
SimSCOOD: Systematic Analysis of Out-of-Distribution Generalization in
Fine-tuned Source Code Models

Anonymous ACL submission

Abstract

Large code datasets have become increasingly001
accessible for pre-training source code models.002
However, for the fine-tuning phase, obtaining003
representative training data that fully covers the004
code distribution for specific downstream tasks005
remains challenging due to the task-specific na-006
ture and limited labeling resources. These lead007
to out-of-distribution (OOD) generalization is-008
sues with unexpected model inference behav-009
iors that have not been systematically studied010
yet. In this paper, we contribute the first sys-011
tematic approach that simulates various OOD012
scenarios along different dimensions of source013
code data properties and study the fine-tuned014
model behaviors in such scenarios. We inves-015
tigate the behaviors of models under different016
fine-tuning methodologies, including full fine-017
tuning and Low-Rank Adaptation (LoRA) fine-018
tuning methods. Our comprehensive analysis,019
conducted on four state-of-the-art pretrained020
models and applied to two code generation021
tasks, exposes multiple failure modes attributed022
to OOD generalization issues.023

1 Introduction024

There has been increasing success in applying025

Large Language Models (LLMs) to various source026

code understanding and generation tasks. LLMs for027

codes such as GraphCodeBERT (Guo et al., 2021),028

CodeT5+ (Wang et al., 2023), CodeGen (Nijkamp029

et al., 2023), and Code Llama (Rozière et al., 2023)030

are pretrained using large-scale code datasets, and031

serve as universal initialization for a variety of032

downstream tasks. These tasks include code sum-033

marization (Alon et al., 2019; LeClair et al., 2020),034

text-to-code (Iyer et al., 2018), and program repair035

(Tufano et al., 2018; Hajipour et al., 2021).036

The emerging abilities of LLMs, such as in-037

context learning, demonstrate their potential to038

handle a wide range of tasks (Wei et al., 2022;039

Brown et al., 2020). However, it has been shown040

that not all tasks can be effectively addressed by041

Figure 1: Our approach simulates out-of-distribution
(OOD) scenarios and analyzes the corresponding be-
haviors of models. (I) Original source code distribu-
tion along a certain dimension. (II) OOD simulation
by masking out a sub-region of the distribution. (III)
Model fine-tuning. (IV) Evaluation on OOD data.

relying only on the pretrained LLMs (Anil et al., 042

2022). To adapt pretrained models for specific 043

tasks, they can be fine-tuned with specific datasets. 044

This fine-tuning process can involve optimizing all 045

parameters or adopting a parameter-efficient ap- 046

proach (Houlsby et al., 2019; Hu et al., 2022), such 047

as Low-Rank Adaptation (LoRA)(Hu et al., 2022). 048

Despite having access to the large code datasets to 049

pre-train these models, it remains challenging in 050

practice to fully cover the code distribution, specif- 051

ically in fine-tuning datasets, where the availability 052

of labeled data is limited. Furthermore, Kumar 053

et al. (2022) show that, in the image classification 054

tasks, fine-tuning the parameters of the pretrained 055

models can distort the pretrained features. 056

Therefore, it is unclear how the fine-tuned code 057

generation models generalize to scenarios not seen 058

or are rare in the fine-tuning distribution (Shen 059

et al., 2021). For example, there is a lack of exist- 060

ing studies to uncover how these models general- 061

ize to programs with specific language elements 062

or semantics not seen in fine-tuning datasets. A 063

common way to study model behaviors in OOD 064

scenarios is to collect testing datasets in the comple- 065

mentary domains of the fine-tuning dataset domain 066

(Shen et al., 2021). However, because the under- 067

lying distribution of programs is intractable, it is 068

barely feasible to justify whether two raw datasets 069

1

share a domain or not. Not to mention the substan-070

tial costs of constituting a variety of OOD datasets.071

Simulating various OOD scenarios by masking072

out sub-regions of training data distribution is an073

alternative way to systematically study the model074

behaviors (Schott et al., 2022; Wiles et al., 2022).075

There are several distribution dimensions based on076

data properties. In the source code domain, we can077

have access to the structural information to model078

the source code distribution based on the length,079

syntax, and semantics of programs. For example,080

in terms of the syntax dimension, we can mask out081

all the data with uniray expressions or specific API082

to create a syntax-based OOD scenario.083

In this work, we propose a systematic ap-084

proach to analyzing the behaviors of fine-tuned085

source code models in various OOD and few-data086

regime scenarios. We achieve this by harnessing087

the token size, syntax information, and contextual088

embeddings of programs to simulate the OOD sce-089

narios in terms of length, syntax, and semantics090

dimensions, as illustrated in Figure 1. By utilizing091

these data dimensions and control over the data,092

we can systematically examine the performance of093

fine-tuned models in OOD scenarios and investi-094

gate their generalization capabilities.095

To summarize, the main contributions of this096

paper are as follows: 1. Our work pioneers in in-097

vestigating the behaviors of the fine-tuned source098

code models in OOD scenarios. 2. We propose a099

systematic approach to simulate various OOD sce-100

narios by masking out sub-regions of source code101

distribution along the length, syntax, and semantics102

dimensions. At the time of publication, we will103

publish the implementation of our work. 3. We find104

that the performance of the fine-tuned models can105

significantly deteriorate in various OOD scenarios106

despite the model encountering similar examples107

during the pre-training phase. In particular, in syn-108

tax and length-based OOD scenarios, the drop can109

be as substantial as 90%. 4. Our systematic anal-110

ysis shows that, while full fine-tuning and LoRA111

fine-tuning perform comparably on in-distribution112

code data, LoRA fine-tuning demonstrates signif-113

icantly better performance on OOD data. 5. Our114

analysis of data/model properties provides insights115

into model finetuning and shapes future datasets/re-116

search to focus on OOD of code models, which has117

the potential to enhance generalization accuracy118

across various code generation tasks.119

2 Related Work 120

LLMs for Codes. With the availability of large- 121

scale code datasets (Kocetkov et al., 2022), there is 122

growing interest in employing LLMs to develop a 123

pre-training model for source code understanding 124

and generation. CodeBERT extends the RoBERTa- 125

based model (Liu et al., 2019) to understand and 126

generate source codes. Guo et al. (2021) extend 127

CodeBERT by using a semantic-aware objective 128

function. CodeT5 and CodeT5+ (Wang et al., 2021, 129

2023) are developed based on encoder-decoder ar- 130

chitecture, making them versatile models for ad- 131

dressing a wide range of code generation tasks. 132

CodeGen (Nijkamp et al., 2023), StarCoder (Li 133

et al., 2023), and Code Llama (Rozière et al., 2023) 134

employ decoder-only architecture to pre-train code 135

generation models. While these models show re- 136

markable results by following natural language in- 137

structions, it has been demonstrated that LLMs still 138

have difficulty in understanding the codes (Austin 139

et al., 2021; Li et al., 2022). In our work, we fo- 140

cus on generation tasks to spot weak and strong 141

points of the fine-tuned LLMs in generating rare 142

and unseen programs. 143

Out-of-Distribution Analysis in Natural Lan- 144

guages and Programming Languages. Despite 145

the importance of OOD analysis and detection in 146

production (Shen et al., 2021), there are surpris- 147

ingly much fewer efforts to investigate OOD be- 148

haviors of NLP and PL approaches (Arora et al., 149

2021). Hendrycks et al. (2020); Kong et al. (2020) 150

study the behavior of pretrained LLMs in OOD 151

scenarios. Even though they show pretrained mod- 152

els have higher robustness in OOD scenarios, the 153

provided results indicate that there is still room 154

for improvement. Bui and Yu (2021) propose an 155

energy-bounded-based approach to detect OOD 156

data in source code classification tasks. Their ap- 157

proach defines OOD scenarios by masking out data 158

belonging to the specific class(es) (Bui and Yu, 159

2021) and does not cover the code generation tasks. 160

Fine-tuning LLMs. LLMs have demonstrated 161

impressive capabilities in handling various tasks 162

using zero-shot and few-shot learning ap- 163

proaches (Brown et al., 2020; Kojima et al., 2022). 164

However, not all tasks can be effectively handled 165

by relying on pretrained LLMs (Anil et al., 2022; 166

Scialom et al., 2022). For such tasks, we can em- 167

ploy fine-tuning techniques with the datasets for 168

the targeted downstream tasks. Furthermore, recent 169

2

works indicate that fine-tuning LLMs with instruc-170

tions can enhance their capabilities (Ouyang et al.,171

2022; Xu et al., 2023; Dai et al., 2023). Despite172

the effectiveness of the fine-tuning procedure, Ku-173

mar et al. (2022) shows that fine-tuning the models174

can distort the pretraining features and adversely175

impact the OOD generalization performance in im-176

age classification tasks. In this work, for the first177

time, we systematically investigate the behavior178

of the fine-tuned source code models by carefully179

designing various OOD scenarios.180

3 SimSCOOD: Simulation of Source181

Code Out-of-Distribution Scenarios182

In this work, we propose a systematic approach183

to investigate the fine-tuned code model behaviors184

on OOD data by simulating the OOD scenarios185

in multiple dimensions. Our simulation strategy186

allows us to construct measurable OOD scenarios187

without the additional costs of accessing another188

dataset. More importantly, by simulating the OOD189

scenarios, we have control over different properties190

of OOD scenarios. We achieve this by masking out191

specific sub-regions of data distribution.192

These OOD scenarios span over three data di-193

mensions, including length, syntax, and seman-194

tics. These dimensions cover different aspects of195

the programs. In length-based OOD scenarios, we196

can study the length-generalization ability of the197

fine-tuned models. For example, whether the mod-198

els can produce longer codes with high quality and199

how well the models can interpolate over distri-200

bution gaps. Syntax-based scenarios enable us201

to study the models by masking out specific lan-202

guage elements. More interestingly, using syntax-203

based scenarios, we can analyze to what extent each204

model can generate unseen language elements. Us-205

ing semantic-based scenarios, we can investigate206

how the models behave if we mask out the data207

with specific functionalities. Benefiting from these208

scenarios, we can also implicitly quantify how well209

the models compose different code language ele-210

ments to achieve unseen or rare functionality.211

Modeling the Distribution of Source Code.212

Here, we experiment with different pretrained213

models and probe their behaviors in each sce-214

nario. We achieve this using our new approach215

that systematically constructs various scenarios to216

challenge the OOD performance of each model.217

As a result, the distribution of source code can218

be characterized using the aforementioned di-219

mensions that we call properties in the follow- 220

ing. We model the joint distribution of the 221

source code as q(p1, ..., pn) where each pi is a 222

specific property of the source code in distribu- 223

tion q. Given this distribution we can sample 224

a dataset D = {x1, . . . , xN |xi ∼ q(p1, ..., pn)}. 225

To create each OOD scenario we need to sam- 226

ple a new dataset D̂ = {x1, . . . , xN |xi ∼ 227

q̂(p1, ..., pn)} where q̂(pf , ..., pk) = 0, meaning 228

the samples with properties pf , ..., pk are masked 229

out. Note that we just formulated OOD scenar- 230

ios with categorical properties, whereas it also 231

holds for continuous properties by p(a < pi < 232

b) with a < b and a, b ∈ R. 233

To sample dataset D̂, we get inspiration from 234

the rejection sampling technique (Casella et al., 235

2004). Here, q̂(p1, ..., pn) is our target distribu- 236

tion and we consider q(p1, ..., pn) as our proposal 237

distribution. We reject or accept the sample data 238

x ∼ q(p1, ..., pn) using the following step function, 239

f(x) =

{
1 if P(x) /∈ P̃
0 if P(x) ∈ P̃

(1) 240

Where P(x) returns the properties of data x, 241

and P̃ are the properties that we do not want 242

the sampled data x to contain. Using the re- 243

jection sampling technique with a hard-decision 244

function (Equation 1) we can construct dataset 245

D̂ = {x1, . . . , xN |x ∼ q̂(p1, ..., pn)} with ac- 246

cepted samples, and also have access to dataset 247

D̃ = {x1, . . . , xN |x ∼ q̃(p1, ..., pn)} which are 248

all of the rejected samples. To examine model be- 249

haviors in each OOD scenario, we fine-tune models 250

using D̂ data, and test them on test set of D̃. Figure 251

2 depicts an overview of the different scenarios. In 252

the following, we provide the details of how we 253

simulate each OOD scenario (subsection 4.1). 254

3.1 Length-based OOD Scenarios 255

To simulate length-based scenarios, we use the his- 256

togram of program token sizes to represent the 257

distribution of a given dataset. See Figure 2 left as 258

an example. To create each OOD scenario, accord- 259

ing to the rejection sampling technique, we draw 260

samples from the distribution and reject only the 261

samples in the histogram’s specified sub-region. 262

As an example, in one of the OOD scenar- 263

ios, we can consider token size between 120 and 264

135 as OOD testing data. Then D̂ = {x ∼ 265

q̂(p1, ..., pn)} where q̂(120 < pi < 135) = 0 266

is the accepted data in the rejection sampling tech- 267

3

Figure 2: Overview of different out-of-distribution scenarios. Part of the data that needs to be masked out from the
training distribution is highlighted by the red rectangles.

nique. Experimenting with the length-based OOD268

scenarios enables us to analyze how fine-tuned269

source code models generalize to interpolate and270

extrapolate over distribution gaps.271

3.2 Syntax-based OOD Scenarios272

Each programming language has its own grammar,273

which is a set of rules to define valid program state-274

ments. Using the grammar, we can parse each275

program into an abstract syntax tree (Guo et al.,276

2021) and have access to all of the elements used277

in the program. For example, we can identify all the278

programs with conditional or specific APIs in the279

given dataset. In this work, we leverage the gram-280

matical information of the programming language281

to create syntax-based OOD scenarios. We use282

the histogram of language elements to model the283

syntax distribution of a given source code dataset.284

Figure 2 middle shows an example of how we con-285

struct a syntax-based OOD scenario by masking286

out specific language elements. To create an OOD287

scenario, using the rejection sampling technique,288

we sample testing data D̃ that contain certain lan-289

guage elements (e.g., yield), namely, P̃ = {yield}.290

We then fine-tune our model using D̂ which is the291

set of data that does not contain yield, and test292

the model using D̃. In order to set up systematic293

syntax-based OOD scenarios, we can replace yield294

in P̃ with other language elements and APIs. Us-295

ing syntax-based scenarios, in addition to analyzing296

model behaviors in such OOD scenarios, we can297

also explore if various fine-tuned LLMs can gener-298

ate unseen language elements. For example, we can299

investigate if the pretrained models can generate300

specific elements not seen during fine-tuning.301

3.3 Semantic-based OOD Scenarios302

The programs’ semantics is another dimension to303

model the distribution of source code data. How-304

ever, it is not clear how we can model the semantics305

of the programs, especially in the cases where we306

do not have input-output examples or any meta-307

data. It has been shown that a pretrained model can 308

be used to cluster the data based on their seman- 309

tics (Aharoni and Goldberg, 2020). Furthermore, 310

recent studies conducted by Troshin and Chirkova 311

(2022) and Ahmed et al. (2023) have demonstrated 312

that pretrained code models represent program se- 313

mantics within the continuous space. They accom- 314

plished this by probing the pretrained models and 315

conducting experiments involving the manipula- 316

tion of code fragments. Following the success of 317

unsupervised domain clustering and the model’s 318

abilities to understand the semantics of programs, 319

we propose to utilize the pretrained source code 320

model to cluster programs within the continuous 321

space. We employ the state-of-the-art CodeT5+ 322

encoder (Wang et al., 2023) in our study to map a 323

dataset of programs to a set of continuous represen- 324

tation vectors. We then cluster the vectors to group 325

programs with similar semantics. As a result, we 326

can create semantic-based OOD scenarios via the 327

rejection sampling procedure to reject all samples 328

that belong to a specific cluster and accept the rest 329

as D̂. Like other scenarios, we can use D̂ as fine- 330

tuning data and D̃ as test data. Our semantic-based 331

OOD scenarios provide an approximated proxy of 332

real-world OOD scenarios to investigate the OOD 333

generalization capabilities of the fine-tuned mod- 334

els. Furthermore, these OOD scenarios allow us 335

to analyze the model’s abilities to deal with un- 336

seen or rare program functionalities. We provide 337

implementation details in subsection 4.2. 338

4 Experiments 339

In this section, we first articulate the experiment 340

setups, including the pretrained models, down- 341

stream tasks, and the OOD data construction. Then, 342

we demonstrate the model performance in OOD 343

scenarios. We also analyze how well the model 344

can perform by revealing 50% of the masked data 345

(≈ 1.5% of the entire data). In the following, we 346

call the 50% masked-out cases few-data regime. 347

4

4.1 Setups348

Pretrained Models. We analyze the behavior349

of four widely-used pretrained models for source350

codes. These models are designed using a vari-351

ety of architectures, pre-training objective func-352

tions, numbers of parameters, and pre-training353

datasets. GraphCodeBERT (Guo et al., 2021) is354

an encoder-only pretrained model with 125M pa-355

rameters. CodeT5 (Wang et al., 2021) employs356

T5 (Raffel et al., 2020) encoder-decoder architec-357

ture. In our implementations, we use CodeT5-358

base with 220M parameters. Here, we also in-359

vestigate the behavior of larger models, includ-360

ing CodeT5+ (Wang et al., 2023) with 770M pa-361

rameters and Code Llama with 13B parameters.362

CodeT5+ (Wang et al., 2023) is an extension of363

CodeT5 (Wang et al., 2021), and Code Llama (Roz-364

ière et al., 2023) is a decoder-only build on top of365

Llama 2 (Touvron et al., 2023) for code-specialized366

tasks. We provide more details in Appendix A.367

Downstream Tasks. We study the behavior of368

the models on two different downstream tasks, in-369

cluding text-to-code generation and code refine-370

ment. These tasks are part of the most challenging371

tasks in the CodeXGLUE benchmark (Lu et al.,372

2021). Text-to-code is the task of generating a373

program given a natural language description. In374

CodeXGLUE benchmark (Lu et al., 2021), CON-375

CODE dataset (Iyer et al., 2018) is proposed for376

this task. Code refinement is the task of resolving377

the bugs in a given program by automatically gen-378

erating a corrected program Tufano et al. (2019).379

Evaluation Metrics. Exact match (Wang et al.,380

2021), CodeBLEU (Ren et al., 2020), and BLEU381

score (Papineni et al., 2002) have been commonly382

used to evaluate the model performance in the383

downstream tasks. The exact match metric evalu-384

ates if the generated code matches the target code385

at the token-level. BLEU score measures the n-386

gram overlap between the output and the target387

code. CodeBLEU considers syntactic and data-388

flow matches of the codes in addition to the n-gram389

overlap. In this work, we focus on the exact match390

metric to quantify the model behaviors. This is391

due to the nature of OOD scenarios, where it is392

desirable to see if the model can generate specific393

unseen programs correctly. It is important to note394

that Wang et al. (2021) have demonstrated that for395

the code refinement task, achieving a high BLEU396

score can be accomplished with a simple dupli-397

cation of the input codes, comparable to state-of- 398

the-art models. Furthermore, it has been shown 399

that CodeBLEU and BLEU scores are not necessar- 400

ily correlated with the correctness of the programs 401

(Evtikhiev et al., 2022; Hendrycks et al., 2021). We 402

report BLEU score results in Appendix G. 403

4.2 Data Construction and Fine-tuning 404

In the data construction process, for each scenario, 405

we choose P̃ in a way that counts for ≈ 3% of the 406

entire fine-tuning data. In OOD scenarios, we mask 407

out all of the data items with properties P̃ . For the 408

few-data regime cases, we mask-out half (50%) 409

of data with properties P̃ (≈ 1.5% of the entire 410

fine-tuning data). In all the scenarios, we infer the 411

fine-tuned models on test data with P̃ properties. 412

Note that, in the text-to-code task, we mask out the 413

data based on the target data (code data rather than 414

text data) properties. For the code refinement tasks, 415

we masked the data based on the input. 416

Length-based Scenarios. To generate data for 417

length-based scenarios, we characterize the dataset 418

of programs based on the token size. For each sce- 419

nario, P̃ specifies a continuous range of program 420

token sizes. We consider five ranges in our experi- 421

ments: P̃1 = {[0%, 3%]}, P̃2 = {[24%, 27%]}, 422

P̃3 = {[48%, 51%]}, P̃4 = {[72%, 75%]}, 423

and P̃5 = {[97%, 100%]}. Note that P̃1 = 424

{[0%, 3%]} represents the top 3% smallest pro- 425

grams, in terms of token size. We consider P̃1 and 426

P̃5 as length-based extrapolation scenarios and P̃2, 427

P̃3, and P̃4 as length-based interpolation scenarios. 428

Syntax-based Scenarios. In syntax-based sce- 429

narios, we characterize program datasets based on 430

the distribution of language elements. For each 431

task, we select five different elements that cover 432

≈ 3% of the data. For example, in text-to-code 433

task we consider P̃1 = {true}. We provide details 434

of the selected language elements in Appendix E. 435

Semantic-based Scenarios. In this work, we em- 436

ploy CodeT5+ (770M parameters) (Wang et al., 437

2023) encoder to characterize the semantics dis- 438

tribution of programs. We feed the tokenized pro- 439

grams to the CodeT5+ encoder and obtain the corre- 440

sponding feature vectors V of size 1024× t, where 441

t is the size of the input program. We obtain the 442

continuous representation of the programs by aver- 443

aging the tokens’ embedding following (Koto et al., 444

2021). We then cluster the programs in continu- 445

ous space using the K-means algorithm. We set 446

5

the number of clusters K = 35 using the elbow447

method (Bholowalia and Kumar, 2014). To accel-448

erate the clustering procedure, we perform dimen-449

sionality reduction PCA with a target dimension450

of 50. We determine the dimension in a way that451

all the components explain at least 80% of the data452

variance. We provide the average results of five453

randomly selected clusters. Each cluster can repre-454

sent a set of P̃i properties. We provide examples455

of clusters’ semantic in Appendix F.456

Model Fine-tuning Details. We fine-tune four457

pretrained models for two different tasks in various458

scenarios. We stick to their defaults for fair com-459

parisons. For fine-tuning the models with LoRA460

method, we follow Hu et al. (2022). We provide461

more details in Appendix C.462

4.3 How Do Fine-tuned Models Generalize in463

OOD Scenarios?464

Table 1 and Table 2 shows the overall results of465

different models in length-, syntax-, and semantic-466

based scenarios, respectively. These tables show467

the model performance in the OOD scenarios468

where the models do not have access to the fine-469

tuning data with P̃ properties. Furthermore, Ta-470

ble 1 and Table 2 show how well the models per-471

form when they have access to 50% of the masked472

data. Note that in Table 1 and Table 2, all of the473

results are the average of different scenarios and474

show the relative exact match to the 100% baseline475

(models with access to the full data distribution).476

In Table 1 and Table 2, we provide the results of477

fine-tuning the models using full fine-tuning and478

LoRA fine-tuning methods. Note that for Code479

Llama 13B, due to the substantial resource require-480

ments involved in full fine-tuning, we only report481

the LoRA fine-tuning results. Additionally, in line482

with GraphCodeBERT (Guo et al., 2021), we only483

investigate this model on the code refinement task.484

In these tables, for the length-based scenarios, we485

have five different scenarios, three for the interpo-486

lation cases and two for the extrapolation cases,487

so we report the average results for each case. In488

syntax-based and semantic-based scenarios, we re-489

port the average results of five different scenarios.490

We conclude according to Table 1 and Table 2491

that: 1. Interpolation cases in the length-based492

OOD scenarios, are the easiest OOD scenarios for493

the models in different tasks. 2. Syntax-based and494

length-based extrapolation OOD scenarios are the495

most challenging scenarios for the models. 3. Us-496

ing LoRA fine-tuning we can achieve significantly 497

better generalization accuracy compared to full 498

fine-tuning. 4. Few-data regime scenarios show 499

that adding a few relevant data to the fine-tuning 500

distribution can gain huge performance improve- 501

ment. In the following, we describe our key find- 502

ings in more detail. 503

Model performance decreases in various OOD 504

scenarios. Table 1 and Table 2 show that all of 505

the models have difficulty in dealing with different 506

OOD scenarios. These include models with differ- 507

ent architecture and parameter sizes. For example, 508

in Table 1, we observe that for the Code Llama 509

model with 13B parameters, the performance sig- 510

nificantly dropped in the length-based extrapolation 511

scenario. It achieves only 23.57% of the baseline 512

performance. 513

Table 1 and Table 2 indicate that length-based 514

interpolation scenarios are the least challenging 515

OOD scenarios for various models in both text- 516

to-code and code refinement tasks. While length- 517

based interpolation is the easiest OOD scenario, it 518

is worth noting that CodeT5+ with full fine-tuning 519

only attains 49.67% of the baseline performance 520

(See Table 1). Additionally, Table 1 and Table 2 521

reveal that the models exhibit the most significant 522

performance reduction in the length-based extrapo- 523

lation and syntax-based OOD scenarios. This per- 524

formance drop occurred despite the models being 525

exposed to similar examples during pre-training. 526

A comparison between the outcomes of the se- 527

mantic scenarios presented in Table 1 and Table 2 528

highlights that the text-to-code task is more chal- 529

lenging than the code refinement task. This is 530

mainly due to the multi-modality nature of the task, 531

wherein the models need to learn to map natural 532

languages to unseen or rare programs. 533

Takeaway: Performance of fine-tuned models, 534

regardless of architectures and sizes, can signifi- 535

cantly deteriorate in OOD cases, even when the 536

models have seen similar data during pre-training. 537

LoRA fine-tuning exhibits better OOD gener- 538

alization compared to full fine-tuning. In Ta- 539

ble 1 and Table 2, we provide the results of fine- 540

tuning the models using two different fine-tuning 541

approaches: full fine-tuning and LoRA fine-tuning. 542

The results presented in these tables indicate that 543

LoRA fine-tuning consistently exhibits superior 544

OOD generalization across various scenarios. For 545

example, Table 1 shows that in the length-based 546

extrapolation scenario, fine-tuning CodeT5 with 547

6

Table 1: Overall results of the model performance for different scenarios in text-to-code task. The results provide
the relative exact match to the 100% baseline for different scenarios. Length Inter and Length Extra refer to
length-based interpolation and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to
the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios, respectively.

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

CodeT5
OOD 53.92% 66.91% 0.00% 24.99% 16.46% 34.81% 31.90% 51.42%
Few 86.56% 103.79% 28.56% 55.0% 93.90% 100.0% 37.56% 72.43%

CodeT5+
OOD 49.65% 70.94% 5.0% 26.09% 47.95% 68.97% 39.69% 55.71%
Few 76.40% 96.36% 77.38% 101.72% 67.21% 78.54% 66.04% 83.68%

Code Llama
OOD - 71.75% - 23.57% - 64.81% - 56.72%
Few - 94.08% - 63.21% - 86.08% - 84.74%

Table 2: Overall results of the model performance for different scenarios in code refinement task. The results
provide the relative exact match to the 100% baseline for different scenarios. Length Inter and Length Extra refer to
length-based interpolation and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to
the LoRA fine-tuning method. OOD and Few refer to OOD and few-data regime scenarios, respectively. GCBERT
denotes to the GraphCodeBERT model (Guo et al., 2021).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

GCBERT
OOD 82.91% 87.89% 37.82% 74.35% 1.30% 2.35% 60.38% 69.05%
Few 86.52% 94.45% 90.15% 90.46% 75.42% 77.92% 76.45% 84.43%

CodeT5
OOD 84.10% 86.70% 48.95% 61.53% 10.23% 28.78% 77.41% 79.36%
Few 85.48% 89.97% 57.30% 80.29% 83.08% 85.82% 83.63% 88.73%

CodeT5+
OOD 80.70% 83.39% 73.44% 82.39% 21.41% 37.14% 73.65% 78.67%
Few 93.28% 94.65% 79.56% 90.77% 72.83% 81.01% 85.30% 93.29%

Code Llama
OOD - 81.70% - 57.69% - 43.70% - 70.14%
Few - 87.68% - 85.71% - 87.66% - 89.23%

Table 3: Exact match results of the fine-tuned models
using the full fine-tuning dataset for text-to-code and
code refinement tasks. FT denotes full fine-tuning, and
LoRA refers to the LoRA fine-tuning method. GCBERT
refers to (Guo et al., 2021).

Models Text-to-Code Refinement

FT LoRA FT LoRA
GCBERT - - 10.74 11.38
CodeT5 22.15 21.65 14.43 14.53
CodeT5+ 24.95 24.70 15.18 15.29
Code Llama - 27.65 - 19.19

LoRA resulted in a 24.99% relative exact match,548

whereas the model’s relative performance using549

full fine-tuning was 0.0%. Furthermore, as demon-550

strated in Table 2, in the syntax-based OOD sce-551

nario, the utilization of LoRA for fine-tuning552

CodeT5 and CodeT5+ results in significantly supe-553

rior performance compared to employing full fine-554

tuning for these models. This observation shows555

that LoRA, effectively leverages the previously ac-556

quired knowledge, resulting in improved OOD gen-557

eralization compared to full fine-tuning.558

Table 3 provides in-distribution performance re- 559

sults of the models fine-tuned using both full fine- 560

tuning and LoRA fine-tuning methods. This table 561

displays the exact match accuracy of the models on 562

the complete test set under the condition that the 563

models have access to the entire fine-tuning distri- 564

bution. Table 3 demonstrates that employing LoRA 565

fine-tuning enables us to achieve performance that 566

is comparable to full fine-tuning. It is important 567

to highlight that in all of the experiments involv- 568

ing LoRA fine-tuning, the pretrained weights are 569

frozen, and we only need to optimize newly in- 570

jected weights. These LoRA parameters account 571

for less than 1% of the pretrained weights. Note 572

that we provide BLEU score results in Appendix D. 573

Takeaway: While full and LoRA fine- 574

tuning methods show comparable results over in- 575

distribution data, LoRA fine-tuning outperforms 576

full fine-tuning in OOD scenarios. This suggests 577

that with freezing pretrained weights, LoRA fine- 578

tuned models can effectively utilize their pretrain- 579

ing knowledge in dealing with OOD scenarios. 580

7

(a)

(b)
Figure 3: The ratios of frequency of generated unseen
language elements over the frequency in ground truth
data. Solid and hatched bars show the results of the
model fine-tuned with the full fine-tuning and LoRA
fine-tuning, respectively.

Models can gain significant improvement by us-581

ing a few data. Table 1 and Table 2 provide the582

results for few-data regime scenarios. In these sce-583

narios, we only mask out 50% of the data with P̃584

properties (≈ 1.5% of the fine-tuning data). The585

Table 1 and Table 2 demonstrate in each scenario586

that by adding data in size ≈ 1.5% of the fine-587

tuning data, the model can gain significant accuracy588

performance. For example, Table 1 shows that in589

syntax-based scenarios, applying LoRA fine-tuning590

to CodeT5 can lead to a gain of 100% of relative591

performance by adding a small amount of data. We592

provide results of revealing 25% and 75% of data593

in subsection G.2.594

Takeaway: By incorporating a small amount595

of relevant data (representing ≈ 1.5% of the fine-596

tuning data) into the fine-tuning set, models can597

achieve substantial performance enhancements.598

4.4 Can Fine-tuned LLMs Generate Unseen599

Language Elements?600

In the syntax-based OOD scenarios, we can assess601

the fine-tuned LLMs’ ability to leverage their prior602

knowledge in generating unseen language elements.603

For instance, can the fine-tuned models generate604

the yield element if they have not been exposed to605

any code data containing yield during fine-tuning?606

In Figure 3, we present the relative frequencies of607

generating unseen elements by models fine-tuned608

using both full and LoRA fine-tuning methods. The 609

results in Figure 3 show the frequencies of gener- 610

ating unseen elements relative to the frequencies 611

in ground truth programs. We report the average 612

results of five different unseen elements during 613

fine-tuning. The list of these elements was reported 614

Appendix E. In Figure 3, the solid bars represent 615

the results for models fine-tuned using full fine- 616

tuning, while the hatched bars depict the results for 617

models fine-tuned using the LoRA method. 618

Figure 3 shows that the fine-tuned LLMs are able 619

to generate unseen language elements in different 620

tasks. Interestingly, the models fine-tuned using 621

the LoRA fine-tuning exhibit the ability to generate 622

a higher percentage of unseen elements when com- 623

pared to fully fine-tuned models. This indicates 624

that the models fine-tuned with the LoRA method 625

possess a superior capability to leverage their pre- 626

viously acquired knowledge. We can see this as 627

an advantage. However, in specific scenarios, this 628

advantage can translate into model failures and 629

pose security issues. For example, the model could 630

generate a deprecated API or element, or there 631

can even be cases when the pre-training dataset is 632

poisoned in the first place (Schuster et al., 2021). 633

Furthermore, we observe that generating unseen 634

elements is more challenging in the text-to-code 635

task (Figure 3a) compared to the code refinement 636

task (Figure 3b). The main reason is that in the text- 637

to-code task, the models need to learn the mapping 638

from natural language to the programs. 639

Takeaway: Models fine-tuned with LoRA gen- 640

erate more unseen elements than those fine-tuned 641

using the full fine-tuning approach, which is ad- 642

vantageous. Nonetheless, in certain scenarios, this 643

capability may result in security issues by genera- 644

tion of deprecated elements and APIs. 645

5 Conclusion 646

In this work, we propose a systematic approach 647

to investigate the behaviors of fine-tuned LLMs in 648

OOD scenarios for the program domain. Given the 649

data, we simulate OOD scenarios based on the pro- 650

gram’s length, syntax, and semantics. Using these 651

scenarios, we shed light on the models’ fragility 652

in the OOD scenarios, potential performance drop, 653

and the necessity to improve dataset construction. 654

Furthermore, our results reveal that, although mod- 655

els fine-tuned with full fine-tuning and LoRA ex- 656

hibit similar in-distribution accuracy, LoRA shows 657

higher OOD generalization accuracy. 658

8

Limitations659

One of the limitations of our approach is the com-660

putational cost. To investigate the model behavior661

in each dimension, we need to fine-tune individual662

models. This makes our investigation computa-663

tionally expensive. Furthermore, in this work, we664

focus on the code generation tasks as they provide665

more fine-grained results to investigate the model666

behavior. It would also be interesting to investigate667

how the models perform in OOD scenarios in un-668

derstanding tasks, such as clone detection or defect669

detection.670

In our work, we leverage the contextual embed-671

ding of source code to model the semantics of the672

source codes. We use K-means clustering to group673

programs based on their semantics. Even though674

we check if these clusters represent specific mean-675

ing (we provide examples of cluster semantics in676

Appendix F), we do not measure how well these677

programs are clustered in terms of their semantics.678

The performance of the clustering algorithm can679

be measured using datasets with meta-data about680

the semantics of each data item, which we do not681

have access to in this study.682

Potential Risks. Our research on how models683

behave in out-of-distribution (OOD) and few-data684

regime scenarios sheds light on the fine-tuning of685

models and the development of future datasets.686

Nonetheless, it is crucial to recognize that mali-687

cious actors could exploit these findings to create688

datasets that intentionally introduce OOD-related689

issues, with the implicit or explicit goal of targeting690

specific communities and companies. We recom-691

mend that end-users take our findings into consid-692

eration when using the source code datasets to train693

their models.694

9

References695

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised696
domain clusters in pretrained language models. In697
ACL.698

Toufique Ahmed, Dian Yu, Chengxuan Huang, Cathy699
Wang, Prem Devanbu, and Kenji Sagae. 2023. To-700
wards understanding what code language models701
learned. arXiv.702

Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.703
2019. code2seq: Generating sequences from struc-704
tured representations of code. In ICLR.705

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor706
Lewkowycz, Vedant Misra, Vinay Venkatesh Ra-707
masesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer,708
and Behnam Neyshabur. 2022. Exploring length gen-709
eralization in large language models. In NeurIPS.710

Udit Arora, William Huang, and He He. 2021. Types of711
out-of-distribution texts and how to detect them. In712
EMNLP.713

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten714
Bosma, Henryk Michalewski, David Dohan, Ellen715
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.716
2021. Program synthesis with large language models.717
arXiv.718

Purnima Bholowalia and Arvind Kumar. 2014. Ebk-719
means: A clustering technique based on elbow720
method and k-means in wsn. IJCA.721

Tom Brown, Benjamin Mann, Nick Ryder, Melanie722
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind723
Neelakantan, Pranav Shyam, Girish Sastry, Amanda724
Askell, Sandhini Agarwal, Ariel Herbert-Voss,725
Gretchen Krueger, Tom Henighan, Rewon Child,726
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens727
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-728
teusz Litwin, Scott Gray, Benjamin Chess, Jack729
Clark, Christopher Berner, Sam McCandlish, Alec730
Radford, Ilya Sutskever, and Dario Amodei. 2020.731
Language models are few-shot learners. In NeurIPS.732

Nghi D. Q. Bui and Yijun Yu. 2021. Energy-bounded733
learning for robust models of code. CoRR.734

George Casella, Christian P Robert, and Martin T Wells.735
2004. Generalized accept-reject sampling schemes.736
LNMS.737

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming738
Yuan, Henrique Ponde, Jared Kaplan, Harrison Ed-739
wards, Yura Burda, Nicholas Joseph, Greg Brockman,740
Alex Ray, Raul Puri, Gretchen Krueger, Michael741
Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin,742
Brooke Chan, Scott Gray, Nick Ryder, Mikhail743
Pavlov, Alethea Power, Lukasz Kaiser, Moham-744
mad Bavarian, Clemens Winter, Philippe Tillet, Fe-745
lipe Petroski Such, David W. Cummings, Matthias746
Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel747
Herbert-Voss, William H. Guss, Alex Nichol, Igor748
Babuschkin, S. Arun Balaji, Shantanu Jain, Andrew749

Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 750
Morikawa, Alec Radford, Matthew M. Knight, Miles 751
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 752
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 753
Sutskever, and Wojciech Zaremba. 2021. Evaluating 754
large language models trained on code. arXiv. 755

Wenliang Dai, Junnan Li, Dongxu Li, Anthony 756
Meng Huat Tiong, Junqi Zhao, Weisheng Wang, 757
Boyang Li, Pascale Fung, and Steven Hoi. 2023. In- 758
structblip: Towards general-purpose vision-language 759
models with instruction tuning. 760

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, 761
and Timofey Bryksin. 2022. Out of the bleu: how 762
should we assess quality of the code generation mod- 763
els? arXiv preprint arXiv:2208.03133. 764

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 765
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 766
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 767
BERT: A pre-trained model for programming and 768
natural languages. In EMNLP. 769

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu 770
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy- 771
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun 772
Deng, Colin B. Clement, Dawn Drain, Neel Sundare- 773
san, Jian Yin, Daxin Jiang, and Ming Zhou. 2021. 774
Graphcodebert: Pre-training code representations 775
with data flow. In ICLR. 776

Hossein Hajipour, Apratim Bhattacharyya, Cristian- 777
Alexandru Staicu, and Mario Fritz. 2021. Samplefix: 778
Learning to generate functionally diverse fixes. In 779
ECML PKDD. 780

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man- 781
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns, 782
Samir Puranik, Horace He, Dawn Song, and Jacob 783
Steinhardt. 2021. Measuring coding challenge com- 784
petence with apps. NeurIPS. 785

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam 786
Dziedzic, Rishabh Krishnan, and Dawn Song. 2020. 787
Pretrained transformers improve out-of-distribution 788
robustness. In ACL. 789

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, 790
Bruna Morrone, Quentin De Laroussilhe, Andrea 791
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019. 792
Parameter-efficient transfer learning for NLP. In 793
ICML. 794

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen- 795
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu 796
Chen. 2022. LoRA: Low-rank adaptation of large 797
language models. In ICLR. 798

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 799
Allamanis, and Marc Brockschmidt. 2019. Code- 800
SearchNet challenge: Evaluating the state of seman- 801
tic code search. arXiv preprint arXiv:1909.09436. 802

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and 803
Luke Zettlemoyer. 2018. Mapping language to code 804
in programmatic context. In EMNLP. 805

10

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia806
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine807
Jernite, Margaret Mitchell, Sean Hughes, Thomas808
Wolf, et al. 2022. The stack: 3 tb of permissively809
licensed source code. arXiv.810

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-811
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-812
guage models are zero-shot reasoners. NeurIPS.813

Lingkai Kong, Haoming Jiang, Yuchen Zhuang, Jie814
Lyu, Tuo Zhao, and Chao Zhang. 2020. Cali-815
brated language model fine-tuning for in- and out-816
of-distribution data. In EMNLP.817

Fajri Koto, Jey Han Lau, and Timothy Baldwin. 2021.818
Discourse probing of pretrained language models. In819
NAACL.820

Ananya Kumar, Aditi Raghunathan, Robbie Matthew821
Jones, Tengyu Ma, and Percy Liang. 2022. Fine-822
tuning can distort pretrained features and underper-823
form out-of-distribution. In ICLR.824

Alexander LeClair, Sakib Haque, Lingfei Wu, and825
Collin McMillan. 2020. Improved code summariza-826
tion via a graph neural network. In ICPC.827

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas828
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc829
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.830
2023. Starcoder: may the source be with you! arXiv.831

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,832
Julian Schrittwieser, Rémi Leblond, Tom Eccles,833
James Keeling, Felix Gimeno, Agustin Dal Lago,834
et al. 2022. Competition-level code generation with835
alphacode. Science.836

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-837
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,838
Luke Zettlemoyer, and Veselin Stoyanov. 2019.839
Roberta: A robustly optimized bert pretraining ap-840
proach. arXiv preprint arXiv:1907.11692.841

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey842
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,843
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-844
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-845
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-846
daresan, Shao Kun Deng, Shengyu Fu, and Shujie847
Liu. 2021. Codexglue: A machine learning bench-848
mark dataset for code understanding and generation.849
CoRR.850

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan851
Wang, Yingbo Zhou, Silvio Savarese, and Caiming852
Xiong. 2023. Codegen: An open large language853
model for code with multi-turn program synthesis.854
In ICLR.855

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,856
Carroll Wainwright, Pamela Mishkin, Chong Zhang,857
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.858
2022. Training language models to follow instruc-859
tions with human feedback. NeurIPS.860

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 861
Jing Zhu. 2002. Bleu: a method for automatic evalu- 862
ation of machine translation. In ACL. 863

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 864
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 865
Wei Li, and Peter J. Liu. 2020. Exploring the limits 866
of transfer learning with a unified text-to-text trans- 867
former. JMLR. 868

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, 869
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio 870
Blanco, and Shuai Ma. 2020. Codebleu: a method 871
for automatic evaluation of code synthesis. arXiv 872
preprint arXiv:2009.10297. 873

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten 874
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, 875
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. 876
Code llama: Open foundation models for code. 877
arXiv. 878

Lukas Schott, Julius Von Kügelgen, Frederik Träu- 879
ble, Peter Vincent Gehler, Chris Russell, Matthias 880
Bethge, Bernhard Schölkopf, Francesco Locatello, 881
and Wieland Brendel. 2022. Visual representation 882
learning does not generalize strongly within the same 883
domain. In ICLR. 884

Roei Schuster, Congzheng Song, Eran Tromer, and Vi- 885
taly Shmatikov. 2021. You autocomplete me: Poi- 886
soning vulnerabilities in neural code completion. In 887
USENIX Security. 888

Thomas Scialom, Tuhin Chakrabarty, and Smaranda 889
Muresan. 2022. Fine-tuned language models are 890
continual learners. In EMNLP. 891

Zheyan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, 892
Renzhe Xu, Han Yu, and Peng Cui. 2021. Towards 893
out-of-distribution generalization: A survey. CoRR. 894

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 895
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 896
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 897
Bhosale, et al. 2023. Llama 2: Open foundation and 898
fine-tuned chat models. arXiv. 899

Sergey Troshin and Nadezhda Chirkova. 2022. Probing 900
pretrained models of source code. arXiv preprint 901
arXiv:2202.08975. 902

Michele Tufano, Cody Watson, Gabriele Bavota, Massi- 903
miliano Di Penta, Martin White, and Denys Poshy- 904
vanyk. 2018. An empirical investigation into learn- 905
ing bug-fixing patches in the wild via neural machine 906
translation. In ASE. 907

Michele Tufano, Cody Watson, Gabriele Bavota, Massi- 908
miliano Di Penta, Martin White, and Denys Poshy- 909
vanyk. 2019. An empirical study on learning bug- 910
fixing patches in the wild via neural machine transla- 911
tion. TOSEM. 912

11

Yue Wang, Hung Le, Akhilesh Deepak Gotmare,913
Nghi DQ Bui, Junnan Li, and Steven CH Hoi. 2023.914
Codet5+: Open code large language models for915
code understanding and generation. arXiv preprint916
arXiv:2305.07922.917

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.918
Hoi. 2021. Codet5: Identifier-aware unified pre-919
trained encoder-decoder models for code understand-920
ing and generation. In EMNLP.921

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,922
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,923
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.924
Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy925
Liang, Jeff Dean, and William Fedus. 2022. Emer-926
gent abilities of large language models. TMLR.927

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-928
Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj Dvi-929
jotham, and Ali Taylan Cemgil. 2022. A fine-grained930
analysis on distribution shift. In ICLR.931

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,932
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin933
Jiang. 2023. Wizardlm: Empowering large language934
models to follow complex instructions. arXiv.935

12

A Pretrained Models936

Here, we provide more detail about the pretrained937

models we used in our experiments.938

A.1 BERT-based Models939

CodeBERT (Feng et al., 2020) is an encoder-only940

transformer-based model that is pretrained using941

CodeSerchNet dataset (Husain et al., 2019). This942

dataset consists of 2.1M pairs of individual func-943

tions and code documentations with 6.4M code-944

only data items across multiple programming lan-945

guages. This model uses a 12-layer RoBERTa-946

based (Liu et al., 2019) architecture with 125M947

parameters. It is trained using masked language948

modeling (MLM) and replaced token detection ob-949

jective.950

Guo et al. (2021) proposed GraphCodeBERT951

by extending CodeBERT (Feng et al., 2020) using952

a semantic-aware pre-training objective function.953

They incorporate data-flow information in the pre-954

training stage to encode the semantic information955

of the program.956

A.2 CodeT5957

CodeT5 (Wang et al., 2021) employ T5 (Raffel958

et al., 2020) encoder-decoder architecture. The au-959

thors use CodeSearchNet (Husain et al., 2019) with960

1.2M pairs of functions’ code with corresponding961

documentation, and 0.8M code-only data items. In962

our experiments, we use CodeT5-base with 220M.963

This model uses MLM objective and identifier-964

aware objective functions in the pre-training proce-965

dure.966

CodeT5+ (Wang et al., 2023) is a family of967

encoder-decoder LLMs (Wang et al., 2021) that is968

developed with the flexibility to cover a wide range969

of downstream tasks. CodeT5+ achieved this flexi-970

bility by employing a mixture of pretraining objec-971

tives including span denoising, contrastive learn-972

ing, text-code matching, and causal LM pretraining973

tasks(Wang et al., 2023). In our experiments we974

employ CodeT5+ with 770M parameters.975

A.3 Code Llama976

Code Llama (Rozière et al., 2023) is a family of977

LLM for code developed based on Llama 2 mod-978

els (Touvron et al., 2023). The models are designed979

using decoder-only architectures with 7B, 13B, and980

34B parameters. Code Llama encompasses differ-981

ent versions tailored for a wide array of tasks and982

applications, including the foundational model, spe-983

cialized models for Python code, and instruction- 984

tuned models. Code Llama outperforms open mod- 985

els on HumanEval (Chen et al., 2021) and MBPP 986

benchmarks (Austin et al., 2021) up to 53% and 987

55%, respectively. In our experiments, we use the 988

foundation model version of Code Llama with 13B 989

parameters. 990

B Further Details of Datasets and 991

Computational Resources 992

To study the behavior of the code generation mod- 993

els in OOD scenarios, we use two datasets of the 994

CodeXGLUE benchmark (Lu et al., 2021) specif- 995

ically designed for text-to-code and code refine- 996

ment tasks. The CodeXGLUE benchmark is li- 997

censed under Creative Commons Zero v1.0 Uni- 998

versal. The text-to-code task dataset includes 100k 999

training samples, 2k validation samples, and 2k test 1000

samples of Java codes. Meanwhile, the code refine- 1001

ment dataset comprises 52,364 training samples, 1002

along with 6,545 validation samples and 6,545 test 1003

samples of Java codes. 1004

All our experiments are conducted using a sin- 1005

gle NVIDIA 40GB Ampere A100 GPU. In our 1006

study, we fine-tuned more than 350 models, which 1007

resulted in 843 GPU hours. 1008

C Hyperparameters for LoRA 1009

Fine-tuning 1010

In Table 4, we present the LoRA hyperparameters 1011

that were applied in the fine-tuning of various mod- 1012

els. We fine-tune these models utilizing AdamW 1013

with a linear learning rate decay schedule. Dur- 1014

ing the validation and testing phases, we employed 1015

beam search with a beam size of 10, following 1016

Wang et al. (2021, 2023); Guo et al. (2021). 1017

For fine-tuning GCBERT, CodeT5, and CodeT5+ 1018

in the text-to-code task, we set the maximum input 1019

and output sequence length to 320 and 150 tokens, 1020

respectively. In the case of fine-tuning Code Llama, 1021

we set the maximum sequence length to 470 tokens. 1022

In the code refinement task, to fine-tune GCBERT, 1023

CodeT5, and CodeT5+, we set the maximum input 1024

and output sequence length to 240 and 240 tokens. 1025

We fine-tune Code Llama for code refinement tasks 1026

by setting the maximum sequence length to 480. 1027

D Comparison of Full Fine-tuning and 1028

LoRA fine-tuning Method 1029

In Table 5, you can find the in-distribution perfor- 1030

mance results of fine-tuned models using the full 1031

13

Table 4: The LoRA hyperparameters we used to fine-tune the models for text-to-code and code refinement tasks.

Models Batch Size #Epoch Learning Rate Rank (rq, rv) LoRA α

GCBERT 32 20 5e−4 16, 16 32
CodeT5 32 20 5e−4 16, 16 32
CodeT5+ 16 15 5e−4 16, 16 32
Code Llama 4 5 5e−4 16, 16 32

and LoRA fine-tuning methods. This table corre-1032

sponds to a version of Table 3, which additionally1033

includes BLEU score results.1034

E List of Language Elements1035

In syntax-based scenarios, we consider one ele-1036

ment in each scenario and mask-out the source1037

code with that particular element. Here, we pro-1038

vide the details of five language elements used in1039

our experiments. Note that we pick the element1040

that covers ≈ 3% of the fine-tuning data. We con-1041

duct our syntax-based experiments based on the1042

following language elements of each task,1043

1. Text-to-Code: {else, floating_point_type,1044

unary_expression, array_access, true}1045

2. Code Refinement: {while_statement, long,1046

array_creation_expression, break, ⩾}1047

F Do the clusters represent programs1048

with specific semantics?1049

Table 6 provides semantics of five random clusters1050

(out of 35) in text-to-code tasks. We randomly1051

check 20 source codes in each cluster to check1052

their semantics.1053

G More experimental results1054

G.1 BLEU score Results1055

In Table 7 Table 8, we provide BLEU score re-1056

sults of different scenarios for the text-to-code and1057

code refinement tasks, respectively. As we men-1058

tion in subsection 4.1, BLEU scores are not nec-1059

essarily correlated with the correctness of the pro-1060

grams (Hendrycks et al., 2021) and human judg-1061

ment (Evtikhiev et al., 2022). For example, a text-1062

to-code model with a high BLEU score could mis-1063

lead users. Furthermore, Wang et al. (2021) show1064

that in the code refinement task, the BLEU score1065

of a naive copy of the input code can be as good1066

as the state-of-the-art methods. Table 7 shows the1067

performance (BLEU score) dropped for different1068

models in all of the OOD scenarios compared to 1069

the 100% baseline. For example, in the length- 1070

based extrapolation scenario for the CodeLlama 1071

model, the BLEU score dropped over 16 points 1072

when compared to the 100% baseline performance. 1073

Furthermore, as shown in Table 7, it is evident that 1074

across all OOD scenarios, fine-tuning the models 1075

using the LoRA approach consistently results in 1076

higher BLEU scores. As depicted in Table 8, it is 1077

apparent that there are fewer performance drops in 1078

comparison to the text-to-code results outlined in 1079

Table 7. This distinction can be primarily attributed 1080

to the code refinement task’s inherent characteris- 1081

tics, wherein naively copying the input tokens to 1082

the outputs can yield state-of-the-art BLEU scores. 1083

G.2 Effect of revealing different percentages 1084

of the masked data 1085

In Table 9 and Table 10 we show the effect of re- 1086

vealing different percentages of the masked data on 1087

the model’s performance. Specifically, we show- 1088

case CodeT5+ performance in different scenarios 1089

by revealing 25%, 50%, and 75% of the masked 1090

data (The data was masked for the OOD scenar- 1091

ios). Table 9 presents results for the text-to-code 1092

task, while Table 10 displays results for the code 1093

refinement task. 1094

Table 9 and Table 10 demonstrate that the model 1095

can gain a high performance even by revealing 25% 1096

(0.75% of training data). For instance, in Table 9, 1097

within length extrapolation scenarios, the full fine- 1098

tuned model notably showed relative performance 1099

increases from 5.0% (OOD) to 64.63% (Few-25%). 1100

Furthermore, both tables indicate that revealing 1101

50% and 75% of the masked data can enhance 1102

the model’s performance across different scenarios. 1103

Nevertheless, the observed performance gains for 1104

Few-75% are less apparent compared to the Few- 1105

50% and Few-25% cases. 1106

14

Table 5: Exact match (EM) and BLEU (B) results of the fine-tuned models using the full fine-tuning dataset for
text-to-code and code refinement tasks. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning
method. GCBERT refers to (Guo et al., 2021).

Models Text-to-Code Refinement

FT LoRA FT LoRA

EM B EM B EM B EM B
GCBERT - - - - 10.74 90.93 11.38 86.45
CodeT5 22.15 39.60 21.65 38.90 14.43 89.33 14.53 89.40
CodeT5+ 24.95 44.06 24.70 43.78 15.18 88.19 15.29 89.65
Code Llama - - 27.65 45.19 - - 19.19 90.34

Table 6: Semantics of five clusters in text-to-code task.

Cluster-ID Semantic

0 Property setter functions
1 Property string getter functions
6 Initialize object
11 Using getter function
17 String concatenation

G.3 Qualitative examples1107

In Figure 4, Figure 5, and Figure 6, we present qual-1108

itative results showcasing instances where the Code1109

Llama model was not able to generate the targeted1110

codes in the OOD scenarios. These examples high-1111

light the challenge that even large fine-tuned LLMs1112

face when handling OOD data. Figure 4 shows1113

an example of the syntax-based OOD scenarios in1114

which the model was unable to generate and use1115

the else element. In Figure 5 demonstrates another1116

example from the text-to-code task. Here, we pro-1117

vide an example of the length-based extrapolation1118

OOD scenarios. In these scenarios, our goal is to1119

investigate whether the model is able to extrapolate1120

from shorter programs to longer ones. Figure 51121

shows that Code Llama was unable to generate1122

the target program correctly. Note that Figure 51123

shows an example of P̃5 = {[97%, 100%]} OOD1124

scenario, where only 3% of the entire fine-tuning1125

data is masked out. Figure 6 shows an example of1126

the code refinement task. In Figure 6, we provide1127

an example of the syntax-based scenario, in which1128

Code Llama encountered difficulty in generating1129

the while_statement. In this syntax-based scenario1130

while_statement is the unseen language element.1131

Input text: Returns true if view’s layout direction
is right-to-left.

(a) Target Code

1 boolean function (View arg0) {
2 if (Build.VERSION.SDK_INT >=

VERSION_CODES.JELLY_BEAN_MR1) {
3 return arg0.getLayoutDirection () ==

View.LAYOUT_DIRECTION_RTL;
4 }
5 else {
6 return false;
7 }
8 }

(b) Generated Code

1
2 boolean function (View arg0) {
3 return arg0.getLayoutDirection () ==

View.LAYOUT_DIRECTION_RTL;
4 }

Figure 4: An example of generated code by Code Llama
in the syntax-based OOD scenario for the text-to-code
task. Here else is the unseen language element.

15

Table 7: Overall results of the model performance for different scenarios in text-to-code task. The results provide
the BLEU score for different scenarios. Length Inter and Length Extra refer to length-based interpolation and
extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning method.
OOD and Few refer to OOD and few-data regime scenarios, respectively. Full refers to 100% baseline (when a
model has access to 100% of the fine-tuning set).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

CodeT5
OOD 40.19 42.03 15.09 15.23 24.08 24.18 44.58 46.21
Few 48.91 46.47 20.18 18.46 25.20 24.95 45.43 47.97
Full 47.79 48.34 24.08 23.34 27.01 25.83 48.48 49.65

CodeT5+
OOD 40.58 44.07 15.98 17.48 24.39 26.41 40.52 43.11
Few 50.07 50.10 19.33 21.67 27.25 27.25 48.93 50.77
Full 51.80 51.23 23.29 22.63 28.98 28.04 50.89 51.03

Code Llama
OOD - 54.34 - 21.24 - 25.37 - 47.74
Few - 60.35 - 36.73 - 28.06 - 50.76
Full - 62.11 - 37.44 - 29.50 - 51.38

Input text: Does this nodetest pass using the
specified nodetester instance?

(a) Target Code

1 void function (NodeTester arg0 , short [
] arg1) {

2 NodeIterator loc0 = documentTraversal.
createNodeIterator(rootNode ,
NodeFilter.SHOW_ALL , new
NodeTypeNodeFilter(arg1), true);

3 for(Node loc1 = loc0.loc1 (); loc1 !=
null; loc1 = loc0.loc1()){

4 arg0.testNode(loc1 , this);
5 }
6 arg0.noMoreNodes(this);
7 }

(b) Generated Code

1 String function (Node arg0) {
2 StringBuilder loc0 = new StringBuilder

();
3 handleWsRec(arg0 , loc0);
4 return loc0.toString ();
5 }

Figure 5: An example of generated code by Code Llama
in the length-based OOD scenario for the text-to-code
task. Here we provide an example of length-based ex-
trapolation scenarios (P̃5 = {[97%, 100%]}).

(a) Target Code

1 public java.lang.String toString (){
2 java.lang.String VAR_1 = STRING_1;
3 int temp = start;
4 while (temp != end){
5 VAR_1 += (array[temp]) + STRING_2 ;
6 if(temp == ((array.length) - 1)){
7 temp = 0;
8 }else{
9 temp ++;}

10 }
11 VAR_1 += array[temp];
12 VAR_1 += STRING_3;
13 return VAR_1;
14 }

(b) Generated Code

1 public java.lang.String toString (){
2 java.lang.String VAR_1 = STRING_1;
3 if ((METHOD_1 ()) != null){
4 VAR_1 += METHOD_2 ();
5 if ((METHOD_1 ()) != null){
6 VAR_1 += STRING_2;
7 }
8 }
9 VAR_1 += STRING_3;

10 return VAR_1;
11 }

Figure 6: An example of generated code by Code Llama
in the syntax-based OOD scenario for the code refine-
ment task. Here while_statement is the unseen language
element.).

16

Table 8: Overall results of the model performance for different scenarios in code refinement task. The results
provide the BLEU score for different scenarios. Length Inter and Length Extra refer to length-based interpolation
and extrapolation scenarios, respectively. FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning
method. OOD and Few refer to OOD and few-data regime scenarios, respectively. Full refers to 100% baseline
(when a model has access to 100% of the fine-tuning set). GCBERT denotes to the GraphCodeBERT model (Guo
et al., 2021).

Models Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA

GCBERT
OOD 88.22 88.37 83.01 81.45 79.44 81.74 88.36 85.76
Few 88.59 88.32 85.14 82.75 90.36 87.67 88.95 86.28
Full 88.32 88.56 84.61 82.99 90.10 87.93 89.73 86.45

CodeT5
OOD 87.37 88.65 80.35 84.11 83.05 87.08 84.68 87.75
Few 86.67 88.06 81.62 84.22 89.19 90.19 86.54 88.24
Full 87.39 88.74 83.22 84.22 89.88 88.78 87.69 88.96

CodeT5+
OOD 83.08 86.29 81.26 82.15 84.60 85.48 84.73 85.97
Few 84.81 87.30 83.03 82.26 88.83 88.96 85.91 86.72
Full 86.05 87.75 83.17 83.16 89.45 89.01 87.46 86.62

Code Llama
OOD - 86.40 - 78.30 - 83.29 - 81.32
Few - 88.79 - 84.07 - 90.92 - 89.12
Full - 89.03 - 84.26 - 91.96 - 89.80

Table 9: Overall CodeT5+ performance results for different scenarios with different amounts of data in text-to-code
task. Few-XX% show the results of revealing 25%, 50%, and 75% of the masked data to the model. FT denotes
full fine-tuning, and LoRA refers to the LoRA fine-tuning method. OOD and Few refer to OOD and few-data
regime scenarios, respectively.

CodeT5+ Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA
ODD 49.65% 70.94% 5.0% 26.09% 47.95% 68.97% 39.69% 55.71%
Few-25% 69.34% 88.72% 64.63% 86.55% 63.16% 73.75% 59.71% 78.47%
Few-50% 76.40% 96.36% 77.38% 101.72% 67.21% 78.54% 66.04% 83.68%
Few-75% 89.32% 98.82% 93.62% 99.36% 79.50% 88.73% 76.65% 91.28%

Table 10: Overall CodeT5+ performance results for different scenarios with different amounts of data in code
refinement task. Few-XX% show the results of revealing 25%, 50%, and 75% of the masked data to the model.
FT denotes full fine-tuning, and LoRA refers to the LoRA fine-tuning method. OOD and Few refer to OOD and
few-data regime scenarios, respectively.

CodeT5+ Length Inter Length Extra Syntax Semantic

FT LoRA FT LoRA FT LoRA FT LoRA
ODD 80.70% 83.39% 73.44% 82.39% 21.41% 37.14% 73.65% 78.67%
Few-25% 89.66% 91.53% 76.82% 87.47% 58.36% 75.44% 81.48% 88.82%
Few-50% 93.28% 94.65% 79.56% 90.77% 72.83% 81.01% 85.30% 93.29%
Few-75% 98.23% 99.51% 86.56% 92.21% 84.24% 89.75% 89.32% 96.52%

17

	Introduction
	Related Work
	SimSCOOD: Simulation of Source Code Out-of-Distribution Scenarios
	Length-based OOD Scenarios
	Syntax-based OOD Scenarios
	Semantic-based OOD Scenarios

	Experiments
	Setups
	Data Construction and Fine-tuning
	How Do Fine-tuned Models Generalize in OOD Scenarios?
	Can Fine-tuned LLMs Generate Unseen Language Elements?

	Conclusion
	Pretrained Models
	BERT-based Models
	CodeT5
	Code Llama

	Further Details of Datasets and Computational Resources
	Hyperparameters for LoRA Fine-tuning
	Comparison of Full Fine-tuning and LoRA fine-tuning Method
	List of Language Elements
	Do the clusters represent programs with specific semantics?
	More experimental results
	BLEU score Results
	Effect of revealing different percentages of the masked data
	Qualitative examples

