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ABSTRACT

Recent advancements in vision-language models (VLMs) have been driven by
contrastive models like CLIP (Radford et al., 2021), which learn to associate
visual information with their corresponding text descriptions. However, these
models have limitations in understanding complex compositional scenes involv-
ing multiple objects and their spatial relationships. To address these challenges,
we propose a novel approach that diverges from commonly used strategies relying
on the design of hard-negative augmentations. Our work instead focuses on inte-
grating sufficient inductive biases into pre-trained CLIP-like models to improve
their compositional understanding without using additional data annotations. To
that end, we introduce a binding module that connects a scene graph, derived
from a text description, with a slot-structured image representation, facilitating
a structured similarity assessment between the two modalities. We also leverage
relationships as text-conditioned visual constraints, thereby capturing the intricate
interactions between objects and their contextual relationships more effectively.
Our resulting model (OC-CLIP) not only enhances the performance of CLIP in
multi-object compositional understanding but also paves the way towards more
accurate and efficient image-text matching of complex scenes.

1 INTRODUCTION

Recent advancements in multi-modal representation learning have primarily been enabled by the
introduction of CLIP (Radford et al., 2021). CLIP learns aligned image-text representations from
Internet-scale data. Despite its success, CLIP exhibits limitations in understanding complex scenes
composed of multiple objects (Kamath et al., 2023; Yuksekgonul et al., 2023a; Doveh et al., 2023;
Paiss et al., 2023). For instance, while capable of recognizing individual objects, CLIP struggles
with interpreting spatial relationships among objects in the scene (e.g., “the cat is to the left of
the mat” vs. “the cat is to the right of the mat”) and adequately associating objects with their
corresponding attributes (e.g., “a red square and a blue circle” vs. “a blue square and a red circle”).
The process of acquiring this compositional understanding of the world is known as the binding
problem in the literature, and may be decomposed into segregation, representation, and composition
problems (Greff et al., 2020b).

Efforts to improve the compositional understanding of CLIP-like models have largely relied on
leveraging hard negative examples, either in the text space (Kalantidis et al., 2020; Yuksekgonul
et al., 2023b; Zhang et al., 2024b; Doveh et al., 2023; Paiss et al., 2023) – to improve sensitivity
to the order of words and subtle textual differences – or the image space (Awal et al., 2024; Le
et al., 2023; Zhang et al., 2024a) – to improve sensitivity to subtle visual differences. Although
these methods have somewhat improved CLIP-like models’ performance on scene compositionality
benchmarks (Parcalabescu et al., 2022; Zhao et al., 2022; Yuksekgonul et al., 2023b; Hsieh et al.,
2023b), they do not explicitly address the binding problem as they focus mainly on enhancing the
model’s representation capabilities with additional data, hindering their generalization to unseen
scene compositions.

Yet, the object-centric representation learning literature (Eslami et al., 2016; Greff et al., 2020a;
Locatello et al., 2020; Wu et al., 2023; Seitzer et al., 2023) has long focused on developing methods
to address the segregation and representation problems as a way to facilitate the subsequent com-
positional processing of images. This has led to the development of inductive biases to segregate
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different objects in a scene into distinct representational slots, which have been shown to naturally
scale to an increasing number of visual objects and relations (Locatello et al., 2020; Webb et al.,
2023; Mondal et al., 2024; Elsayed et al., 2022). To the best of our knowledge, advances in object-
centric representation learning are yet to be explored in the vision-language domain.

Therefore, in this paper, we focus on enhancing the compositional scene understanding of CLIP-like
models by leveraging the advances from object-centric representation learning. In particular, we
propose to endow CLIP-based vision-language architectures with segregation and composition
capabilities. Our core idea is to adapt the slot-centric representation paradigm for CLIP architectures
and dynamically align each representational slot with the object entities mentioned in the text. To
do so, we design a binding module that connects a scene graph, derived from the textual description,
with a slot-structured image representation. We utilize the scene graph’s relationships as constraints
to effectively capture the complex interactions among the visual entities represented as slots. Our
enhanced model, which we refer to as Object-Centric CLIP (OC-CLIP), not only boosts CLIP’s
performance in understanding multi-object compositional scenes but also improves the accuracy of
image-text matching in complex and highly compositional visual scenarios.

Our contributions are summarized as follows:

• We introduce OC-CLIP, a model which endows CLIP-based architectures with segregation
and composition capabilities, effectively addressing the binding problem.

• We evaluate the sample efficiency of our approach against methods leveraging hard neg-
ative augmentations in a controlled 3D environment and show the overall efficiency of
OC-CLIP compared to both text and image based a hard-negative augmentations.

• We demonstrate that OC-CLIP significantly enhances the binding of object-centric at-
tributes and spatial relationships across a representative set of challenging real-world com-
positional image-text matching benchmarks. Notably we report an increase of +16.1%
accuracy in the challenging swap attribute split of SugarCrepe compared to OpenCLIP (Il-
harco et al., 2021) finetuned in-domain and go from random chance to more than 93% on
COCO-spatial and 95% GQA-spatial from the Whatsup benchmark (Kamath et al., 2023).

• We show the scaling potential of OC-CLIP when trained from scratch on a noisy
CC12M (Changpinyo et al., 2021) dataset.

2 RELATED WORK

Contrastive Pretraining of VLMs. Vision-language models (VLMs) have made substantial strides
in both the vision and multi-modal domains (Bordes et al., 2024). Modern VLMs are pretrained
on vast, diverse and oftentimes noisy multi-modal datasets (Changpinyo et al., 2021; Schuhmann
et al., 2022; Ilharco et al., 2021; Zeng et al., 2022a) and applied to various zero-shot tasks.
CLIP (Radford et al., 2021) presented a contrastive learning approach used for pretraining, which
involves training the model to differentiate between similar and dissimilar image-text pairs. This
approach encourages the model to learn a shared representation space for images and text, where
semantically similar pairs are close together and dissimilar pairs are far apart. Following CLIP’s
lead, image-text contrastive learning has become a prevalent strategy for VLM pretraining (Liu
et al., 2023; Cai et al., 2024; Liu et al., 2024a; Dai et al., 2023; Zhai et al., 2022b; Chen et al.,
2022; Beyer et al., 2024; Fini et al., 2023). Contrastive vision-language pretraining spans numerous
downstream applications, including zero-shot image classification (Zhai et al., 2022a; Radford
et al., 2021; Metzen et al., 2024; Gao et al., 2021), text-to-image generation (Podell et al., 2023;
Abdal et al., 2021; Ramesh et al., 2022; Saharia et al., 2022), as well as assessing text-image
alignment (Moens et al., 2021; Cho et al., 2023). In this work we are particularly interested the
ability of CLIP-based VLMs to evaluate compositional text-image alignment.

Compositional Understanding Benchmarks. Several benchmarks have been developed to assess
the compositional understanding of VLMs. In this work, we focus on benchmarks structured as
cross-modal retrieval tasks where the model needs to distinguish between correct and incorrect
text descriptions given an image, and evaluations are based on accuracy metrics. The majority
of these benchmarks (Zhao et al., 2022; Yuksekgonul et al., 2023a; Parcalabescu et al., 2022)
rely on the rule-based construction of negative captions and the generation of their associated
image counter-factuals (Zhang et al., 2024a; Awal et al., 2024). Yet, many of these benchmarks
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may be solved by leveraging the language prior exclusively (Goyal et al., 2017; Lin et al., 2024),
hence disregarding the information from the visual input. To address this, benchmarks such
as SugarCrepe (Hsieh et al., 2023a) leverage large language models to generate plausible and
linguistically correct hard negatives, and show that previously introduced text-based hard negative
strategies are not always effective (Yuksekgonul et al., 2023b) – e.g., when considering attribute and
object swaps between textual descriptions. Other benchmarks focus on assessing the VLMs’ spatial
understanding (Kamath et al., 2023; Yuksekgonul et al., 2023b; Zhang et al., 2024a), and propose to
finetune CLIP-based models on data containing a high proportion of spatial relationships since these
relationships tend to underrepresented in commonly used pretraining datasets. Interestingly, Kamath
et al. (2023) show that even when finetuning with in-domain data with an overrepresentation of
spatial relationships, state-of-the-art models still exhibit a close to random chance performance. In
this work, we test the hypothesis that spatial relationship failures are due to the lack composition in
the similarity score computation used to train CLIP-like models.

Object-centric Binding Inductive Biases. CLIP has been shown (Yuksekgonul et al., 2023a) to be
pushed to learn disentangled, bag-of-words-style representations from the contrastive loss and the
easily distinguishable negatives typically used for pretraining. Although the learned representations
might be effective for objects presented in isolation, they struggle with scenes containing multiple
objects (Tang et al., 2023). For example, consider a simple scene with a green apple and a yellow
banana. In this case, the model must maintain and correctly link the attributes (“green”, “yellow”)
to the objects (“apple”, “banana”), without mixing the concepts – e.g., “yellow apple” or ‘green ba-
nana”. This exemplifies the importance of devising robust mechanisms within the CLIP architecture
and/or training to accurately handle multiple objects, while preventing feature interferences. In this
work, we focus on equipping CLIP with object-centric binding inductive biases and take inspiration
from the architectures proposed in the unsupervised object-centric visual representation learning
literature (Locatello et al., 2020; Wu et al., 2023; Seitzer et al., 2023; Assouel et al., 2022). Many
recent image-only approaches follow a simple inductive bias introduced by slot Attention (Locatello
et al., 2020), where an image – encoded as a set of input tokens – is soft partitioned into K slots.
In particular, attention maps are computed via an inverted cross attention mechanism (Wu et al.),
where the softmax is applied along the query dimension in order to induce a competition between
the slots to explain different groups of input tokens. In this work, we extend these inductive biases
to define text-conditioned visual slots from the input image.

3 METHOD

Our goal is to enhance CLIP-based architectures with segregation and composition capabilities.
Our method starts by extracting representations of distinct objects and relationships in a textual
description, as well as representations of patches in an image. Next, a binding module matches the
text representation of objects to the relevant image patches, producing a slot-centric representation
of the image. Finally, a structured similarity score compares the slot-centric representation with the
textual representations of different objects, and leverages the extracted relationships as constraints
applied to the visual slots. Our key contributions lie in the design of the binding module1 and the
proposal of the structured similarity score, which we detail below. Figure 1 presents an overview of
the proposed approach.

Notation. We denote as x an image of shape Rh×w×3 and as x̄ = [x̄1, ..., x̄N ] = Eϕ(x) ∈ RN×d its
patch-level encoding, where Eϕ is an image encoder – typically a pre-trained ViT (Dosovitskiy et al.,
2020) – N is the number of patches and d the dimensionality of the patch embeddings. We denote as
t the text description, or caption, associated with x. We extract a scene graph, G from t by leveraging
an LLM-based parsing approach. G is composed of a set of nodes N = {N1, ..., NM} representing
the M objects in t and of a set of edges E = {(r1, s1, o1), ..., (rP , sP , oP )} representing the P
relationships in t. Each relationship is represented by a tuple (r, s, o), where r is the embedding of
the predicate, s the subject and o the object of the relationship. For example, the scene graph of “A
red apple to the left of a blue car” will be represented with the set of nodes {“red apple”, “blue car”}
and the set of edges {(“to the left of”, “red apple”, “blue car”)}. In practice, we represent N as a
matrix of node features N, where each row contains the embedding of a node in the graph. Moreover,
we represent each si and oi in the relationship tuples as indices referencing the nodes (rows) in N.

1Code for the Binding Module is given in the Appendix 9
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Figure 1: Object-Centric CLIP (OC-CLIP) overview. OC-CLIP begins with scene parsing, where
we utilize a text parser (e.g., Llama3-based) to extract objects and relations from the input caption.
The extracted text objects and relations are then fed into a text encoder, which generates distinct
text embeddings for both entities and relations. In parallel, the corresponding image is processed
by an image encoder to produce patch-level image embeddings. These image embeddings are then
combined with the text entity embeddings and passed through a binding module, which outputs
visual token slots embeddings. To align the text entity embeddings with the visual token slots,
we use an object scoring function that learns to map the text entities to their corresponding visual
slots. Furthermore, we introduce a relation scoring function that encourages the visual slots to
incorporate relationship information, thereby enriching the representation.

3.1 BINDING MODULE

Our first contribution resides in the binding module. The idea is that when comparing the content
of a caption and an image we do not want the features of different objects to interfere with each
other but rather keep them separate at a representational level. The role of the binding module is
thus to extract a slot-centric representation of an image where the content of the slots are pushed to
represent the nodes of the associated scene graph.

To do so, we implement the binding module using a inverted cross-attention layer (Wu et al.), where
the queries are the nodes from our scene graph and the keys and values are the image patches. We
normalize the attention coefficients over the queries’ dimension in order to introduce a competition
between queries to explain different parts of the visual input. We follow common practice and set
the attention’s softmax temperature to

√
D, with D being the dimensionality of the dot-product

operation. Applying the softmax along the queries’ dimension pushes all the candidate keys to be
softly matched to at least one query. However, captions mostly describe specific parts of the image,
and rarely capture all the visual information. Since we want only the relevant visual information
to be captured by the queries, we add a set of default query tokens, stored in a matrix Qdefault,
which participate in the competitive attention mechanism – with the goal of absorbing the visual
information not captured in the caption. These default query tokens are dropped in the subsequent
computation steps of our model (akin to registers in ViT backbones (Darcet et al., 2024)). We find
the default query tokens crucial to stabilize the training our model.

The binding module computations are formalized as follows:
Q = WqN,

K,V = Wkx̄,Wvx̄,

Q′ = [Q;Qdefault],

Attention(Q′,K,V) = softmax
(
Q′ ·KT

√
D

, dim=’queries’
)
·V,

S,Sdefault = Attention(Q′,K,V). (1)
Here, Wq , Wk, and Wv are the linear projection weight matrices for the queries, keys, and values,
respectively, S are the visual slots, Sdefault are the visual slots from default query tokens, which are
discarded for subsequent steps, and [.] denotes the concatenation operation.

Thus, the output of this binding module are the visual slots S. Intuitively, these slots are pushed
to represent the visual objects, or entities, that correspond to the nodes of the scene graph. Their
object-centric learning is driven by the structured similarity that we detail in the next section.
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3.2 STRUCTURED SIMILARITY SCORE

Our second contribution resides in the introduction of a structured similarity score, whose goal
is to promote the constraints imposed by the scene graph on the learnable visual slots. Our pro-
posed structured similarity score is composed of an object scoring function and a relationship scor-
ing function. The object scoring function assesses the presence of each node in the scene graph
(objects present in the caption). We model this function as the sum of the cosine similarity be-
tween each textual node representation Ni and its assigned visual slot Si. The relationship scor-
ing function encourages the relational constraints imposed by each edge in the scene graph and is
defined as a learnable function fϕ of the relationship embedding ri, and the visual slot represen-
tations Ssi and Soi corresponding to the subject and object of the relationship, respectively. We
derive the overall structured similarity score over the visual slots S from an image x and a graph
G = ({N i}i=1..M , {(ri, si, oi)}i=1..P ) such that:

S(x,G) =
α
∑

i=1..M cosine(Ni,Si) + β
∑

i=1..P fϕ(r
i,Ssi ,Soi)

αM + βP
, (2)

where α and β are learned parameters controlling the strength of each score. M and P are the
number of nodes and relationships in the scene graph G, respectively.

We define fϕ as follows:

fϕ(r,S
s,So) = cosine (r, fs([r,Ss]) + fo([r,S

o])) , (3)

where [.] denotes the concatenation of two vectors and fs and fo are MLPs that reduce the dimen-
sionality of their inputs. Note that we model the relationship scoring function so that it keeps the
same scale as the object scoring function and can take the order of the relationship into account.

3.3 TRAINING

The model is trained using the following loss:

L = Litc + Lrel. (4)

Litc is the image-text contrastive loss defined to minimize the distance between image and scene
graph representations from paired text-image data while maximizing the distance between image
and scene graph representations from unpaired text-image data as:

Litc = −
B∑
i=1

(
log

expS(xi,Gi)∑B
j=1 exp

S(xj ,Gi)
+ log

expS(xi,Gi)∑B
j=1 exp

S(xi,Gj)

)
, (5)

where B is the number of elements in the batch. Note that the S is the structured similarity score
defined in Eq. 2. Lrel is the loss that pushes the model to learn a non-symmetric relationship scores:

Lrel = −
B∑
i=1

log
expS(xi,Gi)

expS(xi,Gi) +expS(xi,Ḡi) +expS(xi,G̃i)
, (6)

where Ḡ and G̃ are altered scene graphs. In Ḡ, we swap the order of the subject and the object
of a relationship, whereas in G̃, we randomly chose the relationship’s subject and object from the
nodes in the scene graph. We ablate the main components of OC-CLIP in Table 6 and give a more
extensive ablation analysis in Apppendix A.1

4 RESULTS

We evaluate OC-CLIP in two different setups. In the first setup, we leverage synthetic data to
control for the combinations of objects and relationships seen during training. We demonstrate
that, unlike vanilla CLIP with OpenCLIP weights (Ilharco et al., 2021), OC-CLIP generalizes well
to combinations of objects and attributes not seen during training. In the second setup, we utilize
real-world datasets and benchmarks to further evaluate OC-CLIP, and highlight that our model can
also improve performances w.r.t. the OpenCLIP baseline.

5
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4.1 COMPOSITIONAL UNDERSTANDING IN A CONTROLLED 3D ENVIRONMENT (PUG)

In this section, we study the object-centric binding problem, and the sample efficiency of hard-
negative-based baselines against our proposed OC-CLIP. We consider a controlled 3D environment
based on PUG (Bordes et al., 2023), where the vocabulary is fixed and where the models are
exposed to every object-attribute conjunction. We build a dataset composed of a single textured
animal, or pairs of animals, in different backgrounds. We use a combination of 4 textures, 20 animal
classes, and 5 different backgrounds, see example in Figure 2a and 7a. We test the compositionality
of learned representations along several generalization axes. The evaluation is based on image-
text retrieval tasks where we assess both attribute binding understanding and spatial relational
understanding (in Appendix section A.5.1). We follow prior benchmarks (Hsieh et al., 2023a) and
perform text-retrieval only between the correct caption and the associated negative caption.

The goal of this initial experiment is to determine if OC-CLIP can effectively separate objects from
their attributes. To do so, we test the model’s ability to generalize to object-texture combinations
not seen during training. We create splits with varying proportions of animal pairs to be used for
training, and a held out a test set of unseen object-attribute pairs combinations. We ensure that each
pair of animals is assigned a unique set of attributes during training. For instance, if a tortoise and
an elephant appear together in the training set, they will only appear as ”red tortoise” and ”blue
elephant.” We consider two generalization axes: (1) Seen object pairs This axis tests for unseen
object-attribute combination of animal pairs seen during training. (2) Unseen object pairs: This
axis tests for unseen pairs of animals, regardless of the attributes associated to them.

We finetune both the CLIP architecture with OpenCLIP weights (Ilharco et al., 2021) – hereinafter
referred to as OpenCLIP – and OC-CLIP on data splits containing an increasing proportion of the
data from the PUG environment. We consider increasing the number of seen animal pairs and
design the hard negatives required to train the models as images containing pairs of animals in the
training set but with swapped attributes. We then test both models on image-text retrieval tasks and
report the results in Figure 2. Figure 2(b) shows the results for the seen object pairs generalization,
whereas Figure 2(c) presents the results for the unseen object pairs. As shown in the figure, when we
do not have any hard negative and only use a low number of animal pairs for training, the baseline
OpenCLIP model shows poor performance across both generalization tasks, whereas our OC-CLIP
is able to generalize well. In particular, OC-CLIP reaches 100% accuracy on seen object pairs
regardless of the amount of hard negatives and object pairs shown during training, which translates
into an absolute 28% increase over the OpenCLIP baseline in the most challenging case. For
unseen object pairs, OC-CLIP exhibits consistent improvements over OpenCLIP as well, e.g. over
20% absolute improvement in the most challenging case. These results highlight the better sample
efficiency of OC-CLIP, even when using a high proportion of hard negatives in the training set.

(a) Example image
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(b) Seen object pairs
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(c) Unseen object pairs

Figure 2: Attribute Binding. Performance of the finetuned OpenCLIP and OC-CLIP models on a
binary classification task between a caption and its corresponding hard-negative, as shown in Figure
(a). To assess the models’ performance, we compute the accuracy across two dimensions. The
first one is the percentage of animal pairs (y-axis) seen during training (animals like elephants and
fish could be seen either alone or with other animals but never together). The second dimension
(x-axis) is the number of hard-negatives used in the training data. For instance, whether we have
the combination “red elephant” and “white fish” in the training data while we only have “white
elephant” and “red fish” in the test data.
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4.2 COMPOSITIONAL UNDERSTANDING IN REAL WORLD DATASETS

In this section, we verify that the observations made in the controlled environment presented in
Section 4.1 also transfer to real-word datasets.

Datasets. We train OC-CLIP and finetune OpenCLIP in-domain on a set of datasets relevant for real-
world compositional understanding. The training text descriptions representing positive samples are
taken from COCO (Lin et al., 2014), Visual-Genome (Krishna et al., 2017) and GQA (Hudson and
Manning, 2019). The latter annotates images coming from Visual Genome (Krishna et al., 2017)
with objects and both spatial and non-spatial relationships, and thus contains a high representation
of spatial prepositions. We evaluate the different models on the most challenging benchmarks
representative of compositional understanding, ensuring that we validate both their attribute binding
and spatial relationship understanding capabilities. In particular, we use SugarCrepe (Hsieh et al.,
2023b) and ARO-A (Yuksekgonul et al., 2023a) for attribute binding and ARO-Relation (ARO-
R) (Yuksekgonul et al., 2023a), COCO-spatial and GQA-spatial (Kamath et al., 2023) for spatial
relationship understanding. We also include evaluations on Winoground (Thrush et al., 2022) and
VL-Checklist (Zhao et al., 2023) in Table 5 and further detail the datasets in the appendix.

Training. The training of the OC-CLIP’s binding module is done from scratch along with the
finetuning of the text and vision backbones. The text backbone is initialized from OpenCLIP
weights (Ilharco et al., 2021). We consider 2 different image base ViT backbones, OpenCLIP
(ViT-B-16) (Ilharco et al., 2021) and Dinov2 (ViT-B-14) (Oquab et al., 2024), to show the flexibility
of our binding module and learned structured similarity score. We use a batch size of 128 and a
learning rate of 2e−4 to train OC-CLIP for 100 epochs. We use a batch size of 256 – following
previous finetuning approaches (Kamath et al., 2023; Yuksekgonul et al., 2023b) – and a learning
rate of 4e-6 for 20 epochs to finetune the OpenCLIP baseline. We run all the models for 3 seeds
and report the mean performance along with their standard deviation.

Baselines. We report the performance of a representative set of strong baselines which we separate
in two groups: the first group of baselines are VLMs trained contrastively and finetuned in-domain
(on COCO) and the second group are hard-negative-based methods. For the first group, we include
OpenCLIP – referred to as OpenCLIP-FT –, BLIP (Li et al., 2023a), and XVLM (Zeng et al.,
2022a). BLIP is augmented an image-text matching loss and XVLM uses bounding boxes to
assist the object-centric binding. Note that these two baselines are also equipped with a language
modeling objective which may help identify unplausible captions. For the second group, we select
a representative set of hard-negative-based methods to compare to. These methods augment the
dataset with rule-based text hard-negatives (NegCLIP (Yuksekgonul et al., 2023b)), language-
model-based hard-negatives (CE-CLIP Zhang et al. (2020)), and image-&-language-model-based
hard-negatives (CLIP-CC (Zhang et al., 2024a)).

4.2.1 ATTRIBUTE BINDING EVALUATION

We evaluate the attribute binding capabilities of OC-CLIP and baselines on SugarCrepe (Hsieh
et al., 2023b) and ARO-A (Yuksekgonul et al., 2023b) benchmarks. We report the results in Table 1.
When comparing OpenCLIP-FT to OC-CLIP (both models), we observe notable performance
boosts on ARO-A and SugarCrepe’s swap-attribute, and swap-object. In particular, OC-CLIP B-14

shows a performance boost of +22.1% on ARO-A, whereas in SugarCrepe, our model reaches
improvements of +16.1% on the swap-attribute split, +17.7% on the swap-object split, and a smaller
+4.7% on the replace-relationship split. Moreover, both OC-CLIP models perform similarly to
OpenCLIP-FT on the remaining SugarCrepe splits. This is to be expected since the remaining
splits do not require precise binding to distinguish between positive and negative captions and
may therefore be solved with a bag-of-words-like representation. When comparing with additional
contrastive-based models (BLIP and XVLM) finetuned with in-domain data, both OC-CLIP models
show notable improvements on SugarCrepe’s swap splits – e.g., OC-CLIP B-14 results in +14.6% in
object-swap and +12.3% in attribute-swap – despite not relying on additional binding annotations,
nor language modeling losses. The results of BLIP and XVLM on ARO-A may be explained by the
use of their use of a language modeling prior; Hsieh et al. (2023a) emphasizes that language-only
models are performing well on this benchmark because the negative caption are often not realistic.
Both OC-CLIP models also improve the results of hard-negative-based methods on SugarCrepe’s
swap splits as well as ARO-A. In all the remaining splits of SugarCrepe, except add-attribute,
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OC-CLIP models perform similarly to previous works leveraging hard-negatives. The results
achieved by CE-CLIP and CC-CLIP on the add-attribute split could be attributed to an increase of
attribute coverage induced by the language model generations.

Model Swap Add Replace

Object Attribute Object Attribute Object Attribute Relation

Zero-shot
OpenCLIP 68.2 66.2 82.7 80.3 93.8 82.8 67.3

In-domain ft baselines
BLIP Li et al., 2022b† 66.2 76.2 - - 96.5 81.9 68.35
XVLM Zeng et al. 2022b † 64.9 73.9 - - 95.2 87.7 77.4
OpenCLIP-FT 63.1 ±0.6 72.4±1.1 93.4 ±0.2 83.1 ±0.5 95.4 87.0 ±0.6 75.5 ±0.6

Hard-Negative - small scale
NegCLIP Yuksekgonul et al.
(2023a)†

75.2 75.4 88.8 82.8 92.7 85.9 76.5

CE-CLIP Zhang et al.
(2024b)†

72.8 77 92.4 93.4 93.1 88.8 79

CC-CLIP Zhang et al.
(2024a)†

68.6 73.6 86.7 90.3 95.9 87.9 76.2

Hard-Negative/Dense Captioning - large scale
DAC-LLM 75.1 74.1 89.7 97.7 94.4 89.3 84.4
DAC-SAM 71.8 75.3 87.5 95.5 91.2 85.9 83.9

Ours
OC-CLIP B-16 76.3 ±0.7 87.1 ±0.2 91.3 83.8 ±1.0 93.9 ±0.4 88.3 ±0.1 77.0 ±0.2

OC-CLIP B-14 80.8 ±0.7 88.5 ±0.4 93.0±0.3 83.8 ±1.1 95.7 ±0.4 88.8 ±0.6 80.2 ±0.2

Table 1: Performance on SugarCrepe. Both OpenCLIP-FT and OC-CLIP are initialized with the
same OpenCLIP checkpoints. OC-CLIP is trained with two ViT base backbones with different
resolutions: OpenCLIP’s backbone (B-16) and Dinov2 (B-14).

4.2.2 RELATIONSHIP UNDERSTANDING EVALUATION

Model COCO-spatial GQA-spatial

XVLM 73.6 67
BLIP 56.4 52.6

NegCLIP 46.4 46.7
OpenCLIP-FT 45.6 ±0.2 49.1±1.1

OC-CLIP (B-16) 90.1 93.9
OC-CLIP (B-14) 93.5 95.6

Table 2: Spatial relationship understanding:
Performance on COCO-spatial, GQA-spatial
from the Whats’up Benchmark We finetune
both OpenCLIP (OpenCLIP-FT here) and OC-
CLIP in-domain on COCO, Visual Genome, and
GQA data. Both models are initialized with the
same OpenCLIP checkpoints.

We evaluate the spatial relationship understand-
ing capabilities of OC-CLIP and baselines on
COCO-spatial, GQA-spatial, and ARO-
Relation (ARO-R). Note that ARO-Relation
contains both spatial and non-spatial relations
but about half of the test examples consists of
left/right relationships understanding. We re-
port the results in Table 2 and Table 5 and show
consistent improvements of both OC-CLIP
models over the baseline models and across
the 3 datasets. In particular, the best OC-CLIP
model outperforms OpenCLIP-FT by +47.9%
on COCO-spatial, +46.6% on GQA-spatial,
and +34.7% on ARO-R. When compared to
contrastive VLMs finetuned with in-domain
data (XVLM, BLIP), OC-CLIP models exhibit superior performance, with improvements between
+10% and +27% over the strongest contrastive finetuned VLM. Finally, when compared to baselines
leveraging hard-negatives (NegCLIP), OC-CLIP remains the highest performer.

4.3 GENERALIZATION

In the previous sections, we tested OC-CLIP on datasets that are in-distribution w.r.t. the finetuning
on COCO – Note that SugarCrepe is based on COCO images. Here, we test the compositionality per-
formance of OC-CLIP on data distributions different than the one used for model fine-tuning. Specif-
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ically, we test the generalization of our model on the challenging Winoground benchmark (Thrush
et al., 2022). In Winoground, each sample consists of two image-text pairs, where both texts in the
sample present small differences resulting from object, relationship, or object&relationship swaps
with their corresponding image. The task involves two types of retrieval tasks: text-based retrieval
and image-based retrieval as described in (Thrush et al., 2022). We report the results in Table 3.
We observe that both OC-CLIP models consistently outperform OpenCLIP-FT and NegCLIP across
all tasks (text, image, group) by a significant margin: +(7.3, 5.1, 2.2)% and +(6.3, 4.0, 2.6)% with
B-14 and B-16 backbones, respectively. We also remark that the overall low absolute scores can be
partially attributed to the very challelling nature of Winoground, which have been shown to con-
tain some ambiguous/unsolvable pairs, as well as pairs that to be solved require very high image
resolution (much higher than 224 to which we operate), see Diwan et al. (2022).

4.3.1 DOES OC-CLIP WORK ON NOISY DATA?

Winoground
Model Text Score Image Score Group Score

OpenCLIP-FT (COCO) 25.6 11.5 7.8
NegCLIP 29.5 10.5 8.0
OC-CLIPB-16 (COCO) 36.8 ±3.1 14.5±0.6 10.6 ±1.5

OC-CLIPB-14 (COCO) 37.8 ±1.1 15.6±1.7 10.2 ±1.1

Table 3: Results on generalization. Winoground
is evaluated with the text, image and group scores
introduced in Thrush et al. (2022).

In order to show the potential of OC-CLIP to
learn from scene-graph obtained from a non
human-curated captioning dataset we train both
ViT-B-16 OpenCLIP model and OC-CLIP from
scratch on CC12M (Changpinyo et al., 2021).
We did not tune the hyperparameters and used
the same hyperparameters as suggested in (Mu
et al., 2021). Both models are trained for 20
epochs, using a batch size of 4096, a learning
rate of 5e − 4, 1k steps learning rate warmup
and a cosine decay after. As recommended by
Mu et al. (2021) we used AdamW optimizer with 0.5 of weight decay and β2 set to 0.98. Inter-
estingly, in Table 4, OC-CLIP shows performance gains in general zero-shot classification (+9.2%
in ImageNet) while maintaining a significant gap in zero-shot compositional understanding with a
notable +15.9% and +14.3% in the swap attribute and swap object SugarCrepe splits, respectively.
This experiment shows that the structured training of OC-CLIP is also effective when scaling to
an automatic alt-text captioned dataset and does not only rely on high-quality human captions. We
additionally report extensive zero-shot downstream classification performance on the ELEVATER
(Li et al., 2022a) suite in Appendix Table 8 and leave further scaling for future work.

Model Zero-Shot Classification Compositional
Food101 CIFAR10 CIFAR100 Eurosat STL10 ImageNet Swap Obj Swap Att

CLIP 36.8 55.7 28.9 26.9 87.4 29.7 60.4 61.5
OC-CLIP 51.0 74.3 41.5 16.9 89.8 39.5 74.7 77.4

Table 4: Comparison of CLIP and OC-CLIP models on zero-shot classification and compositional
understanding tasks. Both are trained from scratch on CC12M for 20 epochs with a batch size of
4096. ViT-B-16. Extensive results from ELEVATER benchmark (Li et al., 2022a) in Table 8

4.4 ABLATIONS

In Table 6 we ablate the key design choice of our model and further discuss them in Appendix A.1.
Specifically we investigated two key components of the model: the use of competitive cross atten-
tion and the local graph contrastive loss. The results showed that removing the competitive cross
attention mechanism had a slight impact on fine-grained attribute binding performance, but not on
relational understanding. On the other hand, removing the local graph contrastive loss significantly
impacted downstream relational understanding, with accuracy decreasing from 80.7 to 73.1 for swap
obj and from 80.6 to 74.7 for replace rel. These findings highlight the importance of the local graph
contrastive loss in improving the model’s relational understanding capabilities.

5 CONCLUSION AND LIMITATIONS

Conclusion. In this paper, we proposed Object-Centric CLIP (OC-CLIP), a method to enhance the
compositional scene understanding of CLIP-like models by leveraging advances from object-centric
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Model VL-Checklist ARO

Object Relation Attribute Attribution Relation COCO-order Flickr-order

CLIP 80.0 63.0 67.4 63.2 60.0 47.9 60.2
BLIP 82.2 70.5 75.2 63.2 60.0 47.9 60.2
XVLM 85.8 70.4 75.1 73.4 86.8 - -

Hard-negative Methods
CLIP-SVLC 85.0 68.9.7 72.0 73.0 80.6 84.7 91.7
NegCLIP 84.1 63.5 70.9 71 81 86 91
CE-CLIP 84.6 71.8 72.6 76.4 83.0 - -
Dense captioning+Hard-Negative
DAC-LLM500k 66.5 56.8 57.4 63.8 60.1 50.2 61.6
DAC-LLM3M 87.3 86.4 77.3 73.9 81.3 94.5 95.7
DAC-SAM3M 88.5 89.7 75.8 70.5 77.2 91.2 93.9
DCI 80.7 70.1 68.7 67.6 76.2 88.6 91.3
DCIneg 88.4 61.3 70.4 62.0 57.3 39.4 44.6

OC-CLIP 84.5 73.9 73.7 82.0 86.5 94.2 84.8

Table 5: Results (%) on VL-Checklist and ARO Benchmark.

Local Loss Competitive X-Attn Default Token Relation Module Swap Obj Swap Att Replace Att Replace Rel

✓ ✓ 4 Additive 80.7 88.7 88.3 80.6

- ✓ 4 Additive 73.1 88.3 89.2 74.7
✓ - 0 Additive 80.4 86.0 86.2 80.6
✓ ✓ 1 Additive 79.9 88.4 86.7 80.9
✓ ✓ 4 MLP 78.4 87.8 87.1 78.7

Table 6: Ablation of OC-CLIP components. Fine-grained accuracy on SugarCrepe splits.

representation learning. Our approach adapts the slot-centric representation paradigm to CLIP and
dynamically aligns each representational slot with the objects mentioned in the text description.
This is achieved by the introduction of a binding module and a structured similarity score that allows
to train OC-CLIP in a contrastive way. We evaluated the sample efficiency of our approach against
common hard-negative augmentation strategies in a controlled 3D environment and showed the
overall efficiency of OC-CLIP compared to both text and image-based hard-negative augmentations.
We also demonstrated that OC-CLIP significantly enhances the binding of object-centric attributes
and spatial relationships across a representative set of challenging real-world compositional image-
text matching benchmarks. Notably, we reported an increase of +16.1% accuracy in the challenging
swap-attribute split of SugarCrepe compared to OpenCLIP finetuned with in-domain data and dras-
tically improved performance on COCO-spatial and GQA-spatial from the Whatsup benchmark,
moving from random chance to more than 93%. Finally we show the scaling potential of OC-CLIP
to be trained from scratch on a noisy CC12M (Changpinyo et al., 2021) datastet. Notably we report
performance gain in zero-shot classfication (+9.2% in ImageNet 8) while maintaining a significant
gap in zero-shot SugarCrepe swap attribute (+15.9%) and swap obj (+14.3%) splits.

Limitations. Our current implementation builds upon existing pre-trained backbones and only
trains the binding and scoring modules from scratch. This allows us to leverage the knowledge
captured by these pre-trained backbones while still adapting to the specific task of compositional
scene understanding. Future work could explore ways to improve the scalability of our approach,
such as developing more efficient training methods or exploring alternative architectures with
similar object-centric inductive biases. We also expect the capacity needed for the text encoder to
be reduced since it does not need to encode whole scene configuration but rather single objects and
relationships as shown in our CC12M experiemnts and further explained in Appendix A.2.
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A APPENDIX

A.1 ABLATIONS

In this section we ablate and discuss some important design choice of OC-CLIP. We separately
ablate and discuss :

• The similarity score coefficients α and β that control the weight of the objects and rela-
tions in the global graph-image similarity score.

• Binding module inductive biases and their impact on compositional understanding per-
formance.

• Local Loss impact on downstream compositional understanding of relationships.

Important ablation results are summarized in Table 7 and further commented below.

Model Loc Loss Comp Att Default Token Relation Module

OC-CLIP ✓ ✓ 4 Additive
- Loc Loss - ✓ 4 Additive
- Comp Att ✓ - 0 Additive
+ Default Token (1) ✓ ✓ 1 Additive
+ MLP Relation ✓ ✓ 4 MLP

Split Swap Obj Swap Att Replace Att Replace Rel

Baseline 80.7 88.7 88.3 80.6
- Loc Loss 73.1 88.3 89.2 74.7
- Comp Att 80.4 86.0 86.2 80.6
+ Default Token (1) 79.9 88.4 86.7 80.9
+ MLP Relation 78.4 87.8 87.1 78.7

Table 7: Ablation Experiments, Fine-grained accuracy (% performance on representatitve Sugar-
Crepe splits.

Similarity Score OC-CLIP’s structured global similarity score is a combination of the object and
relationship components respectively weighted by two learnt parameters α and β balancing the
different contributions. We let the model learn those parameters throughout the training. However,
during preliminary experiments we tested a different combinations of initial coefficient within the
[1.5, 1, 0.5, 0.1] grid and noticed that the model was always converging to a α

β ∼ 3 without any
difference in the downstream compositional performance. We thus fix the initial coefficients to
α = 1.5 and β = 0.5 and treat them as parameters.

Default Token and Competitive Cross Attention In the binding module we propose to use an
inductive biases to encourage the query tokens to attend to different groups of patches. In order to
do so we use a competitive attention mechanism, the so called inverted cross attention common to
many object-centric image encoder architecture (Locatello et al., 2020; Wu et al.). We found that
the use of inverted cross attention impacts slightly the fine-grained attribute binning performance
(see swap att and replace att performance in Table 7, -Comp Att model does not use any inverted
cross attention and is rather implemented with a regular cross attention mechanism, the softmax
being done along the keys dimensions.). Interestingly the fine-grained attribute splits only seem to
be affected by this design choice and not the splits related to relational understanding.

Local Graph Contrastive Loss In designing the structured similarity score of OC-CLIP
the relational component is formulated as the following cosine similarity fϕ(r,S

s,So) =
cosine(r, fs([r,Ss]) + fo([r,S

o]). In theory both fs([r,S
s]) and fo([r,S

o]) can collapse to ig-
nore the subject object visual representation. In order to prevent such collapse we propose to add
a local graph contrastive loss that shares similarity with hard-negative based learning. We enforce
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the model to model with a higher similarity the graph composed of the same nodes but with either
swapped object and subject indices or shuffle objects and subjects indices within the local graph. In
both of those cases the relation component of the structured similarity score becomes (for a single
relation graph) :

swap G̃; cosine(r, fs([r,Ss]) + fo([r,S
o]) (7)

swap G̃; cosine(r, fs([r,So]) + fo([r,S
s]) (8)

shuffle Ḡ; cosine(r, fs([r,Sj!=s]) + fo([r,S
i!=o]) (9)

This prevents the model from collapsing because ground-truth G is distinguishable from G̃ and Ḡ
only if the visual representations are not ignored in the relationships components. We ablate incor-
porating both of those perturbed graphs in Figure 3 and removing the local loss from the training
objective in Table 7. Removing the local loss effectively impacts downstream relational understand-
ing on SugarCrepe with a swap obj accuracy decreasing from 80.7 to 73.1 and a replace rel accuracy
decreasing from 80.6 to 74.7 showing the effectiveness of the local graph contrastive loss.
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Figure 3: Local Perturbed Graphs Ablation In this ablations we keep the initialization seed fixed
and include a perturbed graph as a negative sample inside the loss by swapping the order of the
subject and object (y-axis), Ḡ or sampling random subject and object within the positive scene
graph (x-axis), G̃.

Scoring dimensionality Our structured similarity score allows the text encoder to focus on encod-
ing information about individual objects and their relationships, rather than the entire scene config-
uration. To achieve this, we experimented with different dimensionality for both the object scoring
bottleneck and the relationship scoring bottleneck. Specifically, each of these scores is designed as a
cosine distance between a text representation and a visual component (as described in Section 3.2),
with each operating at a bottleneck dimension of dobj and drel. In contrast, OpenCLIP represents
both the scene caption and the visual representation at a dimension of d = 512. We expect that our
model can operate effectively at a much lower dimensionality, as it requires less capacity to encode
single objects and relationships. We present an ablation study of these two dimensions in Figure 4.
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Figure 4: Score dimensionality ablations In this ablations we keep the initialization seed fixed and
vary the dimensionality of the relation score drel (x-axis) and object score dobj(y-axis) and report the
performance on the swap and replace splits of sugarcrepe.

A.2 SCALING EXPERIMENTS.

In the compositional understanding experiments we compare our approach with data-centric finetun-
ing methods that do not add any additional parameters. These methods are expected to retain some
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Table 8: Zero-shot evaluation of CLIP vs OC-CLIP. Trained on CC12M for 20 epochs.

of the general capabilities of the initial backbone. In contrast, our binding and relationship modules
is trained from scratch, which means it may not generalize as well to unseen data and can only be
expected to work well within the vocabulary domain it has been exposed to (eg. COCO/VG/GQA in
our experiments setting). However an interesting question would be to asses whether such inductive
biases and structured similarity object might have some sclaing potential on noisy and non human
curated datasets such as CC12M (Changpinyo et al., 2021). To answer that question we propose
to train both CLIP and OC-CLIP architectures from scratch on CC12M and compare both of their
general understanding and compositional downstream performance. In addition to the zero-shot
evaluation, we also provide a computational analysis of the binding module to gain insights into its
behavior and limitations.

Training Details In order to show the potential of OC-CLIP to learn from scene-graph obtained
from a non human-curated captioning dataset we train both ViT-B-16 OpenCLIP model and OC-
CLIP from scratch on CC12M (Changpinyo et al., 2021). We did not tune the hyperparameters
and used the same hyperparameters as suggested in (Mu et al., 2021). Both models are trained for
20 epochs, using a batch size of 4096, a learning rate of 5e − 4, 1k steps learning rate warmup
and a cosine decay after. As recommended by Mu et al. (2021) we used AdamW optimizer with
0.5 of weight decay and β2 set to 0.98.We report extensive zero-shot downstreeam classification
performance on the ELEVATER (Li et al., 2022a) suite in Table 8. OC-CLIP shows performance
gains in both zero-shot classification (+10% in ImageNet) and this experiments show that structured
training of OC-CLIP can scale to automatic alt-text captioning dataset. We leave further scaling for
future work as the main focus of our work is to emphasize the binding problem that arises when
using a vector-based representation and a set of inductive biases as a way of operating on a more
structured representation (eg. scene graph).

Computational analysis of OC-CLIP In OC-CLIP the visual and text modalities representations
are no longer independent (as opposed to CLIP). A image representation is the results of some
text-conditioned mechanism operated by the binding module. It essentially extracts relevant visual
slots that constitutes the nodes of the scene graph coming from the caption. As a result, there is
some notable computational overhead introduced by the additional cross-attention operations of the
binding module. In particular :

• 1. The text encoder needs to encode the N nodes and R relations of the scene graph as
opposed to a single sentence encoding in CLIP.

• 2. For each Image-Graph pair, The N text nodes cross-attends to Nim patches of the ViT
in order to extract the structured visual slots.

When training OC-CLIP from scratch we propose to mitigate those two overheads respectively by :

• 1. Using a smaller embedding width (256 vs 512) and number of layers (6 vs 12) in the text
encoder. Indeed OC-CLIP only need to encode information about objects and relationships
and we expect such encoding to require much less capacity than an encoder that needs to
encode a whole caption composed of multiple objects and relations between them.

• 2. We operate on a reduced embedding space 256 for the binding module and thus first
project the ViT-B-16 patches from a 768 to a 256 embedding space before computing the
nodes to patch cross attention logits.

We only perform experiments with a B-16 architecture for the ViT but perform the computational
analysis fro both B and L backbones. We report the results in Table 9 We note that there is a
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significant overhead with a base architecture 2.2x but since the binding module perform the same
number of operations no matter what the ViT is we show that when scaling the ViT backbone, the
binding module is not the bottleneck anymore and the computational overhead is reduced (1.3x).

Model ViT Backbone Text (w,l,ctx) Binding Module GFLOPs Text GFLOPS Vision GFLOPs Total GFLOPs
OC-CLIP B (256, 6, 20) 12(*num workers) 180 1k 2.2x

CLIP B (512, 12, 77) - 186 1k 1x
OC-CLIP L (256, 6, 20) 12(*num workers) 180 4.9k 1x

CLIP L (512, 12, 77) - 186 4.9k 1.3x

Table 9: Computational Comparison of CLIP and OC-CLIP. Calculations are made for a local batch
size (per GPU) of 64. We give the Total GFLOPs based on a global batch size of 8192 (=128
num workers). When scaling the ViT backbone the computational overhead of the binding module
remains fixed and is not the main bottleneck anymore.

A.3 SCENE GRAPH PARSING DISCUSSION

Comparison of different parsing methods Although the parsing method is not the core of our
contribution we provide here a couple of qualitative and quantitative comparisons to motivate the
choice of using an LLM to perform the parsing of the captions despite the pre-processing computa-
tional overhead it entails. We identify 3 families of parsing method that operate on text-only input
and provide insights on their respective :

• Automatic parsing methods : method based on hand-crafted rules about the semantics
in order to extract tags and more complex dependency graphs. TagAlign also compares to
nltk and justifies the choice of going to an llm-based method. We consider a representative
of those automatic parsing methods based on spacy (Honnibal and Montani, 2017).

• Finetuned factual scene graph parser trained in a supervised way to extract scene graph.
We consider a representative of them, a state-of-the-art factual scene graph parser based on
T5 model (Li et al., 2023b) trained to extract fine-grained scene graph information about
the objects and relations in an input caption.

• LLM-based, here we choose llama3-8b as a representative and leave the extensive analy-
sisof the bias/cues of different llm families of model for future work.

We identified failures modes of automatic parsing and finetuned that are relevant to compositional
understanding of clip-like models and justify the use of an llm-based parsing method and summarize
them in Table 10. We show on one hand that automatic parsing methods are prone to oversimpli-
fication, missing relations and mistaking an attribute modifiers with an object. On the other hand
supervised scene graph parser seems to be prone to relation classification error and important at-
teibute binding error when the different objects mentioned in a caption share the same label tag.

Caption Spacy T5 LLM

A brown cat is lying on a computer Objects: a brown cat, a computer
Relations: {on, 0, 1} (Oversimplification error)

Objects: brown cat, computer
Relations: {lay on, 0, 1} (Relation classification error)

Objects: brown cat, computer
Relations: {lying on, 0, 1}

A man is on the left of the dog Objects: a man, the left, a dog (Wrong POS)
Relations: {of, 1, 2} (Missing relation)

Objects: man, dog
Relations: {at the left of, 0, 1}

Objects: man, dog
Relations: {on the left of, 0, 1}

A woman in blue and a woman in red Objects: a woman, red, a woman, (Wrong POS)
Relations: {, 0, 1}, {in, 0, 2}, in, 2, 3}

Objects: blue red clothes, woman (Wrong attribute binding)
Relations: {wear, 0, 1}

Objects: woman in red, woman in blue
Relations: {}

Table 10: Comparison of parsing errors made by different parsers.

We additionally train OC-CLIP on COCO captions parsed by those 3 different parsing models and
compare the downstream compositional understanding performance in Figure 5. Coherent with the
qualitative analysis the choice of the parsing family mostly impact relational understanding. We
observe for the SugarCrepe swap object (replace rel resp.) a decrease of 9.3% (resp. 14.1%) for
spacy and 3.4% (resp. 6.3%) for a supervised T5 model as compared to OC-CLIP on scene graphs
extracted by llama3-8b. Close to our work, TagAlign(Liu et al., 2024b) also quantitatively and
qualitatively analyze the objects tags than can be extracted with an nltk-based and llm-based parser
and show that training CLIP with an additional object and attribute tag classification loss with tags
coming from an llm results in better downstream zero-shot semantic segemntation.
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Figure 5: Downstream Compositional Understanding of OC-CLIP when trained on different parsing
of COCO-Captions.

Limitations of LLM-based parsing for OC-CLIP We also acknowledge that using and LLM as
a parser may also have some limitations and evaluating the impact of the downstream performance
of different LLMs or VLMs is an interesting question. In particular, llm-based parsing might not
extract accurate scene graphs, especially when the dependency between the objects in a captions is
rather complex or ambiguous. And informing the parser in prompt with visual information might be
an interesting direction. However the exact instanciation of the LLM-based parser used is orthogonal
to our contribution and we leave this analysis for future work.

Scene Graph Parsing cost We performed the parsing by serving instances of Llama3-8b on v100
machines. Each datasets is then chunked in N process that do not require any GPUs and send
requests to the served LLM parsers through vllm2 to maximize the throughput of the parallelized re-
quests. For reference we parsed the COCO datasets (∼ 500k captions) parallelizing 10 instances of
the parser, and with 128 chunks in 3.5 hours and Visual-Genome (∼ 200k captions) with 8 instances,
64 chunks in 1.7hours. The parsing time can further be optimized by serving more instances, us-
ing more performant GPUs (A100, H100 etc..), serving each instance in parallel in more GPUs to
maximized the number of requests that can be processed per second.

A.4 IMPORTANCE OF SYNTHETIC EXPERIMENTS

The rise of data-centric hard negative methods were motivated by the bag-of-words behaviour (Yuk-
sekgonul et al., 2023b) of CLIP noticed in ”simple swap-attribute” retrieval tasks. Hard-negative
methods propose to mitigate this behaviour by finetuning CLIP-like models on data points with
minimal changes but semantically different meanings. However we experimentally observed that
all the methods fail to increase performance specifically in swap attribute kind of splits. In order
to further isolate the root cause, we propose a series of synthetic experiments that compare cover-
ing more hard-negative data points with OC-CLIP on varying proportion of training samples and
hard-negative samples. By restricting the environment to a closed-set vocabulary of backgrounds,
attributes, and object classes, we can enumerate all possible hard-negatives, allowing us to sys-
tematically evaluate the effectiveness of different approaches. Our results show that simply adding
more hard-negatives plateaus and is not sample-efficient, as the swap attribute binding performance
always underperforms OC-CLIP trained on less data without any hard-negatives in a simple object-
attribute binding task 2. However, when combined with OC-CLIP inductive bias, hard-negatives
complementarily improve downstream performance. This suggests that our model, OC-CLIP, is
a more sample-efficient approach to addressing the bag-of-words behavior of CLIP models. We
hypothesize that the root cause of this issue thus lies in the representation format used in CLIP’s
original formulation, which relies on a single vector to capture complex semantic relationships.
Our proposed method introduces inductive biases that allow the model to learn more structured
representations, avoiding superposition of features (Greff et al., 2020b) and effectively mitigating
the bag-of-words behavior. Through these synthetic experiments, we demonstrate the effectiveness
of our approach and provide insights into the sample-efficiency limitations of existing data-centric
methods.

2https://github.com/vllm-project/vllm
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A.5 PUG DATASET

In this section we describe in details the content of the controlled 3D environment based on
PUG (Bordes et al., 2023). We operate in a 3D envrionment with pairs or single textured animals in
different backgrounds. The factors of variation are :

• 5 Backgrounds : desert, arena, ocean floor, city, circus

• 20 Animals : goldfish, caribou, elephant, camel, penguin, zebra, bear, crocodile, armadillo,
cat, gecko, crow, gianttortoise, rhinoceros, dolphin, lion, orca, pig, rabbit, squirrel

• 4 textures : red, white, asphalt, grass

• 2 spatial constraints for pairs : left/right, above/under

The different splits We then construct splits that aim at evaluating separately attribute binding and
spatial relationships understanding. In all the different splits, we include images with single animals
in all the possible background-texture-animal conjunctions.

Attribute Binding Splits The attribute binding training and testing splits are constructed as fol-
lows : (1) - We list all the possible pairs of animals,(2) - We randomly and i.i.d. select a percentage
% Ntrain of pairs to include in the train split, (3) - For each training pair we select a pair of assigned
attribute (for example if cat and caribou are in the train split we will assign red to cat and white to
caribou and will remove all the other attribute-animal conjunction from the training. This is done
such that we can control for the replace attribute hard negative presence. (4) - For each pair in the
training set we separate the corresponding hard negative examples with the same bag of words but
swapped attributes (referred to as Seen Pairs in Figure 6) and the same pair but a different bag of
words ( referred to as Different Bag-of-words in 6) , (5) - finally we also isolate unseen pairs of
animals. We also include the accuracy on the training pairs that do not have their corresponding
hard negatives in the test set).
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(j) Unseen Pairs

Figure 6: Attribute Binding on PUG - Additional Results Performance of the finetuned OpenCLIP and OC-
CLIP models on a binary classification task between a caption and its corresponding hard-negative. We do that
for captions that mention Pairs of animals (top row) like the example in Figure (a) and for captions that mention
a single animal (bottom row) like the example in Figure (b).To assess the models’ performance, we compute
the accuracy across two dimensions. The first one is the percentage of animal pairs (y-axis) seen during training
(animals like elephants and fish could be seen either alone or with other animals but never together). The second
dimension (x-axis) is the number of hard-negatives used in the training data. For instance, whether we have the
combination “red elephant” and “white fish” in the training data while we only have “white elephant” and “red
fish” in the test data.

Spatial Relation understanding Splits For these splits we do not assign specific pairs of attributes
to train/test split but rather consider pairs of animals and their order with respect to the spatial rela-
tionship tested and systematically include all the possible attributes assignment to those pairs. We
then construct the different splits by restricting the number of pairs and their spatial configuration.
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Hard Negative Samples For both tasks the hard negative samples we consider are align with the
test tasks taxonomy. For attribute binding we always test the model’s ability to distinguish between
eg. a red cat and a white caribou and a white cat and a red caribou. Hence we consider as a hard
negative sample any image that corresponds to the swapped attribute version of a training pairs.
To augment the dataset with hard negative, we sample i.i.d. a percentage % Nhard of the training
pairs and include in their corresponding hard negatives in the train set. Similarly for the spatial
relationship understanding task, we test the model’s ability to distinguish between eg. a red cat to
the left of a white caribou and a white caribou to the left of a red cat. Hence we consider as a hard
negative sample any image that corresponds to the swapped order with respect to the relationship
tested of the animal pairs seen during training.

A.5.1 SPATIAL RELATION UNDERSTANDING

In this section, we aim to evaluate the spatial relationship understanding capabilities of the models.
To do so, we conduct controlled experiments using data splits where not all pairs of animals are seen
during training. The relations considered in these experiments are “left/right” and “above/below”.
Hence, the task is to choose between the original caption of the form “X left of Y” and the caption
with the swapped order “Y left of X”. We consider the following generalization axes:

• Unseen object order: This axis tests the generalization when swapping the order of objects
in a relationship. For example, “elephant to the left of fish” may be used for training, while
“elephant to the right of fish” is used for evaluation

• Unseen object pairs: This axis test for unseen pairs of animals in seen relationships.

We follow the experimental setup of section ??, and finetune OpenCLIP and OC-CLIP while
considering the effect of adding different % of hard negative images and/or different % of object
pairs to the training data.

We test both models on image-text retrieval tasks and report the results in Figure 7. Figure 7(b)
shows the results for the unseen object order generalization, whereas Figure 7(c) presents the results
for the unseen object pairs. As shown in Figure 7(b), OC-CLIP outperforms OpenCLIP in all data
regimes considered, with improvements between 6% and 18%. Similarly, as shown in Figure 7(c),
OC-CLIP improves upon OpenCLIP in all data regimes, yielding absolute improvements between
5% and 20%.

(a) Example image
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(c) Unseen object pairs

Figure 7: Spatial Relationship Understanding. We finetune both OpenCLIP and OC-CLIP on
splits containing different % of animals pairs (y-axis) and different % of hard-negative image in the
training split (x- axis). We test the models on images with either unseen order (b) or unseen pairs
(c) during training. The testing is done against the swapped order of the ground truth caption as
shown in the visual example (a).

A.6 PARSING

For the parsing of the training and testing data we used a llama-3-70b Instruct model with the
following prompt :
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Parsing Prompt

Given a caption, your task is to parse it into its constituent noun phrases and relationships. The noun
phrases should represent independent visual objects mentioned in the caption without semantic over-
simplification. For each caption, output the parsed noun phrases (e.g., entities) and relationships in
JSON format, placing the dictionary between [ANS] and [/ANS] brackets. In the relationships, use
indices to specify the subject and object of the relationship mentioned in the caption. The indices of
the subject and object should be integers. Here are a few examples:

C a p t i o n : A l a r g e brown box wi th a g r e e n t o y i n i t
Outpu t :
[ANS]
{

” e n t i t i e s ” : [
” l a r g e brown box ” ,
” g r e e n t o y ”

] ,
” r e l a t i o n s h i p s ” : [

{
” r e l a t i o n s h i p ” : ” i n ” ,
” s u b j e c t ” : 1 ,
” o b j e c t ” : 0

}
]

}
[ / ANS]

[ . . . ] More examples

PAY ATTENTION to the following:
- Relationships MUST relate two different entities in the caption and NOT be unary. For example,
in the caption ’red suitcases stacked upon each other’, ’stacked upon each other’ is not considered a
relationship.
- Do not forget any relationships.
- Relationships MUST be directed. ’and’ is not a relationship.
- Pay attention to spatial relationships like ’behind’, ’left of’, ’with’, ’below’, ’next to’, etc. ’and’ is
not a relationship.
- Check the right dependencies when the relationships are not direct. In the caption template a X with
a Y in it, it refers to X.
- Pay attention to co-references.

Now, parse the following caption into its constituting entities and relationships. You MUST
place the answer between [ANS] and [/ANS] delimiters.
Caption:

A.7 DATASETS

Training Data For the compositional experiments we train both OpenCLIP and OC-CLIP on a
aggregated data form COCO-Captions (COCO) (Lin et al., 2014), Visual Genome (VG) (Krishna
et al., 2017) and GQA (Hudson and Manning, 2019). All these datasets cover the same 110k images
from COCO but focus on different kind of annotations. COCO provide global scene annotation, Vi-
sual Genome emphasizes specific region descriptions and general relationships and GQA annotates
both objects and spatial relationships. Both Visual Genome and GQA have annotated scene graph
that we do not need to parse to train OC-CLIP. For OpenCLIP, we sample 2 region annotations from
VG to from a caption following this template A photo of a {Region 1} and a {Region 2}. Similarly
to get the captions from GQA, if there is a relationship we follow Kamath et al. (2023) and give the
model a caption following this template A photo of {Subject} {Rel} {Object}. If only objects are
mentionned we sample up to 3 objects and give the model a caption following this template A photo
of {Obj1},{Obj2},{ Obj3} .
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A.8 TRAINING DETAILS AND HYPERPARAMETERS

In table 11 we detail the hyperparameters of the OC-CLIP architecture.

Optimization Details In order to train OC-CLIP we followed prior work and use Adam Optimizer
with β1 and β2 set to 0.9 and 0.95 and a weight decay of 0.2. We used different learning rate for
the pretrained backbones and for our modules that we train from scratch : learning rate of 2e−4 for
the binding and the scoring modules, learning rate of 2e−5 for the text Transformer backbone, and
a smaller rate of 1e−6 for the ViT backbone. We also used a warmup schedule for both of the text
(1k steps) and the vision (5k steps) backbones followed by a cosine decay. We train the model for a
total of 100 epochs.

Hyperparameter/Parameter Init Architecture Value

Binding Module
– Image Patches Processing MLP(per patch) in × 256
– Self-Attention #Layers/#Heads 2/4
– Self-Attention MLP ratio/act 2/nn.GELU
– Keys K, Values V Linear 256, 256
– Normalization Keys/Values LayerNorm 256

Grouping Module
– Cross-Attention #Heads 1
– Queries Linear 256
– Normalization Queries LayerNorm 256
– Num Default Tokens Qdefault nn.Param(Nd,256) 4

Scoring Functions
– Object Scoring Function cosine sim
– Relation Scoring subject fs MLP(128 + 256, 128) 2 layers
– Relation Scoring object fo MLP(128 + 256, 128) 2 layers
– Coef ent init (learned parameter) 1.5
– Coef rel init (learned parameter) 0.5

Table 11: Table of hyperparameters for OC-CLIP architecture

A.9 ATTENTION MAPS

See Figure 8

A.10 BINDING MODULE CODE

See Figure 9
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white lion asphalt penguin circus

(a) A photo of a white lion and an asphalt penguin in a circus.
white bear red rhinoceros arena

(b) A photo of a white bear and a rhinoceros in a arena.
asphalt orca red lion city

(c) A photo of an asphalt orca and a red lion in a city.
white bear red gianttortoise circus

(d) A photo of a white bear and a red gianttortoise in a circus.
red crow asphalt zebra ocean floor

(e) A photo of a red crow and an asphalt zebra in a ocean floor.

Figure 8: OC-CLIP Binding Attention Maps on PUG. We plot the attention maps of each query
object in the caption (specified at the top of each attention map) and notice that natural objects
emerge.
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Figure 9: Code for the Binding Module

26


	Introduction
	Related Work
	Method
	Binding Module
	Structured similarity score
	Training

	Results
	 Compositional understanding in a controlled 3D environment (PUG)
	Compositional Understanding in Real World Datasets
	Attribute Binding Evaluation
	Relationship Understanding Evaluation

	Generalization
	Does OC-CLIP work on noisy data?

	Ablations

	Conclusion and limitations
	Appendix
	Ablations
	Scaling Experiments.
	Scene Graph Parsing Discussion
	Importance of Synthetic Experiments
	PUG Dataset 
	Spatial Relation Understanding

	Parsing
	Datasets
	Training Details and Hyperparameters
	Attention maps
	Binding Module Code


