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Abstract

Factual inconsistencies pose a significant hur-001
dle for the faithful summarization by generative002
models. While a major direction to enhance003
inconsistency detection is to derive stronger004
Natural Language Inference (NLI) models, we005
propose an orthogonal aspect that underscores006
the importance of incorporating task-specific007
taxonomy into the inference. To this end, we008
consolidate key error types of inconsistent facts009
in summaries, and incorporate them to facilitate010
both the zero-shot and supervised paradigms of011
LLMs. Extensive experiments on ten datasets012
of five distinct domains suggest that, zero-shot013
LLM inference could benefit from the explicit014
solution space depicted by the error type taxon-015
omy, and achieves state-of-the-art performance016
overall, surpassing specialized non-LLM base-017
lines, as well as recent LLM baselines. We fur-018
ther distill models that fuse the taxonomy into019
parameters through our designed prompt com-020
pletions and supervised training strategies, ef-021
ficiently substituting state-of-the-art zero-shot022
inference with much larger LLMs.023

1 Introduction024

As abstractive summarization has been advanced025

significantly via generative models such as BART026

(Lewis et al., 2020) and Large Language Models027

(LLMs), factual inconsistencies remain one of the028

key concerns for ensuring high-quality faithful sum-029

maries (Maynez et al., 2020a; Kryscinski et al.,030

2020; Goyal et al., 2023), where certain facts from031

the summary are not aligned with those presented032

in the original document. Previous works have033

studied extensively that employ various paradigms034

to reason inconsistencies, ranging from specialized035

BERT-variants (Devlin et al., 2019) such as DAE036

(Goyal and Durrett, 2020), QAFactEval (Fabbri037

et al., 2022), to recent LLMs equipped with gen-038

eral comprehension capabilities (Luo et al., 2023;039

Wang et al., 2023; Liu et al., 2023a).040

In particular, one outstanding direction for fac- 041

tual inconsistency detection is to frame it as a Nat- 042

ural Language Inference (NLI) problem, assessing 043

the entailment between the document and summary 044

(Bowman et al., 2015). Intuitively, irrelevant or in- 045

consistent facts in the summary should reflect a 046

low level of entailment through NLI models. Prior 047

to LLMs, BERT-based NLI models have been suc- 048

cessfully practiced by approaches such as SummaC 049

(Laban et al., 2022) to identify summary inconsis- 050

tencies. In this new era of LLMs, several pioneer- 051

ing works have shown that zero-shot prompting of 052

LLMs is already effective with NLI-style scoring, 053

where LLMs directly classify the summary consis- 054

tency or provide a consistency score (Luo et al., 055

2023; Wang et al., 2023; Liu et al., 2023a). 056

While it is a promising direction to keep enhanc- 057

ing factual inconsistency recognition by deriving 058

stronger NLI models, such as FactCC (Kryscinski 059

et al., 2020), DocNLI (Yin et al., 2021), FalseSum 060

(Utama et al., 2022), AMRFact (Qiu et al., 2024), 061

in this work, we propose approaches from an or- 062

thogonal aspect, which examines the incorporation 063

of explicit solution space into the inference, such 064

that either zero-shot prompting or a trained model 065

reaches decisions according to explicit task-specific 066

cues, i.e. an explicit error type taxonomy. 067

Our motivation stems from the distinct nature 068

between summary inconsistencies and NLI: sum- 069

maries are grounded by the original document, thus 070

leaning towards reiteration, whereas NLI tackles a 071

broader problem that involves extrapolation. Since 072

we roughly deem the scope of summary inconsis- 073

tency detection as smaller, one can consolidate and 074

leverage its task-specific taxonomy to rationalize a 075

more effective and explainable inference. 076

As there exist numerous annotation schemas 077

adopted by previously introduced datasets, factual 078

errors are firstly unified into a fine-grained taxon- 079

omy by AGGREFACT (Tang et al., 2023), which 080

we consolidate upon and identify five common er- 081
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ror types that are salient for recognizing summary082

inconsistencies, including Predicate Error, Entity083

Error, Circumstantial Error, Coreference Error084

and Addition Error (Section 3), covering a wide085

variety of datasets (Table 1). The identified error086

types are then utilized to anchor the inference of087

factual inconsistencies. Specifically, we examine088

their efficacy with LLMs in both zero-shot and su-089

pervised paradigms, and demonstrate the utility of090

task-specific taxonomy in complementary to the091

sole NLI-style classification.092

For the zero-shot setting (Section 4), we craft093

the instruction tailored for each error type in the094

prompt, directing LLMs to reason specific error095

types according to the given guidance. To han-096

dle long summaries, we additionally propose a097

window-based prompting scheme, as an effective098

alternative to the vanilla prompting. For a compre-099

hensive evaluation, our experiments are conducted100

on 10 datasets across five domains, including sum-101

marization on different news sources, daily or pro-102

fessional dialogues, official reports and narrative103

stories. Moreover, we employ models from Ope-104

nAI (ChatGPT, GPT-4o) along with strong open-105

source LLMs including Llama-3 (Touvron et al.,106

2023) and Mistral (Jiang et al., 2023) to ensure a ro-107

bust conclusion. Empirical results suggest that our108

proposed methods surpass all baselines, including 7109

non-LLM baselines and 4 LLM baselines, showing110

that zero-shot LLM inference could benefit from111

a grounded solution space by depicting the task112

taxonomy in the instruction. Our proposed meth-113

ods, termed Factuality with Taxonomy (FACTAX),114

achieve the best overall performance across five do-115

mains; especially, FACTAX with ChatGPT outper-116

forms previous state-of-the-art zero-shot baseline117

G-Eval with GPT-4 (Liu et al., 2023a; Qiu et al.,118

2024) on the AGGREFACT-FTSOTA benchmark119

(Tang et al., 2023).120

We then further seek to distill a model that fuses121

the task taxonomy into model parameters through122

supervised training. By unifying the error types123

of previous independently introduced datasets, we124

regard them jointly as training resources. Llama3-125

8B models are trained to learn binary decisions126

as well as to recognize specific error types on127

summaries, through our designed completions and128

training strategies. The resulting trained model129

outperforms previous supervised baselines, and is130

able to match the best zero-shot inference perfor-131

mance, effectively acting as an efficient alternative132

to zero-shot reasoning with much larger LLMs.133

Overall, our key contributions in this work are: 134

• We underscore the importance of a fine-grained 135

task taxonomy for the inference of summary in- 136

consistencies, leading to enhanced performance 137

and interpretability upon vanilla reasoning. 138

• We pinpoint key error types and incorporate them 139

into our designed zero-shot prompting schemes, 140

anchoring LLM reasoning within an explicit solu- 141

tion space. Experiments on diverse datasets and 142

LLMs demonstrate its efficacy over baselines. 143

• We further distill a model that rationalizes the 144

task taxonomy into parameters through our super- 145

vised training strategies, practically substituting 146

zero-shot reasoning with SOTA performance. 147

2 Related Work 148

Factual Inconsistency Evaluation Datasets Nu- 149

merous datasets for evaluating factual inconsisten- 150

cies in summaries have been independently intro- 151

duced in recent years. Among these, many focus on 152

the news domain, primarily addressing CNN/Dai- 153

lyMail summaries (Nallapati et al., 2016), such as 154

FactCC (Kryscinski et al., 2020), FRANK (Pagnoni 155

et al., 2021) and SummEval (Fabbri et al., 2021); 156

others addressing XSum summaries (Narayan et al., 157

2018) constructed upon BBC news, such as XSum- 158

Faith (Maynez et al., 2020b) and DeFacto (Liu 159

et al., 2023b); some also addressing both, such 160

as CLIFF (Cao and Wang, 2021) and Goyal and 161

Durrett (2021). 162

Apart from news, several datasets focus on dia- 163

logue summaries, especially daily dialogues from 164

SAMSum (Gliwa et al., 2019), such as DiaSum- 165

mEval (Gao and Wan, 2022), FactEval (Wang et al., 166

2022b), DiaSummFactCorr (Gao et al., 2023). Dia- 167

SummFact (Zhu et al., 2023) also assesses meeting 168

summaries from QMSum (Zhong et al., 2021). 169

Recent datasets have also been proposed to ad- 170

dress more domains, e.g. Koh et al. (2022) eval- 171

uates factual consistency on official reports from 172

GovReport (Huang et al., 2021); LongEval (Kr- 173

ishna et al., 2023) addresses story summaries from 174

SQuALITY (Wang et al., 2022a). 175

In this work, we aim for robust evaluation across 176

diverse domains under the same task requirement, 177

especially for zero-shot methods that should gener- 178

alize across different types of documents. 179

Non-LLM Approaches State-of-the-art models 180

prior to LLMs mainly focus around two directions. 181

The first is to effectively leverage NLI models 182

to assess the entailment between the document- 183
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Domain Doc Len Summ Len # Summ Ent. Pred. Circ. Coref. AddE.

Polytope (Huang et al., 2020) CNN/DM 573.2 64.8 1268 - - - - -
SummEval (Fabbri et al., 2021) CNN/DM 363.6 62.8 1698 - - - - -
FRANK (Pagnoni et al., 2021) CNN/DM 476.2 40.6 2246 ✓ ✓ ✗ ✗ ✓

BUMP (Ma et al., 2023) CNN/DM 686.4 52.5 1087 ✓ ✓ ✓ ✓ ✓

CLIFF (Cao and Wang, 2021) CNN/DM & XSum 453.4 35.6 600 ✓ ✓ ✗ ✗ ✓

XsumFaith (Maynez et al., 2020b) XSum 381.1 19.2 2353 ✓ ✓ ✗ ✗ ✓

QAGS/Wang’20 (Wang et al., 2020) XSum 324.5 33.3 474 - - - - -
Goyal’21 (Goyal and Durrett, 2021) XSum 430.3 21.8 150 ✓ ✓ ✗ ✗ ✓

Cao’22 (Cao et al., 2022) XSum 349.4 25.3 696 - - - - -

DiaSumFact (Zhu et al., 2023) Dialogues 187.0 43.7 475 ✓ ✓ ✓ ✓ ✓

DiaSummEval (Gao and Wan, 2022) Dialogues 109.5 22.6 474 - - - - -
DiaSummFactCorr (Gao et al., 2023) Dialogues 113.1 20.8 4000 ✓ ✓ ✓ ✓ ✓

FacEval (Wang et al., 2022b) Dialogues 98.5 19.6 750 ✓ ✓ ✓ ✓ ✓

GovReport (Koh et al., 2022) Reports 3884.5 397.2 204 ✓ ✓ ✓ ✓ ✓

SQuALITY (Krishna et al., 2023) Stories 4795.7 376.9 60 - - - - -

Table 1: Datasets utilized in this work with statistical details: averaged document length, summary Length, number
of all available summaries; and the unified error type taxonomy described in Section 3: “-” means no error types
originally annotated; ✓ and ✗ represent whether the corresponding error type is available after label conversion.

summary pair, such as Falke et al. (2019) and Sum-184

maC (Laban et al., 2022). Within this direction,185

several works focus on improving the NLI model186

itself through methods such as synthetic data con-187

struction (Kryscinski et al., 2020; Yin et al., 2021;188

Utama et al., 2022; Qiu et al., 2024) or multitask189

learning (Zha et al., 2023a,b). The second direc-190

tion employs QA-based models, such as QuestE-191

val (Scialom et al., 2021) and QAFactEval (Fabbri192

et al., 2022), where they generate questions regard-193

ing explicit entities in the summary, then verify194

upon the source document. Besides the two main195

directions, other works have also explored to rec-196

ognize factual errors through methods such as syn-197

tactic dependencies (Goyal and Durrett, 2020) or198

information extraction (Nan et al., 2021).199

LLM Approaches The capability of LLMs on200

detecting inconsistencies have been studied by sev-201

eral recent works. Most of them resolve this task in202

the zero-shot or few-shot prompting manner (Shen203

et al., 2023; Luo et al., 2023; Wang et al., 2023; Liu204

et al., 2023a). Other utilization of LLMs have also205

been proposed, such as synthetic data generation206

with LLMs (Gekhman et al., 2023).207

3 Task Taxonomy208

Establishing what constitutes inconsistent facts in209

a summary is a fundamental aspect of this task. In210

this work, we target to consolidate key error types211

that are salient for inconsistent fact detection in212

general, instead of building fine-grained complex213

taxonomy, for two reasons. First, a simple taxon-214

omy is easier to be consumed by models than a215

complex one, aligning with our goal of practical 216

utilization during inference. Second, a more fine- 217

grained taxonomy may be of greater noises, as the 218

annotated types from different datasets can vary 219

significantly in their standards. 220

Based on the annotation schemas of previously 221

introduced datasets and the aggregation of factual 222

errors by AGGREFACT (Tang et al., 2023), we iden- 223

tify the following five salient error types: 224

• Predicate Error: the semantics expressed by a 225

predicate in the summary are not consistent with 226

those in the source document. 227

• Entity Error: any core arguments or attributes 228

(e.g. subjects and objects in semantic frames) in 229

the summary are not consistent accordingly. 230

• Circumstantial Error: Time, duration, or the lo- 231

cation of an event or action is not consistent. 232

• Coreference Error: a pronoun or a reference men- 233

tion in the summary cannot be resolved to refer 234

to the correct entity. 235

• Addition Error: the summary expresses facts or 236

events that have no grounding sentences in the 237

document, thus cannot be verified (unless clearly 238

extrapolatable by common sense). 239

These five error types focus on the “factuality” as- 240

pect that reflects semantic frames not aligned with 241

the source document, which have been partially 242

or entirely adopted in previous datasets. To unify 243

labels across datasets by the above taxonomy, we 244

conduct the following steps: 245

1. For datasets originally without error types anno- 246

tated, no label mapping is performed. 247

2. For datasets addressed by AGGREFACT, we uti- 248
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Window1: Paul is almost there, but 
he‘s still 30 minutes away.
Window2: Laura is angry, because 
Paul is not coming.

Summary
Source 

Text

Laura: Where are you?       
Paul: Almost there.
Laura: That's so far away!  
Paul: 15 mins
Laura: I am not waiting any more!

Taxonomy
Predicate Error，Entity Error，

Circumstantial Error
Coreference Error，Addition Error

Reason

FacTax FacTax-WD
Window1 Window2

Circumstantial Error

Reason Reason

Circumstantial Error Factually Correct

Circumstantial Error

LLM Zero-Shot

LLM Finetuning 

FacTax-setting Evaluation

FacTax-setting DataBinary-setting Data

Binary-setting Evaluation

Circumstantial ErrorFactually Wrong
LLM Supervised

Figure 1: Illustration of our proposed approaches that ground the task inference of factual inconsistency by its
taxonomy (Sec. 3), via either the zero-shot paradigm (Sec. 4) or the supervised paradigm (Sec. 5) with LLMs.

lize their unified labels from AGGREFACT, then249

perform a heuristic conversion: NP → Entity250

Error; Pred → Predicate Error; Sent → Addi-251

tion Error. For all extrinsic errors, we also mark252

them as Addition Error.253

3. For datasets not included in AGGREFACT, we254

manually perform the label conversion per255

dataset (details provided in Appx. A).256

Table 1 shows the resulting conversion as well as257

more statistical details. We do notice that neither258

our adopted taxonomy nor the fine-grained one in259

AGGREFACT is completely free from noises, due260

to different annotation standards across datasets.261

4 Approach: Zero-Shot Paradigm262

To incorporate the error type taxonomy, we first263

propose zero-shot prompting methods that lever-264

age the general comprehension capability of LLMs,265

aiming to depict the explicit solution space to facil-266

itate the zero-shot inference.267

4.1 FACTAX268

Our first designed prompting scheme, dubbed Fac-269

tuality with Taxonomy (FACTAX), follows the stan-270

dard zero-shot procedure: for a document-summary271

pair, we instruct a LLM to determine whether the272

summary is factually correct, as in previous works273

utilizing LLMs (Luo et al., 2023; Wang et al., 2023;274

Liu et al., 2023a). For each error type, we handcraft275

its explanation along with an optional example, and276

we ask the LLM to reason in a Chain-of-Thought277

(CoT) style (Wei et al., 2022): whether there are278

any specific error types present in the summary,279

instead of generating a binary decision directly. A280

summary is thus recognized as factually correct281

through a rationalization stage, when no specified282

error types are present.283

The resulting zero-shot inference to this end, is284

regularized by the underlying task taxonomy, so 285

to achieve a comprehensive task reasoning. We 286

provide our full prompt in Appx. B. 287

4.2 FACTAX-WD 288

Since summaries often extend beyond a single sen- 289

tence, prior works adapted NLI models such as 290

SummaC (Laban et al., 2022) conduct inference 291

on each sentence independently, which helps mit- 292

igate degradation that may occur when inferring 293

over long summaries. As LLMs are susceptible 294

to degradation over long sequences as well (Hsieh 295

et al., 2024), certain errors scattered across many 296

sentences may be overlooked by the model. Thus, 297

we further introduce a second prompting scheme in- 298

tuitively: rather than processing the entire summary 299

at once, we divide it into separate windows that are 300

individually processed. The final result is then ag- 301

gregated across windows, such that a summary is 302

factually correct only if each window possesses 303

no errors. The second method is thereby termed 304

FACTAX by Windows (FACTAX-WD). 305

After our preliminary experiments, we manually 306

set the window size as roughly 30 words to bal- 307

ance between the performance and efficiency. It 308

is worth noting that smaller window size (i.e. one 309

sentence per window) does not necessarily lead to 310

higher performance, as we observe that pronouns in 311

the summary could often introduce false negatives 312

when inferred without its broader context. 313

4.3 Zero-Shot Experiments 314

Datasets For comprehensive evaluation, we 315

adopt diverse document types of five domains: CN- 316

N/DM, XSum, dialogues, reports, and stories. Each 317

domain consists of one or multiple datasets from 318

Table 1, with 10 datasets evaluated by the zero- 319

shot paradigm in total. Notably, we only evaluate 320
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CNN/DM XSum Dialogues Reports Stories

Polytope SummEval Frank CLIFF Avg. Wang’20 CLIFF Goyal’21 Cao’22 Avg. DiaSumFact GovReport SQuALITY MACRO

QuestEval 17.60 64.90 62.60 74.00 70.20 56.00 61.90 81.40 60.10 69.50 57.03 26.90 42.11 51.15
QAFactEval 32.40 65.20 54.70 71.60 67.80 75.60 62.60 75.40 61.30 65.85 65.91 40.59 44.79 56.60
SUMMAC-ZS 97.10 62.20 57.00 65.60 64.00 69.80 59.60 46.60 49.00 56.40 58.81 35.19 15.00 45.88
ALIGNSCORE 94.12 43.40 53.65 67.61 64.04 65.52 74.68 52.63 65.70 67.59 68.93 37.07 43.77 56.28
ALIGN 91.18 44.92 55.48 58.30 69.49 68.09 74.82 68.06 65.34 68.41 69.22 35.05 46.26 57.47
FALSESUM - - - - 50.50 - - - - 54.70 - - - -
AMRFACT 100.00 80.70 72.40 71.00 72.30 59.50 66.70 59.10 64.50 64.10 - - - -

ChatGPT-ZS 90.19 79.78 54.82 65.13 60.03 71.82 74.01 63.38 68.82 69.39 66.85 41.40 44.63 56.46
ChatGPT-CoT 89.22 66.64 51.94 62.20 56.20 68.30 66.27 63.85 65.98 66.21 61.59 40.73 42.64 53.47
ChatGPT-Star 41.17 54.57 51.27 57.91 55.30 56.72 56.61 65.25 54.89 55.89 62.86 35.90 25.62 47.11
G-Eval 99.02 48.98 54.18 56.25 55.04 51.05 56.61 53.08 52.36 51.57 51.73 15.77 35.86 41.99

FACTAX 78.44 67.43 62.82 68.71 68.97 74.06 70.25 74.08 71.65 72.21 62.76 40.54 45.93 58.08
FACTAX-WD 85.31 72.98 67.09 70.71 68.92 71.46 70.81 68.85 69.49 69.82 64.15 48.36 48.06 59.94

Table 2: Evaluation results for the zero-shot paradigm (Section 4.3). Five domains (10 datasets in total) are evaluated,
where the setting for CNN/DM and XSum is kept consistent and comparable with AGGREFACT-FTSOTA (Tang
et al., 2023) using thresholds per dataset. MACRO is the final evaluation metric that computes the macro-average
score across each domain. FACTAX methods are our proposed approaches that ground the zero-shot inference by the
task taxonomy. All LLM-based methods are shown the averaged scores of three repeated runs for robust evaluation,
and they are directly comparable due to adopting the same underlying model (gpt-3.5-turbo-0125).

upon summaries generated by state-of-the-art mod-321

els specified by each dataset, in coordination with322

AGGREFACT-FTSOTA (Tang et al., 2023).323

For GovReport and SQuALITY, documents are324

long articles that exceed certain models’ length325

limit. We follow Wu et al. (2023) that for each326

document, top sentences that maximize ROUGE327

scores towards the summary are retrieved as a con-328

densed context (details in Appx. C).329

Metrics As in previous works, we use Balanced330

Accuracy for all datasets that offer classification331

labels. For GovReport and SQuALITY whose la-332

bels are consistency scores, we use Pearson Cor-333

relation that aligns with prior works. The perfor-334

mance of each domain is either from the standalone335

dataset (e.g. Dialogues), or represented by the mi-336

cro average score of all datasets within this domain,337

aligning with AGGREFACT evaluation. We further338

introduce a single metric to evaluate the overall per-339

formance, termed MACRO, which takes the macro340

average scores across each domain.341

Non-LLM Methods We adopt strong non-LLM342

models as baselines, including QuestEval (Scialom343

et al., 2021), QAFactEval (Fabbri et al., 2022),344

SummaC (Laban et al., 2022), ALIGNSCORE (Zha345

et al., 2023a) and ALIGN (Zha et al., 2023b). For346

each, we either take the evaluation scores from347

prior works, or run the code released by the authors348

on new datasets not evaluated previously. Addition-349

ally, we also include scores of FALSESUM and AM-350

RFACT from their original papers. More details on351

non-LLM baselines are provided in Appx. C.352

LLM Methods We use ChatGPT-ZS, ChatGPT-353

CoT (Luo et al., 2023), ChatGPT-Star (Wang et al.,354

2023), and G-Eval (Liu et al., 2023a) as the LLM 355

baselines, which have achieved strong performance 356

in AGGREFACT. For direct comparison, we use 357

the same ChatGPT (gpt-3.5-turbo-0125) for all 358

prompts. In later analysis (Sec. 4.4), we vary LLMs 359

for more insights on model comparison. 360

For FACTAX, we adapt the prompts to addition- 361

ally yield a score on GovReport and SQuALITY 362

summaries to enable evaluation with their score- 363

based labels. 364

Results Due to the variation from sampled gen- 365

eration of LLMs, we run all LLM-based methods 366

three times for robust conclusions, and show the av- 367

eraged scores of each dataset in Table 2, along with 368

evaluation results of non-LLM baselines. Several 369

observations from Table 2 can be made as follows. 370

• Corroborating previous works, LLM zero-shot 371

inference is capable to identify factual errors 372

directly with decent performance, matching or ex- 373

ceeding strong non-LLM baselines specialized for 374

factual inconsistency detection. Specifically, FAC- 375

TAX methods and ChatGPT-ZS achieve 56.5 - 59.9 376

MACRO scores, on par with 56.3 - 57.5 obtained 377

by QAFactEval, ALIGNSCORE and ALIGN. The 378

lowest score of LLM baselines is 41.2, which only 379

lags behind SUMMAC-ZS by 3.9%. 380

• Comparing among LLM-based approaches, 381

FACTAX-WD achieves the best overall perfor- 382

mance, surpassing the best LLM baseline ChatGPT- 383

ZS by 3.5%, also outperforming all non-LLM base- 384

lines. As the main difference between FACTAX 385

and LLM baselines is the incorporation of given 386

task taxonomy in the prompt, the empirical result 387

suggest that LLM inference can indeed benefit 388

from a grounded solution space. 389
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CNN/DM XSum Dialogues MACRO

G-Eval (GPT-4) 69.90 65.80 - -

ChatGPT 68.97 72.21 62.76 67.98
GPT-4o 68.56 71.20 73.08 70.93

Llama3-8B 50.38 61.17 62.81 58.12
Llama3-70B 69.6 71.05 74.63 71.76

Mistral-7B 51.95 57.8 58.31 56.02

Table 3: Evaluation results using FACTAX on three
domains by varying LLMs. FACTAX with ChatGPT
achieves SOTA performance on AGGREFACT-FTSOTA
benchmark, surpassing previous zero-shot SOTA G-
Eval with GPT-4 (from Qiu et al. (2024)).

• The gap between FACTAX and FACTAX-WD390

is relatively trivial. The window-based inference391

is shown effective on long summaries, demon-392

strated by the significant performance raise on Gov-393

Report and SQuALITY.394

4.4 Zero-Shot Analysis395

We focus on three common domains with shorter396

summaries: CNN/DM, XSum, Dialogues, and per-397

form further analysis for more regarding insights.398

Impact of LLMs and Sizes Apart from Chat-399

GPT, we also employ GPT-4o from OpenAI,400

as well as strong open-source LLMs including401

Llama3-8B/70B and Mistral 8B. Table 3 pro-402

vides the model comparison by adopting the same403

FACTAX prompts. Notably, FACTAX with Chat-404

GPT achieves SOTA performance on AGGREFACT-405

FTSOTA benchmark (Tang et al., 2023), outper-406

forming G-Eval with GPT-4 (Qiu et al., 2024).407

Just by switching to GPT-4o, there comes a di-408

rect boost upon ChatGPT by 3 MACRO score over-409

all. There is still quite a gap of almost 10% between410

the smaller 7B/8B models and the larger OpenAI411

models. By Table 3, it is evident that increasing412

the model size significantly improves the task rea-413

soning, as switching Llama3-8B to 70B obtains414

performance gain by an impressive 13.6%.415

Impact of Examples Our default FACTAX set-416

ting grounds the inference by depicting error type417

definitions in the prompt, without supplying any418

examples. After conducting multiple rounds of419

experiments by adding crafted examples per type,420

we are not able to obtain stable improvement, as421

adding a few examples could lead to biases towards422

errors. The averaged improvement after adding ex-423

amples is only 0.06 MACRO score; thus, we keep424

FACTAX off examples in this work.425

Impact of Summary Lengths Figure 2 plots the 426

performance curve on different lengths of sum- 427

maries using ChatGPT. FACTAX-WD is shown 428

more robust against long summaries, due to its 429

length-agnostic scoring mechanism. For long sum- 430

maries, false positives become more often for FAC- 431

TAX, which is alleviated by the window-based in- 432

ference of FACTAX-WD. 433

50

60

70

80

90

10 20 30 40 50 60 70 80

FACTAX FACTAX-WD

Summary Length

Figure 2: Accuracy of FACTAX methods for different
summary lengths using ChatGPT.

5 Approach: Supervised Paradigm 434

As Section 4 has demonstrated the strengths of 435

grounding zero-shot LLM inference by its task tax- 436

onomy, we further seek to distill a model that ab- 437

sorbs the taxonomy into LLM parameters through 438

supervised training. Two advantages could come 439

with such distillation. First, by learning the taxon- 440

omy from examples, the model gains real-world 441

distribution of each error type, rather than relying 442

on shallow comprehension through prompt instruc- 443

tions. Second, it is more efficient and practical 444

compared to zero-shot methods, avoiding the need 445

for large model sizes and lengthy generation due to 446

zero-shot CoT reasoning. 447

With above motivations, we utilize previous 448

datasets that were proposed independently, and re- 449

gard them jointly as training resources. To this end, 450

we prepare our training and test set as follows: 451

• Training Set I: FRANK, Polytope, BUMP, 452

CLIFF, Goyal’21, DeFacto, XSumFaith, Dia- 453

SummEval, DiaSummFactCorr, FactEval 454

• Training Set II: DocNLI, FalseSum 455

• Test Set: SummEval, Wang’20, Cao’22, Dia- 456

SumFact 457

Concretely, the test set is formed to cover at least 458

one dataset per CNN/DM, XSum, and Dialogues 459

domain. Training Set I encompasses datasets with 460

human-annotated labels, and we use all available 461

examples of each dataset in training, while keeping 462

the test set only containing summaries from state- 463

of-the-art models, such that the evaluation of the 464

supervised paradigm is directly comparable with 465

zero-shot results in Table 2&3. 466
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CNN/DM XSum Dialogues

SummEval Wang’20 Cao’22 DiaSumFact MACRO

Zero-Shot
ChatGPT 73.0 71.5 69.5 64.2 69.2
GPT-4o 77.0 76.4 70.3 72.9 74.4

Zero-Shot
Llama3-8B 64.4 59.1 61.1 62.8 62.4
Llama3-70B 79.5 74.1 70.1 74.6 75.4

Supervised

I-Binary + INF-Binary 80.1 62.7 72.5 72.6 73.4
I-Taxonomy + INF-Binary 80.3 63.0 67.4 76.1 73.9
I&II-Taxonomy + INF-Binary 79.0 68.0 70.9 76.7 75.1
I&II-Taxonomy + INF-Taxonomy 81.1 67.7 71.8 75.2 75.4

Table 4: Evaluation results of the supervised paradigm, which are directly comparable with zero-shot results in
Table 2. Llama3-8B models are trained through supervised finetuning by three training settings (Sec. 5.1). For the
I&II-Taxonomy setting, we apply both binary inference and error type inference for the best performance.

Training Set II includes two publicly released467

large-scale datasets constructed via synthetic data468

generation. The more recent AMRFACT is ex-469

cluded, since its data has not been released as of470

this writing. For efficiency, Training Set II retains471

randomly sampled 50k examples from DocNLI and472

FalseSum respectively that do not overlap with any473

source documents in the test set.474

The resulting training resources thereby have475

16k examples in Training Set I, 100k examples in476

Training Set II, and 1k examples in Test Set.477

5.1 Training Strategy478

With our identified task taxonomy, we unify the479

error types for all training examples whenever ap-480

plicable according to Table 1. The training is con-481

ducted through LLM supervised finetuning, where482

each example is converted into pairs of prompts483

and completions. To fully utilize the available re-484

sources, we design two types of prompt-completion485

pairs, according to if error type labels are available:486

• Error Type Completion: if a dataset has error487

type labels available after the label conversion, the488

prompt then lists error type candidates, instructing489

the model to generate specific error types if present490

any in the summary.491

• Binary Completion: for an example, the prompt492

can ask to directly classify if the summary is factu-493

ally correct. The completion is then a binary label.494

Note that for those examples with error type la-495

bels, both two types of completions can be created,496

which inflates training size, and also anchors differ-497

ent error types towards “factually wrong”.498

5.2 Supervised Experiments499

Training Settings We employ Llama3-8B as500

the backbone LLM model for supervised training.501

Three training settings are experimented, based on 502

different training sets and completion types: 503

• I-Binary: Training Set I that only adopts Binary 504

Completion for all examples. 505

• I-Taxonomy: Training Set I with both Binary 506

and Error Type Completion when applicable. 507

• I&II-Taxonomy: adding Training Set II (only 508

Binary Completion is applicable), in addition to 509

all prompt-completion pairs in I-Taxonomy. 510

Particularly, the performance difference between 511

I-Binary and I-Taxonomy could directly reflect 512

the impact of incorporating the task taxonomy 513

into model parameters. I&II-Taxonomy further 514

explores the extent to which synthetic data can 515

complement human annotations. 516

For the latter two settings, the INFerence of 517

trained models is also flexible, which could ei- 518

ther opt to determine the factual consistency di- 519

rectly (INF-Binary), or to yield fine-grained error 520

types (INF-Taxonomy), according to specific types 521

of prompts given. For I&II-Taxonomy, we evalu- 522

ate both inference for the best performance. 523

In our experiments, we adopt common hyperpa- 524

rameters for LLM finetuning, described in Appx. D, 525

without requiring a development set due to limited 526

resources. Detailed statistics of three settings are 527

shown in Table 5. Specifically for I&II-Taxonomy, 528

we boost the ratio of Error Type Completion to 20% 529

in training by adjusting the data sampling strategy, 530

to facilitate model learning of the task taxonomy. 531

Results Table 4 shows the evaluation results 532

of our supervised paradigm, along with com- 533

parison by various zero-shot results. Unsurpris- 534

ingly, trained Llama3-8B models of any settings 535

outperform its zero-shot inference by large mar- 536

gins, up to 13 MACRO score. More impor- 537

7



# Train Length T-Ratio # Test

I-Binary 16393 648.5 0% 1033
I-Taxonomy 26315 634.2 37.7% 1033
I&II-Taxonomy 116393 783.3 20.0% 1033

Table 5: Statistics of three supervised training settings:
number of prompt-completion pairs in training; aver-
aged length of prompts; ratio of prompts with Taxonomy
provided; number of prompts for evaluation.

tantly, I&II-Taxonomy + INF-Taxonomy achieves538

the best performance, matching the best existing539

approaches by using FACTAX with GPT-4o and540

Llama3-70B. Our trained model can effectively541

serve as an efficient alternative to zero-shot in-542

ference by much larger LLMs, which we will543

publicly release for the research community.544

Comparing I-Binary and I-Taxonomy, there is545

an enhancement of 0.5 MACRO score by adopting546

Error Type Completion in training; indeed, utiliz-547

ing large-scale synthetic data brings more improve-548

ment by 1.2 MACRO score. By reasoning via error549

types rather than binary decisions, I&II-Taxonomy550

receives further 0.3 gain, validating the benefit of551

fusing task taxonomy into model parameters.552

5.3 Supervised Analysis553

Fine-Grained Evaluation Table 6 shows the F1554

score of each error type with zero-shot and super-555

vised paradigms. Among five types, most methods556

suffer on Circumstantial Error and Coreference557

Error, while performing the best on Entity Error.558

The two trained models surpass zero-shot methods559

on three error types. However, they perform worse560

on Addition Error. We attribute the degradation561

to different annotation standards across datasets,562

which may become noisy even after label unifi-563

cation. Nevertheless, as we have already seen im-564

provement with the current taxonomy, future works565

with cleaner labels have good potentials to further566

boost the supervised performance.567

Error Type Predictions As models often predict568

partially correct error types, Table 7 shows the per-569

centage of correct type predictions by four criteria,570

from strict to relaxed. As the results suggest, either571

zero-shot or supervised methods could recognize572

at least one gold error type on most of the factu-573

ally incorrect cases, by up to 85.4% achieved by574

the trained model I-Taxonomy. Whereas for exact575

match, even the trained models could only obtain576

15% accuracy. The best performance by either cri-577

Ent. Pred. Circ. Coref. AddE.

ChatGPT 41.1 28.8 28.2 21.9 45.1
GPT-4o 60.4 34.4 18.2 10.0 46.5

Llama3-8B 32.7 34.2 23.1 10.4 35.8
Llama3-70B 58.5 32.6 27.8 3.4 43.0

I-Taxonomy 61.1 37.1 25.3 28.9 21.9
I&II-Taxonomy 62.6 29.0 23.0 26.3 31.0

Table 6: F1 of five error types on DiaSumFact evalua-
tion, with both zero-shot and supervised paradigm.

(i) (ii) (iii) (iv)

ChatGPT 9.7 33.4 63.4 28.5
GPT-4o 9.8 35.6 76.3 37.6

Llama3-8B 4.6 27.8 62.0 24.0
Llama3-70B 9.0 36.5 73.5 36.0

I-Taxonomy 15.5 31.8 85.4 40.4
I&II-Taxonomy 15.8 39.4 83.8 41.1

Table 7: Percentage of correct error type predictions on
DiaSumFact by four different criteria: i) exact match by
gold error types; ii) predicted types are a subset of gold
types; iii) predicted types contain one of gold types; iv)
predicted types contain all gold types.

terion is achieved by the supervised paradigm, as 578

expected, since the model learns the real-world 579

distribution from training examples. 580

6 Conclusion 581

We highlight the importance of task-specific tax- 582

onomy for factual inconsistency detection, where 583

we consolidate salient error types, and incorpo- 584

rate them to facilitate LLM inference with both 585

zero-shot and supervised paradigms. Extensive 586

experiments on ten datasets of five domains demon- 587

strate the efficacy of depicting task taxonomy to 588

ground the zero-shot inference, achieving state-of- 589

the-art performance compared with respective base- 590

lines. We further distill models that fuse the given 591

error taxonomy into parameters through our de- 592

signed training completions and strategies, effec- 593

tively serving as an efficient alternative to state-of- 594

the-art zero-shot reasoning by much larger LLMs. 595

7 Ethical Statements 596

This work does not pose direct ethical concerns, as 597

we utilize existing datasets on a well-studied task. 598

However, we do emphasize that factual predictions 599

by our proposed approaches should not be taken 600

without verification. We provide failed examples 601

by zero-shot LLM inference in Appx. F. 602
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Limitations603

While our study demonstrates the effective utiliza-604

tion of task-specific taxonomy for detecting factual605

inconsistencies, it is important to acknowledge cer-606

tain limitations.607

First, as discussed in Section 5.3, the unified608

labels after conversion can contain noises, due to609

the different annotation standards across previous610

independently introduced datasets. The resulting611

converted error type labels may hinder the super-612

vised training process. Further consolidation may613

be conducted for a cleaner realization of the error614

type taxonomy.615

Second, both the zero-shot paradigm and super-616

vised paradigm may not fully capture the nuances617

of complex summaries. We list concrete qualita-618

tive examples in Appendix F on the failed cases619

by LLMs. Specifically for zero-shot paradigm, the620

failed cases could come from imperfect instruction621

following, as well as ambiguous descriptions of the622

task taxonomy that are not fully comprehensive.623

For the supervised paradigm, it indeed requires ei-624

ther human annotated examples, or synthetic data625

generation, which may not generalize as well as626

the zero-shot inference.627
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A Taxonomy Conversion995

For datasets not included in AGGREFACT, we man-996

ually perform the error type conversion as follows:997

• BUMP: Authors of original dataset manually edit998

reference summaries to constructs an unfaithful999

summary and classified error type into Extrin-1000

sic Entity Error, Intrinsic Entity Error, Intrinsic1001

Predicate Error, Extrinsic Circumstance Error,1002

Intrinsic Circumstance Error, Coreference Error1003

and Other. We mapped Extrinsic Entity Error1004

and Intrinsic Entity Error to Entity Error; Extrin-1005

sic Predicate Error and Intrinsic Predicate Error1006

to Predicate Error; Extrinsic Circumstance Error1007

and Intrinsic Circumstance Error to Circumstan-1008

tial Error; Coreference Error to Coreference Er-1009

ror and Extrinsic-related Error to Addition Error.1010

We also manually mapped five edited summaries1011

with other types of errors to the types we have1012

set according to our own judgment.1013

• DiaSumFact: Authors of original dataset classi-1014

fied error types into Ex-EntE, In-EntE, Ex-PredE,1015

In-PredE, Ex-CirE, In-CirE, CorefE, LinkE ande1016

Others. We mapped Ex-EntE and In-EntE to1017

Entity Error; Ex-PredE, In-PredE and LinkE to1018

Predicate Error; Ex-CirE and In-CirE to Circum-1019

stantial Error; CorefE to Coreference Error; Ex-1020

Error to Addition Error and manually mapped1021

Others base on the comment given by annotators.1022

• DiaSummFactCorr: The error types of summ-1023

maries in this dataset were classified into EntE,1024

PredE, CircE, CorefE, LinkE, GramE, OutE and1025

OthE. We mapped EntE to Entity Error; PredE,1026

GramE and LinkE to Predicate Error; CircE to1027

Circumstantial Error; CorefE to Coreference Er-1028

ror;OutE to Addition Error and mapped each1029

summary with OthE manually according to our1030

own judgment.1031

• FacEval: Authors of original dataset classified1032

error types into Subject Object Error, Pronoun1033

Error, Negation Error, Particulars Error, Halluci-1034

nation Error and Other Error. We mapped Sub-1035

ject Object Error to Entity Error; Pronoun Error1036

to Coreference Error; Negation Error to Pred-1037

icate Error, Particulars Error to Circumstantial1038

Error; Hallucination Error to Addition Error and1039

mapped each summary with Other Error manu-1040

ally according to our own judgment.1041

• GovReport: Authors of original dataset classi-1042

fied each summary sentence’s factuality based1043

on seven types of errors: PredE, EntityE, CircE,1044

CorefE, LinkE, OutE and GramE. We mapped1045

EntityE to Entity Error; PredE, GramE and LinkE 1046

to Predicate Error; CircE to Circumstantial Er- 1047

ror; CorefE to Coreference Error and OutE to 1048

Addition Error. 1049

B Full Prompts 1050

We provide the full prompt for FACTAX in Figure 3. 1051

C Zero-Shot Experimental Settings 1052

Long Document Alignment As documents in 1053

both GovReport and SQuALITY have long length 1054

of thousands of tokens, alignment is firstly per- 1055

formed, such that for each summary or summary 1056

window, related sentences from the document are 1057

retrieved, which will be used as a shorter context 1058

for factual error evaluation. Though past work has 1059

proposed techniques for long context segmentation 1060

(Cho et al., 2022), in this work, we opt for the 1061

common approach via retrieval for simplicity. 1062

For FACTAX, top sentences from the document 1063

that maximize the recall of ROUGE-1 and ROUGE- 1064

2 towards the summary are retrieved until the to- 1065

tal length reaches a certain threshold. These sen- 1066

tences are concatenated as the new context, which 1067

is shorter but has a higher information density than 1068

the original document. 1069

For FACTAX-WD that operates on summary 1070

windows, n important sentences are independently 1071

extracted to maximize the recall of ROUGE-1 and 1072

ROUGE-2 towards the summary. Table 8 shows 1073

the alignment thresholds we adopted for the two 1074

datasets. 1075

Summ-Alignment Window-Alignment (n=5)

GovReport 1024 102.31

SQuALITY 1024 28.50

Table 8: The maximum length of aligned context for
FACTAX, and the averaged length of aligned context per
summary window for FACTAX-WD. n is the number
of sentences extracted for each summary window. For
SQuALITY, some of the retrieved sentences can be quite
short.

Evaluation for Baselines Five non-LLM base- 1076

lines, QuestEval, QaFactEval, SUMMAC-ZS, 1077

ALIGNSCORE and ALIGN produce a consistency 1078

score for each summary, which requires a thresh- 1079

old to convert to the classification label. For each 1080

dataset and origin split in AGGREFACT-FTSOTA 1081

test set, following Tang et al. (2023), we tune the 1082

threshold to reach the best balanced accuracy on 1083
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the corresponding part of the dataset or origin split1084

in AGGREFACT-FTSOTA validation set.1085

For DiaSumFact, we use validation split of1086

AGGREFACT-FTSOTA dataset to tune the threshold1087

for the baselines For GovReport and SQuALITY,1088

the evaluation metric is Pearson Correlation, thus1089

not requiring any thresholds.1090

D Supervised Experimental Settings1091

We perform full finetuning of Llama3-8B with1092

flash attention enabled on 8 Nvidia A100 GPUs1093

(40GB memory each). Each training setting runs1094

for 8 epochs, taking around 6 hours to finish1095

I-Binary and I-Taxonomy, and 24 hours to fin-1096

ish I&II-Taxonomy. We use a batch size of 1 per1097

GPU, learning rate of 1×10−5, and cosine learning1098

rate schedule with warm up rate 0.05. Loss is only1099

enabled on the completion during training.1100

E AI Assisted Writing1101

ChatGPT from OpenAI is used in this writing for1102

revising certain expressions.1103

F Failure Cases by LLMs1104

Failed to grasp the implied information For1105

some cases, LLM failed to grasp the implicit con-1106

tent in the text, leading to an error in judgment.1107
[Part of the source text]1108
...1109
Ana: You sleeping?1110
Catherine: Not yet.1111
Ana: Wanna go visit grandma tomorrow? I miss her.1112
Catherine: Yeah that would be nice :) I’ll call you1113
when I wake up1114
...1115

1116
[Part of the summary]1117
Ana and Catherine are going to see their grandma1118
tomorrow.1119

1120
[Human comment]1121
None1122

1123
[Error type]1124
Factually Correct1125

1126
[Response of LLM]1127
- Reasoning: The statement is not consistent with the1128
source document as it is only Ana who expresses the1129
desire to visit grandma, not Catherine.1130
- Label: Entity_Error1131

Inconsistent reasoning with humans For some1132

cases, even though LLM makes the correct label1133

prediction, its reasoning does not correspond to1134

what humans think.1135
[Part of the source text]1136
...1137

phd d: Uh working in the cepstral domain ? So there is 1138
one guy in Grenada 1139
phd b: Yeah, in Grenada one of my friend. 1140
phd d: and another in uh, Lucent that I met at ICASSP. 1141
... 1142

1143
[Part of the summary] 1144
The team said that the person in grenada was working 1145
in the cepstral domain. 1146

1147
[Human comment] 1148
the team -> phd d 1149

1150
[Error type] 1151
Entity Error 1152

1153
[Response of LLM] 1154
- Reasoning: The summary states that the person in 1155
Grenada was working in the cepstral domain. However, 1156
there is no mention in the source text about the person 1157
in Grenada working in the cepstral domain. This 1158
indicates a predicate inconsistency. 1159
- Label: Predicate_Error 1160
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### Background

Now you are one of the greatest English linguist experts and Logician. Below is an
instruction for evaluating the factual consistency of a given statement derived from the
source document. Consistency measures whether the statement is correctly aligned with the
facts presented in the source document, without contradicting or misrepresenting any
information. The goal is to determine the consistency label of the statement defined as below
, identifying whether the statement contains factual errors, or is factually correct towards
the source document.

### Consistency Labels

i) Predicate_Error: a predicate from the statement (usually a verb of a semantic frame) is
not consistent with the source document.
ii) Entity_Error: a core argument or attribute in a semantic frame (usually a subject or
object) from the statement is not consistent with the source document (capitalization should
not matter).
iii) Circumstantial_Error: Time, duration, or the location of an event from the statement is
not consistent with the source document.
iv) Coreference_Error: a pronoun or a reference (e.g., this picture) from the statement is
wrong, or cannot be resolved to refer to the correct entity.
v) Addition_Error: the statement introduces facts that cannot be verified from the source
document.
vi) Factually_Correct: the statement is factually correct without above factual errors. Note
that it is allowed for the statement to miss important information from the source document;
it is considered factually correct as long as the statement can be verified from the source
document.

### Task

Please try your best to firstly reason in few sentences on whether the statement has factual
errors or is factually correct, then determine the consistency label(s) from the above 6
types of labels in the end.

--- Your_Task ---

### Source Document

{Document}

### Statement

{Entire Summary or Summary Window}

### Output Format

- Reasoning: ...
- Label: ...

### Your Output

Please refer to the above instruction, return Reasoning and Label in a Markdown list, to
evaluate the factual consistency of the statement.

Figure 3: Prompt for FACTAX described in Section 4. Slots in blue refer to the input document and summary.
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