information from trajectories. We
argue that this distinction of LIPO helps the agents discover
diverse solutions in situations in which previous methods
might be ineffective (Sec. 4.1). Fig. 3 shows the difference
between the training objective of our method and other
works.

3.3. Inducing Variations in Each Policy

In the previous section, we propose to find a dissimilar
policy πA by maximizing the compatibility gap. It is im-
portant to note that πA could also have different local varia-
tions to its solution that still satisfy the compatibility gap,
JLIPO(πA, P). For example, it is possible that there exists
different behaviors that are fully compatible. We propose
to capture such behavioral variations by using a mutual in-
formation objective (Kumar et al., 2020; Osa et al., 2022;
Lucas & Allen, 2022). Specifically, we condition the policy
on a latent variable z such that a policy πA has the form of

πA(a|τ) = Ez1∼p(z1),z2∼p(z2)π
1
A(a

1|τ1, z1)π2
A(a

2|τ2, z2)
where p(z1, z2) is a pre-defined prior distribution. We can
promote solution variety by maximizing I({o1, a1}; z1) and
I({o2, a2}; z2), where I(·; ·) is the mutual information be-
tween two random variables. Intuitively, this objective en-
courages each policy to observe different observation and
perform different actions given different values of the latent
variable. However, maximizing I({oi, ai}; zi) directly is
intractable, instead we optimize the lower bound of the mu-
tual information (Kingma & Welling, 2013; Mahajan et al.,
2019; Osa et al., 2022):

I({oi, ai}; zi) = H(zi)−H(zi|{oi, ai})
= H(zi) + Ezi,(oi,ai)[log p(z

i|oi, ai)]
≥ H(zi) + Ezi,(oi,ai)[log qϕA

(zi|oi, ai)]

where qϕA
(zi|oi, ai) is an approximation of the true poste-

rior p(zi|oi, ai) parameterized by ϕA. Thus, maximizing
I({o1, a1}; z1) and I({o2, a2}; z2) is an optimization prob-
lem that can be written as

max
πA,ϕA

1

2

2∑
i=1

H(zi) + Ezi,(oi,ai) log qϕA
(zi|oi, ai) (5)

In previous work, shared z (i.e., z1 = z2) allows all policies
to collectively switch between different modes of behavior
(Mahajan et al., 2019). However, LIPO uses independently
sampled z as it utilizes z for a different purpose. Specif-
ically, LIPO maximizes JLIPO to learn diverse solutions
and optimizes the MI objective to learn variations of each
solution. That is, the MI objective does not impact the di-
versity between different policies but increases variations
of a learned solution of each individual policy. Importantly,
different variations of a policy πA must be compatible with
each other to still maximize JSP(πA).

Generating Diverse Cooperative Agents by Learning Incompatible Policies

3.4. Implementation

Algorithm 1 Training process of LIPO (on-policy)
This pseudocode is based on self-play. Blue text is related to the
MI objective. LIPO specific code is highlighted in green.
Input: A Population P = {πA |1 ≤ A ≤ N}, number of self-
play and cross-play episodes per iteration ESP and EXP.
while not done do

for A ∈ {1, ..., N} do
Bsp ← GetEpisodeRollouts(πA, πA, ESP)
Compute JSP(πA) using Bsp

Bxp ← GetCrossPlayRollouts(πA,P, EXP)
Compute J̃XP(πA,P) using Bxp (Eq. 4)
Compute LMI (Eq. 6) using Bsp and Bxp

θA ← θA −∇θA [−JSP+λXPJ̃XP+λMILMI]
ϕA ← ϕA − λMI∇ϕALMI

Function GetEpisodeRollouts(πA, πB , E):
B ← {}
for episode ∈ {1, .., E

2
} do

z1, z2 ∼ p(z1, z2)
τAB ∼ ρ(π1

A(·|·, z1), π2
B(·|·, z2))

τBA ∼ ρ(π1
B(·|·, z1), π2

A(·|·, z2))
B ← B ∪ {τAB, τBA}

return B
Function GetCrossPlayRollouts(πA,P, EXP):
Bxp ← {}
for πB ∈ P−A do
B ← GetEpisodeRollouts(πA, πB ,

EXP
|P−A|)

Bxp ← Bxp ∪ B
return Bxp

We implement LIPO on top of the multi-agent version of
PPO (MAPPO) (Schulman et al., 2017; Yu et al., 2021),
which is an on-policy algorithm. For simplicity, we use
a feed-forward architecture for all neural networks. Each
member A ∈ {1, ..., N} has a joint policy (π1

A, π
2
A) and a

discriminator qϕA
. MAPPO is used for both maximizing

JSP and minimizing JXP. We train all joint policies in the
population concurrently.

In practice, we modify the MI objective (Eq. 5) such that
it is differentiable with respect to the policy πi

A. Specif-
ically, we modify the variational posterior qϕA

such that,
instead of a sampled action ai, it takes the whole distribu-
tion πi

A(·|oi, zi) as an input, i.e., qϕA
(z|o, πi

A(·|oi, zi)). In
contrast to previous MI-based approaches (Eysenbach et al.,
2018; Sharma et al., 2019; Jiang & Lu, 2021; Lucas & Allen,
2022), we can optimize I({oi, ai}; zi) directly without com-
puting an auxiliary reward (Mahajan et al., 2019; Osa et al.,
2022). The loss function of the modified MI objective is

LMI(πA, ϕA) =

− 1

2

2∑
i=1

Ezi,(oi,ai) log qϕA
(zi|oi, πi

A(·|oi, zi))) (6)

We set z as a discrete variable and use the uniform distribu-
tion for p(z1) and p(z2). At the beginning of each episode,

each policy is given an independently sampled z that will
be used until the end of the episode. The overall objective
of a policy πA in a population P becomes

max
πA,ϕA

JSP(πA)− λXPJ̃XP(πA,P)− λMILMI(πA, ϕA)

In each training iteration, LIPO collects self-play and cross-
play trajectories of all policies combinations to compute
JSP, J̃XP and LMI. Algorithm 1 shows the pseudocode for
the training process of LIPO.

4. Experiments
In this section, we study the effectiveness of LIPO under two
cooperative environments to answer the following questions:
(i) Can LIPO discover diverse solutions? (ii) How does the
MI objective affect the behavior of LIPO agents? In this
work, we compared LIPO with cooperative MARL meth-
ods that do not require domain knowledge. Our baselines
include:

Multiple runs of self-play (Multi SP): A simple but effec-
tive way to produce multiple agents that could learn different
solutions by training multiple SP agents that have different
neural network initializations and random seeds (Charakorn
et al., 2020; Strouse et al., 2021). Specifically, each run
produces a joint policy πA that maximizes JSP(πA) using
MAPPO.

Self-play with MI (SPMI): A single run of SP agent trained
with added MI objective I(z|oi, ai). SPMI uses a shared z
for both policies and consider each z as a different joint
policy. We train SPMI using the same training procedure as
LIPO by setting N = 1, λXP = 0 and z1 = z2.

MAVEN (Mahajan et al., 2019): An algorithm designed
specifically for learning diverse solutions in cooperative
multi-agent environments. A joint policy is represented as
π(·|τ, z) and each mode of behavior is represented by the
latent variable z. Similar to SPMI, MAVEN uses a shared z
for all policies.

Multi SPMI and Multi MAVEN: A population containing
joint policies from multiple runs of a corresponding method.
Like Multi SP, each run has different neural network initial-
izations and random seeds.

TrajeDi (Lupu et al., 2021): A method that produces a
population of diverse agents that also maximize the expected
return in cooperative environments. The diversity measure
of this method is based on the Jensen-Shannon divergence
(JSD) between the trajectory distribution of each policy.
More details of all environments and baselines can be found
in the appendix.

Generating Diverse Cooperative Agents by Learning Incompatible Policies

33300

33300

33300

00022

00022

0

0

0

0

0

000001

(a) (b) (c)

Figure 4: Visualization of the environments: (a) An exam-
ple payoff matrix of a CMG game with (M = 3, km =
m, rm = m) (b, c) The agents (orange) and landmark posi-
tions (blue) of PMR-C and PMR-L.

4.1. Can LIPO discover diverse solutions?

We start our investigation in (i) One-Step Cooperative Ma-
trix Game (CMG) and (ii) Point Mass Rendezvous (PMR).

One-Step Cooperative Matrix Game (CMG): A game
of CMG is defined by a tuple (M, {km}, {rm}) where M
is the number of solution. For m ∈ {1, ...,M}, km is
the number of compatible actions and rm is the reward of a
solution m. The game is stateless and terminate immediately
after both players simultaneously choose an action. By
choosing the same solution, both player get a reward rm
associated with the chosen solution. We consider two setups
of CMG: sub-optimal solutions (CMG-S) and hard-to-find
solutions (CMG-H). We set (M = 32, km = 8, rm =
0.5 ∗ (1 + m−1

M−1)) and (M = 32, km = m, rm = 1)
for CMG-S and CMG-H respectively. An example payoff
matrix is shown in Fig. 4a.

Point Mass Rendezvous (PMR): The environment is based
on the Multi-Agent Particle Environment (Lowe et al., 2017;
Terry et al., 2020). The goal of this environment is for the
two agents to navigate to a landmark together. Doing so will
reward both agents as long as they stay on top of a landmark.
We consider each landmark as a solution in this environ-
ment. There are two modes in this environment: Circle
(PMR-C) and Line (PMR-L). In Circle, landmarks are
distributed evenly on a circumference of a circle. Thus, all
landmarks are equally optimal. In Line, landmarks are
placed in a vertical line. In this scenario, closer landmarks
are easier to be found, while further landmarks are harder
to be discovered.

The population size of MI-based methods (SPMI and
MAVEN) is equal to the number of dimensions of the la-
tent variable |z|. In methods that require multiple runs
(Multi SPMI and Multi MAVEN), the population size is
n× |z| where n is the number of runs. For Multi SPMI and
Multi MAVEN, we use |z| = 8 in all environments. For
population-based methods (Multi SP, TrajeDi, and LIPO),
the population size is the number of joint policies in the

population.

Results: Fig. 5 shows the number of learned solutions as
the population size increases. Ideally, if the population size
increases by one, one more solution should be discovered, as
depicted by the dashed line in the figure. In all environments,
LIPO can discover more solutions than the baselines given
the same population size. LIPO is also better at discovering
sub-optimal solutions as illustrated in CMG-S and PMR-L
(Fig. 5a,5d). Also, we have experimented with large λMI
for the baselines. This helps the baselines discover more
solutions. However, if λMI is too large, we find that the
baselines fail to produce capable policies. Hyperparameters
of all methods can be found in the appendix.

4.2. How does the MI objective effect the behavior of
LIPO agents?

Here, we investigate further into how the MI objective af-
fects the behaviors of produced policies. Fig. 6 shows the
behaviors of policies produced by LIPO with and without
the MI objective in PMR-C. We can see the effect of the
MI objective in the distributions of the trajectories, which
exhibit larger variations given a small MI regularization
λMI = 0.5. With or without the MI regularization, LIPO
discovers all the landmarks with N = 4.

5. Related Work
Mutual information objectives have been used in reinforce-
ment learning to learn diverse behaviors. In the single-agent
domain, (Kumar et al., 2020; Osa et al., 2022) propose to
optimize the RL and MI objective simultaneously. The
MI objective helps the agent learn diverse solutions for a
specific task and increases generalization to unseen envi-
ronment instances. A similar idea has also been applied to
the cooperative multi-agent domain. For instance, MAVEN
(Mahajan et al., 2019) optimizes RL and an MI objective to
encourage the agents to explore in a committed manner and
discover diverse solutions. Also, Any-play (Lucas & Allen,
2022) uses a similar objective to produce training partners
with many solutions for an adaptive agent. In contrast, our
approach uses the MI objective to regularize each policy to
learn local variations of each solution.

Population-based training is another technique that has been
proposed to learn a population of diverse solutions. DvD
(Parker-Holder et al., 2020) introduces a metric distance
between policies using policy-embedding and learns diverse
solutions by maximizing the distance between policies while
also maximizing the expected return. In the multi-agent co-
operative domain, (Canaan et al., 2019; 2020) use a Quality
Diversity (QD) algorithm (Mouret & Clune, 2015; Pugh
et al., 2016) to produce a population of agents with a differ-
ent behavioral niche attached to each agent. QD, however,

Generating Diverse Cooperative Agents by Learning Incompatible Policies

8 16 32 64

0

8

16

32

Multi SP

SP MI

MAVEN

TrajeDi

Multi SP MI

Multi MAVEN

LIPO

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

8 16 32 64

0

8

16

32

Multi SP

SP MI

MAVEN

TrajeDi

Multi SP MI

Multi MAVEN

LIPO

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(a) Number of learned solutions in CMG-S

8 16 32 64

0

8

16

32

Multi SP

SP MI

MAVEN

TrajeDi

Multi SP MI

Multi MAVEN

LIPO

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(b) Number of learned solutions in CMG-H

1 2 4 8 16 32

1

2

3

4

Multi SP

SP MI

MAVEN

TrajeDi

Multi SP MI

Multi MAVEN

LIPO

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(c) Number of learned solutions in PMR-C

1 2 4 8 16 32

1

2

3

4

Multi SP

SP MI

MAVEN

TrajeDi

Multi SP MI

Multi MAVEN

LIPO

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(d) Number of learned solutions in PMR-L

Figure 5: Number of discovered solutions in different population sizes. The error bars represent the standard errors of three
random seeds.

requires domain knowledge to encode different types of
behaviors. RPG (Tang et al., 2021) obtain diverse policies
by randomizing the factorized reward function, which is not
applicable in general. Finally, TrajeDi (Lupu et al., 2021)
produces a diverse population of agents, based on the tra-
jectory distribution, that shares a common best response
policy. Like TrajeDi, ours does not require domain-specific
knowledge. However, LIPO uses state-action information
for learning local variations and utilizes expected returns of
different pairs of policies to promote behavioral diversity.

The idea of using the empirical return in multi-agent games
as a diversity metric has been explored in the context of find-
ing diverse solutions in non-transitive competitive games
(Liu et al., 2021; Balduzzi et al., 2019; Perez-Nieves et al.,
2021). In particular, Liu et al. share some similar ideas
with this work. They propose to use both expected return
when encountering different opponents and state-action in-
formation to promote diversity in a population of agents
in zero-sum games. LIPO can be thought of as an alterna-

tive approach designed specifically for cooperative environ-
ments.

6. Discussion and Conclusion
Discussion An agent trained with LIPO are incentivized
to act adversarially toward agents that behave differently
from itself. This behavior might not be desirable for certain
downstream tasks. For example, agents produced by LIPO
might not be suitable for interacting with humans as they
would refuse to conform with the user, which is the same
downside found in Multi SP agents (Carroll et al., 2019;
Bard et al., 2020; Hu et al., 2020). However, we believe
that training an adaptive agent with these agents, which is
the main motivation of this work, would have an opposite
effect, in that the adaptive agent would try to comply with
what its current partner is doing. In previous work, adaptive
agents trained with Multi SP have shown such a behavior
(Charakorn et al., 2020; Strouse et al., 2021).

Generating Diverse Cooperative Agents by Learning Incompatible Policies

(a) λMI = 0.5 (b) λMI = 0.5 (c) λMI = 0.5 (d) λMI = 0.5

(e) λMI = 0 (f) λMI = 0 (g) λMI = 0 (h) λMI = 0

Figure 6: Trajectories of agents trained by LIPO with (a,b,c,d) and without (e,f,g,h) the MI objective in PMR-C. Each row
shows four joint policies produced with a single run of LIPO training. Different colors of the trajectories correspond to
different values of the latent variable z. The starting positions of both players are shown by the orange and green circles.
The blue circles represent the landmarks.

Limitations Although LIPO can be fully parallelized, it
requires more computation than the baselines to get an ac-
curate approximation of J̃XP, which makes it harder to scale
up to bigger population size. Instead of collecting all policy
pairs, sampling a portion of policy pairs to approximate J̃XP
could reduce computation cost and training time. Addition-
ally, LIPO requires an additional hyperparameter λXP. If
λXP is too big, it is possible that a joint policy would focus
on minimizing J̃XP and struggle to maximize JSP, which
will result in an incompetent joint policy. An adaptive mech-
anism that selects a suitable value for λXP at different stages
of training could help increase training stability.

Future work Evaluating the effectiveness of produced
policies in different downstream tasks could give additional
metrics for "goodness" of the populations. For example,
they can be used as training partners for an adaptive agent
or training a neural network for agent modeling. These
tasks will be included in our future work. Furthermore,
more complex cooperative environments will be included in
future work to properly challenge LIPO and understand its
potential failure modes.

Conclusion We propose LIPO, a method that can create
a population of diverse agents in cooperative multi-agent
environments. Unlike previous work that uses state-action
information from trajectories, LIPO utilizes the concept of
compatible policies to create diverse policies. This alter-
native view of producing diverse agents makes LIPO more
robust to the state and action space of the environments. On

top of learning diverse solutions, LIPO uses the MI objective
to learn local variations of each solution. Empirically, LIPO
can produce more solutions than the baselines in various
settings.

Acknowledgement
We thank Natchaya Sricom for drawing Fig. 1 and 3.

References
Albrecht, S. V. and Stone, P. Autonomous agents modelling

other agents: A comprehensive survey and open problems.
Artificial Intelligence, 258:66–95, 2018.

Balduzzi, D., Garnelo, M., Bachrach, Y., Czarnecki, W.,
Perolat, J., Jaderberg, M., and Graepel, T. Open-ended
learning in symmetric zero-sum games. In International
Conference on Machine Learning, pp. 434–443. PMLR,
2019.

Bard, N., Foerster, J. N., Chandar, S., Burch, N., Lanctot,
M., Song, H. F., Parisotto, E., Dumoulin, V., Moitra, S.,
Hughes, E., et al. The hanabi challenge: A new frontier
for ai research. Artificial Intelligence, 280:103216, 2020.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,
S. The complexity of decentralized control of markov
decision processes. Mathematics of operations research,
27(4):819–840, 2002.

Canaan, R., Togelius, J., Nealen, A., and Menzel, S. Diverse

Generating Diverse Cooperative Agents by Learning Incompatible Policies

agents for ad-hoc cooperation in hanabi. In 2019 IEEE
Conference on Games (CoG), pp. 1–8. IEEE, 2019.

Canaan, R., Gao, X., Togelius, J., Nealen, A., and Menzel,
S. Generating and adapting to diverse ad-hoc cooperation
agents in hanabi. arXiv preprint arXiv:2004.13710, 2020.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T., Seshia, S.,
Abbeel, P., and Dragan, A. On the utility of learning
about humans for human-ai coordination. Advances in
neural information processing systems, 32, 2019.

Charakorn, R., Manoonpong, P., and Dilokthanakul, N. In-
vestigating partner diversification methods in cooperative
multi-agent deep reinforcement learning. In International
Conference on Neural Information Processing, pp. 395–
402. Springer, 2020.

Charakorn, R., Manoonpong, P., and Dilokthanakul, N.
Learning to cooperate with unseen agents through meta-
reinforcement learning. In Proceedings of the 20th Inter-
national Conference on Autonomous Agents and MultiA-
gent Systems, pp. 1478–1479, 2021.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2018.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradi-
ents. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Grover, A., Al-Shedivat, M., Gupta, J., Burda, Y., and Ed-
wards, H. Learning policy representations in multiagent
systems. In International conference on machine learn-
ing, pp. 1802–1811. PMLR, 2018.

Helbing, D. Agent-based modeling. In Social self-
organization, pp. 25–70. Springer, 2012.

Hu, H., Lerer, A., Peysakhovich, A., and Foerster, J. “other-
play” for zero-shot coordination. In International Con-
ference on Machine Learning, pp. 4399–4410. PMLR,
2020.

Jiang, J. and Lu, Z. The emergence of individuality. In
International Conference on Machine Learning, pp. 4992–
5001. PMLR, 2021.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kumar, S., Kumar, A., Levine, S., and Finn, C. One solution
is not all you need: Few-shot extrapolation via structured
maxent rl. Advances in Neural Information Processing
Systems, 33:8198–8210, 2020.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A.,
Tuyls, K., Pérolat, J., Silver, D., and Graepel, T. A uni-
fied game-theoretic approach to multiagent reinforcement
learning. Advances in neural information processing
systems, 30, 2017.

Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich,
J., Mattson, T., Anandkumar, A., Choudry, S., Rocki, K.,
Baydin, A. G., et al. Simulation intelligence: Towards
a new generation of scientific methods. arXiv preprint
arXiv:2112.03235, 2021.

Leibo, J. Z., Dueñez-Guzman, E. A., Vezhnevets, A., Aga-
piou, J. P., Sunehag, P., Koster, R., Matyas, J., Beattie,
C., Mordatch, I., and Graepel, T. Scalable evaluation
of multi-agent reinforcement learning with melting pot.
In International Conference on Machine Learning, pp.
6187–6199. PMLR, 2021.

Liu, X., Jia, H., Wen, Y., Yang, Y., Hu, Y., Chen, Y., Fan,
C., and Hu, Z. Towards unifying behavioral and response
diversity for open-ended learning in zero-sum games.
Advances in Neural Information Processing Systems, 34,
2021.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

Lucas, K. and Allen, R. E. Any-play: An intrinsic aug-
mentation for zero-shot coordination. arXiv preprint
arXiv:2201.12436, 2022.

Lupu, A., Cui, B., Hu, H., and Foerster, J. Trajectory di-
versity for zero-shot coordination. In International Con-
ference on Machine Learning, pp. 7204–7213. PMLR,
2021.

Macal, C. M. and North, M. J. Tutorial on agent-based
modeling and simulation. In Proceedings of the Winter
Simulation Conference, 2005., pp. 14–pp. IEEE, 2005.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson,
S. Maven: Multi-agent variational exploration. In Ad-
vances in Neural Information Processing Systems, pp.
7611–7622, 2019.

McKee, K. R., Leibo, J. Z., Beattie, C., and Everett,
R. Quantifying environment and population diversity
in multi-agent reinforcement learning. arXiv preprint
arXiv:2102.08370, 2021.

Mirsky, R., Carlucho, I., Rahman, A., Fosong, E., Macke,
W., Sridharan, M., Stone, P., and Albrecht, S. V. A survey
of ad hoc teamwork: Definitions, methods, and open
problems. arXiv preprint arXiv:2202.10450, 2022.

Generating Diverse Cooperative Agents by Learning Incompatible Policies

Mouret, J.-B. and Clune, J. Illuminating search spaces by
mapping elites. arXiv preprint arXiv:1504.04909, 2015.

Osa, T., Tangkaratt, V., and Sugiyama, M. Discovering
diverse solutions in deep reinforcement learning by max-
imizing state-action-based mutual information. Neural
Networks, 2022.

Papoudakis, G., Christianos, F., and Albrecht, S. V. Agent
modelling under partial observability for deep reinforce-
ment learning. In Thirty-Fifth Conference on Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=QcwJmp1sTnk.

Parekh, S., Habibian, S., and Losey, D. P. Rili: Robustly in-
fluencing latent intent. arXiv preprint arXiv:2203.12705,
2022.

Parker-Holder, J., Pacchiano, A., Choromanski, K. M., and
Roberts, S. J. Effective diversity in population based
reinforcement learning. Advances in Neural Information
Processing Systems, 33:18050–18062, 2020.

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.-A.,
Torr, P., Böhmer, W., and Whiteson, S. Facmac: Factored
multi-agent centralised policy gradients. Advances in
Neural Information Processing Systems, 34, 2021.

Perez-Nieves, N., Yang, Y., Slumbers, O., Mguni, D. H.,
Wen, Y., and Wang, J. Modelling behavioural diversity
for learning in open-ended games. In International Con-
ference on Machine Learning, pp. 8514–8524. PMLR,
2021.

Pugh, J. K., Soros, L. B., and Stanley, K. O. Quality di-
versity: A new frontier for evolutionary computation.
Frontiers in Robotics and AI, 3:40, 2016.

Rahman, M. A., Hopner, N., Christianos, F., and Albrecht,
S. V. Towards open ad hoc teamwork using graph-based
policy learning. In International Conference on Machine
Learning, pp. 8776–8786. PMLR, 2021.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G.,
Foerster, J., and Whiteson, S. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learn-
ing, pp. 4295–4304. PMLR, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman, K.
Dynamics-aware unsupervised discovery of skills. arXiv
preprint arXiv:1907.01657, 2019.

Shih, A., Sawhney, A., Kondic, J., Ermon, S., and Sadigh, D.
On the critical role of conventions in adaptive human-ai
collaboration. In International Conference on Learning
Representations, 2020.

Stone, P., Kaminka, G. A., Kraus, S., and Rosenschein, J. S.
Ad hoc autonomous agent teams: Collaboration without
pre-coordination. In Twenty-Fourth AAAI Conference on
Artificial Intelligence, 2010.

Strouse, D., McKee, K. R., Botvinick, M., Hughes, E., and
Everett, R. Collaborating with humans without human
data. arXiv preprint arXiv:2110.08176, 2021.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., et al. Value-decomposition networks
for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296, 2017.

Tan, M. Multi-agent reinforcement learning: Independent
vs. cooperative agents. In Proceedings of the tenth inter-
national conference on machine learning, pp. 330–337,
1993.

Tang, Z., Yu, C., Chen, B., Xu, H., Wang, X., Fang, F.,
Du, S., Wang, Y., and Wu, Y. Discovering diverse multi-
agent strategic behavior via reward randomization. arXiv
preprint arXiv:2103.04564, 2021.

Terry, J. K., Black, B., Grammel, N., Jayakumar, M., Hari,
A., Sulivan, R., Santos, L., Perez, R., Horsch, C., Dief-
fendahl, C., Williams, N. L., Lokesh, Y., Sullivan, R., and
Ravi, P. Pettingzoo: Gym for multi-agent reinforcement
learning. arXiv preprint arXiv:2009.14471, 2020.

Wang, W. Z., Shih, A., Xie, A., and Sadigh, D. Influencing
towards stable multi-agent interactions. In Conference on
Robot Learning, pp. 1132–1143. PMLR, 2022.

Xie, A., Losey, D., Tolsma, R., Finn, C., and Sadigh, D.
Learning latent representations to influence multi-agent
interaction. In Conference on Robot Learning, pp. 575–
588. PMLR, 2021.

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and Wu,
Y. The surprising effectiveness of mappo in cooperative,
multi-agent games. arXiv preprint arXiv:2103.01955,
2021.

https://openreview.net/forum?id=QcwJmp1sTnk
https://openreview.net/forum?id=QcwJmp1sTnk

Generating Diverse Cooperative Agents by Learning Incompatible Policies

A. Proof for Theorem 3.4
Theorem. If πi

A is similar to πi
B with πj

B as a a reference,
then πi

A is compatible with πB .

Proof. Let r(τ) =
P (τ |πi

A,πj
B)

P (τ |πi
B ,πj

B)
. Because πi

A is similar to

πi
B , then 1− ϵ ≤ r(τ) ≤ 1 + ϵ; ∀τ (Def. 2.1).

From the definition of the expected return of a policy pair
in Section 2, we have

J(πi
B , π

j
B) = Eτ∼ρ(πi

B ,πj
B)G(τ) =

∫
τ

P (τ |πi
B , π

j
B)G(τ)

Assume that Def. 2.1 and 2.2 share a common ϵ, and
P (τ |πi

B , π
j
B) > 0 and G(τ) > 0 for all τ ∈ T . Then,

we can use importance sampling to write J(πi
A, π

j
B) in rela-

tion to J(πi
B , π

j
B):

J(πi
A, π

j
B) = Eτ∼ρ(πi

A,πj
B)G(τ)

=

∫
τ

P (τ |πi
A, π

j
B)G(τ)

=

∫
τ

P (τ |πi
B , π

j
B)

P (τ |πi
B , π

j
B)

P (τ |πi
A, π

j
B)G(τ)

=

∫
τ

r(τ)P (τ |πi
B , π

j
B)G(τ)

= Eτ∼ρ(πi
B ,πj

B)r(τ)G(τ)

Because 1 − ϵ ≤ r(τ) ≤ 1 + ϵ, loose upper and lower
bounds of J(πi

A, π
j
B) can be written as:

(1− ϵ)J(πi
B , π

j
B) ≤J(πi

A, π
j
B) ≤ (1 + ϵ)J(πi

B , π
j
B)

1− ϵ ≤
J(πi

A, π
j
B)

J(πi
B , π

j
B)

≤ 1 + ϵ

This means that πi
A is compatible with πB (Def. 2.2).

∴ If πi
A is similar to πi

B , then πi
A is compatible with πB .

B. Additional Environments Details
B.1. Point Mass Rendezvous (PMR)

PMR is based on the the Multi-Agent Particle Environment
(Lowe et al., 2017; Terry et al., 2020). The observation
of each agent is relative positive of the landmarks and the
other agent to itself. In PMR-C, the start positions of the
agents are {(0.3,0), (-0.3,0)} and the landmarks positions are
{(1.59, 1.59), (1.59, -1.59), (-1.59, 1.59), (-1.59, -1.59)}. For
PMR-L, the start and the landmark positions are {(1,0),(0,1)}
and {(0,2.25),(0,0.75),(0,-0.75),(0,-2.25)}. An episode will
be terminated after 50 timesteps. The agents are incentivized
to go to the same landmark and stay close together with the

reward function

rt = 1− d(pi, c)−min
l∈L

d(l, c),

where d(·, ·) is the euclidean distance between two points, pi

is the 2-d coordinate of agent i, c is the average coordinate
of all agents, and L is the set of all landmarks.

C. Implementation Details

Table 1: Hyperparameters used by the MAPPO algorithm.

Hyperparameters Value

learning rate 0.003
Discount factor (γ) 0.99
GAE lambda 0.95
Batch size 100 (CMG), 2500 (PMR)
epochs 10
number of mini-batches 2
Entropy coefficient 0.0 (CMG), 0.03 (PMR)
Value loss coefficient 0.5
PPO clipping parameter 0.3
Gradient clipping 0.5
Adam epsilon 1e-5
Total timesteps (T) 30000 (CMG), 750000 (PMR)

All methods are implemented on top of MAPPO except
MAVEN. The critic, policy, and discriminator qϕ are 3-layer
feed-forward neural networks where each hidden layer has
64 units. For a fair comparison, we use the same or more
environment steps in the policy update of the baselines com-
pared to LIPO. Common hyperparameters of methods based
on MAPPO are shown in Table. 1. For a fair comparison,
the baselines collect additional data to have the same or
more timesteps than LIPO.

C.1. MAPPO

MAPPO is the base MARL algorithm for all baselines ex-
cept MAVEN. The policy parameters are shared among all
policies. The critic takes a state of the environment and out-
puts an expected return of a given global state. The global
state is provided by the environment and only used during
training. For the full training objectives of MAPPO, we
refer the reader to Appendix A of Yu et al. (2021).

C.2. Multi SP

A population of Multi SP is obtained by simply running
multiple runs of the MAPPO algorithm. Each run collects a
total of T timesteps.

Generating Diverse Cooperative Agents by Learning Incompatible Policies

C.3. SPMI

SPMI is based on the MAPPO algorithm. In addition to
policy and critic networks, a discriminator network qϕ is
implemented using the same feed-forward architecture. It
takes a local observation oi and action distribution πi(·|oi)
as inputs and outputs the discrete probability of the latent
variable. The latent variable of all policies is shared dur-
ing an episode. It collects a total of 2|z|T timesteps and
produces |z| joint policies.

C.4. MAVEN

We use the same network architecture presented in (Mahajan
et al., 2019) with recurrent neural networks. However, we
do not use the hierarchical policy but sample z from the
uniform distribution. The latent variable of all policies is
shared during an episode. Similar to SPMI, it collects a total
of 2|z|T timesteps and produces |z| joint policies.

C.5. Multi SPMI and Multi MAVEN

A population is produced by multiple runs of each base
algorithm. The final population size is n|z|, where n is the
number of runs. Notably, this baseline uses the training data
differently from the base algorithms. Instead of training a
long single run, this approach allows the policy to "restart"
by using different initialization of neural networks. For
example, let N = n|z|, training a single run with |z| =
N,n = 1 might not discover as many solutions as training
n runs with |z| = N

n . Empirically, we find that multiple
runs of a base algorithm can find more solutions compared
to a longer run of the algorithm.

C.6. TrajeDi

TrajeDi is implemented on top of the MAPPO algorithm.
Different from the original implementation, we remove the
best-response (BR) policy from the population. Since the
BR policy might work well with only a specific solution,
removing BR potentially increase the number of variations
in the population. Our modified loss is:

L = −[

N∑
A=1

(JSP(πA)) + αJSDγ(π1, ..., πN)],

where JSD is the proposed diversity objective of TrajeDi. α
and γ are the hyperparameters of TrajeDi.

C.7. LIPO

LIPO use the same implementation as SPMI except LIPO
uses independent latent variable for each policy and λXP >
0. Additionally, LIPO uses extra critics for the cross-play
trajectories. In total, LIPO has a self-play critic V πA

sp and
N − 1 cross-play critics {V πA,πB

xp | πB ∈ P−A}.

It uses 2NT timesteps for policy updates and produces
N policy. Specifically, each joint policy uses T timesteps
from self-play trajectories and another T timesteps from
max(J̃XP). We set λMI as 0.0 and 0.5 in CMG and PMR
respectively.

D. Hyperparameters
We provide the possible search values of each method in
Tables 2, 3, 4, 5, 6 and 7. The hyperparameters are searched
individually for each population size. We use three random
seeds for each set of hyperparameters. We do not use any
validation method; instead, we present the results using the
best parameters in the main paper.

E. Additional Results
E.1. Sensitivity of λXP

We provide additional results of LIPO with varying values
of λXP in Fig. 7.

Generating Diverse Cooperative Agents by Learning Incompatible Policies

Table 2: The values of λMI used by SPMI in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

λMI

- - [0.5,1,5,10] [0.5,1,5,10]
2 - - [0.5,1,5,10] [0.5,1,5,10]
4 - - [0.5,1,5,10] [0.5,1,5,10]
8 [1,5,10,50] [1,5,10,50] [0.5,1,5,10] [0.5,1,5,10]
16 [1,5,10,50] [1,5,10,50] - -
32 [1,5,10,50] [1,5,10,50] - -
64 [1,5,10,50] [1,5,10,50] - -

Table 3: The values of λMI used by MAVEN in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

λMI

- - [1,5,10,50] [1,5,10,50]
2 - - [1,5,10,50] [1,5,10,50]
4 - - [1,5,10,50] [1,5,10,50]
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
16 [1,5,10,50] [1,5,10,50] - -
32 [1,5,10,50] [1,5,10,50] - -
64 [1,5,10,50] [1,5,10,50] - -

Table 4: The values of λMI used by Multi SPMI in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

λMI

- - - -
2 - - - -
4 - - -
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
16 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
32 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
64 [1,5,10,50] [1,5,10,50] - -

Table 5: The values of λMI used by Multi MAVEN in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

λMI

- - - -
2 - - - -
4 - - -
8 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
16 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
32 [1,5,10,50] [1,5,10,50] [1,5,10,50] [1,5,10,50]
64 [1,5,10,50] [1,5,10,50] - -

Generating Diverse Cooperative Agents by Learning Incompatible Policies

Table 6: The values of α and γ used by TrajDi in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

α

- - [1,5,10,50] [1,5,10,50]
2 - - [1,5,10,50] [1,5,10,50]
4 - [1,5,10,50] [1,5,10,50]
8 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] [1,5,10,50] [1,5,10,50]
16 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -
32 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -
64 [0.01,0.05,0.1,0.2] [0.01,0.05,0.1,0.2] - -

1

γ

- - [0, 0.1, 0.5] [0, 0.1, 0.5]
2 - - [0, 0.1, 0.5] [0, 0.1, 0.5]
4 - - [0, 0.1, 0.5] [0, 0.1, 0.5]
8 0 0 [0, 0.1, 0.5] [0, 0.1, 0.5]
16 0 0 - -
32 0 0 - -
64 0 0 - -

Table 7: The values of λXP used by LIPO in all environments. The best values are shown in bold.

Population size Hyperparameters Values (CMG-S) Values (CMG-H) Values (PMR-C) Values (PMR-L)

1

λXP

- - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
2 - - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
4 - - [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
8 [0.5,1] [0.5,1] [0.1,0.25,0.5,1] [0.1,0.25,0.5,1]
16 [0.5,1] [0.5,1] - -
32 [0.5,1] [0.5,1] - -
64 [0.5,1] [0.5,1] - -

Generating Diverse Cooperative Agents by Learning Incompatible Policies

8 16 32 64

0

8

16

32

1

0.5

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(a) Number of learned solutions in CMG-S

8 16 32 64

0

8

16

32

1

0.5

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(b) Number of learned solutions in CMG-H

1 2 4 8

1

2

3

4

1

0.5

0.25

0.1

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(c) Number of learned solutions in PMR-C

1 2 4 8

1

2

3

4

1

0.5

0.25

0.1

Ideal

Population size

D
is

co
ve

re
d

 s
o

lu
ti

o
ns

(d) Number of learned solutions in PMR-L

Figure 7: Number of discovered solutions in different population of LIPO with different values of λXP.

